CN102136536A - 应变平衡发光器件 - Google Patents
应变平衡发光器件 Download PDFInfo
- Publication number
- CN102136536A CN102136536A CN2010102282875A CN201010228287A CN102136536A CN 102136536 A CN102136536 A CN 102136536A CN 2010102282875 A CN2010102282875 A CN 2010102282875A CN 201010228287 A CN201010228287 A CN 201010228287A CN 102136536 A CN102136536 A CN 102136536A
- Authority
- CN
- China
- Prior art keywords
- layer
- lattice constant
- strain
- strain balance
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
Landscapes
- Led Devices (AREA)
Abstract
本发明提出一种可提高光电子器件如发光二极管(LED)和激光二极管(LD)性能的应变平衡有源区的结构及设计方法。在有源区下面,一层可以调整晶格常数的应变平衡层作为有源区的晶格基底,确保了有源区的应变平衡。应变平衡有源区的设计有利于1)生长缺陷少厚度大的多层有源区,2)调整有源区内极化场来提高器件性能。应变平衡层扩大了有源区设计和生长窗口。在本发明的一些实施例中,应变平衡层由四元合金组成,InxAlyGa1-x-yN,(0≤x≤1,0≤y≤1,x+y≤1),通过调节其晶格常数以施加相反的应力于有源区的毗邻层。此外,还可以在应变平衡层下面加入弛豫增强层以强化应变平衡层的应力弛豫。
Description
技术领域
本发明涉及半导体发光器件,着重于提高发光器件的有源区的性能。
背景技术
负电荷载流子和正电荷载流子,或者在技术上被称为电子和空穴,在半导体发光器件中被从相对的电极驱动(注入)到发光区(即所谓的有源区)进行复合。在有源区,一个注入的电子-空穴对的湮灭产生一个光子,这个过程被称为辐射复合过程。一般用内量子效率(Internal Quantum Efficiency;以下简称:IQE)来衡量辐射复合。内量子效率为发射的光子数与注入的电子-空穴对数之比。如果能够从器件中适当萃取出辐射复合的光子,则高的内量子效率意味着更好的光电转换效率。
实际上,并非每对注入的电子和空穴都能够复合。有源区材料中的缺陷(包括杂质)经常会在电子和空穴复合之前将它们捕获。有源区中的有害电场也会将电子和空穴分离,形成势垒阻止辐射复合。这两种因素常常是导致内量子效率低下的主要原因。此外,不合理的有源区设计也会降低内量子效率。例如,针对极性半导体为了避免内建电场导致的量子限制Stark效应(QCSE)而将量子阱有源区设计得非常薄。这样的有源区,在大电流下工作时就存在着效率降低的可能性。因为当注入的载流子随驱动电流的增加而迅速过密地聚集在一起时,过度密集的电子(或空穴)由于彼此存在斥力而相互散射,这将减少电子-空穴对的辐射复合几率。这种情况的发生一般被称作为发生了俄歇(Auger)复合。俄歇复合在很薄的有源区,例如很薄的量子阱中,成为导致内量子效率降低的主要原因之一。
在氮化物半导体中,材料缺陷和内建电场在内量子效率降低中的不良作用尤为明显。氮化物半导体(包括:氮化铟,氮化镓,氮化铝以及其任意三元或四元合金)的发光波长可以覆盖从红外到可见光再到紫外(UV)的很宽频谱,是公认的制作高效率固态发光器件的最有前途的材料体系。为制作固态发光器件,例如发光二极管(LED),不同的氮化物层需要结合在一起形成正确结构。这意味着不同的氮化物层需要叠放在其他层的上面,或者,从技术上讲,不同的氮化物层需要外延生长在其他层的上面。为保持良好外延生长,最好将相邻层间的晶格常数差异控制在最小。晶格失配将引入应力,应力会产生缺陷,从而降低内量子效率。不幸的是,氮化物半导体,尤其是实现固态发光不可缺少的含铟氮化物,与其它氮化物晶格失配很大。例如,氮化铟和氮化镓在c面的晶格失配高达11%,而氮化铝和氮化镓的晶格失配只高于3%。举例来说,1%的晶格失配会产生缺陷(位错)~109/cm2,这些缺陷如在有源区内危害很大。
由于自发极化和引力导致的压电极化,C面氮化物还存在高密度面电荷,其密度可高于1013/cm2,可引入超过1MV/cm的电场。
因此,目前的氮化物发光二极管受缺陷和内建电场的双重影响。一个佐证是高效率的绿光和紫外发光二极管的制作难度增大,制作难度随着铟组份和铝组份提高而增加。高铟组分和高铝组分意味着结构内的高应力和高内建电场。另一个佐证是发光二极管效率在大电流下的衰减,光电转换效率在相对小的电流下达到峰值效率后,随电流的增大而衰减。这种效率衰减阻碍了发光二极管在高电流密度下实现高量子效率,而这是实现大功率应用,如普通照明,所需要的。
发明内容
本发明从多个角度提高了发光器件的性能。在一些实施例中,生长有源区之前,依次淀积弛豫增强层(Relaxation-Enhancement-Layer;以下简称:REL)和应变平衡层(Strain-Balancing-Layer;以下简称:SBL),为有源区生长做准备。弛豫增强层用来帮助应变平衡层加速实现无应变状态,促使SBL提供使有源区实现应变平衡状态的晶格基底。应变平衡层为InxAlyGa1-x-yN(0≤x≤1,0≤y≤1,x+y≤1),调节其晶格常数以施加相反的应力于有源区的毗邻层。当各毗邻层所受应力具有相反的符号时,大的应变被分配成小的应变分别施加于量子阱和量子垒,有源区作为一个整体感受到显著减小了的应变能,甚至可以使有源区接近无应变状态。减少的应变能有助于保证高质量和较厚(如需要)的有源区的生长。应变平衡层可以根据不同的有源区设计,反之,有源区也可以根据应变平衡层调整设计。在存在应力问题的情况下,本发明极大地增强了器件设计的灵活性。
应变平衡层在本发明中也可以用来调整有源区内的极化电场,应变平衡层可用来控制有源区的各毗邻层的界面面电荷的密度和类型。在某些实施例中,减少界面面电荷可以增加电子-空穴辐射复合几率,从而提高器件的内量子效率。界面电荷的减少还可以允许更厚的有源区设计,有助于在高注入条件下消除或显著减少俄歇效应。
在一些其它实施例中,电子-空穴波函数的交叠并非主要问题,本发明提出可以用极化电场来增强器件内量子效率。巨大的极化场(>1MV/cm)可以有效屏蔽缺陷对注入载流子的俘获,减少载流子损失,从而提高内量子效率.
根据本发明的一个方面,设计出一种发光半导体器件。这种发光半导体器件包含:一片衬底;在衬底上形成的第一层,例如III族氮化物;一层在第一层之上外延生长的III族氮化物应变平衡层(SBL),其晶格常数为asb;一个在应变平衡层之上形成的III族氮化物有源区。III族氮化物量子阱有源区包括至少一个阱层,其晶格常数为aw,厚度为tw,还有至少两层垒层,其晶格常数为ab,厚度为tb。应变平衡层的晶格常数大于垒层的晶格常数,小于阱层的晶格常数,并满足下列公式:
|tw(asb-aw)/aw+tb(asb-ab)/ab|≤K,
根据需要,还可以将一个弛豫增强层(REL)插在第一层和应变平衡层之间。当应变平衡层的晶格常数大于第一层的晶格常数时,弛豫增强层的晶格常数可以选择为或者大于应变平衡层的晶格常数,或者小于弛豫增强层下面的第一层的晶格常数。当应变平衡层的晶格常数小于第一层的晶格常数时,弛豫增强层的晶格常数可以选择为或者大于弛豫增强层下面的第一层的晶格常数,或者小于应变平衡层的晶格常数。
根据本发明的另一方面,设计出一种发光半导体器件。这种发光半导体器件包含:一片衬底;在衬底上形成的一层电子注入层;在电子注入层之上形成的一个弛豫增强层;在弛豫增强层之上形成的一层应变平衡层;在应变平衡层之上形成的一个III族氮化物有源区。III族氮化物有源区包括至少一对阱层和垒层;应变平衡层的晶格常数大于垒层的晶格常数,小于阱层的晶格常数。当应变平衡层的晶格常数大于电子注入层的晶格常数时,弛豫增强层的晶格常数或者大于应变平衡层的晶格常数,或者小于电子注入层的晶格常数;或者,当应变平衡层的晶格常数小于电子注入层的晶格常数时,弛豫增强层的晶格常数或者小于应变平衡层的晶格常数,或者大于电子注入层的晶格常数。
根据本发明的再一个方面,提出来一种设计发光半导体器件的方法。这种器件为III族氮化物结构,包含:一层应力弛豫增强层;一层III族氮化物应变平衡层,其晶格常数为asb;一个在应变平衡层之上形成的III族氮化物量子阱有源区。III族氮化物量子阱有源区包括至少一个阱层,其晶格常数为aw,厚度为tw,和至少两层垒层,其晶格常数为ab,厚度为tb。应变平衡层的晶格常数大于垒层的晶格常数,小于阱层的晶格常数。此方法包括选择tw和tb,或者选择asb,aw或ab以满足下列公式:
|tw(asb-aw)/aw+tb(asb-ab)/ab|≤K,
其中K为预先确定的值。
附图说明
图1给出现有的发光器件结构的横截面示意图。
图2给出根据本发明一实施例的发光器件结构的横截面示意图。
图3a给出根据本发明一实施例的包含压应力弛豫增强层的发光器件结构的横截面示意图。
图3b给出根据本发明一实施例提出的包含张应力弛豫增强层的发光器件结构的横截面示意图。
图4a给出本发明中的可见光发光多量子阱的实施例。
图4b给出本发明中的紫外光发光多量子阱的实施例。
图5给出根据本发明一实施例的多量子阱发光二极管的横截面结构示意图。
图6给出根据本发明实施例分别具有10和15个阱/垒对结构的LED电流电压(IV)曲线。
图7给出根据本发明实施例的两种LED的电流电压(IV)曲线,一种包含应变平衡层,另一种没有应变平衡层。
图8给出根据本发明实施例的电流电压(IV)曲线,两种LED没有应变平衡层,一种LED包含应变平衡层,图中表明垒层的厚度对发光二极管电流电压特性的影响。
图9对比了应用本发明的具有不同垒层厚度的LED的外量子效率。
图10给出了根据本发明的实施例所设计的组分不均匀的应变平衡层。
图11给出了根据本发明的实施例所设计的一种包含重复基本单元Inx1Aly1Ga1-x1-y1N/Inx2Aly2Ga1-x2-y2N而得到的应变平衡层的结构。
图12给出了根据本发明的实施例所设计的一种包含重复基本单元GaN/InxGa1-xN而得到的应变平衡层的结构。
图13a给出一种没有应变平衡层的多量子阱发光二极管的横截面结构示意图。
图13b计算了图13a中的多量子阱发光二极管的能带图和极化场分布。
图14a给出一种根据本发明的实施例所设计的包含应变平衡层的多量子阱发光二极管的横截面结构示意图。
图14b给出图14a中的多量子阱发光二极管的能带图和极化场分布。
图15是计算的InGaN层中单电荷缺陷的场强分布。
图16a给出一种没有应变平衡层的多量子阱深绿光发光二极管的横截面结构示意图。
图16b给出图16a中的多量子阱深绿光发光二极管的能带图和极化场分布。
图17a给出一种根据本发明的实施例所设计的包含应变平衡层的多量子阱深绿光发光二极管的横截面结构示意图。
图17b给出图17a中的多量子阱深绿光发光二极管的能带图和极化场分布。
具体实施方式
在现有的发光器件中,有源区的晶格常数由n型层决定,没有为改善性能而调节有源区晶格常数的自由度。图1给出现有的发光器件的横截面示意图,该发光器件包括一片衬底100,一层提供电子的n-型接触层(n-型层)110,一层有源区120,和一层提供空穴的p-型层130。
本发明为改善器件性能而提出在发光器件的有源区下面加入应变平衡层。在关于发光二极管的实施例中(如图2所示),应变平衡发光器件包括一片衬底200,一层注入电子层(n-型层)210,一层弛豫增强层215,一层应变平衡层220,一层有源区230,和一层注入空穴层(p-型层)240。应变平衡层220是实现应变平衡有源区的晶格基底。
应变平衡层220可以用III族氮化物InxAlyGa1-x-yN(0≤x≤1,0≤y≤1,x+y≤1)制作。换而言之,应变平衡层220可以用氮化铝,氮化镓,氮化铟或其三元或四元化合物制作,这取决于有源区230的应用目标和所需结构。
对于可见光发光二极管,应变平衡层220需要用InxGa1-xN制作。根据有源区230的应用目标和所需结构,应变平衡层220中铟的成分(铟摩尔组份)可以在1%和60%之间变化(即,0.01≤x≤0.6)。例如,对于蓝光发光二极管,应变平衡层220可以包含20%到30%的铟。对于绿光发光二极管,应变平衡层220可以包含25%到40%的铟。对于红光发光二极管,应变平衡层220可以包含35%到50%的铟。对于红外LED,应变平衡层220可以包含35%到60%的铟。对于紫外发光二极管,应变平衡层220需要用AlxGa1-xN制作。应变平衡层220中铝的成分(铝摩尔组份)可以在5%和60%之间变化(即,0.05≤x≤0.6)。
应变平衡层220可以是单层或多层,可以是均匀组份或者是变化组分的层。将在稍后详细讨论变化组份导致变化晶格常数的应变平衡层的应用。应变平衡层220可以掺杂或不掺杂或同时掺杂多种元素如硅,碳,锌,镁或其他。应变平衡层220可以形成在弛豫增强层215之上或直接形成在电子注入层210之上。应变平衡层220还可以形成在电子注入层210上面且中间有其它层但没有弛豫增强层215。在本发明的一些实施例中,应变平衡层220可以是由外延淀积的单晶结构。应变平衡层220可以是导电的或高阻的。
弛豫增强层215可以用InxAlyGa1-x-yN(0≤x≤1,0≤y≤1,x+y≤1)制作,目的是使应变平衡层在较小的膜厚之内实现快速应力弛豫。在本发明的一些实施例中,弛豫增强层215在膜厚度为500nm或以下时实现完全弛豫,更好的情况是在100nm或以下时实现完全弛豫,或者,最好是在10nm或以下时实现完全弛豫。应变平衡层220将受到弛豫增强层215的应力。但是,因为弛豫增强层215在厚度很薄的情况下(可以比应变平衡层220薄)已经实现了应变弛豫,应变平衡层220和弛豫增强层215之间的应变能主要分布在弛豫增强层215中。结果就是,弛豫增强层215确保了应变平衡层220的迅速应力弛豫。
为强化应力的迅速弛豫,当应变平衡层220的晶格常数大于电子注入层210的晶格常数时,弛豫增强层215的晶格常数设计为或者大于应变平衡层220的晶格常数,或者小于下面的电子注入层210的晶格常数。
为强化应力的迅速弛豫,当应变平衡层220的晶格常数小于电子注入层210的晶格常数时,弛豫增强层215的晶格常数设计为或者小于应变平衡层220的晶格常数,或者大于下面的电子注入层210的晶格常数。
弛豫增强层215可以为单层或多层,可以为组分均匀的层或组分变化,即晶格常数变化的层。为了进一步调节晶格常数和导电特性从而微调有源区230的应变平衡,弛豫增强层215可以是掺杂或不掺杂,也可以同时掺杂多种元素如硅,碳,锌,镁或其他。弛豫增强层215还可以包含少量硼。据本发明的一些些实施例,应变平衡层220可以是外延淀积的单晶结构,外延技术可以是金属有机物气相淀积(MOCVD),卤化物气相外延(HVPE),分子束外延(MBE)或几种技术的结合。弛豫增强层215可以是导电层或电阻挡层。通常,弛豫增强层215需生长到应力完全弛豫的厚度。不过在某些实施例中,弛豫增强层215并不需要完全弛豫。
如图2所示,弛豫增强层215形成在电子注入层210,如高温GaN,AlN,InGaN,AlGaN或AlInGaN层,之上,或形成在一般的低温缓冲层,如GaN,AlN,AlInGaN层,之上。
在本发明的相同实施例中,弛豫增强层215可以生长在电子注入层210之上,可以从生长氮化镓,氮化铝,氮化铟或其他组份的InAlGaN开始,随厚度增加逐步变化III族元素以得到组分和晶格常数不断变化但最终与目标组分,晶格常数和厚度吻合的弛豫增强层。这样得到的弛豫增强层215的晶格常数可以逐步增加或减少。当应变平衡层220的晶格常数大于其下的电子注入层210的晶格常数时,弛豫增强层215最近邻电子注入层210处的初始晶格常数可以设计为或者大于其后的应变平衡层220的晶格常数,或者小于其下的电子注入层210的晶格常数;或者,当应变平衡层220的晶格常数小于其下的电子注入层210的晶格常数时,弛豫增强层215的初始晶格常数可以设计为或者小于其后的应变平衡层220的晶格常数,或者大于其下的电子注入层210的晶格常数。
当应变平衡层220的晶格常数大于其下的电子注入层210的晶格常数时,对于多层结构的弛豫增强层215,最近邻电子注入层210处的晶格常数可以设计为或者大于其后的应变平衡层220的晶格常数,或小于其下的电子注入层210的晶格常数。当弛豫增强层215在最近邻n-型层210处的晶格常数设计为大于其后的应变平衡层220的晶格常数,最近邻其后的应变平衡层220处的弛豫增强层215的晶格常数可以设计为小于弛豫增强层215在最近邻其下的电子注入层210处的晶格常数。当弛豫增强层215在最近邻其下的电子注入层210处的晶格常数设计为小于其下的电子注入层210的晶格常数,最近邻其后的应变平衡层220处的弛豫增强层215的晶格常数可以设计为大于弛豫增强层215在最近邻其下的电子注入层210处的晶格常数。其他的弛豫增强层215的晶格常数可以大于,小于或介于弛豫增强层215在最近邻其后的应变平衡层220和其下的电子注入层210处的晶格常数之间。
本发明中的“电子注入层”一词意指:电子注入层210可为任何传统掺杂或未掺杂层,包括本领域中常用的掺杂或未掺杂n-型层或p-型层。这类传统掺杂或未掺杂层包括但不限于III族氮化物GaN,AlN或AlGaN层,以及其他含铟III族氮化物。电子注入层210可以为单晶层或非单晶层,单层或多层。应变平衡层220可以外延生长在无弛豫增强层215的n-型层210上,生长技术可以是金属有机物气相淀积,卤化物气相外延,分子束外延或几种技术的结合。此外,附加层,如氮化铝或氮化铟层也可以在生长应变平衡层220之前淀积在电子注入层210上。此外,可以在电子注入层210和应变平衡层220之间(无论有无弛豫增强层215)生长一层附加的晶格常数介于电子注入层210和应变平衡层220之间的完全或部分弛豫的层,如III族氮化物层。此附加层可以是单晶或非单晶。
有源区230可以直接在应变平衡层220上形成。此外,附加层,如掺杂或未掺杂GaN,AlGaN,InGaN或统称为InAlGaN,氮化硅或氧化硅层可以形成在有源区230和应变平衡层220之间。例如,在可见光发光二极管中,在应变平衡层220和有源区230之间插入一层AlGaN层可以使能带宽度变得更宽。在应变平衡层220和有源区230之间的附加层应足够薄,以保持完全应变状态,才不会影响应变平衡层220对有源区230施加的应变平衡效果。在一实施例中,此附加层可以是AlxGa1-xN层,铝的摩尔成分可以在5%和40%之间(即,0.05≤x≤0.4),厚度等于或小于300nm。此附加层优选是完全共格生长(换言之,处于全应变状态),或者其应变弛豫度为30%或更小,或者25%或更小。有源区230可包含一个单量子阱或多量子阱(Multiple Quantum Wells;以下简称:MQW)。通常,一个量子阱层配备一个相应的垒层。
图3a和3b展示了有应变平衡层和弛豫增强层的两种实施例,此处应变平衡层320由三元合金InxGa1-xN组成。图3a中弛豫增强层315由三元合金AlyGa1-yN组成,受到n-型GaN层310的面内张应力。对比无弛豫增强层(AlyGa1-yN层)315的情形,在加速应力弛豫的情况下,弛豫增强层315对应变平衡层(InxGa1-xN层)320施加了一个更大的面内压应力,使应变平衡层320在较薄厚度内实现弛豫。为确保弛豫增强层315的加速应力弛豫过程,铝的摩尔组分y选在5-100%(即,0.05≤y≤1),10-50%更佳,15-30%最佳。
图3b中弛豫增强层315’选择为三元合金InyGa1-yN。此实施例中,在加速应力弛豫的情况下,弛豫增强层(InyGa1-yN层)315’对应变平衡层(InxGa1-xN层)320施加了一个面内张应力,使应变平衡层320在较薄厚度内实现弛豫。注意到此面内张应力有助于此后的含铟层(应变平衡层,单量子阱或多量子阱等)的生长,因为会抑制InGaN生长中铟的分凝。为保证弛豫增强层315’实现加速的应力弛豫过程,铟的摩尔组分y选在10-100%(即,0.1≤y≤1),20-50%更佳,20-30%最佳。弛豫增强层315’的晶格常数设计为大于应变平衡层320的晶格常数。
发明人发现:
(a)如果提供一层应变平衡层,如应变平衡层220,它会在量子阱层和配对垒层中产生相反的应力,量子阱承受的总应力减小,这种相反应力补偿效果不仅会存在于与应变平衡层相邻的量子阱垒层对,而且会传播到远离应变平衡层的其它量子阱垒层对中。因此,应力的大小在整个有源区显著减少(缺陷也如此),从而使得缺陷水平低,结构稳定的厚阱薄垒和大数目的量子阱垒对有可能实现。通过提供弛豫增强层,如弛豫增强层215,应变平衡效果将通过在应变平衡层实现迅速应力弛豫而增强。
(b)有源区应变能的积累与应力和量子阱层和垒层厚度有关,可用作设计有源区和相关应变平衡层的参考指标。
(c)厚的p-型层,如p-型InGaN层,在有源区之上与n-型层相对的一侧,如果它的晶格常数与应变平衡层非常相近,可以增强应变平衡层的作用。p-型层的晶格常数与应变平衡层非常相近时,p-型层对有源区和应变平衡层施加的应力变得尽可能的小。此p-型层也将作为应变吸收区域,对之后各层可能施加的应变起吸收作用。
因而,本发明中一些实施例指出,应变平衡层(SBL)的晶格常数(符号为asb)在量子阱层(QW)的晶格常数(符合为aw)和量子垒层(QB)的晶格常数(符合为ab)的之间调节:
ab<asb<aw。
总之,应变平衡层将对量子阱和垒施加相反的应力,即在垒层中为张应力,在量子阱层中为压应力。量子阱承受的总应力,因应变平衡层的存在而重新分布,从而比无应变平衡层的情况大大减小。如进一步调节阱层和垒层的厚度(符号分别为tw和tb),阱和垒中的应变能将互相补偿,达到有源区应力大大减小,甚至整体有源区无应力的状态。正确厚度选择可以通过以下应变能补偿公式得到:
|tw(asb-aw)/aw+tb(asb-ab)/ab|≤K,
由于阱和垒之间的应力补偿,较厚的阱层得以应用到有源区以减小俄歇效应,也不会受到应变弛豫引起的高密度缺陷的影响。再者,可以生长更多周期的量子阱垒进一步增强发光效率。
图4a和4b分别展示了可见光和紫外发光二极管的实施例。如图4a所示,对可见光发光二极管,应变平衡层420由InxGa1-xN构成,将对量子垒层431,成分InyGa1-yN,和量子阱层432,成分InzGa1-zN,施加相反的应力。本实施例的设计中,y<x<z。换言之,量子阱层(InzGa1-zN层)432中的铟组分大于应变平衡层(InxGa1-xN层)420中的铟组分,应变平衡层420中的铟组分大于量子垒层(InyGa1-yN层)431中的铟组分。对于可见光发光二极管,量子阱层432中的铟组分在5%到50%之间变化(即,0.05≤y≤0.5),取决于有源区430的应用目标和所需结构。例如,对于蓝光发光二极管,量子阱层432中的铟组分在12%到32%之间变化。对于绿光发光二极管,量子阱层432中的铟组分在24%到45%之间变化。量子垒层431中的铟组分在0%到20%之间变化(即,0≤y≤0.2),取决于有源区430的应用目标和所需结构。例如,对于蓝光发光二极管,量子垒层431中的铟组分在0%到10%之间变化。对于绿光发光二极管,量子垒层431中的铟组分在0%到20%之间变化。应变平衡层420中的铟组分在1%到60%之间变化(即,0.01≤y≤0.6),取决于有源区430的应用目标和所需结构。例如,对于蓝光发光二极管,应变平衡层420中的铟组分在20%到30%之间变化。对于绿光发光二极管,应变平衡层420中的铟组分在25%到40%之间变化。对于红光发光二极管,应变平衡层420中的铟组分在25%到50%之间变化。对于红外发光二极管,应变平衡层420中的铟组分在35%到60%之间变化。
有源区430可包含一对或多对量子阱层432和量子垒层431。量子阱层432和量子垒层431对的数目可变,例如,从1到100。不同量子垒层431的厚度可以相同或不同,可以薄至5埃例如,5埃到30埃,或5埃到100埃,或更厚。量子阱层432的厚度可以相同或不同,从5埃到100埃,或更厚。一对量子阱层432和量子垒层431的组分可以与另一对相同或不同。根据本实施例内容,某一对中的量子垒层431的厚度与量子阱层432的厚度比例,tb/tw,可以大于,小于或等于1。
衬底400可以是任意适当取向的蓝宝石,碳化硅,硅,III族氮化物,砷化镓,磷化铟,锗或其他合适的衬底。提供电子的n-型接触层410形成于衬底400之上。可以有一层或多层n-型接触层410。提供电子的n-型接触层410可为任意传统上使用的可见光发光二极管中提供电子的n-型层,如氮化镓层。弛豫增强层415在提供电子的n-型接触层(n-型氮化镓层)410之上形成,应变平衡层(InxGa1-xN层)420可以在弛豫增强层415之上。可以有一层或多层应变平衡层420。
在图4b中的紫外发光二极管中,应变平衡层420’由AlxGa1-xN构成,对将对量子垒层431’,成分AlyGa1-yN,和量子阱层432’,成分AlzGa1-zN,施加相反的应力。量子阱层(AlyGa1-yN层)432’中的铝组分在5%到60%之间变化(即,0.05≤y≤0.6)。量子垒层(AlyGa1-yN层)431’中的铝组分在10%到75%之间变化(即,0.1≤y≤0.75)。应变平衡层(AlxGa1-xN层)420’中的铝组分在5%到60%之间变化(即,0.05≤y≤0.6)。
有源区430’可包含一对或多对量子阱层432’和量子垒层431’。量子阱层432’和量子垒层431’对的数目可变,例如,1到100。不同量子垒层431’的厚度可以相同或不同,可以薄至5埃,例如,5埃到30埃,或5埃到100埃,或更厚。量子阱层432’的厚度可以相同或不同,从5埃到100埃,或更厚。一对量子阱层432’和量子垒层431’的组分可以与另一对相同或不同。根据本实施例内容,某一对中的量子垒层431’的厚度与量子阱层432’的厚度比例,tb/tw,可以大于,小于或等于1。
衬底400’可以是任意适当取向的蓝宝石,碳化硅,硅,III族氮化物,砷化镓,磷化铟,锗或其他合适的衬底。提供电子的n-型接触层410’形成于衬底400’之上。可以有一层或多层n-型接触层410’。提供电子的n-型接触层410’可为任意传统上使用的紫外光发光二极管中提供电子的n-型层,如AlGaN层。弛豫增强层415’在提供电子的n-型接触层(n-型AlGaN层)410’之上形成,应变平衡层(AlxGa1-xN层)420’在提供电子的n-AlGaN层410’之上。可以有一层或多层应变平衡层420’。
图5给出根据本发明一实施例设计的应用应变平衡层的氮化镓基发光二极管的结构示意图。应变平衡层520上,生长了一个多量子阱有源区530,每一对量子阱层532和量子垒层531都具有平衡的应变。每一对量子阱层532和量子垒层531中,垒层的晶格常数总小于相应的阱层的晶格常数以确保对载流子的限制,垒层的厚度可以大于,等于,或小于阱层的厚度。传统蓝光发光二极管结构中,垒厚大于阱厚。传统发光二极管结构中的阱层(如InGaN层)必须很薄以避免失配位错的产生(起因为大的压应力)。在新的应变平衡多量子阱设计中,如果应变平衡层的晶格常数设计为等于,或接近,甚至大于阱层的晶格常数的话,阱厚可比传统阱厚(约2纳米)更厚,甚至大于垒厚。较厚的阱的使用可以极大地减少俄歇效应,从而增强在高注入电流下阱区内载流子的复合。在此应变平衡结构中,阱厚可接近50纳米,高于传统阱厚至少一个数量级,这样可以用双异质结构(DH)作为有源区。510层可以是本领域内的传统n-型层。衬底500可以是本领域内的任意传统衬底。540层可以是本领域内的任何传统p-型层,包括III族氮化物层。但,比较合适的情况是p-型层的晶格常数(符号为ap)接近应变平衡层的晶格常数(asb),例如,|(asb-ap)/ap|≤0.02,更佳条件是≤0.005。540层要足够厚以便达到面内体材料晶格常数,如厚度超过0.1微米。
图5中的结构可以通过以下过程制作。衬底500(如蓝宝石片,发光二极管结构外延生长于其上)首先在氢气或氢气氮气混合气氛中做一定时间(如,2-20分钟)的高温(1000-1100℃)处理,以便去除表面沾污,修复表面损伤。然后温度降至400-800℃,同时向反应室通入氨气和金属有机物源而实现缓冲层生长(图中缓冲层未标出)。之后,缓冲层被加热到900-1050℃,保持5-10分钟,为高温氮化物n-型层510的生长做准备。
高温(1050-1120℃)氮化物层(n-型层)510可以包括一层非故意掺杂的氮化镓层,厚度为0.2-1微米,一层重掺硅的氮化镓层,厚度为2至3微米(反应室中通入硅烷,硅浓度为2-10×1018cm-3),和一层轻掺硅的氮化镓层(反应室中通入硅烷,硅浓度为1-30×1017cm-3),厚度为0.1-0.5微米。对某些结构,为提高发光二极管的反向特性,还会引入一层或多层含铝的氮化镓(AlGaN)。n-型氮化物层(n-型层)510还可由氮化镓层,和/或AlGaN层,和/或InGaN层,或其他目前普遍应用的合适的材料构成。每一层都可为单晶层或非单晶层。
弛豫增强层515可以在与510层相同的温度下生长,通过引入更多的金属有机物铝源获得需要的铝组分;也可以在较低温(600-700℃)下生长,通过引入金属有机物铟源获得更多铟的掺入。反应室中通入金属有机物铟,和/或镓,和/或铝源,氨气以及硅烷来生长弛豫增强层515(如:有适当铟摩尔组分的含铟层,或有适当铝摩尔组分的含铝层)。硅烷作为掺杂剂来控制弛豫增强层515中的n-型导电性。如上所述,含铝和含铟的弛豫增强层,会加速其后的应变平衡层520的应变弛豫过程。
弛豫增强层515生长完成之后,在氮气氛下调节反应室温度到中温(750-850℃),为应变平衡层520的生长做准备。金属有机物铟,和/或镓,和/或铝源,氨气和硅烷被通入反应室生长一层III族氮化物应变平衡层520(如:适当铟摩尔组分的含铟层,或适当铝摩尔组分的含铝层)。硅烷作为掺杂剂控制应变平衡层520的n-型电导率。本实施例中,为保证达到无应变体材料晶格常数,应变平衡层520的厚度大于0.1微米。较佳的厚度为0.1-1.0微米,更佳厚度为0.2-0.5微米。
在一些应用实施例中,应变平衡层520是三元合金InGaN。这里选择铟摩尔组分x以确保应变平衡层520的面内晶格常数(asb)大于量子垒层531的晶格常数(ab),且不大于量子阱层532的晶格常数(aw)。
更确切地说,改变铟的摩尔组分x会改变应变平衡层520的晶格常数,可以通过这种改变减小有源区530的总应变能。总应变能可以由以下公式体现:
K=tw(asb-aw)/aw+tb(asb-ab)/ab
这里,tw与tb分别代表量子阱和垒的厚度,aw,ab和asb分别为量子阱层532,量子垒层531和应变平衡层520的晶格常数。
K值为正(positive)意味着有源区530被施加张应变,为负(negative)意味着被施加压应变。为0代表有源区530受到最小化的应变。当K=0时,对有源区530来讲是最理想情况,这时多量子阱(MQW)的有源区530在不引入缺陷的情况下可增加周期数目。
根据本发明实施例的论述,生长应变平衡层520之后,多量子阱的有源区530可以直接或间接生长在应变平衡层520上。生长可在氮气氛中,生长温度可以与应变平衡层520的生长温度相同,例如750-850℃,或降低到650-750℃。较低的温度适用于高铟组分的长波长发射器,如绿光,红光,或红外发光二极管。应用本发明,多量子阱的垒厚在50-300埃范围内,阱厚在10-200埃范围内。
p-型层540可以直接或间接淀积有在源区530之上,在一些实施例中可能包括一层掺镁的AlGaN层(铝摩尔组分为0.1-0.25,20-120nm厚),一层掺镁的InGaN层,和一层p-型氮化镓层。
本发明指出,有源区之上厚的p-型InGaN层可以增强应变平衡层520的性能。在本发明的一实施例中,掺镁的p-InpGa1-pN层可以在800-950℃生长,铟的摩尔组分为2-30%(即,0.02≤p≤0.3),具有接近应变平衡层520的晶格常数。对于具有2-30%的铟摩尔组分的掺镁的p-InpGa1-pN层,面内体晶格常数为3.196-3.296埃,而在本发明一实施例中,与之相应的应变平衡层(例如,InxGa1-xN,0.01≤x≤0.4)的面内体晶格常数可调整为3.192-3.331埃。铟的掺入使得p-型层对多量子阱有源区和应变平衡层产生尽可能小(零)的应力。在一些实施例中,此p-InGaN层的厚度为0.1-0.6微米。p-InGaN层对于其后淀积的各层可能产生的应力也起到应变吸收区的作用。这确保多量子阱有源区不受之后各层应变的影响,至少将应变显著减小。
掺镁的p-InpGa1-pN层生长之后,沉积掺镁的GaN,厚度为0.1-1.0微米,生长温度为850-950℃。
因其具有应变补偿的能力,对于由压电材料或大晶格失配材料(如III族氮化物和II-VI族半导体材料)制作的发光二极管而言,本发明的应变平衡层打开了新的设计窗口。
在有源区由大晶格失配材料组成的情况下,有源区的厚度,或多量子阱/垒对的数目被失配严重限制。例如,在现有技术中,由GaN/InGaN多量子阱有源区构成的蓝/绿光发光二极管,存在残余应变能(由上述K的公式得到),对应于蓝光发光二极管和绿光发光二极管,分别大致在-0.65/-0.86埃每量子阱对。这意味着多量子阱周期必须限制在低于200埃,周期数小于10对。现有技术中,增加多量子阱周期和数目只会降低发光二极管的性能。然而,应用本发明实施例中的应变平衡层,多量子阱/垒对可以增加到超过10对。这对大功率LED的性能非常有益。在本发明中,多量子阱数目可达10-100对仍有可以接受的器件性能。在某些实施例中,多量子阱可以包含10-40对。在另外的实施例中,多量子阱可以包含12-20对。
如图6所示,当多量子阱数目从10增加至15后,与现有技术所预期的相反,LED的电学性能没有下降,相反,电学性能得到提高。图6是应用本发明应力平衡层后,多量子阱为10对和15对的LED的电流-电压(IV)曲线(10对,实心菱形图例,15对,中空三角形图例)。(注意:这些曲线不是从分离的独立芯片测试到的,而是从大圆片上的由简化工艺步骤制作的器件得到的数据)。陡峭的IV曲线意味着LED串联电阻的减小以及IV特性的提高。图6中的这两个实施例的结构如图5所示。具体来讲,n-型层510包括一层0.1-2微米厚的未掺杂GaN层,一层0.5-3微米厚的重掺杂的n-GaN(1-20×1018cm-3),和一层0.01-1微米的轻掺硅的GaN层(0.1-15×1017cm-3),依次生长在衬底500上,其中未掺杂GaN直接生长在衬底500上。弛豫增强层515为0.02-0.5微米的n-AlxGa1-xN层(0.1≤x≤0.4)。应变平衡层520为0.02-0.5微米的InxGa1-xN层(0.02≤x≤0.15)。MQW的有源区530为GaN/In0.35Ga0.65N多量子阱(周期数分别为10和15),阱/垒厚度分别为150/18埃。P-型层540包含一层掺镁的AlxGa1-xN(0.05≤x≤0.35)层,一层掺镁的InxGa1-xN层(0.03≤x≤0.15),和一层~200nm的p-GaN层,其中p-AlxGa1-xN直接生长在有源区530上。
在现有技术中,由压电材料或大晶格失配材料(如III族氮化物和II-VI族半导体材料)制作的LED,器件开启电压和串联电阻严重依赖MQW的阱/垒厚度和组分。例如,在现有技术中,如果垒厚小于140埃,器件开启电压和串联电阻将增加,会降低电学特性。在LED中应用应变平衡层的好处之一就是改善IV特性。这一点由有无应变平衡层的LED的IV曲线比较得到证实,在相比较的LED结构中,不同之处仅在于应变平衡层的插入。图7显示,应变平衡层的有无,对垒/阱厚度为150/18埃的GaN/InGaN多量子阱LED的开启电压和串联电阻已有明显作用。应变平衡层明显改善了LED的IV特性。如图8所示,当垒变薄时,应变平衡层对GaN/InGaN多量子阱LED的开启电压的改善更明显。可以看出,在现有技术中,一个无应变平衡层的阱厚为18埃的LED,当垒厚从180埃(图8中空心三角形图例)减至70埃(图8中实心正方形图例),器件开启电压大约增加1.6V(从2.4V到4V)。应用本发明后,在相似结构中加入应变平衡层,即使对于较薄的垒(70埃)的器件,IV特性无明显下降(图8中实心三角形数据)。这意味着传统GaN/InGaNLED结构必须保持垒/阱厚度比例大于8,IV特性才可以维持在可以接受的水平。本发明允许垒/阱厚度比例小于8,甚至小于4。我们进一步的实验表明在维持IV特性不下降的前提下,这个比例甚至可以小于1。
应用本发明,较薄的垒多量子阱设计的直接优势在于减小LED在高注入电流密度下的效率衰减。图9对比了不同垒厚(唯一变量)的有应变平衡层的GaN/InGaNMQWLED在注入电流增加情况下的外量子效率(EQE)。可以看出,随着量子垒厚度从197埃(图9空心正方形数据)减小到80埃(图9实心三角形数据),EQE峰值移到更高注入电流处,同时,EQE随注入电流增加的衰减趋势变缓。
表1给出了一些不同发光波长的LED有源区实例,其中的多量子阱/垒对数目多,垒/阱厚度比小(即薄垒和/或厚阱)。表中也列出阱厚(tw),InxAlyGa1-x-yN组成的阱层中铟的摩尔组分(x)和铝的摩尔组分(y)。相关垒中的组分与图4a和4b中的讨论的结果类似。对于可见光发光二极管,采用InyGa1-yN垒层,垒层中的铟摩尔组分在0%到20%之间(及,0≤y≤0.2)变化。对于紫外光发光二极管,采用AlyGa1-yN垒层,垒层中的铝摩尔组分在10%到75%之间(即,0.1≤y≤0.75)变化。
表1
当以上多量子阱结构建立在应变平衡层上时(应变平衡层可根据本发明生长在弛豫增强层上),即使选用数目较多的阱垒对和小的垒/阱厚度比,也可以获得满意的器件性能。满足发光器件性能的要求之一,是在一定的电流密度下,正向电压足够低。表1中列出的正向电压值(Vf)(电流密度为20A/cm2时)在引入本发明中的应变平衡层和弛豫增强层后,可以在多量子阱可见光和紫外LED中实现。例如,对蓝光LED如果在多量子阱之前引入本发明中的应变平衡层和弛豫增强层,当MQW结构包含12-80阱/垒对,垒/阱厚度比介于0.3到6之间,阱厚介于5-200埃时,LED正向电压可小于3.4V。一般来讲,阱厚最好在10-40埃之间。
此处的应变平衡层和弛豫增强层与图2,图3a和3b中的类似。应变平衡层可以用III族氮化物InxAlyGa1-x-yN(0≤x≤1,0≤y≤1,x+y≤1)制作。对于可见光发光二极管,应变平衡层中铟的成分(铟摩尔成分)可以在1%和40%之间变化(即,0.01≤x≤0.4)。例如,对于蓝光发光二极管,应变平衡层可以包含20%到30%的铟。对于绿光发光二极管,应变平衡层可以包含25%到40%的铟,铝的组分(铝摩尔成分)可以在0%和5%之间变化(即,0≤y≤0.05),铝摩尔组分最好为0。对于紫外发光二极管,应变平衡层中的铝的组分(铝摩尔成分)可以在5%和60%之间变化(即,0.05≤y≤0.6),铟的成分(铟摩尔成分)可以在0%和15%之间变化(即,0≤x≤0.15),铟的组分最好为0。在上述实施例中,表1中的MQW结构可以应用到图2,图3a和3b中所示的LED结构中,采用图2,图3a和3b中相似的衬底、n-型层和p-型层。
一般而言,对于紫外,蓝光,绿光,红光或红外LED,应变平衡层可以用III族氮化物InxsbAlysbGa1-xsb-ysbN制作。量子阱和垒层也可分别用InxwAlywGa1-xw-ywN和InxbAlybGa1-xb-ybN构成。这里,xsb,ysb,xb,yb,xw,yw,定义为0到1,包括0和1。对于绿光和波长更长的LED,应变平衡层中需要掺入更多In,量子阱层中也是如此。不过对于紫外LED,应变平衡层中需要更多的铝。
应变平衡层的厚度可以从几十埃到几百微米,取决于铟或铝的组分。根据本发明的一个实施例,应变平衡层为保证后续层的生长,应该是完全弛豫,低缺陷密度的。应变平衡层的组分可以根据有源区的设计计算得到。一旦组分确定,厚度需要足够大才可以保持自然状态体单晶的晶格常数。
在一些些实施例中,应变平衡层无需完全弛豫,即不必保持自然体单晶的晶格常数。在这些实施例中,应变平衡层的组分必须根据有源区的设计和应变平衡层自身的应变弛豫状态计算出来。
某些实施例中,应变平衡层为多层结构,具有不同掺杂剂和掺杂分布,和/或不同组分和组分分布。在应变平衡层中,组分线性上升或下降,直到达到所需晶格常数和带宽。组分也可以非线性变化以满足晶格常数和带宽。如图10所示,应变平衡层1020具有非均匀组分分布。这种非均匀组分的应变平衡层可以由现有技术中任何合适的技术生长。例如,应变平衡层(非均匀组分应变平衡层)1020可在反应室氮气氛中750-850℃下生长。金属有机物铟,和/或镓,和/或铝源,氨气和硅烷引入反应室。随着生长的进行,一种或几种源的输入流在控制范围内改变,这样可实现需要的组分分布。某实施例中,非均匀组分应变平衡层1020超过0.1微米厚,以达到无应变体单晶晶格常数。厚度在0.1-1.0微米更佳,0.2-0.5微米最佳。
某些实施例中,非均匀组分应变平衡层1020为三元合金InxGa1-xN。铟摩尔组分x随着应变平衡层的厚度变化。某些实施例中,非均匀组分应变平衡层1020为三元合金AlyGa1-yN。铝摩尔组分y随着应变平衡层的厚度变化。
当应用公式,K=tw(asb-aw)/aw+tb(asb-ab)/ab设计应变平衡层时,应变平衡层1020的晶格常数(asb)为本层的平均晶格常数。
衬底1000和电子注入层(n-型层)1010与图2-4的相关描述类似。
在一些实施例中,应变平衡层可以包含多层材料,不断重复进行组分的突变以达到需要的晶格常数和带宽。如图11所示,这里,应变平衡层1120由多周期的重复单元Inx1Aly1Ga1-x1-y1N层/Inx2Aly2Ga1-x2-y2N层(1121/1122)组成,其中,x1,x2,y1,y2均在0到1之间,含0和1,且当它们均不为0时,(x1,y1)不等于(x2,y2)。重复单元中的各层厚度在5到1000埃之间,5到200埃更佳,5到50埃最佳。
衬底1100和电子注入层(n-型氮化物层)1110与图2-4的相关描述类似。
一些具体实施例中(图12),直接或间接生长在电子注入层(n-型层)1210上的应变平衡层1220可以由短周期GaN/InxGa1-xN超晶格组成。超晶格周期数n,即GaN/InxGa1-xN对的重复数目,在10-200之间,20-100更佳,30-60最佳。GaN层的相应厚度(t1)和InxGa1-xN层的相应厚度(t2)在5-200埃之间,铟组分x在20-100%之间。超晶格中InGaN的厚度和组分沿生长方向上的分布不必保持一致。
一些实施例中,应变平衡层可以是掺杂的,或硅,碳,锌和/或镁或其他元素同时掺杂,以便进一步调整晶格常数和电学特性,以达到微调有源区应变平衡的目的。应变平衡层可以是导电的,也可以是不导电的。Si和/或Mg的掺杂浓度在1015cm-3到1020cm-3量级,最好1016cm-3到1019cm-3。
众所周知,c面的InAlGaN层中自发极化电场和应变引入的压电极化电场对光电器件有不良影响。E.T.Yu在“氮化物异质结构中的自发和压电极化”一文中综述了氮化物异质结构中的极化电场(收入在《III-V族氮化物半导体:应用与器件》中,编辑是E.T.Yu和M.O.Manasreh,161-192页,2003年由Taylor&Francis出版)。本发明中也引用了其中的内容。已有专利采用组分渐变的有源区来减小量子阱中的极化电场的方法(见US 7,345,324,本发明引用其中内容),还有专利在有源区之上采用应变弛豫的限制层来增强电子的阻挡效果(见US 6,943,381,本发明引用其中内容)。美国专利7,547,908采用完全弛豫,低温生长的非单晶InGaN来减少变量子阱应力(见US 7,547,908,本专利引用其中内容)。另外,还有文献报道在GaN基底上,利用四元合金减小有源区极化场(见Jianping Zhang等,“InGaN量子阱结合四元合金AlInGaN垒对光致荧光的增强”,Appl.Phys.Lett.Vol.77,No.17,2000年10月23号,pp.2668-2670;Martin Schubert等,“极化匹配的GaInN/AlGaInN多量子阱发光二极管之效率衰减的降低”Appl.Phys.Lett.Vol.93,No.4,2008年7月28号,pp.041102(1-3),以上两篇文献本文均有引用)。本发明中,在n型氮化物基底和有源区之间加入应变平衡层也增强了在不同应用中调整极化场的灵活性。
在一些实施例中,当电子-空穴波函数在有源区内的交叠不够充分时,可以利用应变平衡层去减少有源区内的极化电场,提高电子-空穴波函数的交叠。图13a,图13b和图14a,图14b比较了两种LED结构的能带和极化场分布。
图13a中的LED结构,包括一片衬底1300,一层淀积于在衬底1300上面的n-型GaN层1310,一层淀积于n-型GaN层1310上面的有源区1330,和一层厚度为2000埃沉积于有源区1330上面的p-型GaN 1340。有源区1330由多个In0.3Ga0.7N/GaN阱/垒层对(1332/1331)组成,其中GaN垒层1331的厚度大约为80埃,In0.3Ga0.7N阱层1332厚度约为30埃。图13b计算了图13a中LED平衡态下的能带结构和电场分布。得到现有技术中的量子阱中的极化电场强度约为1.5MV/cm。这样的场强使得量子阱的能带产生了明显的倾斜,导致电子和空穴在量子阱中被分离。这最终会降低电子-空穴的辐射复合几率,或使得器件的内量子效率变差。除此之外,我们还注意到,垒区中的场强接近0.8MV/cm,与量子阱中的电场具有相反的方向。这意味着它将阻碍载流子的输运,导致器件的串联电阻增加。
图14a展示了应用本发明的实施例设计的LED结构,包括一片衬底1400(与图10类似),一层n型GaN层(n-型层)1410(在衬底1400上面,与图13a类似),一层厚度为500埃的应变平衡层(n-In0.1Ga0.9N)1420生长在低温生长的弛豫增强层(n-GaN层)1415之上,一层有源区1430’生长在应变平衡层1420之上,和一层厚度约为2000埃的p-In0.1Ga0.9N层1440生长在有源区1430’之上。有源区1430’由多个In0.3Ga0.7N/Al0.3In0.41Ga0.29N垒/阱层对(1432/1431’)组成,与图13a类似,其中Al0.3In0.41Ga0.29N垒层1431’厚度大约为80埃,In0.3Ga0.7N阱层1432厚度约为30埃。从图14b的能带图和场强分布可以看出,与图13a所示的LED结构相比,图14a所示的LED结构中,量子阱中的场强急剧下降到~0.8MV/cm。并且,量子垒中极化场的方向已经改变为有助于载流子输运。
在另外一些实施例中,当缺陷,而非波函数交叠,成为内量子效率的主要限制因素时(如深绿和深紫外器件的有源区),本发明的发明人指出极化场可以用来在某种程度上提高内量子效率。理论如下,缺陷通过库仑力俘获载流子。任何足够强的外电场都可以削弱这种俘获,使俘获截面减小。J.P.Sorbier等从理论上指出,俘获截面与外电场的平方根成反比(见J.P.Sorbier等,“陷阱俘获截面的二维弹道模型”,Journal ofNon-crystalline Solids,Vol.322,No.1-3,June 2003,pp.11-16,本文引用其内容)。我们在图15中估算出InGaN层中单电荷缺陷的场强分布。如图所示,与俘获距离有关,该单荷电缺陷产生了大约在MV/cm量级的俘获电场。任何在这个量级的外电场都会对缺陷的俘获产生有效的屏蔽作用。
深绿光LED的实施例中,有源区缺陷密度可接近1010cm-2,这意味着平均缺陷间距离小于1000埃,因而迫切需要较强的电场屏蔽这些缺陷。图16b给出无应变平衡层的深绿光LED结构的能带图和极化场,如图16a所示,其中量子阱内极化电场约为1.5MV/cm。考虑到这种LED中的高缺陷密度,1.5MV/cm的强电场已经能够有效的屏蔽缺陷对注入载流子的俘获,有利于内量子效率的提高。这就解释了为什么氮化物LED对缺陷的敏感性差,而其他材料体系的LED,如AlInGaAs和AlInGaPLED对缺陷密度的敏感性强。在AlInGaAs和AlInGaPLED中有源区存在着零极化电场,因此其有源区对缺陷非常敏感。图16a中的LED结构包括一片衬底1600,一层n-型GaN层1610形成于衬底1600之上,一层有源区1630形成于n-型GaN层1610之上,和一层厚度为2000埃的p-型GaN层1640形成于有源区1630之上。有源区1630由多个In0.3Ga0.7N/GaN阱/垒层对(1632/1631)组成,每一个GaN垒层1631厚度大约为150埃,每一个In0.3Ga0.7N阱层1632厚度约为15埃。
图16a和图17a中的LED结构的唯一区别是图17a中的LED结构在n-型GaN层和有源区之间存在应变平衡层(n-In0.1Ga0.9N层)1720。在图17a所示的LED结构中,衬底1700,n-型GaN层1710,由多个In0.3Ga0.7N/GaN阱/垒层对(1732/1731)组成的有源区1730,已及p-型GaN层1740均与图16a中LED结构中的相应层类似。图17b中,通过应用应变平衡层1720,可以进一步增强量子阱中的电场强度到6.5MV/cm。这又在某种程度上加强了对缺陷的屏蔽,提高了内量子效率。
本发明运用了大量实施例进行描述。然而,本领域技术人员可以理解并认同,本申请的应用范围不仅仅包括其中的实施例。相反,它也覆盖了与之相关的各种改进,相似或等价的调整。因此本申请权利要求所的覆盖的范围应尽可能包含最广义的解释以便包括所有改进,相似或等价的调整。
Claims (30)
2.根据权利要求1所述的半导体发光器件,其中所述III族氮化物有源区包括4-100对阱层和垒层,每对阱层和垒层满足公式:|tw(asb-aw)/aw+tb(asb-ab)/ab|≤K。
3.根据权利要求1所述的半导体发光器件,进一步包括:
一层在所述衬底上形成的电子注入层;以及
一层弛豫增强层,用于增强所述应变平衡层的弛豫,所述弛豫增强层插在所述电子注入层和所述应变平衡层之间,所述弛豫增强层的晶格常数或者大于所述应变平衡层的晶格常数,或者小于所述电子注入层的晶格常数,所述应变平衡层的晶格常数大于所述电子注入层的晶格常数。
4.根据权利要求3所述的半导体发光器件,其中所述弛豫增强层包括一层AlGaN层,所述应变平衡层包括一层InGaN层。
5.根据权利要求3所述的半导体发光器件,其中所述弛豫增强层包括一层InyGa1-yN层,所述应变平衡层包括一层InxGa1-xN层,其中y>x。
6.根据权利要求3所述的半导体发光器件,其中所述弛豫增强层完全弛豫。
7.根据权利要求1所述的半导体发光器件,进一步包括:
一层于所述衬底上形成的电子注入层;以及
一层弛豫增强层,用于增强所述应变平衡层的弛豫,所述弛豫增强层插在所述电子注入层和所述应变平衡层之间,所述弛豫增强层的晶格常数或者小于所述应变平衡层的晶格常数,或者大于所述电子注入层的晶格常数,所述应变平衡层的晶格常数小于所述电子注入层的晶格常数。
8.根据权利要求7所述的半导体发光器件,其中所述弛豫增强层包括一层AlyGa1-yN,所述应变平衡层包括一层AlxGa1-xN,其中y>x。
9.根据权利要求7所述的半导体发光器件,其中所述弛豫增强层完全弛豫。
10.根据权利要求1所述的半导体发光器件,进一步包括形成在所述III族氮化物有源区上面的p型层,其晶格常数ap满足下面关系:|(asb-ap)/ap|≤0.02。
11.根据权利要求10所述的半导体发光器件,其中所述p型层包括掺镁的InpGa1-pN层,其中0.02≤p≤0.3。
12.根据权利要求1所述的半导体发光器件,其中所述应变平衡层为III族氮化物应变平衡层,其晶格常数沿生长方向逐步增加。
13.根据权利要求1所述的半导体发光器件,其中所述应变平衡层为III族氮化物应变平衡层,其晶格常数沿生长方向逐步减小。
14.根据权利要求1所述的半导体发光器件,其中所述应变平衡层为III族氮化物应变平衡层,且具有n型导电性。
15.根据权利要求1所述的半导体发光器件,其中所述应变平衡层为III族氮化物应变平衡层,且具有p型导电性。
16.根据权利要求1所述的半导体发光器件,其中所述应变平衡层为III族氮化物应变平衡层,包括多个重复单元Inx1Aly1Ga1-x1-y1N/Inx2Aly2Ga1-x2-y2N,其中,x1,x2,y1,y2均在0到1之间,包含0和1。
17.根据权利要求1所述的半导体发光器件,其中在所述III族氮化物有源区和所述应变平衡层之间还包括一层完全应变层。
18.根据权利要求17所述的半导体发光器件,其中所述完全应变层包括一层AlxGa1-xN层,其中0.05≤x≤0.4。
19.一种发光半导体器件,包含:
一片衬底;
一层在所述衬底上面形成的电子注入层;
一层在所述电子注入层上面形成的弛豫增强层;
一层在所述弛豫增强层上面形成的应变平衡层;以及
一层在所述应变平衡层上面形成的III族氮化物有源区,其中所述III族氮化物有源区包含至少一对阱层和垒层;
其中所述应变平衡层的晶格常数大于所述垒层的晶格常数,小于所述阱层的晶格常数,并且,当所述应变平衡层的晶格常数大于所述电子注入层的晶格常数时,所述弛豫增强层的晶格常数或者大于所述应变平衡层的晶格常数,或者小于所述电子注入层的晶格常数;或者,当所述应变平衡层的晶格常数小于所述电子注入层的晶格常数时,所述弛豫增强层的晶格常数或者小于所述应变平衡层的晶格常数,或者大于所述电子注入层的晶格常数。
20.根据权利要求19所述的半导体发光器件,其中所述弛豫增强层包括一层AlGaN层,所述应变平衡层包括一层InGaN层。
21.根据权利要求19所述的半导体发光器件,其中所述弛豫增强层包括一层InyGa1-yN层,所述应变平衡层包括一层InxGa1-xN层,其中y>x。
22.根据权利要求19所述的半导体发光器件,其中所述弛豫增强层包括一层AlyGa1-yN层,所述应变平衡层包括一层AlxGa1-xN层,其中y>x。
23.根据权利要求19所述的半导体发光器件,其中所述III族氮化物有源区包括4-40对InxGa1-xN阱层和InyGa1-yN垒层,其中0.3≤x≤0.6,0≤y<x,所述垒层(tb)的厚度和所述阱层(tw)的厚度的比(R),R=tb/tw,满足0.3≤R≤15。
24.根据权利要求19所述的半导体发光器件,其中所述III族氮化物有源区包括10-80对InxGa1-xN阱层和InyGa1-yN垒层,其中0.1≤x≤0.4,0≤y<x,所述垒层(tb)的厚度和所述阱层(tw)的厚度的比(R),R=tb/tw,满足0.3≤R≤8。
25.根据权利要求19所述的半导体发光器件,其中所述III族氮化物有源区包括15-100对InxAlyGa1-x-yN阱层和垒层,其中0≤x≤0.15,0≤y<0.6,所述势垒层(tb)的厚度和所述阱层(tw)的厚度的比(R),R=tb/tw,满足0.3≤R≤6。
26.根据权利要求19所述的半导体发光器件,其中在所述III族氮化物有源区和所述应变平衡层之间还包括一层完全应变层。
27.根据权利要求26所述的半导体发光器件,其中所述完全应变层包括一层AlxGa1-xN层,其中0.05≤x≤0.4。
28.根据权利要求19所述的半导体发光器件,其中所述应变平衡层含1%-20%的铟组份。
29.根据权利要求19所述的半导体发光器件,其中所述应变平衡层含21%-50%的铟组份。
30.一种半导体发光器件的设计方法,所述器件为III族氮化物结构,包括:
一层晶格常数为asb的III族氮化物应变平衡层;以及
一层形成在所述应变平衡层上面的III族氮化物量子阱有源区,其中所述III族氮化物量子阱有源区由至少一对阱层和垒层组成,所述阱层的晶格常数为aw,厚度为tw,所述垒层的晶格常数为ab,厚度为tb;所述应变平衡层的晶格常数大于所述垒层的晶格常数,小于所述阱层的晶格常数,
所述方法包括:选择tw和tb,或者选择asb,aw或ab,以满足下列公式:
|tw(asb-aw)/aw+tb(asb-ab)/ab|≤K,
其中K为预先选定的值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/693,408 | 2010-01-25 | ||
US12/693,408 US8227791B2 (en) | 2009-01-23 | 2010-01-25 | Strain balanced light emitting devices |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102136536A true CN102136536A (zh) | 2011-07-27 |
Family
ID=43902866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102282875A Pending CN102136536A (zh) | 2010-01-25 | 2010-07-08 | 应变平衡发光器件 |
Country Status (4)
Country | Link |
---|---|
EP (2) | EP2348548A2 (zh) |
JP (1) | JP2011155241A (zh) |
CN (1) | CN102136536A (zh) |
WO (1) | WO2011090581A1 (zh) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103413877A (zh) * | 2013-08-16 | 2013-11-27 | 湘能华磊光电股份有限公司 | 外延结构量子阱应力释放层的生长方法及其外延结构 |
WO2014082192A1 (zh) * | 2012-11-30 | 2014-06-05 | 华南师范大学 | 一种半导体外延结构及其发光器件 |
CN103887381A (zh) * | 2014-03-28 | 2014-06-25 | 西安神光皓瑞光电科技有限公司 | 一种提升紫外led外延材料结晶质量的生长方法 |
CN104064644A (zh) * | 2014-06-30 | 2014-09-24 | 湘能华磊光电股份有限公司 | Led的量子阱结构、其制作方法及包括其的led外延片 |
CN104465930A (zh) * | 2014-12-17 | 2015-03-25 | 厦门市三安光电科技有限公司 | 氮化物发光二极管 |
CN104733575A (zh) * | 2013-08-19 | 2015-06-24 | 新世纪光电股份有限公司 | 发光结构及包含该发光结构的半导体发光元件 |
CN105514234A (zh) * | 2015-12-14 | 2016-04-20 | 安徽三安光电有限公司 | 一种氮化物发光二极管及其生长方法 |
CN105826387A (zh) * | 2015-01-23 | 2016-08-03 | 三星电子株式会社 | 半导体衬底和包括其的半导体器件 |
CN107408602A (zh) * | 2015-03-31 | 2017-11-28 | 首尔伟傲世有限公司 | Uv发光二极管 |
US9859462B2 (en) | 2012-12-06 | 2018-01-02 | Genesis Photonics Inc. | Semiconductor structure |
CN107910416A (zh) * | 2017-11-02 | 2018-04-13 | 厦门三安光电有限公司 | 一种紫外氮化物发光二极管 |
CN108198920A (zh) * | 2017-11-15 | 2018-06-22 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制备方法 |
CN108447952A (zh) * | 2018-03-26 | 2018-08-24 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制备方法 |
CN109273566A (zh) * | 2018-08-01 | 2019-01-25 | 太原理工大学 | 一种含有应变调制结构的多层InGaN量子点结构 |
CN109346583A (zh) * | 2018-08-31 | 2019-02-15 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制备方法 |
CN109411575A (zh) * | 2018-08-31 | 2019-03-01 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制备方法 |
US10229977B2 (en) | 2016-09-19 | 2019-03-12 | Genesis Photonics Inc. | Nitrogen-containing semiconductor device |
CN109545918A (zh) * | 2018-09-27 | 2019-03-29 | 华灿光电(浙江)有限公司 | 一种氮化镓基发光二极管外延片及其制备方法 |
CN110112269A (zh) * | 2019-03-29 | 2019-08-09 | 华灿光电股份有限公司 | 发光二极管外延片及其制备方法 |
CN110600996A (zh) * | 2019-09-26 | 2019-12-20 | 苏州矩阵光电有限公司 | 一种量子阱层结构、半导体激光器及制备方法 |
CN113097353A (zh) * | 2021-04-02 | 2021-07-09 | 厦门乾照光电股份有限公司 | 一种紫外led及其制作方法 |
CN113396484A (zh) * | 2019-01-09 | 2021-09-14 | 索泰克公司 | 包含基于InGaN的P型注入层的光电半导体结构 |
CN113707775A (zh) * | 2019-03-06 | 2021-11-26 | 博尔博公司 | 异质结构以及采用异质结构的发光器件 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101910564B1 (ko) | 2011-06-02 | 2018-10-22 | 서울바이오시스 주식회사 | 스트레인 강화된 웰층을 갖는 발광 다이오드 |
JP5558454B2 (ja) * | 2011-11-25 | 2014-07-23 | シャープ株式会社 | 窒化物半導体発光素子および窒化物半導体発光素子の製造方法 |
KR102337405B1 (ko) * | 2014-09-05 | 2021-12-13 | 삼성전자주식회사 | 나노구조 반도체 발광소자 |
KR102347387B1 (ko) * | 2015-03-31 | 2022-01-06 | 서울바이오시스 주식회사 | 자외선 발광 소자 |
FR3063571B1 (fr) * | 2017-03-01 | 2021-04-30 | Soitec Silicon On Insulator | Procede de fabrication d'un substrat donneur pour la formation de dispositifs optoelectroniques, collection de substrats issus de ce procede |
JP7082390B2 (ja) * | 2017-08-04 | 2022-06-08 | 高知県公立大学法人 | 深紫外発光素子およびその製造方法 |
US11764327B2 (en) * | 2018-06-13 | 2023-09-19 | King Abdullah University Of Science And Technology | Light emitting diode with a graded quantum barrier layer |
US11984533B2 (en) | 2018-07-27 | 2024-05-14 | Sony Corporation | Light emitting device using a gallium nitride (GaN) based material |
GB2593693B (en) * | 2020-03-30 | 2022-08-03 | Plessey Semiconductors Ltd | LED precursor |
KR20220162167A (ko) * | 2020-05-04 | 2022-12-07 | 구글 엘엘씨 | 알루미늄 함유층을 내부에 포함하는 발광 다이오드 및 이와 관련한 방법 |
WO2021236729A1 (en) | 2020-05-19 | 2021-11-25 | Raxium, Inc. | Combination of strain management layers for light emitting elements |
CN115803898A (zh) * | 2020-06-15 | 2023-03-14 | 谷歌有限责任公司 | 通过mbe和其它技术所生长的低缺陷光电子器件 |
CN115064622B (zh) * | 2022-08-18 | 2022-11-18 | 江西兆驰半导体有限公司 | 一种复合N型GaN层、发光二极管外延片及其制备方法 |
CN115224171B (zh) * | 2022-09-20 | 2022-11-29 | 江西兆驰半导体有限公司 | 高光效发光二极管外延片及其制备方法、发光二极管 |
EP4398318A1 (en) * | 2023-01-05 | 2024-07-10 | Samsung Electronics Co., Ltd. | Nitride-based semiconductor light-emitting device |
CN116581210B (zh) * | 2023-07-10 | 2023-09-19 | 江西兆驰半导体有限公司 | 发光二极管外延片及其制备方法、发光二极管 |
CN116960248B (zh) * | 2023-09-15 | 2024-01-19 | 江西兆驰半导体有限公司 | 一种发光二极管外延片及制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0489353A (ja) * | 1990-07-31 | 1992-03-23 | Kyocera Corp | 誘電体磁器組成物 |
JPH09289353A (ja) * | 1996-04-19 | 1997-11-04 | Matsushita Electric Ind Co Ltd | 半導体発光素子およびその製造方法 |
CN101071841A (zh) * | 2006-05-12 | 2007-11-14 | 日立电线株式会社 | 氮化物半导体发光元件 |
US20080153192A1 (en) * | 2006-12-22 | 2008-06-26 | Philips Lumileds Lighting Company, Llc | III-Nitride Light Emitting Devices Grown on Templates to Reduce Strain |
WO2009005245A2 (en) * | 2007-07-04 | 2009-01-08 | Wooree Lst Co., Ltd. | Compound semiconductor light emitting device |
KR100885190B1 (ko) * | 2007-06-29 | 2009-02-24 | 우리엘에스티 주식회사 | 발광소자와 그의 제조방법 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0897500A (ja) * | 1994-09-28 | 1996-04-12 | Sony Corp | 発光素子およびそれを用いたレーザcrt |
JP4862855B2 (ja) * | 1996-06-25 | 2012-01-25 | 住友電気工業株式会社 | 半導体素子 |
JP3622562B2 (ja) * | 1998-03-12 | 2005-02-23 | 日亜化学工業株式会社 | 窒化物半導体発光ダイオード |
WO2000033388A1 (en) * | 1998-11-24 | 2000-06-08 | Massachusetts Institute Of Technology | METHOD OF PRODUCING DEVICE QUALITY (Al)InGaP ALLOYS ON LATTICE-MISMATCHED SUBSTRATES |
US6859474B1 (en) * | 1999-11-01 | 2005-02-22 | Arizona Board Of Regents | Long wavelength pseudomorphic InGaNPAsSb type-I and type-II active layers for the gaas material system |
JP4075324B2 (ja) * | 2001-05-10 | 2008-04-16 | 日亜化学工業株式会社 | 窒化物半導体素子 |
US6955933B2 (en) | 2001-07-24 | 2005-10-18 | Lumileds Lighting U.S., Llc | Light emitting diodes with graded composition active regions |
US6943381B2 (en) | 2004-01-30 | 2005-09-13 | Lumileds Lighting U.S., Llc | III-nitride light-emitting devices with improved high-current efficiency |
JP4493041B2 (ja) * | 2005-03-10 | 2010-06-30 | パナソニック株式会社 | 窒化物半導体発光素子 |
JP2006339550A (ja) * | 2005-06-06 | 2006-12-14 | Sony Corp | 半導体素子及びその製造方法、並びに半導体装置及びその製造方法 |
JP2007234918A (ja) * | 2006-03-02 | 2007-09-13 | Toyoda Gosei Co Ltd | 半導体発光素子 |
KR100766858B1 (ko) * | 2006-03-16 | 2007-10-12 | 서울옵토디바이스주식회사 | 질화물 반도체 발광소자용 버퍼층 형성 방법 및 그 질화물반도체 발광소자 |
US7547908B2 (en) | 2006-12-22 | 2009-06-16 | Philips Lumilieds Lighting Co, Llc | III-nitride light emitting devices grown on templates to reduce strain |
US20090321781A1 (en) * | 2008-06-27 | 2009-12-31 | Victoria Broadley | Quantum dot device and method of making the same |
-
2010
- 2010-07-08 CN CN2010102282875A patent/CN102136536A/zh active Pending
- 2010-10-18 JP JP2010233422A patent/JP2011155241A/ja active Pending
- 2010-12-08 WO PCT/US2010/059558 patent/WO2011090581A1/en active Application Filing
- 2010-12-30 EP EP10016192A patent/EP2348548A2/en not_active Withdrawn
- 2010-12-30 EP EP10016193A patent/EP2348549A2/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0489353A (ja) * | 1990-07-31 | 1992-03-23 | Kyocera Corp | 誘電体磁器組成物 |
JPH09289353A (ja) * | 1996-04-19 | 1997-11-04 | Matsushita Electric Ind Co Ltd | 半導体発光素子およびその製造方法 |
CN101071841A (zh) * | 2006-05-12 | 2007-11-14 | 日立电线株式会社 | 氮化物半导体发光元件 |
US20080153192A1 (en) * | 2006-12-22 | 2008-06-26 | Philips Lumileds Lighting Company, Llc | III-Nitride Light Emitting Devices Grown on Templates to Reduce Strain |
KR100885190B1 (ko) * | 2007-06-29 | 2009-02-24 | 우리엘에스티 주식회사 | 발광소자와 그의 제조방법 |
WO2009005245A2 (en) * | 2007-07-04 | 2009-01-08 | Wooree Lst Co., Ltd. | Compound semiconductor light emitting device |
WO2009005245A3 (en) * | 2007-07-04 | 2009-02-26 | Wooree Lst Co Ltd | Compound semiconductor light emitting device |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014082192A1 (zh) * | 2012-11-30 | 2014-06-05 | 华南师范大学 | 一种半导体外延结构及其发光器件 |
US9385269B2 (en) | 2012-11-30 | 2016-07-05 | South China Normal University | Semiconductor epitaxial structure and light-emitting device thereof |
US9859462B2 (en) | 2012-12-06 | 2018-01-02 | Genesis Photonics Inc. | Semiconductor structure |
CN103413877A (zh) * | 2013-08-16 | 2013-11-27 | 湘能华磊光电股份有限公司 | 外延结构量子阱应力释放层的生长方法及其外延结构 |
CN103413877B (zh) * | 2013-08-16 | 2016-01-20 | 湘能华磊光电股份有限公司 | 外延结构量子阱应力释放层的生长方法及其外延结构 |
CN104733575A (zh) * | 2013-08-19 | 2015-06-24 | 新世纪光电股份有限公司 | 发光结构及包含该发光结构的半导体发光元件 |
CN103887381A (zh) * | 2014-03-28 | 2014-06-25 | 西安神光皓瑞光电科技有限公司 | 一种提升紫外led外延材料结晶质量的生长方法 |
CN103887381B (zh) * | 2014-03-28 | 2017-03-29 | 西安神光皓瑞光电科技有限公司 | 一种提升紫外led外延材料结晶质量的生长方法 |
CN104064644B (zh) * | 2014-06-30 | 2016-08-31 | 湘能华磊光电股份有限公司 | Led的量子阱结构、其制作方法及包括其的led外延片 |
CN104064644A (zh) * | 2014-06-30 | 2014-09-24 | 湘能华磊光电股份有限公司 | Led的量子阱结构、其制作方法及包括其的led外延片 |
CN104465930A (zh) * | 2014-12-17 | 2015-03-25 | 厦门市三安光电科技有限公司 | 氮化物发光二极管 |
CN105826387A (zh) * | 2015-01-23 | 2016-08-03 | 三星电子株式会社 | 半导体衬底和包括其的半导体器件 |
CN105826387B (zh) * | 2015-01-23 | 2021-10-19 | 三星电子株式会社 | 半导体衬底和包括其的半导体器件 |
CN107408602A (zh) * | 2015-03-31 | 2017-11-28 | 首尔伟傲世有限公司 | Uv发光二极管 |
CN107408602B (zh) * | 2015-03-31 | 2021-05-25 | 首尔伟傲世有限公司 | Uv发光二极管 |
CN105514234A (zh) * | 2015-12-14 | 2016-04-20 | 安徽三安光电有限公司 | 一种氮化物发光二极管及其生长方法 |
US10229977B2 (en) | 2016-09-19 | 2019-03-12 | Genesis Photonics Inc. | Nitrogen-containing semiconductor device |
CN107910416A (zh) * | 2017-11-02 | 2018-04-13 | 厦门三安光电有限公司 | 一种紫外氮化物发光二极管 |
CN108198920A (zh) * | 2017-11-15 | 2018-06-22 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制备方法 |
CN108447952A (zh) * | 2018-03-26 | 2018-08-24 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制备方法 |
CN108447952B (zh) * | 2018-03-26 | 2020-04-14 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制备方法 |
CN109273566A (zh) * | 2018-08-01 | 2019-01-25 | 太原理工大学 | 一种含有应变调制结构的多层InGaN量子点结构 |
CN109346583A (zh) * | 2018-08-31 | 2019-02-15 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制备方法 |
CN109346583B (zh) * | 2018-08-31 | 2021-04-27 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制备方法 |
CN109411575A (zh) * | 2018-08-31 | 2019-03-01 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制备方法 |
CN109545918A (zh) * | 2018-09-27 | 2019-03-29 | 华灿光电(浙江)有限公司 | 一种氮化镓基发光二极管外延片及其制备方法 |
CN113396484A (zh) * | 2019-01-09 | 2021-09-14 | 索泰克公司 | 包含基于InGaN的P型注入层的光电半导体结构 |
US11901483B2 (en) | 2019-01-09 | 2024-02-13 | Soitec | Optoelectronic semiconductor structure comprising a p-type injection layer based on InGaN |
CN113396484B (zh) * | 2019-01-09 | 2024-04-23 | 索泰克公司 | 包含基于InGaN的P型注入层的光电半导体结构 |
CN113707775A (zh) * | 2019-03-06 | 2021-11-26 | 博尔博公司 | 异质结构以及采用异质结构的发光器件 |
CN113707775B (zh) * | 2019-03-06 | 2022-06-03 | 博尔博公司 | 异质结构以及采用异质结构的发光器件 |
CN110112269A (zh) * | 2019-03-29 | 2019-08-09 | 华灿光电股份有限公司 | 发光二极管外延片及其制备方法 |
CN110600996A (zh) * | 2019-09-26 | 2019-12-20 | 苏州矩阵光电有限公司 | 一种量子阱层结构、半导体激光器及制备方法 |
CN110600996B (zh) * | 2019-09-26 | 2024-05-14 | 苏州矩阵光电有限公司 | 一种量子阱层结构、半导体激光器及制备方法 |
CN113097353A (zh) * | 2021-04-02 | 2021-07-09 | 厦门乾照光电股份有限公司 | 一种紫外led及其制作方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2348548A2 (en) | 2011-07-27 |
WO2011090581A1 (en) | 2011-07-28 |
JP2011155241A (ja) | 2011-08-11 |
EP2348549A2 (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102136536A (zh) | 应变平衡发光器件 | |
US8227791B2 (en) | Strain balanced light emitting devices | |
JP6589987B2 (ja) | 窒化物半導体発光素子 | |
US9318650B2 (en) | Light-emitting device with heavily doped active-region and method for manufacturing the same | |
US20190296187A1 (en) | High-efficiency long-wavelength light-emitting device | |
US9755107B2 (en) | Group III nitride semiconductor light-emitting device | |
US20120313077A1 (en) | High emission power and low efficiency droop semipolar blue light emitting diodes | |
US10109767B2 (en) | Method of growing n-type nitride semiconductor, light emitting diode and method of fabricating the same | |
KR20110034689A (ko) | 반도체 장치 | |
KR20100135876A (ko) | 반극성 (Al,In,Ga,B)N 계 발광 다이오드들의 제조방법 | |
CN107195736B (zh) | 一种氮化镓基发光二极管外延片及其生长方法 | |
Zhu et al. | Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells | |
US20240038925A1 (en) | Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element | |
CN108447952A (zh) | 一种发光二极管外延片及其制备方法 | |
WO2014140371A1 (en) | Semiconductor structures having active regions comprising ingan, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures | |
CN102637793B (zh) | 三族氮化合物半导体紫外光发光二极管 | |
US9954138B2 (en) | Light emitting element | |
US9818907B2 (en) | LED element | |
Huang et al. | Improvement in modulation bandwidth of micro-LED arrays based on low-temperature-interlayer approach | |
Wang et al. | Enhancing the luminous efficiency of ultraviolet light emitting diodes by adjusting the Al composition of pre-well superlattice | |
US12166153B2 (en) | Light-emitting device with polarization modulated last quantum barrier | |
KR101250251B1 (ko) | 전위 밀도를 감소시키기 위한 질화물 반도체 발광소자 및 그 제조 방법 | |
KR20250042300A (ko) | 적색 발광 다이오드 | |
Kuo et al. | Tunnel-Junction Light-Emitting Diodes | |
JP2012256948A (ja) | 半導体発光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110727 |