CN102136315B - Multilayer-ceramic total-area LNO (lanthanum nickel oxide)/Ag/LNO composite electrode and preparation method thereof - Google Patents
Multilayer-ceramic total-area LNO (lanthanum nickel oxide)/Ag/LNO composite electrode and preparation method thereof Download PDFInfo
- Publication number
- CN102136315B CN102136315B CN2011100670974A CN201110067097A CN102136315B CN 102136315 B CN102136315 B CN 102136315B CN 2011100670974 A CN2011100670974 A CN 2011100670974A CN 201110067097 A CN201110067097 A CN 201110067097A CN 102136315 B CN102136315 B CN 102136315B
- Authority
- CN
- China
- Prior art keywords
- lno
- lanio
- parts
- layer
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 107
- 239000002131 composite material Substances 0.000 title claims abstract description 51
- 238000002360 preparation method Methods 0.000 title claims abstract description 32
- RVLXVXJAKUJOMY-UHFFFAOYSA-N lanthanum;oxonickel Chemical compound [La].[Ni]=O RVLXVXJAKUJOMY-UHFFFAOYSA-N 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000005245 sintering Methods 0.000 claims abstract description 25
- 239000002243 precursor Substances 0.000 claims abstract description 19
- 238000004381 surface treatment Methods 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims description 36
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 34
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 32
- 241000877463 Lanio Species 0.000 claims description 28
- 239000002904 solvent Substances 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 20
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 claims description 20
- 229940078494 nickel acetate Drugs 0.000 claims description 20
- 229910052709 silver Inorganic materials 0.000 claims description 20
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 19
- 239000008367 deionised water Substances 0.000 claims description 19
- 229910021641 deionized water Inorganic materials 0.000 claims description 19
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 19
- 239000004332 silver Substances 0.000 claims description 19
- 229960000583 acetic acid Drugs 0.000 claims description 16
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 claims description 16
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 claims description 14
- 239000012362 glacial acetic acid Substances 0.000 claims description 14
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 14
- 238000001035 drying Methods 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- 239000000853 adhesive Substances 0.000 claims description 10
- 230000001070 adhesive effect Effects 0.000 claims description 10
- 239000000020 Nitrocellulose Substances 0.000 claims description 8
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 8
- 229920001220 nitrocellulos Polymers 0.000 claims description 8
- 241000779819 Syncarpia glomulifera Species 0.000 claims description 7
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims description 7
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000000227 grinding Methods 0.000 claims description 7
- 239000001739 pinus spp. Substances 0.000 claims description 7
- 229940116411 terpineol Drugs 0.000 claims description 7
- 229940036248 turpentine Drugs 0.000 claims description 7
- 239000002002 slurry Substances 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 claims description 4
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 4
- 239000002738 chelating agent Substances 0.000 claims description 4
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical group [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229940079938 nitrocellulose Drugs 0.000 claims description 4
- 239000005416 organic matter Substances 0.000 claims description 4
- 239000011230 binding agent Substances 0.000 claims description 3
- 229910002340 LaNiO3 Inorganic materials 0.000 claims 11
- 239000010410 layer Substances 0.000 description 95
- 239000000243 solution Substances 0.000 description 25
- 239000010408 film Substances 0.000 description 23
- 238000005498 polishing Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 239000007767 bonding agent Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000009987 spinning Methods 0.000 description 4
- 239000003985 ceramic capacitor Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000000224 chemical solution deposition Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- DGIVNQGLQNFIBP-UHFFFAOYSA-N C(=O)OCCCC.C(=O)OCCCC Chemical compound C(=O)OCCCC.C(=O)OCCCC DGIVNQGLQNFIBP-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000001293 FEMA 3089 Substances 0.000 description 1
- 229910019606 La0.5Sr0.5CoO3 Inorganic materials 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 229910004121 SrRuO Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Landscapes
- Ceramic Capacitors (AREA)
- Inert Electrodes (AREA)
Abstract
多层陶瓷全面积LNO/Ag/LNO复合电极,包括至少两片重叠放置的陶瓷片,相邻两片陶瓷片之间为“LNO导电缓冲层/Ag电极层/LNO导电缓冲层”,位于顶部和底部的陶瓷片表面依次覆盖LNO导电缓冲层、Ag电极层,LNO导电缓冲层端面的形状和面积与陶瓷片端面的形状和面积相同,Ag电极层端面的形状和面积与LNO导电缓冲层端面的形状和面积相同,所述陶瓷片与LNO导电缓冲层之间、LNO导电缓冲层与Ag电极层之间通过烧结成为一体化结构。上述复合电极制备方法的工艺步骤为:(1)陶瓷片的表面处理,(2)LNO前躯体溶液的制备,(3)第一种单元体的制备,(4)第二种单元体的制备,(5)单元体的组合与烧结。
Multilayer ceramic full-area LNO/Ag/LNO composite electrode, including at least two overlapping ceramic sheets, between two adjacent ceramic sheets is "LNO conductive buffer layer/Ag electrode layer/LNO conductive buffer layer", located on the top The surface of the ceramic sheet at the bottom is covered with the LNO conductive buffer layer and the Ag electrode layer in turn. The shape and area of the end face of the LNO conductive buffer layer are the same as those of the ceramic sheet, and the shape and area of the end face of the Ag electrode layer are the same as those of the end face of the LNO conductive buffer layer. The shapes and areas are the same, and the ceramic sheet and the LNO conductive buffer layer, and between the LNO conductive buffer layer and the Ag electrode layer are sintered to form an integrated structure. The process steps of the above composite electrode preparation method are: (1) surface treatment of ceramic sheets, (2) preparation of LNO precursor solution, (3) preparation of the first unit body, (4) preparation of the second unit body , (5) Combination and sintering of the unit body.
Description
技术领域 technical field
本发明属于复合电极材料领域,特别涉及一种多层陶瓷全面积LNO/Ag/LNO复合电极及其制备方法。The invention belongs to the field of composite electrode materials, in particular to a multilayer ceramic full-area LNO/Ag/LNO composite electrode and a preparation method thereof.
背景技术 Background technique
电气工程中各类陶瓷元件的电极通常采用Ag、Pt或Au等金属,通过溅射、烧渗、喷涂等工艺,紧固地附着于陶瓷材料某一端面上用于导电。直接用金属做电极层,其导电性好,有一定延展性。但金属电极存在两个显著的缺点:(1)晶体常数与陶瓷基片不匹配,导致界面缺陷聚集,容易造成电极分层脱落,致使器件失效;(2)高频电场下,金属电极与陶瓷相之间容易相互扩散,发生化学反应,使介电性能劣化。The electrodes of various ceramic components in electrical engineering are usually made of metals such as Ag, Pt or Au, which are firmly attached to an end surface of the ceramic material for conduction through sputtering, infiltration, spraying and other processes. Directly use metal as the electrode layer, which has good conductivity and certain ductility. However, metal electrodes have two significant disadvantages: (1) the crystal constant does not match the ceramic substrate, resulting in the accumulation of interface defects, which easily causes the electrode to delaminate and delaminate, resulting in device failure; (2) under high-frequency electric field, the metal electrode and ceramic It is easy to diffuse between the phases, and chemical reactions occur, which deteriorates the dielectric properties.
La0.5Sr0.5CoO3、YB2Cu3O7-δ、SrRuO3等导电氧化物的出现为解决金属电极的缺陷提供了新的途径。在众多导电氧化物中,LaNiO3(其缩写为“LNO”,本专利申请中,用LNO代表LaNiO3)因其晶格常数为0.384nm,与锆钛酸铅(其缩写为“PZT”,本专利申请中,用PZT代表锆钛酸铅)、掺镧锆钛酸铅(其缩写为“PLZT”,本专利申请中,用PLZT代表掺镧锆钛酸铅)等压电陶瓷晶格常数非常接近,因而受到广泛的关注。到目前为止,人们已经利用脉冲激光沉积法(PLD)、射频磁控溅射法(RF)、化学溶液沉积法(CSD)等方法制备出了电阻率为10-3Ω·cm量级的LNO薄膜电极,但是相对于Ag等贵金属良导体,其电阻率仍然是比较高的。The emergence of conductive oxides such as La 0.5 Sr 0.5 CoO 3 , YB 2 Cu 3 O 7-δ , and SrRuO 3 provides a new way to solve the defects of metal electrodes. Among many conductive oxides, LaNiO 3 (abbreviated as "LNO", in this patent application, LNO is used to represent LaNiO 3 ) has a lattice constant of 0.384nm, and lead zirconate titanate (abbreviated as "PZT", In this patent application, PZT is used to represent lead zirconate titanate), lanthanum-doped lead zirconate titanate (abbreviated as "PLZT", in this patent application, PLZT is used to represent lanthanum-doped lead zirconate titanate) and other piezoelectric ceramic lattice constants are very close, and thus have received widespread attention. So far, people have used pulsed laser deposition (PLD), radio frequency magnetron sputtering (RF), chemical solution deposition (CSD) and other methods to prepare LNO with resistivity on the order of 10 -3 Ω·cm. Thin film electrodes, but compared with good conductors of noble metals such as Ag, their resistivity is still relatively high.
综合导电氧化物和金属电极的优点,Chen Mingsen和Wu Taibor等人制备了LNO/Pt复合电极(参见:Appl Phys Lett,1996,68:1430-1432)。此种复合电极虽然克服了仅用金属作电极时,陶瓷与电极间的相互扩散和仅用导电氧化物作电极时电阻率较高的缺陷,但Pt是一种较Ag昂贵的金属,使电极的制备成本大大提高;另外,该方法制备LNO/Pt复合电极的烧结温度较高(约1000℃左右),在该烧结温度下LNO薄膜易分解,且易促使压电陶瓷PZT、PLZT中PbO的挥发,从而导致复合电极及器件电学性能下降,并且产生环境污染;再者,由于该方法烧结温度高,制备过程耗费能源较多。除上述问题外,Chen Mingsen等人所发表论文中公开的LNO/Pt电极为部分电极(即电极的面积小于基底工作面面积),这种电极结构在电压作用下有电极部分和无电极部分容易产生不同应变,导致应力在电极边缘的聚集,从而造成元件的电极导电性能下降。Combining the advantages of conductive oxides and metal electrodes, Chen Mingsen and Wu Taibor et al. prepared LNO/Pt composite electrodes (see: Appl Phys Lett, 1996, 68: 1430-1432). Although this composite electrode overcomes the defects of interdiffusion between ceramics and electrodes and high resistivity when only conductive oxides are used as electrodes when only metals are used as electrodes, Pt is a more expensive metal than Ag, making electrodes In addition, the sintering temperature of the LNO/Pt composite electrode prepared by this method is relatively high (about 1000 ° C), and the LNO film is easy to decompose at this sintering temperature, and it is easy to promote the formation of PbO in piezoelectric ceramics PZT and PLZT. Volatilization, resulting in a decline in the electrical performance of composite electrodes and devices, and environmental pollution; moreover, due to the high sintering temperature of this method, the preparation process consumes more energy. In addition to the above-mentioned problems, the LNO/Pt electrode disclosed in the paper published by Chen Mingsen et al. is a partial electrode (that is, the area of the electrode is smaller than the area of the working surface of the base). Different strains are generated, which leads to the accumulation of stress at the edge of the electrode, resulting in a decrease in the conductivity of the electrode of the component.
CN101538156A公开了一种缓冲层诱导织构铁电薄膜的制备方法,该方法是在SiO2/Si或Pt/LNO/SiO2/Si基片上滴加LaNiO3溶胶,通过悬涂法形成LaNiO3缓冲层,然后在LaNiO3缓冲层上滴加铁电氧化物溶胶,通过悬涂法形成铁电薄膜层。此种方法所制备的产品不能直接作为电极使用,只是一种中间材料,其用途视后续加工而定。CN101538156A discloses a preparation method of a buffer layer induced texture ferroelectric thin film, the method is to drop LaNiO 3 sol on SiO 2 /Si or Pt/LNO/SiO 2 /Si substrate, and form LaNiO 3 buffer by suspension coating method layer, and then drop ferroelectric oxide sol on the LaNiO 3 buffer layer to form a ferroelectric thin film layer by suspension coating. The product prepared by this method cannot be used directly as an electrode, but is only an intermediate material, and its use depends on subsequent processing.
发明内容 Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种多层陶瓷全面积LNO/Ag/LNO复合电极及其制备方法,以便使电极材料既具有优良的导电性,又能大幅度提高使用寿命。The purpose of the present invention is to overcome the deficiencies of the prior art, to provide a multilayer ceramic full-area LNO/Ag/LNO composite electrode and its preparation method, so that the electrode material can not only have excellent conductivity, but also greatly increase the service life .
本发明所述多层陶瓷全面积LNO/Ag/LNO复合电极,包括至少两片重叠放置的陶瓷片,相邻两片陶瓷片之间为“LNO导电缓冲层/Ag电极层/LNO导电缓冲层”,位于顶部和底部的陶瓷片表面依次覆盖LNO导电缓冲层、Ag电极层,LNO导电缓冲层端面的形状和面积与陶瓷片端面的形状和面积相同,Ag电极层端面的形状和面积与LNO导电缓冲层端面的形状和面积相同,所述陶瓷片与LNO导电缓冲层之间、LNO导电缓冲层与Ag电极层之间通过烧结成为一体化结构。The multilayer ceramic full-area LNO/Ag/LNO composite electrode of the present invention includes at least two overlapping ceramic sheets, and between adjacent two ceramic sheets is "LNO conductive buffer layer/Ag electrode layer/LNO conductive buffer layer ”, the surface of the ceramic sheet at the top and bottom covers the LNO conductive buffer layer and the Ag electrode layer sequentially. The shape and area of the end face of the LNO conductive buffer layer are the same as those of the ceramic sheet, and the shape and area of the end face of the Ag electrode layer are the same as those of the LNO The shape and area of the end faces of the conductive buffer layer are the same, and the spaces between the ceramic sheet and the LNO conductive buffer layer, and between the LNO conductive buffer layer and the Ag electrode layer are sintered to form an integrated structure.
本发明所述多层陶瓷全面积LNO/Ag/LNO复合电极,其LNO导电缓冲层的厚度优选200纳米~300纳米。In the multilayer ceramic full-area LNO/Ag/LNO composite electrode of the present invention, the thickness of the LNO conductive buffer layer is preferably 200 nm to 300 nm.
本发明所述多层陶瓷全面积LNO/Ag/LNO复合电极,其Ag电极层的厚度控制在20微米~100微米。In the multilayer ceramic full-area LNO/Ag/LNO composite electrode of the present invention, the thickness of the Ag electrode layer is controlled at 20 microns to 100 microns.
本发明所述的多层陶瓷全面积LNO/Ag/LNO复合电极,其陶瓷片优选PLZT或PZT制作。For the multilayer ceramic full-area LNO/Ag/LNO composite electrode described in the present invention, the ceramic sheet is preferably made of PLZT or PZT.
本发明所述多层陶瓷全面积LNO/Ag/LNO复合电极的制备方法,工艺步骤如下:The preparation method of the multilayer ceramic full-area LNO/Ag/LNO composite electrode of the present invention, the process steps are as follows:
(1)陶瓷片的表面处理(1) Surface treatment of ceramic sheets
首先将陶瓷片进行抛光,然后依次进行手工清洗和超声波清洗;Firstly, the ceramic sheet is polished, then manually cleaned and ultrasonically cleaned in sequence;
(2)LNO前躯体溶液的制备(2) Preparation of LNO precursor solution
以醋酸镍和硝酸镧为溶质、以去离子水和冰醋酸为溶剂、以聚乙烯醇为螯合剂配制LNO前驱体溶液,醋酸镍与硝酸镧的摩尔比为1∶1,去离子水与冰醋酸的体积比为1∶3~5;将醋酸镍放入反应容器并加入冰醋酸,在常压、室温下搅拌直至醋酸镍完全溶解,然后加入硝酸镧并在搅拌下升温至60℃~70℃加入去离子水,当硝酸镧完全溶解后,在搅拌下升温至70℃~80℃加入聚乙烯醇,聚乙烯醇的加入量以醋酸镍、硝酸镧、去离子水、冰醋酸形成的溶液为基准,每升所述溶液加入聚乙烯醇10g~45g;当聚乙烯醇完全溶解后,通过蒸发溶剂或添加溶剂的方式调节所述溶液的浓度,使所述溶液中LNO的含量为0.1mol/L~0.3mol/L,继后经过滤除杂,即获LNO前躯体溶液;The LNO precursor solution was prepared with nickel acetate and lanthanum nitrate as solute, deionized water and glacial acetic acid as solvent, and polyvinyl alcohol as chelating agent. The molar ratio of nickel acetate and lanthanum nitrate was 1:1, and deionized water and ice The volume ratio of acetic acid is 1:3~5; put nickel acetate into the reaction vessel and add glacial acetic acid, stir at normal pressure and room temperature until the nickel acetate is completely dissolved, then add lanthanum nitrate and heat up to 60°C~70°C while stirring Add deionized water at ℃, when the lanthanum nitrate is completely dissolved, heat up to 70℃~80℃ under stirring and add polyvinyl alcohol, the amount of polyvinyl alcohol added is a solution formed by nickel acetate, lanthanum nitrate, deionized water, and glacial acetic acid As a benchmark, add 10g to 45g of polyvinyl alcohol per liter of the solution; when the polyvinyl alcohol is completely dissolved, adjust the concentration of the solution by evaporating the solvent or adding a solvent so that the content of LNO in the solution is 0.1mol /L~0.3mol/L, after filtering to remove impurities, the LNO precursor solution is obtained;
(3)第一种单元体的制备(3) Preparation of the first unit body
第一种单元体由陶瓷片、分别覆盖在陶瓷片两端面上的LNO导电缓冲层和覆盖在一个LNO导电缓冲层上的Ag电极层组成;The first type of unit body consists of a ceramic sheet, an LNO conductive buffer layer covered on both ends of the ceramic sheet and an Ag electrode layer covered on an LNO conductive buffer layer;
①采用旋转甩胶法将步骤(2)所制备的LNO前躯体溶液涂敷在经步骤(1)处理后的陶瓷片的两端面上形成LNO湿膜并进行热处理形成LNO导电缓冲层,热处理采用逐层处理的方法,即每涂敷一层LNO湿膜进行一次热处理,每层LNO湿膜的热处理操作相同,旋转甩胶与热处理的次数以LNO膜的厚度达到200纳米~300纳米为限,当最后一次热处理完成后,在600℃~850℃保温20min~60min,然后随炉冷却至室温;①Apply the LNO precursor solution prepared in step (2) on the both ends of the ceramic sheet treated in step (1) to form a LNO wet film by using the rotary glue-spinning method, and conduct heat treatment to form an LNO conductive buffer layer. The heat treatment adopts The method of layer-by-layer treatment, that is, heat treatment is carried out for each layer of LNO wet film, and the heat treatment operation of each layer of LNO wet film is the same. After the last heat treatment is completed, keep it warm at 600°C to 850°C for 20min to 60min, and then cool to room temperature with the furnace;
②将银浆浆料采用300目~350目丝网全面积印刷至一个LNO导电缓冲层上,每印刷一次、对该次印刷所获湿片在80℃~100℃下干燥5min~15min,印刷的次数和对湿片的干燥次数以Ag电极层的厚度达到20微米~100微米为限;②Print the silver paste on a LNO conductive buffer layer using a 300-350-mesh screen screen, and dry the wet sheet obtained by printing at 80°C-100°C for 5min-15min each time, and print The number of times and the number of times of drying the wet sheet is limited to the thickness of the Ag electrode layer reaching 20 microns to 100 microns;
(4)第二种单元体的制备(4) Preparation of the second unit body
第二种单元体由陶瓷片、分别覆盖在陶瓷片两端面上的LNO导电缓冲层和分别覆盖在两LNO导电缓冲层上的Ag电极层组成;The second unit body consists of a ceramic sheet, LNO conductive buffer layers respectively covered on both ends of the ceramic sheet, and Ag electrode layers respectively covered on the two LNO conductive buffer layers;
①采用旋转甩胶(Spin-Coating)法将步骤(2)所制备的LNO前躯体溶液涂敷在经步骤(1)处理后的陶瓷片的两端面上形成LNO湿膜并进行热处理形成LNO导电缓冲层,热处理采用逐层处理的方法,即每涂敷一层LNO湿膜进行一次热处理,每层LNO湿膜的热处理操作相同,旋转甩胶与热处理的次数以LNO膜的厚度达到200纳米~300纳米为限,当最后一次热处理完成后,在600℃~850℃保温20min~60min,然后随炉冷却至室温;①Apply the LNO precursor solution prepared in step (2) on both ends of the ceramic sheet treated in step (1) by the spin-coating method to form an LNO wet film and conduct heat treatment to form a conductive LNO film. For the buffer layer, the heat treatment adopts a layer-by-layer treatment method, that is, heat treatment is carried out for each layer of LNO wet film, and the heat treatment operation of each layer of LNO wet film is the same. The limit is 300 nanometers. When the last heat treatment is completed, keep it at 600°C-850°C for 20min-60min, and then cool to room temperature with the furnace;
②将银浆浆料采用300目~350目丝网全面积印刷至两LNO导电缓冲层上,每印刷一次、对该次印刷所获湿片在80℃~100℃下干燥5min~15min,印刷的次数和对湿片的干燥次数以Ag电极层的厚度达到20微米~100微米为限;②Print the silver paste on the two LNO conductive buffer layers with a 300-350-mesh screen in full area, and dry the wet film obtained by this printing at 80°C-100°C for 5min-15min, and print The number of times and the number of times of drying the wet sheet is limited to the thickness of the Ag electrode layer reaching 20 microns to 100 microns;
(5)单元体的组合与烧结(5) Combination and sintering of unit body
以一个第二种单元体为底片,将一个或一个以上的第一种单元体叠放在第二种单元体上形成多层陶瓷全面积LNO/Ag/LNO复合电极的坯体,然后将所述坯体放入带压力装置的烧结炉中,在向坯体轴向施加1MPa~3MPa压力的条件下升温至750℃~850℃烧结20min~60min,继后随炉冷却至室温,即获多层陶瓷全面积LNO/Ag/LNO复合电极。Taking a second unit body as a backsheet, stacking one or more first unit bodies on the second unit body to form a green body of a multilayer ceramic full-area LNO/Ag/LNO composite electrode, and then Put the green body into a sintering furnace with a pressure device, raise the temperature to 750°C-850°C and sinter for 20-60 minutes under the condition of applying a pressure of 1MPa-3MPa to the axial direction of the green body, and then cool to room temperature with the furnace, and then obtain more Layer ceramic full area LNO/Ag/LNO composite electrode.
本发明所述方法的第一种单元体和第二种单元体制备步骤中,LNO湿膜的热处理操作优选:依次在150℃~200℃下干燥10min~20min,300℃~400℃下分解有机物10min~20min,500℃~600℃下预结晶处理1min~5min。In the preparation steps of the first unit body and the second unit body of the method of the present invention, the heat treatment operation of the LNO wet film is preferably: drying at 150°C to 200°C for 10min to 20min, and decomposing organic matter at 300°C to 400°C 10min~20min, pre-crystallization treatment at 500℃~600℃ for 1min~5min.
本发明所述方法中,银浆浆料可以直接从市场购买,也可按下述配方和操作配制:银粉的质量份为100份,溶剂的质量份为4份~6份,粘接剂的质量份为10份~60份,将按上述质量份计量的银粉、溶剂和粘接剂进行研磨,研磨的时间以银浆浆料的细度≤6μm、在25℃的粘度达到8×104mPa·s~12×104mPa·s为限;所述溶剂为氧化铋,所述粘接剂由松油醇、松节油、硝化棉、环己酮和邻苯二甲酸二丁酯组成,松油醇的质量份为3.8份~4.5份,松节油的质量份为1.7份~2.6份,硝化棉的质量份为1.3份~1.6份,环己酮的质量份为14.3份~16.2份,邻苯二甲酸二丁酯的质量份为3.1份~4.2份。In the method of the present invention, the silver paste slurry can be purchased directly from the market, and can also be prepared according to the following formula and operation: the mass parts of the silver powder are 100 parts, the mass parts of the solvent are 4 parts to 6 parts, and the mass parts of the adhesive The mass parts are 10 to 60 parts, and the silver powder, solvent and adhesive measured according to the above mass parts are ground, and the grinding time is such that the fineness of the silver paste is ≤6 μm and the viscosity at 25 °C reaches 8×10 4 mPa·s~12×10 4 mPa·s is limited; the solvent is bismuth oxide, and the adhesive is composed of terpineol, turpentine, nitrocellulose, cyclohexanone and dibutyl phthalate, and the pine The mass parts of oleyl alcohol are 3.8 parts to 4.5 parts, the mass parts of turpentine oil are 1.7 parts to 2.6 parts, the mass parts of nitrocellulose are 1.3 parts to 1.6 parts, the mass parts of cyclohexanone are 14.3 parts to 16.2 parts, and the ortho-benzene The mass parts of dibutyl diformate are 3.1-4.2 parts.
本发明所述方法中,陶瓷片优选PLZT或PZT制作。In the method of the present invention, the ceramic sheet is preferably made of PLZT or PZT.
本发明具有以下有益效果:The present invention has the following beneficial effects:
1、本发明所述多层陶瓷全面积LNO/Ag/LNO复合电极具有优良的抗疲劳性能和耐击穿电场强度,其技术指标如下:1. The multilayer ceramic full-area LNO/Ag/LNO composite electrode of the present invention has excellent fatigue resistance and breakdown electric field strength, and its technical indicators are as follows:
(1)电极电阻率<1mΩ·cm;(1) Electrode resistivity <1mΩ·cm;
(2)工作电压-300~+300V;(2) Working voltage -300~+300V;
(3)频率>104Hz,连续脉冲反转次数>108(无损伤)。(3) Frequency > 10 4 Hz, number of continuous pulse reversals > 10 8 (no damage).
2、本发明所述多层陶瓷全面积LNO/Ag/LNO复合电极解决了“交错内电极”结构带来应力分布不均问题,从而克服了因拉伸应力导致的陶瓷与电极断裂现象,延长了器件的使用寿命。2. The multilayer ceramic full-area LNO/Ag/LNO composite electrode of the present invention solves the problem of uneven stress distribution caused by the "staggered inner electrode" structure, thereby overcoming the phenomenon of ceramic and electrode fracture caused by tensile stress, extending the service life of the device.
3、本发明所述方法,使Ag电极层与LNO导电缓冲层、LNO导电缓冲层与陶瓷片的结合面形成结构相似的固溶体,因而Ag电极层与LNO导电缓冲层、LNO导电缓冲层与陶瓷片结合紧密,极其不易开裂和剥离。3, the method of the present invention, make Ag electrode layer and LNO conductive buffer layer, the bonding surface of LNO conductive buffer layer and ceramic plate form the solid solution similar in structure, thereby Ag electrode layer and LNO conductive buffer layer, LNO conductive buffer layer and pottery The sheets are tightly combined and extremely difficult to crack and peel off.
4、本发明所述方法由于每涂敷一层LNO湿膜进行一次热处理,且热处理操作的最后一道工序是500℃~600℃下预结晶处理1~5min,在该工艺条件下,一方面可以继续除去残留的有机物质,更重要的是能够使当前薄膜结构处于非晶状态,有利于多层涂敷薄膜之间的紧密粘接;当达到总体厚度后,在600℃~850℃保温20min~60min可以使多层薄膜共同结晶,因而LNO导电缓冲层晶粒分布均匀,消除了层间晶界,促进了电场均匀分布,减小了载流子运动的阻力,提高了氧化物薄膜导电性能,进而提高复合电极的整体性能。4. The method of the present invention carries out a heat treatment every time a layer of LNO wet film is applied, and the last process of the heat treatment operation is a pre-crystallization treatment at 500°C to 600°C for 1 to 5 minutes. Under this process condition, on the one hand, it can Continue to remove the residual organic substances, and more importantly, make the current film structure in an amorphous state, which is conducive to the tight adhesion between the multi-layer coated films; when the overall thickness is reached, keep it at 600℃~850℃ for 20min~ 60 minutes can make the multi-layer film co-crystallize, so the grain distribution of the LNO conductive buffer layer is uniform, eliminating the interlayer grain boundary, promoting the uniform distribution of the electric field, reducing the resistance of the carrier movement, and improving the conductivity of the oxide film. Thus improving the overall performance of the composite electrode.
5、本发明所述方法使用的设备为常规设备,烧结的施压装置既可以是机械压力装置,也可以是其它压力装置,且烧结氛围的要求低,因而成本低,易于工业化生产。5. The equipment used in the method of the present invention is conventional equipment, and the pressure device for sintering can be a mechanical pressure device or other pressure devices, and the requirements for the sintering atmosphere are low, so the cost is low and it is easy for industrial production.
附图说明 Description of drawings
图1是本发明所述多层陶瓷全面积LNO/Ag/LNO复合电极的一种结构示意图;Fig. 1 is a kind of structural representation of multilayer ceramic full-area LNO/Ag/LNO composite electrode of the present invention;
图2是图1的俯视图;Fig. 2 is the top view of Fig. 1;
图3是第一种单元体的结构示意图;Fig. 3 is the structural representation of first kind of unit body;
图4是图3的俯视图;Fig. 4 is the top view of Fig. 3;
图5是第二种单元体的结构示意图;Fig. 5 is the structural representation of the second unit body;
图6是图5的俯视图;Figure 6 is a top view of Figure 5;
图7是将本发明所述多层陶瓷全面积LNO/Ag/LNO复合电极采用外力剥离陶瓷片后的Ag电极层的扫描电镜照片,其中,(a)、(b)、(c)、(d)分别为向坯体轴向施加0MPa、1MPa、2MPa、3MPa压力进行烧结所获复合电极的Ag电极层扫描电镜照片;Fig. 7 is the scanning electron micrograph of the Ag electrode layer after adopting external force to peel off the ceramic sheet with the multilayer ceramic full-area LNO/Ag/LNO composite electrode of the present invention, wherein, (a), (b), (c), ( d) Ag electrode layer scanning electron micrographs of composite electrodes obtained by applying 0MPa, 1MPa, 2MPa, and 3MPa pressures to the green body in the axial direction, respectively;
图8是烧结时向坯体轴向施加的机械压力与所获多层陶瓷全面积LNO/Ag/LNO复合电极电阻率的关系图;Fig. 8 is a relationship diagram between the mechanical pressure applied axially to the green body during sintering and the resistivity of the obtained multilayer ceramic full-area LNO/Ag/LNO composite electrode;
图9是烧结时向坯体轴向施加不同机械压力所获多层陶瓷全面积LNO/Ag/LNO复合电极的疲劳性能测试图;Figure 9 is a fatigue performance test diagram of the multilayer ceramic full-area LNO/Ag/LNO composite electrode obtained by applying different mechanical pressures to the green body axially during sintering;
图10是多层陶瓷电容的电滞回线图,其中,(a)为用本发明所述4层陶瓷全面积LNO/Ag/LNO复合电极制备的电容器(施加2MPa机械压力烧结)的电滞回线,(b)为用银电极制备的电容器的电滞回线。Fig. 10 is the hysteresis loop diagram of multilayer ceramic capacitor, wherein (a) is the hysteresis of the capacitor (applying 2MPa mechanical pressure sintering) prepared with 4 layers of ceramic full-area LNO/Ag/LNO composite electrode of the present invention The loop, (b) is the hysteresis loop of the capacitor prepared with silver electrodes.
图中,1-陶瓷片、2-LNO导电缓冲层、3-Ag电极层。In the figure, 1-ceramic sheet, 2-LNO conductive buffer layer, 3-Ag electrode layer.
具体实施方式 Detailed ways
下面结合附图对本发明所述多层陶瓷全面积LNO/Ag/LNO复合电极及制备方法做进一步说明。The multilayer ceramic full-area LNO/Ag/LNO composite electrode of the present invention and its preparation method will be further described below in conjunction with the accompanying drawings.
实施例1Example 1
本实施例制备图1、图2所示四层陶瓷全面积LNO/Ag/LNO复合电极,工艺步骤如下:This embodiment prepares the four-layer ceramic full-area LNO/Ag/LNO composite electrode shown in Figure 1 and Figure 2, and the process steps are as follows:
(1)陶瓷片的表面处理(1) Surface treatment of ceramic sheets
陶瓷片为0.5毫米的PLZT片,其表面处理依次为表面抛光与清洗;表面抛光采用精密研磨抛光机,将陶瓷片通过石蜡固定在抛光机上,对其正面和反面均按以下操作进行抛光:使用1500#金刚砂纸,在转速45rpm下抛光2h,然后换用抛光织物,在转速45rpm下抛光16h;清洗包括手工清洗和超声波清洗,首先通过手工清洗去掉陶瓷片表面的石蜡,然后采用超声波清洗:①将陶瓷片放入盛有丙酮的容器中,将所述容器放入超声波清洗器重振清洗5min,然后取出陶瓷片,用去离子水清洗3次;②将去离子水清洗后的陶瓷片放入盛有无水乙醇的容器中,超声清洗5min,然后取出陶瓷片,用去离子水清洗3次;③将去离子水清洗后的陶瓷片放入盛有去离子水的容器中超声清洗5min,然后取出陶瓷片将其放入干燥箱中在60℃下干燥15min;The ceramic sheet is a 0.5mm PLZT sheet, and its surface treatment is surface polishing and cleaning in sequence; the surface polishing adopts a precision grinding and polishing machine, the ceramic sheet is fixed on the polishing machine by paraffin, and the front and back sides are polished according to the following operations: use 1500 # emery paper, polished at 45rpm for 2 hours, then replaced with polishing fabric, polished at 45rpm for 16 hours; cleaning includes manual cleaning and ultrasonic cleaning, first remove the paraffin on the surface of the ceramic sheet by manual cleaning, and then use ultrasonic cleaning: ① Put the ceramic sheet into a container filled with acetone, put the container into an ultrasonic cleaner to re-vibrate and clean for 5 minutes, then take out the ceramic sheet, and wash it with deionized water for 3 times; ②Put the ceramic sheet after cleaning with deionized water into Put it into a container filled with absolute ethanol, ultrasonically clean it for 5 minutes, then take out the ceramic sheet, and wash it with deionized water for 3 times; , and then take out the ceramic sheet and put it in a drying oven to dry at 60°C for 15 minutes;
(2)LNO前躯体溶液的制备(2) Preparation of LNO precursor solution
以醋酸镍和水合硝酸镧为溶质、以去离子水和冰醋酸为溶剂、以聚乙烯醇为螯合剂配制LNO前驱体溶液,醋酸镍与水合硝酸镧的摩尔比为1∶1,去离子水与冰醋酸的体积比为1∶3;将醋酸镍放入反应容器并加入冰醋酸,在常压、室温(25℃)下搅拌直至醋酸镍完全溶解,然后加入水合硝酸镧并在搅拌下升温至60℃加入去离子水,当水合硝酸镧完全溶解后,在搅拌下升温至70℃加入聚乙烯醇,聚乙烯醇的加入量以醋酸镍、水合硝酸镧、去离子水、冰醋酸形成的溶液为基准,每升所述溶液加入聚乙烯醇30g;当聚乙烯醇完全溶解后,通过蒸发溶剂或添加溶剂的方式调节所述溶液的浓度,使所述溶液中LNO的含量为0.2mol/L,继后经0.2微米的过滤器滤除杂质,即获绿色透明的LNO前躯体溶液;上述原料均为分析纯。Use nickel acetate and hydrated lanthanum nitrate as solutes, deionized water and glacial acetic acid as solvents, and polyvinyl alcohol as a chelating agent to prepare LNO precursor solution. The molar ratio of nickel acetate and hydrated lanthanum nitrate is 1:1, deionized water The volume ratio to glacial acetic acid is 1:3; put nickel acetate into the reaction vessel and add glacial acetic acid, stir at normal pressure and room temperature (25°C) until the nickel acetate is completely dissolved, then add hydrated lanthanum nitrate and heat up while stirring Add deionized water to 60°C, when the hydrated lanthanum nitrate is completely dissolved, heat up to 70°C under stirring and add polyvinyl alcohol, the amount of polyvinyl alcohol is formed by nickel acetate, hydrated lanthanum nitrate, deionized water, and glacial acetic acid Solution as a benchmark, add polyvinyl alcohol 30g per liter of the solution; when the polyvinyl alcohol is completely dissolved, adjust the concentration of the solution by evaporating the solvent or adding a solvent, so that the content of LNO in the solution is 0.2mol/ L, and then filter out impurities through a 0.2 micron filter to obtain a green and transparent LNO precursor solution; the above raw materials are all analytically pure.
(3)第一种单元体的制备(3) Preparation of the first unit body
第一种单元体的形状和构造如图3、图4所示,由陶瓷片1、分别覆盖在陶瓷片两端面上的LNO导电缓冲层2和覆盖在一个LNO导电缓冲层上的Ag电极层3组成;The shape and structure of the first type of unit body are shown in Figure 3 and Figure 4. It consists of a
①采用旋转甩胶法将步骤(2)所制备的LNO前躯体溶液涂敷在经步骤(1)处理后的陶瓷片的两端面上形成LNO湿膜并进行热处理形成LNO导电缓冲层,匀胶速度3500rpm,匀胶时间20s,热处理采用逐层处理的方法,即每涂敷一层LNO湿膜进行一次热处理,每层LNO湿膜的热处理操作相同,均为:依次在180℃下干燥15min,350℃下分解有机物10min,550℃下预处理2min;旋转甩胶与热处理的次数以LNO膜的厚度达到300纳米为限,当最后一次热处理完成后,在750℃保温30min,然后随炉冷却至室温;①Apply the LNO precursor solution prepared in step (2) on both ends of the ceramic sheet treated in step (1) to form a LNO wet film by using the rotary glue-spinning method, and then conduct heat treatment to form an LNO conductive buffer layer, uniform glue The speed is 3500rpm, the mixing time is 20s, and the heat treatment adopts the method of layer-by-layer treatment, that is, heat treatment is carried out for each layer of LNO wet film, and the heat treatment operation of each layer of LNO wet film is the same, all of which are: sequentially drying at 180°C for 15 minutes, Decompose organic matter at 350°C for 10 minutes, and pretreat at 550°C for 2 minutes; the number of times of rotating glue and heat treatment is limited when the thickness of the LNO film reaches 300 nm. After the last heat treatment is completed, keep it at 750°C for 30 minutes, and then cool it down room temperature;
②由银粉、溶剂和粘接剂配制银浆浆料,银粉的质量份为100份,溶剂的质量份为5份,粘接剂的质量份为30份,所述溶剂为氧化铋,所述粘接剂由松油醇、松节油、硝化棉、环己酮和邻苯二甲酸二丁酯组成,松油醇的质量份为4.0,松节油的质量份为2.0份,硝化棉的质量份为1.5份,环己酮的质量份为15.0份,邻苯二甲酸二丁酯的质量份为3.5份;将按上述质量份计量的银粉、溶剂和粘接剂用三辊研磨机研磨至浆料的细度≤6μm、在25℃的粘度粘度为10×104mPa·s;将所配制的银浆浆料采用350目丝网全面积印刷至一个LNO导电缓冲层上,每印刷一次、对该次印刷所获湿片在80℃下干燥10min,印刷的次数和对湿片的干燥次数以Ag电极层的厚度达到80微米为限;陶瓷片周边溢出的多余Ag/LNO材料通过打磨抛光处理;上述原料均为分析纯。2. silver paste slurry is prepared by silver powder, solvent and bonding agent, the mass parts of silver powder are 100 parts, the mass parts of solvent are 5 parts, the mass parts of bonding agent are 30 parts, described solvent is bismuth oxide, described The adhesive is composed of terpineol, turpentine, nitrocellulose, cyclohexanone and dibutyl phthalate, the mass parts of terpineol are 4.0, the mass parts of turpentine are 2.0 parts, and the mass parts of nitrocellulose are 1.5 parts part, the mass part of cyclohexanone is 15.0 parts, and the mass part of dibutyl phthalate is 3.5 parts; The silver powder, solvent and binding agent measured by the above mass parts are ground to the size of the slurry with a three-roll mill Fineness ≤ 6μm, viscosity at 25°C is 10×10 4 mPa·s; the prepared silver paste is printed on a LNO conductive buffer layer with a 350-mesh screen in full area. The wet sheet obtained by the first printing was dried at 80°C for 10 minutes. The number of printing and drying times of the wet sheet was limited to the thickness of the Ag electrode layer reaching 80 microns; the excess Ag/LNO material overflowing around the ceramic sheet was treated by grinding and polishing; The above raw materials are analytically pure.
(4)第二种单元体的制备(4) Preparation of the second unit body
第二种单元体的形状和构造如图5、图6所示,由陶瓷片1、分别覆盖在陶瓷片两端面上的LNO导电缓冲层2和分别覆盖在两LNO导电缓冲层上的Ag电极层3组成;The shape and structure of the second type of unit body are shown in Figure 5 and Figure 6, consisting of a
①在陶瓷片1的两端面覆盖LNO导电缓冲层2的方法与上述步骤(3)制备第一种单元体相同;1. The method of covering the LNO
②配制银浆浆料所用银粉、溶剂和粘接剂及其操作与上述步骤(3)制备第一种单元体相同;将所配制的银浆浆料采用350目丝网全面积印刷至两LNO导电缓冲层上,每印刷一次、对该次印刷所获湿片在80℃下干燥10min,印刷的次数和对湿片的干燥次数以Ag电极层的厚度达到80微米为限;陶瓷片周边溢出的多余Ag/LNO材料通过打磨抛光处理;② The silver powder, solvent and adhesive used in the preparation of the silver paste and its operation are the same as the preparation of the first unit in the above step (3); the prepared silver paste is printed on two LNOs with a 350-mesh screen. On the conductive buffer layer, dry the wet sheet obtained by printing for 10 minutes at 80°C for each printing. The excess Ag/LNO material is processed by grinding and polishing;
(5)单元体的组合与烧结(5) Combination and sintering of unit body
以图5、图6所示的一个第二种单元体为底片,将三个图3、图4所示的第一种单元体叠放在所述第二种单元体上形成四层陶瓷全面积LNO/Ag/LNO复合电极的坯体;组合十二个所述四层陶瓷全面积LNO/Ag/LNO复合电极的坯体。Using a second type of unit body shown in Figure 5 and Figure 6 as a negative, three first type of unit bodies shown in Figure 3 and Figure 4 are stacked on the second type of unit body to form a four-layer ceramic full-body A blank of an area LNO/Ag/LNO composite electrode; a blank of combining twelve said four-layer ceramic full-area LNO/Ag/LNO composite electrodes.
将十二个所述坯体放入带机械压力装置(其机械压力装置为ZL200810044344.7专利所公开的机械压力装置)的烧结炉中,每三个坯体为一组,向四组坯体轴向分别施加0Mpa、1Mpa、2Mpa、3MPa机械压力,然后在施压下按3.5℃/min升温至850℃,在该温度下保温20min,继后随炉冷却至室温,即获十二个四层陶瓷全面积LNO/Ag/LNO复合电极。Put twelve green bodies into a sintering furnace with a mechanical pressure device (the mechanical pressure device is the mechanical pressure device disclosed in ZL200810044344.7 patent), every three green bodies are a group, and four groups of green bodies Apply 0Mpa, 1Mpa, 2Mpa, 3MPa mechanical pressure respectively in the axial direction, then raise the temperature to 850°C at 3.5°C/min under the pressure, keep it at this temperature for 20min, and then cool it to room temperature with the furnace to obtain twelve four Layer ceramic full area LNO/Ag/LNO composite electrode.
将四个烧结时轴向施压分别为0Mpa、1Mpa、2Mpa、3Mpa的四层陶瓷全面积LNO/Ag/LNO复合电极的Ag电极层3用扫描电镜扫描,所获图像见图7,从图7可以看出:在不同的压力烧结条件下,压力越大复合电极和陶瓷接触的界面结合越紧密,3MPa压力下的界面结构最好。The
将四个烧结时轴向施压分别为0Mpa、1Mpa、2Mpa、3Mpa的四层陶瓷全面积LNO/Ag/LNO复合电极采用四探针法进行测试,它们的电阻率见图8,从图8可以看出:随着烧结压力增大,复合电极的电阻率降低。The four-layer ceramic full-area LNO/Ag/LNO composite electrodes with axial pressures of 0Mpa, 1Mpa, 2Mpa, and 3Mpa during sintering were tested by the four-probe method. Their resistivities are shown in Figure 8. From Figure 8 It can be seen that as the sintering pressure increases, the resistivity of the composite electrode decreases.
对采用轴向施压0Mpa、2Mpa、3Mpa烧结的三个四层陶瓷全面积LNO/Ag/LNO复合电极进行剩余极化强度测试,它们的极化后归一剩余极化强度Pr随电场循环次数对数logN的变化见图9,从图9可以看出:烧结压力越大,归一剩余极化强度Pr越大,采用本发明所述的复合电极材料所制备的压电陶瓷抗疲劳性能越好。Three four-layer ceramic full-area LNO/Ag/LNO composite electrodes sintered with axial pressure of 0Mpa, 2Mpa, and 3Mpa were tested for remnant polarization. The change of logarithm logN is shown in Figure 9, and it can be seen from Figure 9 that the greater the sintering pressure, the greater the normalized remanent polarization Pr, and the better the fatigue resistance of piezoelectric ceramics prepared by using the composite electrode material of the present invention. good.
用烧结时轴向施压3Mpa的四层陶瓷全面积LNO/Ag/LNO复合电极制备电容器,其电滞回线见图10中的(a)曲线,将所述(a)曲线与图10中的(b)曲线(银电极Ag/PLZT/Ag制备的电容器的电滞回线)相比,可以看出:采用本发明所述的复合电极材料制备的四层陶瓷电容器电滞回线形状更好,极化强度优于采用银电极的陶瓷电容器。The four-layer ceramic full-area LNO/Ag/LNO composite electrode that axially presses 3Mpa during sintering is used to prepare a capacitor, and its hysteresis loop is shown in (a) curve in Fig. (b) curve (the hysteresis loop of the capacitor that silver electrode Ag/PLZT/Ag is prepared) compares, can find out: adopt the four-layer ceramic capacitor hysteresis loop shape that composite electrode material of the present invention prepares is more Well, the polarization is better than ceramic capacitors with silver electrodes.
以上测试采用了四探针仪:K2400电压/电流源表(美国Keithley公司),极化参数测试仪:Precision LC(美国Radient公司),脉冲发生器:Precision High Voltage Interface±4000V(美国Radient公司),以及高压放大器:Model 609E-6(美国Terk公司)。测试工作电压为-300~+300V,电场反转频率为1.8×104Hz,连续测试6小时后电极无损伤。The above test uses a four-probe instrument: K2400 voltage/current source meter (Keithley, USA), polarization parameter tester: Precision LC (Radient, USA), pulse generator: Precision High Voltage Interface±4000V (Radient, USA) , and a high-voltage amplifier: Model 609E-6 (Terk, USA). The test working voltage is -300~+300V, the electric field reversal frequency is 1.8×104Hz, and the electrodes are not damaged after continuous testing for 6 hours.
实施例2Example 2
本实施例制备三层陶瓷全面积LNO/Ag/LNO复合电极,工艺步骤如下:In this example, a three-layer ceramic full-area LNO/Ag/LNO composite electrode is prepared, and the process steps are as follows:
(1)陶瓷片的表面处理(1) Surface treatment of ceramic sheets
陶瓷片1毫米的PZT片,其表面处理依次为表面抛光与清洗;表面抛光与清洗的操作与实施例1相同。The surface treatment of the 1 mm PZT sheet of the ceramic sheet is surface polishing and cleaning in sequence; the operations of surface polishing and cleaning are the same as in Example 1.
(2)LNO前躯体溶液的制备(2) Preparation of LNO precursor solution
以醋酸镍和硝酸镧为溶质、以去离子水和冰醋酸为溶剂、以聚乙烯醇为螯合剂配制LNO前驱体溶液,醋酸镍与硝酸镧的摩尔比为1∶1,去离子水与冰醋酸的体积比为1∶5;将醋酸镍放入反应容器并加入冰醋酸,在常压、室温(29℃)下搅拌直至醋酸镍完全溶解,然后加入硝酸镧并在搅拌下升温至70℃加入去离子水,当硝酸镧完全溶解后,在搅拌下升温至80℃加入聚乙烯醇,聚乙烯醇的加入量以醋酸镍、硝酸镧、去离子水、冰醋酸形成的溶液为基准,每升所述溶液加入聚乙烯醇10g;当聚乙烯醇完全溶解后,通过蒸发溶剂或添加溶剂的方式调节所述溶液的浓度,使所述溶液中LNO的含量为0.1mol/L,继后经0.2微米的过滤器滤除杂质,即获绿色透明的LNO前躯体溶液;上述原料均为分析纯。The LNO precursor solution was prepared with nickel acetate and lanthanum nitrate as solute, deionized water and glacial acetic acid as solvent, and polyvinyl alcohol as chelating agent. The molar ratio of nickel acetate and lanthanum nitrate was 1:1, and deionized water and ice The volume ratio of acetic acid is 1:5; put nickel acetate into the reaction vessel and add glacial acetic acid, stir at normal pressure and room temperature (29°C) until the nickel acetate is completely dissolved, then add lanthanum nitrate and heat up to 70°C while stirring Add deionized water, and when the lanthanum nitrate is completely dissolved, heat up to 80°C under stirring and add polyvinyl alcohol. The amount of polyvinyl alcohol is based on the solution formed by nickel acetate, lanthanum nitrate, deionized water, and glacial acetic acid. Add polyvinyl alcohol 10g to liter described solution; After polyvinyl alcohol dissolves completely, adjust the concentration of described solution by the mode of evaporating solvent or adding solvent, make the content of LNO in the described solution be 0.1mol/L, then through The 0.2 micron filter removes impurities, and a green and transparent LNO precursor solution is obtained; the above raw materials are all analytically pure.
(3)第一种单元体的制备(3) Preparation of the first unit body
第一种单元体的形状和构造如图3、图4所示,由陶瓷片1、分别覆盖在陶瓷片两端面上的LNO导电缓冲层2和覆盖在一个LNO导电缓冲层上的Ag电极层3组成;The shape and structure of the first type of unit body are shown in Figure 3 and Figure 4. It consists of a
①采用旋转甩胶法将步骤(2)所制备的LNO前躯体溶液涂敷在经步骤(1)处理后的陶瓷片的两端面上形成LNO湿膜并进行热处理形成LNO导电缓冲层,匀胶速度3500rpm,匀胶时间20s,热处理采用逐层处理的方法,即每涂敷一层LNO湿膜进行一次热处理,每层LNO湿膜的热处理操作相同,均为:依次在150℃下干燥20min,300℃下分解有机物20min,500℃下预处理5min;旋转甩胶与热处理的次数以LNO膜的厚度达到200纳米为限,当最后一次热处理完成后,在600℃保温60min,然后随炉冷却至室温;①Apply the LNO precursor solution prepared in step (2) on both ends of the ceramic sheet treated in step (1) to form a LNO wet film by using the rotary glue-spinning method, and then conduct heat treatment to form an LNO conductive buffer layer, uniform glue The speed is 3500rpm, the mixing time is 20s, and the heat treatment adopts the method of layer-by-layer treatment, that is, heat treatment is carried out for each layer of LNO wet film, and the heat treatment operation of each layer of LNO wet film is the same: drying at 150°C for 20 minutes, Decompose organic matter at 300°C for 20 minutes, and pretreat at 500°C for 5 minutes; the number of times of spin-spinning and heat treatment is limited when the thickness of the LNO film reaches 200 nm. After the last heat treatment is completed, keep it at 600°C for 60 minutes, and then cool it down room temperature;
②由银粉、溶剂和粘接剂配制银浆浆料,银粉的质量份为100份,溶剂的质量份为5份,粘接剂的质量份为60份,所述溶剂为氧化铋,所述粘接剂由松油醇、松节油、硝化棉、环己酮和邻苯二甲酸二丁酯组成,松油醇的质量份为4.5,松节油的质量份为2.6份,硝化棉的质量份为1.3份,环己酮的质量份为16.0份,邻苯二甲酸二丁酯的质量份为4.2份;将按上述质量份计量的银粉、溶剂和粘接剂用三辊研磨机研磨至浆料的细度≤6μm、在25℃的粘度粘度为12×104mPa·s;上述原料均采用分析纯。2. silver paste slurry is prepared by silver powder, solvent and bonding agent, the mass parts of silver powder are 100 parts, the mass parts of solvent are 5 parts, the mass parts of bonding agent are 60 parts, described solvent is bismuth oxide, described The adhesive is composed of terpineol, turpentine, nitrocellulose, cyclohexanone and dibutyl phthalate, the mass parts of terpineol are 4.5 parts, the mass parts of turpentine are 2.6 parts, and the mass parts of nitrocellulose are 1.3 parts part, the mass part of cyclohexanone is 16.0 parts, and the mass part of dibutyl phthalate is 4.2 parts; The silver powder, solvent and binding agent measured by the above mass parts are ground to the size of the slurry with a three-roll mill Fineness ≤ 6μm, viscosity at 25°C is 12×10 4 mPa·s; the above raw materials are all analytically pure.
将所配制的银浆浆料采用300目丝网全面积印刷至一个LNO导电缓冲层上,每印刷一次、对该次印刷所获湿片在100℃下干燥5min,印刷的次数和对湿片的干燥次数以Ag电极层的厚度达到50微米为限;陶瓷片周边溢出的多余Ag/LNO材料通过打磨抛光处理;Print the prepared silver paste on a LNO conductive buffer layer with a 300-mesh screen, and dry the wet sheet obtained by printing for 5 minutes at 100°C for each printing. The number of times of printing and the wet sheet The number of times of drying is limited when the thickness of the Ag electrode layer reaches 50 microns; the excess Ag/LNO material overflowing around the ceramic sheet is treated by grinding and polishing;
(4)第二种单元体的制备(4) Preparation of the second unit body
第二种单元体的形状和构造如图5、图6所示,由陶瓷片1、分别覆盖在陶瓷片两端面上的LNO导电缓冲层2和分别覆盖在两LNO导电缓冲层上的Ag电极层3组成;The shape and structure of the second type of unit body are shown in Figure 5 and Figure 6, consisting of a
①在陶瓷片1的两端面覆盖LNO导电缓冲层2的方法与上述步骤(3)制备第一种单元体相同;1. The method of covering the LNO
②配制银浆浆料所用银粉、溶剂和粘接剂及其操作与上述步骤(3)制备第一种单元体相同;将所配制的银浆浆料采用300目丝网全面积印刷至两LNO导电缓冲层上,每印刷一次、对该次印刷所获湿片在100℃下干燥15min,印刷的次数和对湿片的干燥次数以Ag电极层的厚度达到50微米为限;陶瓷片周边溢出的多余Ag/LNO材料通过打磨抛光处理;② The silver powder, solvent and adhesive used in the preparation of the silver paste and its operation are the same as the preparation of the first unit in the above step (3); the prepared silver paste is printed on two LNOs with a 300-mesh screen. On the conductive buffer layer, dry the wet sheet obtained by printing for 15 minutes at 100°C for each printing. The excess Ag/LNO material is processed by grinding and polishing;
(5)单元体的组合与烧结(5) Combination and sintering of unit body
以图5、图6所示的一个第二种单元体为底片,将两个图3、图4所示的第一种单元体叠放在所述第二种单元体上形成三层陶瓷全面积LNO/Ag/LNO复合电极的坯体;组合六个所述三层陶瓷全面积LNO/Ag/LNO复合电极的坯体。With a second type of unit body shown in Figure 5 and Figure 6 as a negative, two first type of unit bodies shown in Figure 3 and Figure 4 are stacked on the second type of unit body to form a three-layer ceramic full body. A green body of an area LNO/Ag/LNO composite electrode; a green body of combining six of the three-layer ceramic full-area LNO/Ag/LNO composite electrodes.
将六个所述坯体放入带机械压力装置的烧结炉(所述机械压力装置与实施例1相同)中,每三个坯体为一组,向三组坯体轴向分别施加1Mpa、2Mpa、3MPa机械压力,然后在施压下升温至750℃烧结60min,继后随炉冷却至室温,即获六个三层陶瓷全面积LNO/Ag/LNO复合电极。Put six green bodies into a sintering furnace with a mechanical pressure device (the mechanical pressure device is the same as in Example 1), every three green bodies are a group, and apply 1Mpa, 2Mpa, 3MPa mechanical pressure, then heated to 750°C for sintering for 60min under pressure, and then cooled to room temperature with the furnace, and six three-layer ceramic full-area LNO/Ag/LNO composite electrodes were obtained.
将本实施例所制备的三层陶瓷全面积LNO/Ag/LNO复合电极进行性能测试,测试设备与实施例1相同,工作电压为-300~+300V,反转测试频率为1.5×104Hz,连续测试6小时后电极无损伤。电阻率测试结果如下:The performance test of the three-layer ceramic full-area LNO/Ag/LNO composite electrode prepared in this example is carried out with the same test equipment as in Example 1, the working voltage is -300~+300V, and the inversion test frequency is 1.5×10 4 Hz , There is no damage to the electrode after continuous testing for 6 hours. The resistivity test results are as follows:
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100670974A CN102136315B (en) | 2011-03-21 | 2011-03-21 | Multilayer-ceramic total-area LNO (lanthanum nickel oxide)/Ag/LNO composite electrode and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100670974A CN102136315B (en) | 2011-03-21 | 2011-03-21 | Multilayer-ceramic total-area LNO (lanthanum nickel oxide)/Ag/LNO composite electrode and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102136315A CN102136315A (en) | 2011-07-27 |
CN102136315B true CN102136315B (en) | 2012-08-15 |
Family
ID=44296066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100670974A Expired - Fee Related CN102136315B (en) | 2011-03-21 | 2011-03-21 | Multilayer-ceramic total-area LNO (lanthanum nickel oxide)/Ag/LNO composite electrode and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102136315B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112853267B (en) * | 2021-01-08 | 2023-01-31 | 南京邮电大学 | BaZr0.2Ti0.8O3 multilayer film based on lamination structure and its preparation method |
CN115711693A (en) * | 2021-08-19 | 2023-02-24 | 北京京东方技术开发有限公司 | Piezoelectric sensor, method of driving the same, and vibration device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100433212C (en) * | 2001-08-10 | 2008-11-12 | 蔡文俊 | Double feed stacker for film producing process |
US7265483B2 (en) * | 2004-03-29 | 2007-09-04 | Canon Kabushiki Kaisha | Dielectric member, piezoelectric member, ink jet head, ink jet recording apparatus and producing method for ink jet recording apparatus |
CN100376506C (en) * | 2005-06-16 | 2008-03-26 | 同济大学 | A non-lead-based ferroelectric thin film with composition gradient distribution and its preparation method |
CN1851039A (en) * | 2006-05-23 | 2006-10-25 | 电子科技大学 | Method for preparing lead zirconate titanate ferroelectric film material |
KR100898974B1 (en) * | 2007-06-18 | 2009-05-25 | 삼성전기주식회사 | Thin Film Capacitors, Laminated Structures and Manufacturing Method Thereof |
CN101740219B (en) * | 2008-11-06 | 2011-08-03 | 同方股份有限公司 | Method for preparing silver inner electrode multilayer ceramic capacitor |
US20100188799A1 (en) * | 2009-01-28 | 2010-07-29 | Avx Corporation | Controlled esr low inductance capacitor |
CN101538156A (en) * | 2009-04-30 | 2009-09-23 | 哈尔滨工业大学 | Preparation method of induced texture ferroelectric film at buffer layer |
CN202013753U (en) * | 2011-03-21 | 2011-10-19 | 成都远迈科技有限公司 | Gross area Ag/LNO combined electrode material |
-
2011
- 2011-03-21 CN CN2011100670974A patent/CN102136315B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102136315A (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108735508B (en) | Multilayer ceramic capacitor and method for manufacturing the same | |
CN112216510B (en) | Ceramic electronic device and method for manufacturing the same | |
CN101215172B (en) | A method for preparing bismuth sodium titanate-based lead-free piezoelectric thick film | |
CN1227957A (en) | monolithic ceramic electronic components | |
JP2020021820A (en) | Dielectric ceramic composition and multilayer ceramic electronic component | |
CN110098052B (en) | A kind of manufacturing method of grain boundary layer capacitor | |
CN102136315B (en) | Multilayer-ceramic total-area LNO (lanthanum nickel oxide)/Ag/LNO composite electrode and preparation method thereof | |
CN102584221A (en) | Anti-ferroelectric thick film with high breakdown field strength and preparation method | |
CN115692027A (en) | Preparation method of sintered anode foil added with nano high-dielectric fibers | |
US20140290733A1 (en) | Photoelectric conversion element and photovoltaic cell | |
CN105006362B (en) | A kind of thin film capacitor preparation method of peelable substrate | |
CN102184753B (en) | All-area Ag/LNO compound electrode material and preparation method thereof | |
CN106129242A (en) | A kind of big strain multilamellar leadless piezoelectric actuator and preparation method thereof | |
JP2002234771A (en) | Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor | |
CN102515748A (en) | Preparation method of bismuth titanate ferroelectric film | |
CN112723880B (en) | Preparation method of high-corrosion-resistant composite piezoelectric ceramic material | |
CN202013753U (en) | Gross area Ag/LNO combined electrode material | |
JP2013062531A (en) | Capacitor and manufacturing method of the same | |
CN110808163B (en) | Preparation method of grain boundary layer capacitor | |
CN112201478A (en) | Strontium bismuth titanate/bismuth ferrite heterodielectric thin film with high energy storage density and its preparation method and application | |
CN202013755U (en) | Multilayer ceramic gross area LNO/Ag/LNO combined electrode | |
CN111916556A (en) | Piezoelectric composite film, preparation method thereof and piezoelectric device | |
CN106554203A (en) | A kind of bismuth laminated bismuth niobate calcium high temperature piezoceramics and preparation method thereof | |
CN100345799C (en) | Bismuth zinc niobate / barium strontium titanate composite dielectric adjustable thick film preparation method | |
CN1947863A (en) | Method for preparing barium stan-titanate ferroelectric film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120815 Termination date: 20140321 |