CN102167036B - Control method of fuel cell hybrid vehicle - Google Patents
Control method of fuel cell hybrid vehicle Download PDFInfo
- Publication number
- CN102167036B CN102167036B CN2011100826624A CN201110082662A CN102167036B CN 102167036 B CN102167036 B CN 102167036B CN 2011100826624 A CN2011100826624 A CN 2011100826624A CN 201110082662 A CN201110082662 A CN 201110082662A CN 102167036 B CN102167036 B CN 102167036B
- Authority
- CN
- China
- Prior art keywords
- motor
- power battery
- module
- fuel cell
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/84—Data processing systems or methods, management, administration
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本发明涉及一种燃料电池混合动力整车控制方法,步骤如下:1)整车控制器中设置电机状态切换模块、司机命令解释模块、动力电池荷电状态校验模块、路况自适应补偿模块、整车诊断修正模块和等效氢耗优化分配模块;2)整车控制器读入挡位信号、踏板信号和TTCAN总线数据;3)电机状态切换模块切换电机状态;4)司机命令解释模块确定电机目标转矩;5)动力电池荷电状态校验模块对SOC值,TTCAN总线电压、动力电池电流校验;6)路况自适应补偿模块计算整车辅助功率、DC/DC动态补偿时间常数;7)整车诊断修正模块修正电机目标转矩和DC/DC目标电流;8)等效氢耗优化分配模块中,整车目标功率在动力电池和燃料电池之间优化分配;9)修正后的电机目标转矩及DC/DC目标电流发送至电机控制器和DC/DC控制器,实现对电机和燃料电池的输出功率控制。
The invention relates to a fuel cell hybrid vehicle control method, the steps are as follows: 1) a motor state switching module, a driver command interpretation module, a power battery charge state verification module, a road condition self-adaptive compensation module, Vehicle diagnostic correction module and equivalent hydrogen consumption optimization distribution module; 2) The vehicle controller reads the gear signal, pedal signal and TTCAN bus data; 3) The motor state switching module switches the motor state; 4) The driver command interpretation module determines Motor target torque; 5) SOC value, TTCAN bus voltage, and power battery current are verified by the power battery state-of-charge verification module; 6) Road condition adaptive compensation module calculates vehicle auxiliary power and DC/DC dynamic compensation time constant; 7) The vehicle diagnosis and correction module corrects the motor target torque and DC/DC target current; 8) In the equivalent hydrogen consumption optimization distribution module, the vehicle target power is optimally allocated between the power battery and the fuel cell; 9) The corrected The motor target torque and the DC/DC target current are sent to the motor controller and the DC/DC controller to realize the output power control of the motor and the fuel cell.
Description
技术领域technical field
本发明涉及一种车辆控制方法,特别是关于一种面向一般城市工况的燃料电池混合动力整车控制方法。The invention relates to a vehicle control method, in particular to a fuel cell hybrid vehicle control method for general urban working conditions.
背景技术Background technique
石油资源匮乏和环境污染是当今各国政府、科研机构和跨国企业关注的重大问题,许多国家政府和企业投入大量资源研究解决该问题的技术方案。燃料电池(或称为质子交换膜燃料电池)依靠氢和氧的化学反应产生电流,并生成水,噪声低且无污染,因此被认为是解决资源及环境问题的重要技术方案。Lack of petroleum resources and environmental pollution are major concerns of governments, scientific research institutions and multinational corporations, and many governments and corporations invest a lot of resources in researching technical solutions to this problem. Fuel cells (or proton exchange membrane fuel cells) rely on the chemical reaction of hydrogen and oxygen to generate electricity and water, with low noise and no pollution, so they are considered to be an important technical solution to resource and environmental problems.
当前燃料电池主要是应用于燃料电池混合动力汽车。燃料电池混合动力汽车一般采用燃料电池加动力电池或者超级电容的构型。动力电池(或超级电容)在加载时提供过载功率,避免燃料电池工况突变;制动时,动力电池(或超级电容)吸收部分制动能量,提高系统经济性。燃料电池混合动力系统包括多个动力源(例如燃料电池动力源与动力电池动力源),由整车控制器控制该多个动力源进行工作。Currently, fuel cells are mainly used in fuel cell hybrid vehicles. Fuel cell hybrid vehicles generally adopt the configuration of fuel cell plus power battery or super capacitor. The power battery (or super capacitor) provides overload power during loading to avoid sudden changes in the working conditions of the fuel cell; when braking, the power battery (or super capacitor) absorbs part of the braking energy to improve system economy. The fuel cell hybrid power system includes multiple power sources (such as fuel cell power source and power battery power source), and the vehicle controller controls the multiple power sources to work.
在燃料电池混合动力汽车的混合动力构型方面,现有技术提供了一种“能量型”混合动力系统。如图1所示(图中细实线表示高压连接,粗实线表示机械连接),在这种构型中,燃料电池系统通过直流/直流变换器(Direct Current to Direct Currentconverter,DC/DC)与动力电池并联,而后通过直流/交流逆变器(Direct Current toAlternating Current inverter,DC/AC)转变为交流电驱动三相异步电机。现有技术中还提供了多种燃料电池混合动力汽车的整车控制方法,包括基于规则的整车控制方法、瞬时优化、全局优化和制动能量回馈整车控制方法等,但是没有提供面向一般城市工况的整车控制方法。With regard to the hybrid configuration of fuel cell hybrid electric vehicles, the prior art provides an "energy type" hybrid power system. As shown in Figure 1 (the thin solid line in the figure represents the high-voltage connection, and the thick solid line represents the mechanical connection), in this configuration, the fuel cell system passes through a DC/DC converter (Direct Current to Direct Current converter, DC/DC) It is connected in parallel with the power battery, and then converted to AC to drive the three-phase asynchronous motor through a DC/AC inverter (Direct Current to Alternating Current inverter, DC/AC). Various vehicle control methods for fuel cell hybrid electric vehicles are also provided in the prior art, including rule-based vehicle control methods, instantaneous optimization, global optimization, and braking energy feedback vehicle control methods, etc., but there is no general-purpose Vehicle control method for urban working conditions.
发明内容Contents of the invention
针对上述问题,本发明的目的是提供一种平均速率低、加减速工况所占比例高、制动消耗的能量大,能够解决城市工况的燃料电池混合动力整车控制方法。In view of the above problems, the object of the present invention is to provide a fuel cell hybrid vehicle control method that can solve urban working conditions with low average speed, high proportion of acceleration and deceleration conditions, and large braking energy consumption.
为实现上述目的,本发明采取以下技术方案:一种燃料电池混合动力整车控制方法,包括以下步骤:1)在整车控制器中设置电机状态切换模块、司机命令解释模块、动力电池荷电状态校验模块、路况自适应补偿模块、整车诊断修正模块和等效氢耗优化分配模块,其中,TTCAN为时间触发式控制器局域网;2)所述整车控制器从数字量、模拟量和TTCAN通讯端口读入司机挡位信号、司机踏板信号和TTCAN总线通讯数据;3)所述电机状态切换模块根据司机挡位信号和司机踏板信号将电机状态在“驱动、怠速、滑行、制动、倒车”之间切换;4)所述司机命令解释模块根据电机状态切换模块设置的电机状态信号,确定电机状态,进而确定电机目标转矩;5)所述动力电池荷电状态校验模块对动力电池管理系统发送的SOC值,以及TTCAN总线电压、动力电池电流进行校验,其中,SOC值为动力电池荷电状态校验值;6)所述路况自适应补偿模块根据接收的部件状态信息,在线计算整车辅助功率Paux、DC/DC动态补偿时间常数τdc,并对动力电池SOC值、燃料电池性能衰退进行补偿和自适应调整;7)所述整车诊断修正模块根据各部件的工作范围的限制,修正电机目标转矩和DC/DC目标电流;8)所述等效氢耗优化分配模块中,整车目标功率在动力电池和燃料电池之间优化分配,使系统等效氢耗最小,并保持SOC值平衡;9)整车控制器将修正后的电机目标转矩及DC/DC目标电流通过TTCAN总线分别发送给电机控制器和DC/DC控制器,实现对电机和燃料电池的输出功率控制。In order to achieve the above object, the present invention adopts the following technical solutions: a fuel cell hybrid vehicle control method, including the following steps: 1) setting a motor state switching module, a driver command interpretation module, and a power battery charging module in the vehicle controller; State verification module, road condition self-adaptive compensation module, vehicle diagnosis and correction module, and equivalent hydrogen consumption optimization distribution module, wherein TTCAN is a time-triggered controller local area network; and TTCAN communication port to read the driver gear signal, driver pedal signal and TTCAN bus communication data; , reversing”; 4) The driver command interpretation module determines the motor state according to the motor state signal set by the motor state switching module, and then determines the target torque of the motor; 5) The power battery state of charge verification module The SOC value sent by the power battery management system, as well as the TTCAN bus voltage and the power battery current are verified, wherein the SOC value is the power battery state-of-charge verification value; 6) The road condition adaptive compensation module is based on the received component status information , online calculation of vehicle auxiliary power P aux , DC/DC dynamic compensation time constant τ dc , and compensation and adaptive adjustment of power battery SOC value and fuel cell performance degradation; 7) The vehicle diagnosis and correction module according to each component 8) In the equivalent hydrogen consumption optimization distribution module, the target power of the whole vehicle is optimally distributed between the power battery and the fuel cell, so that the system is equivalent The hydrogen consumption is minimized and the SOC value is kept balanced; 9) The vehicle controller sends the corrected motor target torque and DC/DC target current to the motor controller and DC/DC controller respectively through the TTCAN bus to realize the control of the motor and Output power control of fuel cells.
所述步骤3)中,所述电机状态切换模块的切换步骤如下:①判断司机挡位信号是否为空挡,如果是,则设置电机状态为怠速,否则进入下一步;②判断挡位信号是否为倒车挡,如果是,则设置电机状态为倒车;否则进入下一步;③判断制动踏板是否大于制动阈值,如果是,则设置电机状态为制动;否则进入下一步;④判断制动踏板是否小于等于制动阈值,且加速踏板大于加速阈值,如果是,则设置电机状态为驱动,否则,设置电机状态为滑行。In the step 3), the switching steps of the motor state switching module are as follows: ① judge whether the driver’s gear signal is neutral, if so, set the motor state to idle, otherwise enter the next step; ② judge whether the gear signal is Reverse gear, if it is, set the state of the motor to reverse; otherwise, go to the next step; ③Judge whether the brake pedal is greater than the braking threshold, if yes, set the state of the motor to brake; otherwise, go to the next step; ④Judge the brake pedal Whether it is less than or equal to the braking threshold, and the accelerator pedal is greater than the acceleration threshold, if yes, set the motor state to driving, otherwise, set the motor state to coasting.
所述步骤4)中,所述司机命令解释模块确定电机在怠速、倒车、驱动和滑行状态下时,则电机目标转矩为驱动目标转矩 上式中α为司机踏板位置信号,取值范围0~1;Tqd,max为电机最大驱动转矩,根据电机在驱动状态下的外特性曲线及目标转矩关系图,得到驱动目标转矩的值;所述司机命令解释模块确定电机在制动状态下时,则电机目标转矩为制动目标转矩 上式中γ为制动踏板系数,Tqb,max为最大制动转矩,根据电机在制动状态下的外特性曲线及目标转矩关系图,得到制动目标转矩的值。In the step 4), when the driver command interpretation module determines that the motor is in the state of idling, reversing, driving and coasting, the motor target torque is the driving target torque In the above formula, α is the position signal of the driver’s pedal, and the value range is 0 to 1; T qd,max is the maximum driving torque of the motor. According to the external characteristic curve and the target torque relationship diagram of the motor in the driving state, the driving target torque can be obtained When the driver command interpretation module determines that the motor is in the braking state, the motor target torque is the braking target torque In the above formula, γ is the coefficient of the brake pedal, and T qb,max is the maximum braking torque. According to the external characteristic curve and the target torque relationship diagram of the motor in the braking state, the braking target torque can be obtained value.
所述制动踏板系数γ,在采用串联式制动能量回馈策略时,所述制动踏板系数γ通过下式得到:γ=4(β-β1)(β-β2)(β1-β2)-2,上式中β为制动踏板位置信号,β1和β2为制动回馈策略参数,该参数影响车辆制动效果,根据实际情况标定得到。The brake pedal coefficient γ, when adopting the series braking energy feedback strategy, the brake pedal coefficient γ can be obtained by the following formula: γ=4(β-β 1 )(β-β 2 )(β 1 - β 2 ) -2 , in the above formula, β is the brake pedal position signal, β 1 and β 2 are the parameters of the brake feedback strategy, which affect the braking effect of the vehicle, and are calibrated according to the actual situation.
所述步骤5)中,所述动力电池荷电状态校验模块的校验过程如下:①使用最小二乘递推算法在线估算当前动力电池开路电压和平均充放电内阻,并结合动力电池开路电压-SOC曲线和充放电内阻-SOC曲线反推SOC值;②根据动力电池管理系统发送的SOC值,结合动力电池开路电压-SOC曲线和充放电内阻-SOC曲线,推算出动力电池开路电压和平均充放电内阻;③根据步骤②中推算得到的开路电压、平均充放电内阻、以及动力电池管理系统发送的SOC值,计算相对于步骤①中估算得到的开路电压、平均充放电内阻、以及SOC值的相对误差;④如果三种参数取值的相对误差均小于10%,则动力电池荷电状态校验模块判定动力电池管理系统发送的SOC值可信,否则动力电池荷电状态校验模块采用步骤①中得到的SOC估算值代替动力电池管理系统发送的SOC值。In the step 5), the verification process of the power battery state of charge verification module is as follows: ① Use the least squares recursive algorithm to estimate the current power battery open circuit voltage and average charge and discharge internal resistance online, and combine the power battery open circuit The voltage-SOC curve and the charge-discharge internal resistance-SOC curve reversely deduce the SOC value; ②according to the SOC value sent by the power battery management system, combined with the power battery open-circuit voltage-SOC curve and the charge-discharge internal resistance-SOC curve, the power battery open circuit is calculated Voltage and average charge and discharge internal resistance; ③Based on the open circuit voltage, average charge and discharge internal resistance calculated in step ②, and the SOC value sent by the power battery management system, calculate the open circuit voltage and average charge and discharge Internal resistance, and the relative error of the SOC value; ④ If the relative error of the three parameter values is less than 10%, the power battery state of charge verification module determines that the SOC value sent by the power battery management system is credible, otherwise the power battery charge The power state verification module uses the estimated SOC value obtained in
所述步骤6)中,在所述路况自适应补偿模块中,所述整车辅助功率Paux根据TTCAN总线数据,采用一阶低通滤波算法进行在线估算:In the step 6), in the road condition adaptive compensation module, the auxiliary power P aux of the vehicle is estimated online by using a first-order low-pass filter algorithm according to the TTCAN bus data:
上式中Pdc为DC/DC输出功率,Pbat为动力电池输出功率,Pm,in为电机输入功率,均能从TTCAN总线数据读取,τaux为滤波常数,s为传递函数的复数变量;所述DC/DC动态补偿时间常数τdc按下式计算:τdc=λ1Δτdc1+λ2Δτdc2+λ3Δτdc3+τdc0,上式中λ1、λ2、λ3为燃料电池性能衰退加权系数:λ1=0.4,λ2=0.4,λ3=0.2,τdc0=5s,Δτdc1、Δτdc2和Δτdc3分别为根据燃料电池系统U-I曲线三参数开路电压U0,欧姆内阻Rfc和浓差极化参数b确定的修正值,Δτdc1、Δτdc2和Δτdc3随燃料电池电堆性能衰退而变化。In the above formula, P dc is the DC/DC output power, P bat is the power battery output power, P m,in is the motor input power, all of which can be read from the TTCAN bus data, τ aux is the filter constant, and s is the complex number of the transfer function variable; the DC/DC dynamic compensation time constant τ dc is calculated as follows: τ dc = λ 1 Δτ dc1 + λ 2 Δτ dc2 + λ 3 Δτ dc3 +τ dc0 , where λ 1 , λ 2 , λ 3 is the weighting coefficient of fuel cell performance degradation: λ 1 =0.4, λ 2 =0.4, λ 3 =0.2, τ dc0 =5s, Δτ dc1 , Δτ dc2 and Δτ dc3 are the three-parameter open circuit voltage U 0 according to the fuel cell system UI curve , the correction value determined by the ohmic internal resistance R fc and the concentration polarization parameter b, Δτ dc1 , Δτ dc2 and Δτ dc3 change with the performance degradation of the fuel cell stack.
所述步骤9)中,修正后的所述电机目标转矩和DC/DC目标电流的计算公式如下:In the step 9), the corrected calculation formulas of the motor target torque and DC/DC target current are as follows:
上式中为电机目标转矩,为电机目标转矩诊断修正值,为未经修正的DC/DC目标电流,为考虑动力电池SOC值平衡的DC/DC目标电流修正值,为DC/DC目标电流诊断修正值,为驱动电机目标转矩诊断修正值。In the above formula is the motor target torque, is the motor target torque diagnosis correction value, is the uncorrected DC/DC target current, In order to consider the DC/DC target current correction value of the power battery SOC value balance, is the DC/DC target current diagnostic correction value, Diagnostic correction value for the target torque of the drive motor.
本发明由于采取以上技术方案,其具有以下优点:1、本发明考虑了系统经济性、燃料电池耐久性和整车安全性,解决城市工况的能量管理问题。2、本发明提供一种燃料电池混合动力客车综合能量管理方法,整车控制器根据输入的司机挡位信号、司机踏板信号和时间触发式控制器局域网TTCAN总线通讯数据,确定电机目标转矩和DC/DC目标电流,将电机目标转矩和DC/DC目标电流向TTCAN总线。3、本发明可以在城市工况下实现系统经济性优化,保证动力电池SOC平衡,尽量延长燃料电池使用寿命,保障整车安全。使用本发明的燃料电池城市客车已成功进行了奥运示范和北京公交示范运营,达到国内一流、国际先进的水平,因此可以广泛应用于燃料电池混合动力汽车控制应用中。Due to the adoption of the above technical solutions, the present invention has the following advantages: 1. The present invention considers system economy, fuel cell durability and vehicle safety, and solves the problem of energy management in urban working conditions. 2. The present invention provides a comprehensive energy management method for a fuel cell hybrid electric bus. The vehicle controller determines the motor target torque and DC/DC target current, transfer motor target torque and DC/DC target current to TTCAN bus. 3. The present invention can optimize the system economy under urban working conditions, ensure the SOC balance of the power battery, prolong the service life of the fuel cell as much as possible, and ensure the safety of the whole vehicle. The fuel cell city bus using the present invention has successfully carried out Olympic demonstration and Beijing public transport demonstration operation, reaching domestic first-class and international advanced level, so it can be widely used in the control application of fuel cell hybrid vehicles.
附图说明Description of drawings
图1是现有技术中的控制示意图Fig. 1 is a control schematic diagram in the prior art
图2是本发明整车控制器组成示意图Fig. 2 is a schematic diagram of the composition of the vehicle controller of the present invention
图3是本发明整车控制器工作流程图Fig. 3 is a flow chart of the work of the vehicle controller of the present invention
图4是本发明电机状态切换模块工作流程图Fig. 4 is the working flow diagram of the motor state switching module of the present invention
图5是本发明电机状态切换关系示意图Fig. 5 is a schematic diagram of the state switching relationship of the motor of the present invention
图6是本发明司机命令解释模块工作流程图Fig. 6 is the working flow chart of driver's command interpretation module of the present invention
图7是本发明电机在驱动状态下的外特性曲线及电机制动目标转矩关系图Fig. 7 is the relationship diagram between the external characteristic curve and the motor braking target torque of the motor in the driving state of the present invention
图8是本发明电机在制动状态下的外特性曲线及目标转矩关系图Fig. 8 is the external characteristic curve and the target torque relationship diagram of the motor of the present invention under the braking state
图9是本发明SOC校验模块工作流程图Fig. 9 is a working flow diagram of the SOC verification module of the present invention
图10是本发明路况自适应补偿模块工作流程图Fig. 10 is a working flow diagram of the road condition adaptive compensation module of the present invention
图11是本发明动态补偿时间常数Δτdc与三参数的关系图Fig. 11 is the relationship diagram of the present invention's dynamic compensation time constant Δτ dc and three parameters
图12是本发明整车诊断修正模块工作流程图Fig. 12 is a working flow diagram of the whole vehicle diagnosis and correction module of the present invention
图13是本发明整车诊断修正算法框图Fig. 13 is a block diagram of the vehicle diagnosis correction algorithm of the present invention
图14是本发明等效氢耗优化分配模块工作流程图Figure 14 is a work flow diagram of the equivalent hydrogen consumption optimization distribution module of the present invention
图15是本发明当动力电池SOC平衡修正系数μ=0.6时,动力电池最优功率与SOC的关系图Fig. 15 is a graph of the relationship between the optimal power of the power battery and the SOC when the power battery SOC balance correction coefficient μ=0.6 in the present invention
具体实施方式Detailed ways
下面结合附图和实施例对本发明进行详细的描述。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
如图2、图3所示,本发明的整车控制器中包括电机状态切换模块、司机命令解释模块、SOC(State of Charge,动力电池荷电状态)校验模块、路况自适应补偿模块、整车诊断修正模块和等效氢耗优化分配模块,还具备数字量端口、模拟量端口和TTCAN通讯端口等接口。图示中SOC、总线电压、动力电池电流等信号,由现有设备中的BMS(Battery Management System,动力电池管理系统)测量、计算后,发送到TTCAN(Time Triggered Controller Area Network,时间触发式控制器局域网)总线上;电机转速信号由现有设备中的电机控制器测量、计算,发送到TTCAN总线上;部件状态信息由各个部件控制器(电机控制器、DC/DC控制器、动力电池管理系统、燃料电池控制器等)测量、计算后,发送到TTCAN总线上。As shown in Figure 2 and Figure 3, the vehicle controller of the present invention includes a motor state switching module, a driver command interpretation module, a SOC (State of Charge, power battery state of charge) verification module, a road condition adaptive compensation module, The vehicle diagnosis and correction module and the equivalent hydrogen consumption optimization distribution module also have interfaces such as digital ports, analog ports, and TTCAN communication ports. The SOC, bus voltage, power battery current and other signals in the figure are measured and calculated by the BMS (Battery Management System, power battery management system) in the existing equipment, and then sent to the TTCAN (Time Triggered Controller Area Network, time-triggered control device local area network) bus; the motor speed signal is measured and calculated by the motor controller in the existing equipment, and sent to the TTCAN bus; the component status information is managed by each component controller (motor controller, DC/DC controller, power battery) system, fuel cell controller, etc.) after measurement and calculation, it is sent to the TTCAN bus.
本发明整车控制方法包括以下步骤:Vehicle control method of the present invention comprises the following steps:
1、读入数据1. Read data
整车控制器从数字量、模拟量和TTCAN通讯端口读入司机挡位信号、司机踏板信号和TTCAN总线通讯数据。例如,整车控制器从数字量端口读入司机挡位信号,从模拟量端口读入司机踏板信号,从TTCAN通讯端口读入TTCAN总线通讯数据。除此之外,根据不同系统的需要,整车控制器还可以从模拟量端口读入漏电传感器、制动气压传感器等发出的信号,从数字量端口读入包括电机状态切换、高压上电等信号。The vehicle controller reads the driver's gear signal, driver's pedal signal and TTCAN bus communication data from the digital quantity, analog quantity and TTCAN communication port. For example, the vehicle controller reads the driver's gear signal from the digital port, reads the driver's pedal signal from the analog port, and reads the TTCAN bus communication data from the TTCAN communication port. In addition, according to the needs of different systems, the vehicle controller can also read signals from leakage sensors, brake pressure sensors, etc. Signal.
2、电机状态切换2. Motor state switching
如图4、图5所示,整车控制器的电机状态切换模块根据司机挡位信号和司机踏板信号将电机状态在“驱动、怠速、滑行、制动、倒车”之间切换。As shown in Figure 4 and Figure 5, the motor state switching module of the vehicle controller switches the motor state between "driving, idling, coasting, braking, and reversing" according to the driver's gear signal and the driver's pedal signal.
比如:整车控制器首先判断司机挡位信号是否为空挡,如果是,则设置电机状态为怠速;否则,进一步判断挡位信号是否为倒车挡,如果是,则设置电机状态为倒车;否则,进一步判断制动踏板是否大于制动阈值,如果是则设置电机状态为制动;否则,进一步判断制动踏板是否小于等于制动阈值,且加速踏板大于加速阈值,如果是,则设置电机状态为驱动,否则,设置电机状态为滑行。For example: the vehicle controller first judges whether the driver’s gear signal is neutral, and if so, sets the motor state to idle speed; otherwise, further judges whether the gear signal is reverse gear, and if so, sets the motor state to reverse; otherwise, Further judge whether the brake pedal is greater than the braking threshold, if so, set the motor state to brake; otherwise, further judge whether the brake pedal is less than or equal to the braking threshold, and the accelerator pedal is greater than the acceleration threshold, if yes, set the motor state to drive, otherwise, set the motor state to coast.
3、司机命令解释3. Driver command explanation
如图2、图6所示,司机命令解释模块根据电机状态切换模块设置的电机状态信号,确定电机状态是否为制动状态,如果不是制动状态,则为“怠速”、“倒车”、“驱动”或“滑行”状态,此时电机目标转矩为驱动目标转矩 As shown in Figure 2 and Figure 6, the driver command interpretation module determines whether the motor state is a braking state according to the motor state signal set by the motor state switching module, and if it is not a braking state, it is "idle speed", "reversing", "driving" or "sliding" state, at this time the target torque of the motor is the driving target torque
式(1)中α为司机踏板位置信号,取值范围0~1;Tqd,max为电机最大驱动转矩,如图7所示,是驱动状态下最大驱动转矩Tqd,max与电机转速n和电机驱动目标转矩的对应关系图,根据式(1)以及图7所示对应关系,可以得到驱动目标转矩的值。In formula (1), α is the driver’s pedal position signal, and its value ranges from 0 to 1; T qd,max is the maximum driving torque of the motor, as shown in Figure 7, which is the maximum driving torque T qd,max in the driving state and the motor Speed n and motor drive target torque According to the corresponding relationship diagram of , according to formula (1) and the corresponding relationship shown in Figure 7, the driving target torque can be obtained value.
如图6所示,如果是制动状态,此时电机目标转矩为电机制动目标转矩 As shown in Figure 6, if it is in the braking state, the motor target torque at this time is the motor braking target torque
式(2)中Tqb,max为最大制动转矩,如图8所示,是制动状态下电机最大制动转矩Tqb,max与电机转速n和电机制动目标转矩的对应关系图。In formula (2), T qb,max is the maximum braking torque, as shown in Figure 8, it is the maximum braking torque T qb,max of the motor in the braking state, the motor speed n and the motor braking target torque The corresponding relationship diagram.
式(2)中γ为制动踏板系数,当不采用制动能量回馈策略时,γ=0;当采用串联式制动能量回馈策略时,γ通过下式得到:In formula (2), γ is the brake pedal coefficient. When the braking energy feedback strategy is not adopted, γ=0; when the series braking energy feedback strategy is adopted, γ is obtained by the following formula:
γ=4(β-β1)(β-β2)(β1-β2)-2, (3)γ=4(β-β 1 )(β-β 2 )(β 1 -β 2 ) -2 , (3)
式(3)中β为制动踏板位置信号,β1和β2为制动回馈策略参数。该参数影响车辆制动效果,根据实际情况标定得到。In formula (3), β is the position signal of the brake pedal, and β 1 and β 2 are the parameters of the brake feedback strategy. This parameter affects the braking effect of the vehicle and is calibrated according to the actual situation.
4、SOC校验4. SOC verification
如图2、图9所示,SOC校验模块对BMS发送的SOC值,以及TTCAN总线电压、动力电池电流进行校验,校验过程如下:As shown in Figure 2 and Figure 9, the SOC verification module verifies the SOC value sent by the BMS, as well as the TTCAN bus voltage and power battery current. The verification process is as follows:
1)根据动力电池充放电电流、电压信号,使用RLS(Recursive Least SquaresAlgorithm,最小二乘递推算法)在线估算当前动力电池开路电压和平均充放电内阻,并结合动力电池开路电压-SOC曲线和充放电内阻-SOC曲线反推SOC值。其中,平均充放电内阻指一定SOC下动力电池充电内阻和放电内阻的平均值。1) According to the charge and discharge current and voltage signals of the power battery, use RLS (Recursive Least Squares Algorithm, the least squares recursive algorithm) to estimate the current power battery open circuit voltage and average charge and discharge internal resistance online, and combine the power battery open circuit voltage-SOC curve and Charge and discharge internal resistance-SOC curve reverses the SOC value. Among them, the average charging and discharging internal resistance refers to the average value of the charging internal resistance and discharging internal resistance of the power battery under a certain SOC.
2)根据BMS发送的SOC值,结合动力电池开路电压-SOC曲线和充放电内阻-SOC曲线,推算出动力电池开路电压和平均充放电内阻。2) According to the SOC value sent by the BMS, combined with the open-circuit voltage-SOC curve of the power battery and the charge-discharge internal resistance-SOC curve, the open-circuit voltage and the average charge-discharge internal resistance of the power battery are calculated.
3)根据步骤2)中推算得到的开路电压、平均充放电内阻、以及BMS发送的SOC值,计算相对于步骤1)中估算得到的开路电压、平均充放电内阻、以及SOC值的相对误差。3) Calculate the relative open circuit voltage, average charge and discharge internal resistance, and SOC value estimated in step 1) based on the calculated open circuit voltage, average charge and discharge internal resistance, and SOC value sent by the BMS in step 2). error.
4)如果计算得到开路电压、平均充放电内阻、以及BMS发送的SOC值三种参数取值的相对误差均小于10%,则SOC校验模块判定BMS发送的SOC值可信,否则SOC校验模块采用步骤1)中得到的SOC估计值代替BMS发送的SOC值;确定的SOC值由SOC校验模块传输至等效氢耗优化分配模块。4) If the calculated relative errors of the open circuit voltage, average charge and discharge internal resistance, and the SOC value sent by the BMS are all less than 10%, the SOC verification module determines that the SOC value sent by the BMS is credible, otherwise the SOC calibration The verification module uses the estimated SOC value obtained in step 1) to replace the SOC value sent by the BMS; the determined SOC value is transmitted from the SOC verification module to the equivalent hydrogen consumption optimization distribution module.
5、路况自适应补偿5. Road Condition Adaptive Compensation
如图10所示,路况自适应补偿模块根据接收的部件状态信息,在线计算整车辅助功率Paux、DC/DC动态补偿时间常数τdc,并对动力电池SOC值、燃料电池性能衰退进行相应的补偿和自适应调整。As shown in Figure 10, the road condition adaptive compensation module calculates the vehicle auxiliary power P aux and DC/DC dynamic compensation time constant τ dc online according to the received component status information, and performs corresponding calculations on the power battery SOC value and fuel cell performance degradation. Compensation and adaptive adjustment.
其中,整车辅助功率Paux可以根据TTCAN总线数据,采用一阶低通滤波算法进行在线估算:Among them, the auxiliary power P aux of the vehicle can be estimated online by using the first-order low-pass filter algorithm according to the TTCAN bus data:
式(4)中Pdc为DC/DC输出功率,Pbat为动力电池输出功率,Pm,in为电机输入功率,均可以从TTCAN总线数据读取,τaux为滤波常数。s为传递函数的复数变量。In formula (4), P dc is the DC/DC output power, P bat is the power battery output power, P m,in is the motor input power, all of which can be read from the TTCAN bus data, and τ aux is the filter constant. s is the complex variable of the transfer function.
之后,从TTCAN总线读取数据,采用最小二乘在线递推算法估算燃料电池U-I曲线三参数U0(开路电压),Rfc(欧姆内阻)和b(浓差极化参数)。根据图11所示的曲线,计算对应Δτdc1、Δτdc2和Δτdc3的值。其中,Δτdc1、Δτdc2和Δτdc3分别为根据燃料电池U-I曲线三参数U0,Rfc和b而确定的修正值,随燃料电池电堆性能衰退,DC/DC动态补偿时间常数应变大,以使电堆输出功率变化更为缓慢,从而保护燃料电池。因此,Δτdc1随U0递减,Δτdc2随Rfc递增,Δτdc3随b递增。而后,根据下式计算DC/DC动态补偿时间常数τdc:After that, the data is read from the TTCAN bus, and the least squares online recursive algorithm is used to estimate the three parameters of the fuel cell UI curve U 0 (open circuit voltage), R fc (ohmic internal resistance) and b (concentration polarization parameter). According to the curve shown in FIG. 11 , the values corresponding to Δτ dc1 , Δτ dc2 and Δτ dc3 are calculated. Among them, Δτ dc1 , Δτ dc2 and Δτ dc3 are the correction values determined according to the three parameters U 0 , R fc and b of the fuel cell UI curve respectively. As the performance of the fuel cell stack declines, the DC/DC dynamic compensation time constant becomes larger, In order to make the output power of the electric stack change more slowly, thereby protecting the fuel cell. Therefore, Δτ dc1 decreases with U 0 , Δτ dc2 increases with R fc , and Δτ dc3 increases with b. Then, calculate the DC/DC dynamic compensation time constant τ dc according to the following formula:
τdc=λ1Δτdc1+λ2Δτdc2+λ3Δτdc3+τdc0, (5)τ dc = λ 1 Δτ dc1 + λ 2 Δτ dc2 + λ 3 Δτ dc3 + τ dc0 , (5)
式(5)中λ1、λ2、λ3为燃料电池性能衰退加权系数:λ1=0.4,λ2=0.4,λ3=0.2。τdc0=5s。考虑动力电池SOC平衡的DC/DC目标电流修正值按下式计算:In formula (5), λ 1 , λ 2 , λ 3 are the weighting coefficients of fuel cell performance degradation: λ 1 =0.4, λ 2 =0.4, λ 3 =0.2. τ dc0 =5s. DC/DC target current correction value considering power battery SOC balance Calculate according to the formula:
式(6)中Q为动力电池容量,k为动力电池最优功率-SOC曲线与x轴相交处的斜率,Kp为修正系数,取值1~1.5之间,为电机制动功率(取绝对值),ηm为电机效率,s为传递函数的复数变量,Uocv为动力电池端电压。通过式(6),当整车制动能量通过电机回收至动力电池时,燃料电池输出功率相应减小一部分,从而防止动力电池SOC过高。In formula (6), Q is the capacity of the power battery, k is the slope of the intersection of the optimal power-SOC curve of the power battery and the x-axis, K p is the correction coefficient, and the value is between 1 and 1.5. is the braking power of the motor (take the absolute value), η m is the efficiency of the motor, s is the complex variable of the transfer function, and U ocv is the terminal voltage of the power battery. According to formula (6), when the braking energy of the whole vehicle is recovered to the power battery through the motor, the output power of the fuel cell is correspondingly reduced to prevent the SOC of the power battery from being too high.
6、整车诊断修正6. Vehicle diagnosis and correction
如图12所示,整车诊断修正模块根据各部件的工作范围的限制,修正电机目标转矩和DC/DC目标电流,防止出现过压、过流和超温现象。如图13所示,是整车诊断修正方法框图。该整车诊断修正方法的计算结果为电机目标转矩诊断修正值和DC/DC目标电流诊断修正值图中各变量意义为:As shown in Figure 12, the vehicle diagnosis and correction module corrects the motor target torque and DC/DC target current according to the limitation of the working range of each component to prevent overvoltage, overcurrent and overtemperature. As shown in Fig. 13, it is a block diagram of the whole vehicle diagnosis and correction method. The calculation result of the vehicle diagnosis correction method is the motor target torque diagnosis correction value and DC/DC target current diagnostic correction values The meanings of the variables in the figure are:
λcL根据漏电程度确定的电机目标转矩修正系数λ cL Motor target torque correction coefficient determined according to leakage degree
λfc根据燃料电池诊断信息确定的电机目标转矩修正系数λ fc Motor target torque correction factor determined according to fuel cell diagnostic information
λhL根据氢气泄露程度确定的电机目标转矩修正系数λ hL Motor target torque correction factor determined according to the degree of hydrogen leakage
λmcu根据MCU温度确定的电机目标转矩修正系数λ mcu Motor target torque correction coefficient determined according to MCU temperature
λm,temp根据电机温度确定的电机目标转矩修正系数λ m, temp is the motor target torque correction factor determined according to the motor temperature
λTbat根据动力电池温度确定的电机目标转矩修正系数λ Tbat Motor target torque correction coefficient determined according to power battery temperature
λUbat根据总线电压确定的电机目标转矩修正系数λ Ubat Motor target torque correction coefficient determined according to the bus voltage
μcL根据漏电程度确定的DC/DC目标功率修正系数μ cL is the DC/DC target power correction factor determined according to the degree of leakage
μdc1根据DC/DC输出电流Idc确定的DC/DC目标功率修正系数μ dc1 is the DC/DC target power correction factor determined according to the DC/DC output current I dc
μdc2根据DC/DC工作温度Tdc确定的DC/DC目标功率修正系数μ dc2 DC/DC target power correction factor determined according to DC/DC operating temperature T dc
μdc3根据DC/DC输入电压Ufc确定的DC/DC目标功率修正系数μ dc3 DC/DC target power correction factor determined according to DC/DC input voltage U fc
μfc根据燃料电池诊断信息确定的DC/DC目标功率修正系数μ fc DC/DC target power correction factor determined according to fuel cell diagnostic information
μhL根据氢气泄露程度确定的DC/DC目标功率修正系数μ hL DC/DC target power correction factor determined according to the degree of hydrogen leakage
μTfc根据燃料电池冷却水温度确定的DC/DC目标功率修正系数μ Tfc is the DC/DC target power correction factor determined according to the fuel cell cooling water temperature
根据燃料电池冷却水温度确定的DC/DC目标电流修正值(A) DC/DC target current correction value (A) determined according to fuel cell cooling water temperature
根据MCU温度确定的电机目标转矩修正值(N.m) Motor target torque correction value (Nm) determined according to MCU temperature
根据电机温度确定的电机目标转矩修正值(N.m) Motor target torque correction value determined according to motor temperature (Nm)
根据动力电池温度确定的电机目标转矩修正值(N.m) Motor target torque correction value determined according to power battery temperature (Nm)
7、等效氢耗优化分配7. Optimized distribution of equivalent hydrogen consumption
如图14所示,在等效氢耗优化分配模块中,整车目标功率在动力电池和燃料电池之间优化分配,使系统等效氢耗最小,并保持SOC值平衡,这样可以最大限度地优化燃料电池系统效率,并保证动力电池有足够的电量,从而保证整车的动力性。等效氢耗优化分配中首先需要计算动力电池最优功率Pbat,opt:As shown in Figure 14, in the equivalent hydrogen consumption optimization distribution module, the target power of the whole vehicle is optimally distributed between the power battery and the fuel cell, so as to minimize the equivalent hydrogen consumption of the system and keep the balance of the SOC value, which can maximize the Optimize the efficiency of the fuel cell system and ensure that the power battery has sufficient power to ensure the power of the vehicle. In the optimal allocation of equivalent hydrogen consumption, it is first necessary to calculate the optimal power P bat,opt of the power battery:
式(7)中Ubus,min为总线电压最小值,Ubus,max为总线电压最大值,Uocv为动力电池端电压,Rdis为放电内阻,Rchg为充电内阻,和为动力电池平均放电效率和平均充电效率,K'1与x为自定义参数:In formula (7), U bus,min is the minimum value of the bus voltage, U bus,max is the maximum value of the bus voltage, U ocv is the power battery terminal voltage, R dis is the discharge internal resistance, R chg is the charging internal resistance, and is the average discharge efficiency and average charge efficiency of the power battery, K' 1 and x are custom parameters:
式(8)中κ为修正系数,其定义为:In formula (8), κ is the correction coefficient, which is defined as:
κ=1-2μ(SOC-0.5(SOCH+SOCL))(SOCH-SOCL), (9)κ=1-2μ(SOC-0.5(SOC H +SOC L ))(SOC H -SOC L ), (9)
式(9)中μ为动力电池SOC平衡修正系数。SOCH为SOC的上限值,SOCL为SOC的下限值。根据不同的路况,根据调整动力电池SOC平衡修正系数μ的值,保证SOC处于[SOCL,SOCH]的范围之内。如图15所示,是当动力电池SOC平衡修正系数μ=0.6时,给出的动力电池最优功率与SOC关系的计算结果。In formula (9), μ is the power battery SOC balance correction coefficient. SOC H is the upper limit value of SOC, and SOCL is the lower limit value of SOC. According to different road conditions, adjust the value of the power battery SOC balance correction coefficient μ to ensure that the SOC is within the range of [ SOCL , SOCH ]. As shown in Figure 15, it is the calculation result of the relationship between the optimal power of the power battery and the SOC when the power battery SOC balance correction coefficient μ=0.6.
根据动力电池最优功率可计算出DC/DC最优目标功率为:According to the optimal power of the power battery, the optimal target power of DC/DC can be calculated for:
式(10)中Pdc,max为DC/DC最大输出功率,Pdc,min为最小输出功率,Paux为整车辅助功率(在路况自适应补偿模块中计算),ηm为电机效率,为驱动电机目标功率,是电机制动目标转矩与电机实际转速的乘积,Pbat,opt为动力电池最优功率。DC/DC动态目标电流为:In formula (10), P dc,max is the maximum output power of DC/DC, P dc,min is the minimum output power, P aux is the auxiliary power of the vehicle (calculated in the road condition adaptive compensation module), η m is the motor efficiency, is the target power of the driving motor, and is the target torque of the motor braking The product of the actual speed of the motor, P bat, opt is the optimal power of the power battery. DC/DC dynamic target current for:
式(11)中Ubus为总线电压。将DC/DC动态目标电流进行一阶滤波,得到DC/DC目标电流为:In formula (11), U bus is the bus voltage. Perform first-order filtering on the DC/DC dynamic target current to obtain the DC/DC target current for:
式(12)中τdc为DC/DC动态补偿时间常数(在路况自适应补偿模块中计算),为DC/DC动态目标电流。In formula (12), τ dc is the DC/DC dynamic compensation time constant (calculated in the road condition adaptive compensation module), is the DC/DC dynamic target current.
8、整车控制器将修正后的电机目标转矩及DC/DC目标电流通过TTCAN总线分别发送给电机控制器和DC/DC控制器,实现对电机和燃料电池的输出功率控制。8. The vehicle controller sends the corrected motor target torque and DC/DC target current to the motor controller and DC/DC controller through the TTCAN bus to realize the output power control of the motor and fuel cell.
修正后的电机目标转矩和DC/DC目标电流的计算方法为:The calculation method of the corrected motor target torque and DC/DC target current is:
式(13)中为电机目标转矩,其在制动状态时为其余状态为为电机目标转矩诊断修正值。为未经修正的DC/DC目标电流,为考虑动力电池SOC值平衡的DC/DC目标电流修正值,为DC/DC目标电流诊断修正值,为驱动电机目标转矩诊断修正值。In formula (13) is the target torque of the motor, which is in the braking state The remaining status is It is the correction value for motor target torque diagnosis. is the uncorrected DC/DC target current, In order to consider the DC/DC target current correction value of the power battery SOC value balance, is the DC/DC target current diagnostic correction value, Diagnostic correction value for the target torque of the driving motor.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100826624A CN102167036B (en) | 2011-04-01 | 2011-04-01 | Control method of fuel cell hybrid vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100826624A CN102167036B (en) | 2011-04-01 | 2011-04-01 | Control method of fuel cell hybrid vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102167036A CN102167036A (en) | 2011-08-31 |
CN102167036B true CN102167036B (en) | 2013-08-14 |
Family
ID=44488411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100826624A Active CN102167036B (en) | 2011-04-01 | 2011-04-01 | Control method of fuel cell hybrid vehicle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102167036B (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9555718B2 (en) | 2013-12-06 | 2017-01-31 | Ford Global Technologies, Llc | Estimation and compensation of battery measurement and asynchronization biases |
CN104210486B (en) * | 2014-08-13 | 2017-01-11 | 潍柴动力股份有限公司 | Electric energy control method and electric energy control system for hybrid power engineering machinery vehicle |
CN104991189B (en) * | 2015-04-13 | 2017-10-27 | 中国东方电气集团有限公司 | A kind of on-line calibration method of battery charge state |
CN105501075B (en) * | 2015-11-30 | 2017-12-29 | 刘淼 | Control system for electric vehicle |
CN105416085B (en) * | 2015-12-21 | 2018-01-05 | 武汉众宇动力系统科技有限公司 | hybrid power control method and hybrid power system |
CN105946856B (en) * | 2016-06-16 | 2019-09-27 | 吉林大学 | A method for adaptive sliding control of pure electric drive vehicles |
US10239416B2 (en) * | 2016-06-22 | 2019-03-26 | Ford Global Technologies, Llc | System and method for improving reverse driving capability of electrified vehicles |
CN106647251A (en) * | 2016-09-11 | 2017-05-10 | 浙江大学 | Self-adaptive fuzzy control method for energy management of vehicle system |
CN106229531B (en) * | 2016-09-29 | 2019-01-29 | 清华大学 | Fuel-cell vehicle fault tolerant control method and device |
JP2018134901A (en) * | 2017-02-20 | 2018-08-30 | トヨタ自動車株式会社 | Hybrid vehicle |
CN107878445B (en) * | 2017-11-06 | 2019-01-18 | 吉林大学 | A kind of energy-optimised management method of hybrid vehicle considering cell performance decay |
CN108418424A (en) * | 2018-03-07 | 2018-08-17 | 北京亿华通科技股份有限公司 | A kind of DC booster converter control method |
CN108429458A (en) * | 2018-03-07 | 2018-08-21 | 北京亿华通科技股份有限公司 | A kind of DC booster converter control method |
CN109808518B (en) * | 2018-12-29 | 2020-01-21 | 清华大学 | Fuel cell automobile energy management method and system based on geographical position information |
CN109733443B (en) * | 2019-01-11 | 2022-06-07 | 中车唐山机车车辆有限公司 | Hybrid power tramcar braking optimization method and system |
CN111746352B (en) * | 2019-03-29 | 2022-01-28 | 北京新能源汽车股份有限公司 | Method and device for determining battery of power hybrid electric vehicle and upper computer |
CN110182071B (en) * | 2019-05-10 | 2022-09-13 | 中国第一汽车股份有限公司 | Power following type fuel cell whole vehicle energy management control method |
CN110126679B (en) * | 2019-05-15 | 2022-03-08 | 福州大学 | Method for acquiring optimal operating point of fuel cell |
CN110311458B (en) * | 2019-05-17 | 2023-04-07 | 南京航空航天大学 | Fuel cell composite power supply system and control method |
CN110194065B (en) * | 2019-05-29 | 2021-01-29 | 中国第一汽车股份有限公司 | Vehicle energy control method and device, vehicle and storage medium |
AT522166B1 (en) * | 2019-06-13 | 2020-09-15 | Avl List Gmbh | Method and control device for controlling a vehicle |
CN111103549B (en) * | 2019-12-16 | 2022-11-08 | 中车大连机车车辆有限公司 | A method for judging maintenance needs of battery system of hybrid electric locomotive |
CN111497678B (en) * | 2020-03-13 | 2021-11-05 | 北汽福田汽车股份有限公司 | Power generation control method and device for fuel cell engine, processor and vehicle |
CN111361459B (en) * | 2020-03-31 | 2021-09-03 | 中国汽车技术研究中心有限公司 | Voltage control method for hydrogen fuel cell vehicle with smaller power demand |
CN112046486B (en) * | 2020-08-17 | 2022-02-18 | 武汉理工大学 | Method, system and storage medium for correcting output power of fuel cell vehicle |
CN111923897B (en) * | 2020-09-29 | 2021-03-23 | 北京航空航天大学 | Intelligent energy management method for plug-in hybrid electric vehicle |
CN112428885B (en) * | 2020-11-19 | 2022-08-23 | 潍柴动力股份有限公司 | Hybrid power control method and device based on current limit value |
CN112706753B (en) * | 2021-01-08 | 2022-06-10 | 南京航空航天大学 | ECMS hybrid electric vehicle energy management strategy based on wolf optimization |
CN114117725A (en) * | 2021-09-30 | 2022-03-01 | 东风汽车集团股份有限公司 | Fuel cell automobile power system selection method and device |
CN115817286A (en) * | 2023-01-09 | 2023-03-21 | 苏州溯驭技术有限公司 | Fuel cell and battery hybrid energy management method |
CN115991099B (en) * | 2023-03-23 | 2023-06-02 | 成都壹为新能源汽车有限公司 | Fuel cell system power control method and system based on state control |
CN116714443B (en) * | 2023-08-10 | 2024-01-23 | 宁德时代新能源科技股份有限公司 | Braking energy distribution method, system, device, equipment and medium |
CN118907060B (en) * | 2024-10-09 | 2025-01-07 | 张家港长城汽车研发有限公司 | Method for determining charge and discharge power of power battery and vehicle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5780980A (en) * | 1995-04-14 | 1998-07-14 | Hitachi, Ltd. | Electric car drive system provided with hybrid battery and control method |
EP1470943A2 (en) * | 2003-04-24 | 2004-10-27 | Delphi Technologies, Inc. | Method and apparatus for providing hybrid power in vehicle |
CN2756489Y (en) * | 2004-12-17 | 2006-02-08 | 清华大学 | Fuel cell automobile mixed power device |
CN101219664A (en) * | 2008-01-08 | 2008-07-16 | 清华大学 | A fuel cell hybrid energy control method |
CN101359036A (en) * | 2007-07-31 | 2009-02-04 | 比亚迪股份有限公司 | Method for measuring state of charge of battery |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3599773B2 (en) * | 1994-02-24 | 2004-12-08 | 株式会社エクォス・リサーチ | Hybrid power supply |
-
2011
- 2011-04-01 CN CN2011100826624A patent/CN102167036B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5780980A (en) * | 1995-04-14 | 1998-07-14 | Hitachi, Ltd. | Electric car drive system provided with hybrid battery and control method |
EP1470943A2 (en) * | 2003-04-24 | 2004-10-27 | Delphi Technologies, Inc. | Method and apparatus for providing hybrid power in vehicle |
CN2756489Y (en) * | 2004-12-17 | 2006-02-08 | 清华大学 | Fuel cell automobile mixed power device |
CN101359036A (en) * | 2007-07-31 | 2009-02-04 | 比亚迪股份有限公司 | Method for measuring state of charge of battery |
CN101219664A (en) * | 2008-01-08 | 2008-07-16 | 清华大学 | A fuel cell hybrid energy control method |
Non-Patent Citations (10)
Title |
---|
何洪文.燃料电池混合动力汽车控制策略研究.《北京理工大学学报》.2007,第27卷(第3期),第223-226页. |
刘蒙等.基于TTCAN的燃料电池系统分布式控制系统设计.《汽车工程》.2006,第28卷(第9期),第792-797页. |
基于TTCAN的燃料电池系统分布式控制系统设计;刘蒙等;《汽车工程》;20060930;第28卷(第9期);第792-797页 * |
徐梁飞等.燃料电池混合动力参数辨识及整车控制策略优化.《机械工程学报》.2009,第45卷(第2期),第56-61页. |
徐梁飞等.燃料电池混合动力客车等效氢耗优化策略.《中国公路学报》.2009,第22卷(第1期),第104-108页. |
曹桂军等.燃料电池混合动力客车整车控制策略.《机械工程学报》.2008,第44卷(第6期),第114-119页. |
燃料电池混合动力参数辨识及整车控制策略优化;徐梁飞等;《机械工程学报》;20090228;第45卷(第2期);第56-61页、图1-7 * |
燃料电池混合动力客车整车控制策略;曹桂军等;《机械工程学报》;20080630;第44卷(第6期);第116-117页、图3 * |
燃料电池混合动力客车等效氢耗优化策略;徐梁飞等;《中国公路学报》;20090131;第22卷(第1期);第104-108页 * |
燃料电池混合动力汽车控制策略研究;何洪文;《北京理工大学学报》;20070331;第27卷(第3期);第224-226页 * |
Also Published As
Publication number | Publication date |
---|---|
CN102167036A (en) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102167036B (en) | Control method of fuel cell hybrid vehicle | |
CN108556672B (en) | Control method and system of fuel cell hybrid power system | |
CN110450653B (en) | Optimal control strategy of hybrid electric vehicle based on fuel cell/lithium battery degradation model | |
CN111409510B (en) | An energy management method for a hydrogen fuel cell hybrid vehicle | |
CN109693578B (en) | A method and system for controlling power distribution of a fuel cell vehicle | |
Li et al. | Power management strategy for vehicular-applied hybrid fuel cell/battery power system | |
CN110126813B (en) | An energy management method for a vehicle fuel cell hybrid power system | |
US8084988B2 (en) | Power supply system | |
CN109552110B (en) | Electric vehicle composite energy management method based on rule and nonlinear predictive control | |
CN110873844A (en) | Degradation state estimation method of secondary battery and secondary battery system | |
CN112036603A (en) | An energy management strategy for hybrid energy storage system based on dual stack fuel cells | |
US20120296505A1 (en) | Fuel cell vehicle | |
CN101219664A (en) | A fuel cell hybrid energy control method | |
CN104802630A (en) | Multi-power-source coordinating control method for series-parallel hybrid power vehicle | |
US20210152010A1 (en) | Method for charging battery and charging system | |
JP6958427B2 (en) | Rechargeable battery system | |
CN114030392B (en) | Energy management strategy for efficiency optimization of fuel cell-lithium battery hybrid power supply system | |
CN110466388B (en) | Energy management method for composite energy storage electric automobile | |
US8441262B2 (en) | Optimization of electrical component parameters in energy storage system models | |
CN108583326A (en) | A kind of batteries of electric automobile group balance control method | |
CN105552945A (en) | Battery energy storage system | |
US11165080B2 (en) | Fuel cell system | |
Li et al. | Research on multi-energy management system of fuel cell vehicle based on fuzzy control | |
Zhao et al. | Research on Energy Management Strategy of Fuel Cell Tractor Hybrid Power System | |
CN113352946A (en) | Energy management method of fuel cell automobile power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |