CN102169888B - Strain geoi structure and forming method thereof - Google Patents
Strain geoi structure and forming method thereof Download PDFInfo
- Publication number
- CN102169888B CN102169888B CN2011100583707A CN201110058370A CN102169888B CN 102169888 B CN102169888 B CN 102169888B CN 2011100583707 A CN2011100583707 A CN 2011100583707A CN 201110058370 A CN201110058370 A CN 201110058370A CN 102169888 B CN102169888 B CN 102169888B
- Authority
- CN
- China
- Prior art keywords
- layer
- thin layer
- passivation
- forming
- strained
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Thin Film Transistor (AREA)
Abstract
本发明提出一种应变GeOI结构,包括:表面具有氧化物绝缘层的硅衬底;形成在所述氧化物绝缘层之上的Ge层,其中,Ge层与所述氧化物绝缘层之间形成有第一钝化薄层;形成在所述Ge层之上的栅堆叠,以及形成在所述栅堆叠之下的沟道区和沟道区两侧的漏区和源区;和覆盖所述栅堆叠的SiN应力帽层以使所述沟道区产生应变。在本发明实施例中锶锗化物或钡锗化物形成的钝化薄层属于半导体,在本发明实施例中通过第一钝化层可以改善Ge材料与绝缘氧化物之间的界面态问题,从而降低该界面处的漏电和散射。此外,通过本发明实施例的SiN应力帽层可以使沟道区产生应变,从而提高器件性能。
The present invention proposes a strained GeOI structure, comprising: a silicon substrate with an oxide insulating layer on the surface; a Ge layer formed on the oxide insulating layer, wherein a Ge layer is formed between the oxide insulating layer There is a first passivation thin layer; a gate stack formed on the Ge layer, and a channel region under the gate stack and a drain region and a source region on both sides of the channel region; and covering the The SiN stress cap layer of the gate stack is used to strain the channel region. In the embodiment of the present invention, the passivation thin layer formed by strontium germanide or barium germanide belongs to semiconductor, and in the embodiment of the present invention, the interface state problem between the Ge material and the insulating oxide can be improved through the first passivation layer, thereby Reduce leakage and scattering at this interface. In addition, the SiN stress cap layer of the embodiment of the present invention can generate strain in the channel region, thereby improving device performance.
Description
技术领域 technical field
本发明涉及半导体设计及制造技术领域,特别涉及一种应变GeOI(绝缘体上Ge)结构及其形成方法。The invention relates to the technical field of semiconductor design and manufacture, in particular to a strained GeOI (Ge on insulator) structure and a forming method thereof.
背景技术 Background technique
长期以来,金属-氧化物-半导体场效应晶体管(MOSFET)的特征尺寸一直遵循着所谓的摩尔定律(Moore’s law)不断按比例缩小,其工作速度越来越快,但是,对于基于Si材料本身的而言,已经接近于物理与技术的双重极限。因而,人们为了不断提升MOSFET器件的性能提出了各种各样的方法,从而MOSFET器件的发展进入了所谓的后摩尔(More-Than-Moore)时代。基于异质材料结构尤其是Si基Ge材料等高载流子迁移率材料系统的高迁移率沟道工程是其中的一种卓有成效的技术。例如,将Ge与具有SiO2绝缘层的Si片直接键合形成GeOI结构就是一种具有高空穴迁移率的Si基Ge材料,具有很好的应用前景。For a long time, the feature size of Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) has been following the so-called Moore's law (Moore's law) to keep scaling down, and its working speed is getting faster and faster. However, for Si-based material itself As far as it is concerned, it is already close to the double limit of physics and technology. Therefore, various methods have been proposed in order to continuously improve the performance of MOSFET devices, and thus the development of MOSFET devices has entered a so-called post-Moore (More-Than-Moore) era. High-mobility channel engineering based on heterogeneous material structures, especially high-carrier mobility material systems such as Si-based Ge materials, is one of the effective technologies. For example, the direct bonding of Ge and Si sheet with SiO2 insulating layer to form GeOI structure is a Si-based Ge material with high hole mobility, which has a good application prospect.
现有GeOI结构是将Ge与SiO2等绝缘氧化物直接键合,或者Ge上形成有GeO2再与硅片键合。现有技术存在的缺点是,在GeOI技术中如果直接在绝缘氧化物衬底之上形成Ge材料,由于Ge材料与绝缘氧化物之间的接触界面比较差,尤其是界面态密度很高,从而引起比较严重的散射和漏电,最终影响了器件性能。此外,由于Ge层非常薄,因此Ge层难于形成应变。In the existing GeOI structure, Ge is directly bonded to insulating oxides such as SiO 2 , or GeO 2 is formed on Ge and then bonded to silicon wafers. The disadvantage of the prior art is that if the Ge material is directly formed on the insulating oxide substrate in the GeOI technology, the contact interface between the Ge material and the insulating oxide is relatively poor, especially the interface state density is very high, thus It causes serious scattering and leakage, which ultimately affects the performance of the device. In addition, since the Ge layer is very thin, it is difficult for the Ge layer to be strained.
发明内容 Contents of the invention
本发明的目的旨在至少解决上述技术缺陷之一,特别是解决目前GeOI结构中Ge与氧化物绝缘体之间界面态很差的缺陷,以及Ge层难于形成应变的缺陷。The purpose of the present invention is to solve at least one of the above-mentioned technical defects, especially the defect that the interface state between Ge and the oxide insulator in the current GeOI structure is very poor, and the defect that the Ge layer is difficult to form strain.
为达到上述目的,本发明一方面提出一种应变GeOI结构,包括:表面具有氧化物绝缘层的硅衬底;形成在所述氧化物绝缘层之上的Ge层,其中,所述Ge层与所述氧化物绝缘层之间形成有第一钝化薄层;形成在所述Ge层之上的栅堆叠,以及形成在所述栅堆叠之下的沟道区和沟道区两侧的漏区和源区;和覆盖所述栅堆叠的SiN应力帽层以使所述沟道区产生应变。In order to achieve the above object, the present invention proposes a strained GeOI structure on the one hand, comprising: a silicon substrate with an oxide insulating layer on the surface; a Ge layer formed on the oxide insulating layer, wherein the Ge layer and A first passivation thin layer is formed between the oxide insulating layers; a gate stack is formed on the Ge layer, and a channel region and drains on both sides of the channel region are formed under the gate stack. region and source region; and a SiN stress cap layer covering the gate stack to strain the channel region.
在本发明的一个实施例中,所述栅堆叠包括:位于所述Ge层之上的栅介质层;位于所述栅介质层之上的栅电极;和位于所述栅介质层和所述栅电极两侧的侧墙,其中,所述侧墙的高度为所述栅电极的高度的0.5-0.8倍。In one embodiment of the present invention, the gate stack includes: a gate dielectric layer on the Ge layer; a gate electrode on the gate dielectric layer; The side walls on both sides of the electrode, wherein the height of the side walls is 0.5-0.8 times the height of the gate electrode.
在本发明的一个实施例中,所述第一钝化薄层为锶锗化物薄层、钡锗化物薄层、GeSi钝化薄层或Si薄层。In one embodiment of the present invention, the first passivation thin layer is a strontium germanide thin layer, a barium germanide thin layer, a GeSi passivation thin layer or a Si thin layer.
在本发明的一个实施例中,还包括:形成在所述Ge层之上的第二钝化薄层,所述第二钝化薄层为锶锗化物薄层、钡锗化物薄层或GeSi钝化薄层。In one embodiment of the present invention, it also includes: a second passivation thin layer formed on the Ge layer, and the second passivation thin layer is a strontium germanide thin layer, a barium germanide thin layer or a GeSi Thin layer of passivation.
在本发明的一个实施例中,所述氧化物绝缘层和所述Ge层之间通过键合方式相连。In an embodiment of the present invention, the oxide insulating layer and the Ge layer are connected by bonding.
本发明另一方面还提出了一种应变GeOI结构的形成方法,包括以下步骤:在第一衬底之上形成Ge层;对所述Ge层的第一表面进行处理以形成第一钝化薄层;将所述第一衬底、所述Ge层及所述第一钝化薄层翻转并转移至表面有氧化物绝缘层的硅衬底;去除所述第一衬底;形成位于所述Ge层之上的栅堆叠,并形成位于所述栅堆叠之下形成沟道区,以及位于所述沟道区两侧的漏区和源区;和在所述栅堆叠之上形成覆盖所述栅堆叠的SiN应力帽层以使所述沟道区产生应变。Another aspect of the present invention also proposes a method for forming a strained GeOI structure, comprising the following steps: forming a Ge layer on a first substrate; processing the first surface of the Ge layer to form a first passivation thin film layer; turn the first substrate, the Ge layer, and the first passivation thin layer over and transfer them to a silicon substrate with an oxide insulating layer on the surface; remove the first substrate; form a A gate stack above the Ge layer, and form a channel region under the gate stack, and a drain region and a source region on both sides of the channel region; and form a gate stack covering the The SiN stress cap layer of the gate stack is used to strain the channel region.
在本发明的一个实施例中,所述在Ge层之上形成栅堆叠进一步包括:在所述Ge层之上形成栅介质层;在所述栅介质层之上形成栅电极;在所述栅介质层和所述栅电极两侧形成侧墙;刻蚀所述侧墙以使所述侧墙的高度为所述栅电极的高度的0.5-0.8倍。In an embodiment of the present invention, the forming a gate stack on the Ge layer further includes: forming a gate dielectric layer on the Ge layer; forming a gate electrode on the gate dielectric layer; A spacer is formed on both sides of the dielectric layer and the gate electrode; the spacer is etched so that the height of the sidewall is 0.5-0.8 times the height of the gate electrode.
在本发明的一个实施例中,所述第一钝化薄层为锶锗化物薄层、钡锗化物薄层、GeSi钝化薄层或Si薄层。In one embodiment of the present invention, the first passivation thin layer is a strontium germanide thin layer, a barium germanide thin layer, a GeSi passivation thin layer or a Si thin layer.
在本发明的一个实施例中,在所述去除第一衬底之后,还包括:对所述Ge层的第二表面进行处理以形成第二钝化薄层,所述第二钝化薄层为锶锗化物薄层、钡锗化物薄层或GeSi钝化薄层。In one embodiment of the present invention, after removing the first substrate, further comprising: processing the second surface of the Ge layer to form a second passivation thin layer, the second passivation thin layer It is a thin layer of strontium germanide, a thin layer of barium germanide or a thin passivation layer of GeSi.
在本发明的一个实施例中,在所述去除第一衬底之后,还包括:对所述Ge层的第二表面进行硅化处理以形成GeSi钝化薄层。In one embodiment of the present invention, after removing the first substrate, further comprising: performing silicide treatment on the second surface of the Ge layer to form a GeSi passivation thin layer.
在本发明的一个实施例中,通过键合方式将所述第一钝化薄层与所述氧化物绝缘层相连。In one embodiment of the present invention, the first passivation thin layer is connected to the oxide insulating layer by bonding.
在本发明实施例中通过第一钝化层可以改善Ge材料与绝缘氧化物之间的界面态问题,从而降低该界面处的漏电和散射。在本发明优选实施例中,锶锗化物或钡锗化物或GeSi形成的钝化薄层属于半导体,因此不仅可以改善Ge材料与绝缘氧化物之间的界面态问题,降低该界面处的漏电和散射,另外也不会过度降低Ge材料的迁移率性能。此外,通过本发明实施例的SiN应力帽层可以使沟道区产生应变,从而提高器件性能。在本发明的有效实施例中,当侧墙的高度为栅电极的高度的0.5-0.8倍时,SiN应力帽层的应力可以更有效地传递到沟道区,从而更有效地改善器件性能。In the embodiment of the present invention, the problem of the interface state between the Ge material and the insulating oxide can be improved through the first passivation layer, thereby reducing leakage and scattering at the interface. In a preferred embodiment of the present invention, the passivation thin layer formed by strontium germanide or barium germanide or GeSi belongs to semiconductor, so it can not only improve the interface state problem between the Ge material and the insulating oxide, but also reduce the leakage and leakage at the interface. scattering without unduly degrading the mobility properties of the Ge material. In addition, the SiN stress cap layer of the embodiment of the present invention can generate strain in the channel region, thereby improving device performance. In an effective embodiment of the present invention, when the height of the sidewall is 0.5-0.8 times the height of the gate electrode, the stress of the SiN stress cap layer can be more effectively transferred to the channel region, thereby more effectively improving device performance.
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明 Description of drawings
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and easy to understand from the following description of the embodiments in conjunction with the accompanying drawings, wherein:
图1为本发明实施例的应变GeOI结构的示意图;Fig. 1 is the schematic diagram of the strained GeOI structure of the embodiment of the present invention;
图2-6为本发明实施例的应变GeOI结构的形成方法的中间步骤示意图。2-6 are schematic diagrams of intermediate steps of a method for forming a strained GeOI structure according to an embodiment of the present invention.
具体实施方式 Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。The following disclosure provides many different embodiments or examples for implementing different structures of the present invention. To simplify the disclosure of the present invention, components and arrangements of specific examples are described below. Of course, they are only examples and are not intended to limit the invention. Furthermore, the present invention may repeat reference numerals and/or letters in different instances. This repetition is for the purpose of simplicity and clarity and does not in itself indicate a relationship between the various embodiments and/or arrangements discussed. In addition, various specific process and material examples are provided herein, but one of ordinary skill in the art will recognize the applicability of other processes and/or the use of other materials. Additionally, configurations described below in which a first feature is "on" a second feature may include embodiments where the first and second features are formed in direct contact, and may include additional features formed between the first and second features. For example, such that the first and second features may not be in direct contact.
如图1所示,为本发明实施例的应变GeOI结构的示意图。该GeOI结构包括表面有氧化物绝缘层1200的硅衬底1100和形成在氧化物绝缘层1200之上的Ge层1300,其中,Ge层1300与氧化物绝缘层1200之间形成有第一钝化薄层1400。在本发明实施例中,第一钝化薄层1300为采用锶Sr或钡Ba对Ge层1200的第一表面进行处理形成的为锶锗化物GeSrx或钡锗化物GeBax。当然在本发明的其他实施例中,第一钝化薄层1400还可为GeSi钝化薄层或Si薄层。在本发明的一个实施例中,表面有氧化物绝缘层的硅衬底1100包括Si衬底,及形成在Si衬底之上的SiO2绝缘层。由于锶锗化物或钡锗化物形成的钝化薄层属于半导体,因此不仅可以改善Ge材料与绝缘氧化物之间的界面态问题,降低该界面处的漏电和散射,另外也不会过度降低Ge材料的迁移率性能。在本发明实施例中,为了生成具有应变的Ge沟道器件,该应变GeOI结构还包括在栅堆叠之上形成覆盖栅堆叠(栅介质层1600和栅电极1700)的SiN应力帽层1900以使沟道区产生应变。在本发明实施例中,可通过调节SiN应力帽层1900中N的组分使得沟道区产生压应变或张应变,从而提高器件性能。As shown in FIG. 1 , it is a schematic diagram of a strained GeOI structure according to an embodiment of the present invention. The GeOI structure includes a
在本发明的一个实施例中,该应变GeOI结构还包括形成在所述Ge层之上的第二钝化薄层1500。其中,同样地,第二钝化薄层1500采用锶Sr或钡Ba对Ge层1400的第二表面进行处理形成的为锶锗化物或钡锗化物。当然在本发明的其他实施例中,也可通过其他方式形成第二钝化薄层1500,即该第二钝化薄层1500为GeSi。In one embodiment of the present invention, the strained GeOI structure further includes a second
在本发明的一个实施例中,该GeOI结构还包括形成在第二钝化薄层1500之上的栅介质层1600和形成在栅介质层1600之上的栅电极1700,以及形成在Ge层1400之中的源极和漏极1800。In one embodiment of the present invention, the GeOI structure further includes a gate dielectric layer 1600 formed on the second passivation
如图2-6所示,为本发明实施例的应变GeOI结构的形成方法的中间步骤示意图。该方法包括以下步骤:As shown in FIGS. 2-6 , they are schematic diagrams of the intermediate steps of the method for forming the strained GeOI structure according to the embodiment of the present invention. The method includes the following steps:
步骤S101,提供第一衬底2000,其中,第一衬底2000为Si衬底或者Ge衬底。当然在本发明的其他实施例中,还可采用其他衬底。在本发明实施例中第一衬底2000可重复使用,从而降低制造成本。Step S101, providing a
步骤S102,在第一衬底2000之上形成Ge层1300,如图2所示。Step S102 , forming a
步骤S103,采用锶Sr或钡Ba对Ge层1300的第一表面进行处理以形成第一钝化薄层1400,该第一钝化薄层1400为锶锗化物或钡锗化物,如图3所示。当然在本发明的其他实施例中,第一钝化薄层1400还可为GeSi钝化薄层或Si薄层,例如对Ge层1300进行Si化处理,或者在Ge层1300上淀积Si薄层。Step S103, treating the first surface of the
步骤S104,将第一衬底2000、Ge层1300及第一钝化薄层1400翻转并转移至表面有氧化物绝缘层1200的硅衬底1100,如图4所示。在本发明的一个实施例中,通过键合方式将第一钝化薄层1300与氧化物绝缘层1200相连。In step S104 , the
步骤S105,去除第一衬底2000,如图5所示。Step S105 , removing the
步骤S106,可选择地,采用锶或钡对Ge层1400的第二表面进行处理以形成第二钝化薄层1500,该第二钝化薄层1500为锶锗化物或钡锗化物,如图6所示。同样地,在本发明的其他实施例中,也可通过其他方式形成第二钝化薄层1500,即该第二钝化薄层1500为GeSi。Step S106, optionally, the second surface of the
步骤S107,形成位于第二钝化薄层1500之上的栅堆叠(即栅介质层1600和栅电极1700)及栅堆叠两侧的侧墙,并形成位于栅堆叠之下形成沟道区,以及位于沟道区两侧的漏区和源区1800。。在本发明的实施例中,栅堆叠及源区和漏区的形成既可以采用前栅(gate-first)工艺,也可以采用后栅(gate-last)工艺。Step S107, forming a gate stack (i.e. gate dielectric layer 1600 and gate electrode 1700) on the second passivation
在本发明的优选实施例中,还可对侧墙进行刻蚀,使其高度约为栅电极高度的0.5-0.8倍。In a preferred embodiment of the present invention, the sidewall can also be etched to a height of about 0.5-0.8 times the height of the gate electrode.
步骤S108,淀积SiN层,并进行刻蚀以形成SiN应力帽层1900,如图1所示。Step S108 , depositing a SiN layer and performing etching to form a SiN stress cap layer 1900 , as shown in FIG. 1 .
在本发明实施例中通过第一钝化层可以改善Ge材料与绝缘氧化物之间的界面态问题,从而降低该界面处的漏电和散射。在本发明优选实施例中,锶锗化物或钡锗化物形成的钝化薄层属于半导体,因此不仅可以改善Ge材料与绝缘氧化物之间的界面态问题,降低该界面处的漏电和散射,另外也不会过度降低Ge材料的迁移率性能。此外,通过本发明实施例的SiN应力帽层可以使沟道区产生应变,从而提高器件性能。在本发明的有效实施例中,当侧墙的高度为栅电极的高度的0.5-0.8倍时,SiN应力帽层的应力可以更有效地传递到沟道区,从而更有效地改善器件性能。In the embodiment of the present invention, the problem of the interface state between the Ge material and the insulating oxide can be improved through the first passivation layer, thereby reducing leakage and scattering at the interface. In a preferred embodiment of the present invention, the passivation thin layer formed by strontium germanide or barium germanide belongs to semiconductor, so it can not only improve the interface state problem between Ge material and insulating oxide, but also reduce the leakage and scattering at the interface, In addition, the mobility performance of the Ge material will not be excessively reduced. In addition, the SiN stress cap layer of the embodiment of the present invention can generate strain in the channel region, thereby improving device performance. In an effective embodiment of the present invention, when the height of the sidewall is 0.5-0.8 times the height of the gate electrode, the stress of the SiN stress cap layer can be more effectively transferred to the channel region, thereby more effectively improving device performance.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications and substitutions can be made to these embodiments without departing from the principle and spirit of the present invention. and modifications, the scope of the invention is defined by the appended claims and their equivalents.
Claims (8)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100583707A CN102169888B (en) | 2011-03-10 | 2011-03-10 | Strain geoi structure and forming method thereof |
PCT/CN2011/078948 WO2012119419A1 (en) | 2011-03-10 | 2011-08-25 | Strained ge-on-insulator structure and method for forming the same |
PCT/CN2011/078946 WO2012119418A1 (en) | 2011-03-10 | 2011-08-25 | Strained ge-on-insulator structure and method for forming the same |
US13/263,222 US8786017B2 (en) | 2011-03-10 | 2011-08-25 | Strained Ge-on-insulator structure and method for forming the same |
US13/263,227 US8890209B2 (en) | 2011-03-10 | 2011-08-25 | Strained GE-ON-insulator structure and method for forming the same |
PCT/CN2011/078944 WO2012119417A1 (en) | 2011-03-10 | 2011-08-25 | Strained ge-on-insulator structure and method for forming the same |
US13/263,236 US8704306B2 (en) | 2011-03-10 | 2011-08-25 | Strained Ge-on-insulator structure and method for forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100583707A CN102169888B (en) | 2011-03-10 | 2011-03-10 | Strain geoi structure and forming method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102169888A CN102169888A (en) | 2011-08-31 |
CN102169888B true CN102169888B (en) | 2012-11-14 |
Family
ID=44490972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100583707A Expired - Fee Related CN102169888B (en) | 2011-03-10 | 2011-03-10 | Strain geoi structure and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102169888B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103489777A (en) * | 2012-06-11 | 2014-01-01 | 中芯国际集成电路制造(上海)有限公司 | Stress memory technology method |
CN107275416A (en) * | 2017-05-09 | 2017-10-20 | 浙江大学 | A kind of photo-detector and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1659623B1 (en) * | 2004-11-19 | 2008-04-16 | S.O.I. Tec Silicon on Insulator Technologies S.A. | Method for fabricating a germanium on insulator (GeOI) type wafer |
FR2892230B1 (en) * | 2005-10-19 | 2008-07-04 | Soitec Silicon On Insulator | TREATMENT OF A GERMAMIUM LAYER |
CN101295647A (en) * | 2008-01-16 | 2008-10-29 | 清华大学 | A Method of Enhancing Strain in Channel Region of MOS Devices |
CN101882624B (en) * | 2010-06-29 | 2011-09-14 | 清华大学 | Structure with high-Ge strained layer formed on insulating substrate and forming method |
-
2011
- 2011-03-10 CN CN2011100583707A patent/CN102169888B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102169888A (en) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102184954A (en) | Ge channel device and forming method thereof | |
CN103187439B (en) | Semiconductor structure and forming method thereof, CMOS and forming method thereof | |
CN104347418A (en) | Forming method of MOS (Metal Oxide Semiconductor) transistor | |
CN102789986B (en) | Semiconductor apparatus and manufacturing method thereof | |
CN102214684A (en) | Semiconductor structure with suspended sources and drains as well as formation method thereof | |
CN110858565B (en) | Semiconductor device and method of forming the same | |
CN102169888B (en) | Strain geoi structure and forming method thereof | |
CN108054172B (en) | Array substrate, manufacturing method thereof and display device | |
CN108695375A (en) | Semiconductor structure and forming method thereof | |
CN104681490A (en) | Forming method of CMOS (complementary metal-oxide-semiconductor) transistor | |
WO2011106973A1 (en) | Method for forming channel materials | |
CN102543744B (en) | Transistor and manufacturing method thereof | |
CN102157432A (en) | GeOI structure and formation method thereof | |
CN102184953B (en) | Stress GeOI structure and forming method thereof | |
CN107346740B (en) | Fin type field effect transistor and forming method thereof | |
US8890209B2 (en) | Strained GE-ON-insulator structure and method for forming the same | |
CN117153879A (en) | Semiconductor structures and methods of forming them | |
CN104103590B (en) | Semiconductor device manufacturing method | |
US8772873B2 (en) | Ge-on-insulator structure and method for forming the same | |
JP6356072B2 (en) | Manufacturing method of semiconductor device | |
CN102214683B (en) | Semiconductor structure having suspended source and suspended drain, and formation method of semiconductor structure | |
US8786017B2 (en) | Strained Ge-on-insulator structure and method for forming the same | |
CN102184940A (en) | Semiconductor structure and forming method thereof | |
US8704306B2 (en) | Strained Ge-on-insulator structure and method for forming the same | |
CN103839792A (en) | Semiconductor device manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121114 |