JP2002234771A - Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor - Google Patents
Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitorInfo
- Publication number
- JP2002234771A JP2002234771A JP2001027920A JP2001027920A JP2002234771A JP 2002234771 A JP2002234771 A JP 2002234771A JP 2001027920 A JP2001027920 A JP 2001027920A JP 2001027920 A JP2001027920 A JP 2001027920A JP 2002234771 A JP2002234771 A JP 2002234771A
- Authority
- JP
- Japan
- Prior art keywords
- perovskite structure
- oxide powder
- dielectric ceramic
- tetragonal perovskite
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 100
- 239000000919 ceramic Substances 0.000 title claims abstract description 63
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 239000003985 ceramic capacitor Substances 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000002245 particle Substances 0.000 claims description 28
- 238000005245 sintering Methods 0.000 claims description 6
- 239000010953 base metal Substances 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims 1
- 230000005621 ferroelectricity Effects 0.000 abstract description 8
- 239000003990 capacitor Substances 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 description 26
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 21
- 229910002113 barium titanate Inorganic materials 0.000 description 21
- 239000013078 crystal Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 229910010293 ceramic material Inorganic materials 0.000 description 7
- 230000007062 hydrolysis Effects 0.000 description 7
- 238000006460 hydrolysis reaction Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- -1 alkoxide compounds Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Ceramic Capacitors (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、正方晶ペロブス
カイト構造を有する酸化物粉末およびその製造方法、誘
電体セラミックならびに積層セラミックコンデンサに関
するもので、特に、積層セラミックコンデンサにおい
て、誘電体セラミック層の薄層化を図りかつ十分な強誘
電性を示し得るようにするための改良に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide powder having a tetragonal perovskite structure, a method for producing the same, a dielectric ceramic, and a multilayer ceramic capacitor. The present invention relates to an improvement for achieving a high degree of ferroelectricity and achieving sufficient ferroelectricity.
【0002】[0002]
【従来の技術】積層セラミックコンデンサの小型化およ
び低コスト化が進み、そこに備える誘電体セラミック層
の厚みについては、3μm近くまで薄層化が進行し、ま
た、内部電極のための材料としても、銅、ニッケルなど
の卑金属が使用されるようになってきている。近年で
は、薄層化がさらに進行し、誘電体セラミック層の厚み
が1μm程度またはそれ以下のものも開発されている。2. Description of the Related Art Multilayer ceramic capacitors have been reduced in size and cost, and the thickness of a dielectric ceramic layer provided therein has been reduced to about 3 μm, and also as a material for internal electrodes. Base metals such as copper, nickel and the like have been used. In recent years, the thickness of the dielectric ceramic layer has been further reduced, and a dielectric ceramic layer having a thickness of about 1 μm or less has been developed.
【0003】ところが、このように誘電体セラミック層
が薄層化してくると、誘電体セラミック層にかかる電界
が高くなり、電界による誘電率の変化が大きい誘電体を
セラミック層の材料として使用することには問題があ
る。また、誘電体セラミック層の薄層化に伴い、当該セ
ラミック層の厚み方向でのセラミックの結晶粒子数が少
なくなり、信頼性に対する問題も引き起こされる。However, when the dielectric ceramic layer becomes thinner as described above, the electric field applied to the dielectric ceramic layer increases, and a dielectric material whose change in the dielectric constant due to the electric field is large is used as the material of the ceramic layer. Has a problem. Further, as the thickness of the dielectric ceramic layer is reduced, the number of crystal grains of the ceramic in the thickness direction of the ceramic layer is reduced, which causes a problem in reliability.
【0004】このような状況に対応するため、セラミッ
クの結晶粒子径を小さくすることによって、誘電体セラ
ミック層の厚み方向でのセラミックの結晶粒子数を増や
し、それによって、信頼性を高めることを可能にした誘
電体セラミック材料が、たとえば、特開平9−2410
74号公報および特開平9−241075号公報におい
て提案されている。また、特開平11−273985号
公報や特開平11−273986号公報では、誘電体セ
ラミック層の厚みを1μm程度にまで薄層化することに
対応できるチタン酸バリウム系の材料が提案されてい
る。In order to cope with such a situation, it is possible to increase the number of crystal grains of the ceramic in the thickness direction of the dielectric ceramic layer by reducing the crystal grain diameter of the ceramic, thereby improving the reliability. For example, Japanese Patent Application Laid-Open No. 9-2410 discloses
No. 74 and Japanese Patent Application Laid-Open No. 9-241075. In addition, Japanese Patent Application Laid-Open Nos. 11-273985 and 11-273986 propose barium titanate-based materials capable of coping with reducing the thickness of a dielectric ceramic layer to about 1 μm.
【0005】上述したチタン酸バリウム系のセラミック
材料粉末は、小さな結晶粒子径を有するセラミックとす
るため、小さな粒子径のものとして用意されなければな
らないが、このように小さな粒子径のチタン酸バリウム
系のセラミック材料粉末を得るため、加水分解法や水熱
合成法などの湿式法によって合成されることが好まし
い。The above-mentioned barium titanate-based ceramic material powder has to be prepared as a ceramic having a small crystal particle diameter, so that it must be prepared as a powder having a small particle diameter. In order to obtain the above ceramic material powder, it is preferable to synthesize by a wet method such as a hydrolysis method or a hydrothermal synthesis method.
【0006】ところが、湿式法で合成されたチタン酸バ
リウム系のセラミック材料粉末は、粒子内に水酸基が
0.2〜3重量%程度残留しており、粒子径は小さい
が、立方晶であったり、正方晶であっても、ペロブスカ
イト構造の結晶格子のc軸とa軸の比、すなわちc/a
軸比が小さく、コンデンサ用の材料として十分な強誘電
性を示さないことがあるという問題がある。However, the barium titanate-based ceramic material powder synthesized by the wet method has about 0.2 to 3% by weight of hydroxyl groups remaining in the particles, and although the particle diameter is small, it is cubic. , Even if it is tetragonal, the ratio of the c-axis to the a-axis of the crystal lattice of the perovskite structure, ie, c / a
There is a problem that the axial ratio is small and the ferroelectricity may not be sufficient as a material for a capacitor.
【0007】この問題を解決するため、合成されたチタ
ン酸バリウム系のセラミック材料粉末を大気中で再熱処
理することによって、水酸基を除去し、その結果、c/
a軸比が大きく、十分な強誘電性を示すチタン酸バリウ
ム系セラミック材料粉末を得るようにすることが行なわ
れている。In order to solve this problem, the synthesized barium titanate-based ceramic material powder is reheat-treated in the air to remove the hydroxyl groups.
Barium titanate-based ceramic material powders having a large a-axis ratio and exhibiting sufficient ferroelectricity have been obtained.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、上述の
ように再熱処理を行なうことにより、チタン酸バリウム
系セラミック材料粉末が粒成長するため、粒子径がたと
えば0.15μm以下といった小さい粒子径のチタン酸
バリウム系セラミック材料粉末を得ることが返って困難
になるという別の問題に遭遇することがある。However, since the barium titanate-based ceramic material powder grows as a result of the reheat treatment as described above, titanic acid having a small particle diameter of, for example, 0.15 μm or less is obtained. Another problem may be encountered in that obtaining a barium-based ceramic material powder is again difficult.
【0009】また、このようなチタン酸バリウム系セラ
ミックを誘電体セラミック層において用いた積層セラミ
ックコンデンサでは、誘電体セラミック層の厚みをたと
えば0.6μm程度あるいはそれ以下にまで薄くする
と、ショート不良が生じたり、その他の信頼性が低下す
るといった問題にも遭遇することがある。In a multilayer ceramic capacitor using such a barium titanate-based ceramic in a dielectric ceramic layer, short-circuit failure occurs when the thickness of the dielectric ceramic layer is reduced to, for example, about 0.6 μm or less. Or other problems such as reduced reliability.
【0010】そこで、この発明の目的は、上述のような
問題を解決し得る誘電体セラミックを得るために有利に
用いられる、正方晶ペロブスカイト構造を有する酸化物
粉末の製造方法およびその製造方法によって得られた酸
化物粉末、この酸化物粉末を用いて作製された誘電体セ
ラミック、ならびにこの誘電体セラミックを用いて構成
された積層セラミックコンデンサを提供しようとするこ
とである。Accordingly, an object of the present invention is to provide a method for producing an oxide powder having a tetragonal perovskite structure, which is advantageously used to obtain a dielectric ceramic capable of solving the above-mentioned problems, and a method for producing the same. It is an object of the present invention to provide an obtained oxide powder, a dielectric ceramic produced by using the oxide powder, and a multilayer ceramic capacitor constituted by using the dielectric ceramic.
【0011】[0011]
【課題を解決するための手段】この発明に係る正方晶ペ
ロブスカイト構造を有する酸化物粉末の製造方法は、立
方晶ペロブスカイト構造を有する酸化物粉末を湿式法に
よって合成する工程と、この立方晶ペロブスカイト構造
を有する酸化物粉末を、6×103 Pa以下の圧力下で
熱処理する工程とを備えることを特徴としている。A method for producing an oxide powder having a tetragonal perovskite structure according to the present invention comprises the steps of synthesizing an oxide powder having a cubic perovskite structure by a wet method, Heat-treating the oxide powder having a pressure of 6 × 10 3 Pa or less.
【0012】上述した湿式法によって合成された立方晶
ペロブスカイト構造を有する酸化物粉末の粒子径は、
0.01〜0.1μmであることが好ましい。The oxide powder having a cubic perovskite structure synthesized by the above-mentioned wet method has a particle diameter of:
It is preferably from 0.01 to 0.1 μm.
【0013】また、上述の熱処理する工程において、6
00〜1000℃の範囲の温度が適用されることが好ま
しい。In the heat treatment step, 6
Preferably, a temperature in the range from 00 to 1000 ° C. is applied.
【0014】この発明は、また、上述したような製造方
法によって得られた、正方晶ペロブスカイト構造を有す
る酸化物粉末にも向けられる。この酸化物粉末は、粒子
径が0.05〜0.15μmというように小さい。The present invention is also directed to an oxide powder having a tetragonal perovskite structure obtained by the above-described production method. This oxide powder has a small particle size of 0.05 to 0.15 μm.
【0015】上述した正方晶ペロブスカイト構造を有す
る酸化物粉末において、ペロブスカイト構造のa軸とc
軸の比であるc/a軸比は、1.003以上であること
が好ましい。In the above oxide powder having a tetragonal perovskite structure, the a-axis of the perovskite structure and c
The c / a axis ratio, which is the ratio of the axes, is preferably 1.003 or more.
【0016】また、上述の正方晶ペロブスカイト構造を
有する酸化物粉末は、一般式:(Ba1-x Cax )Ti
O3 (ただし、0≦x≦0.15)で表わされる酸化物
粉末に対して有利に適用される。The oxide powder having a tetragonal perovskite structure has a general formula: (Ba 1-x Ca x ) Ti
It is advantageously applied to oxide powders represented by O 3 (where 0 ≦ x ≦ 0.15).
【0017】この発明は、また、上述したような正方晶
ペロブスカイト構造を有する酸化物粉末を主成分とする
粉末を焼成して得られた、誘電体セラミックにも向けら
れる。The present invention is also directed to a dielectric ceramic obtained by sintering a powder mainly containing an oxide powder having a tetragonal perovskite structure as described above.
【0018】また、この発明は、複数の積層された誘電
体セラミック層およびこれら誘電体セラミック層間の特
定の界面に沿って形成された内部電極を含む、積層体
と、内部電極の特定のものに電気的に接続されるように
積層体の外表面上に形成される外部電極とを備える、積
層セラミックコンデンサにも向けられる。この積層セラ
ミックコンデンサにおいて、誘電体セラミック層が、上
述の誘電体セラミックから構成される。The present invention also relates to a laminated body including a plurality of laminated dielectric ceramic layers and an internal electrode formed along a specific interface between these dielectric ceramic layers, and a specific one of the internal electrodes. An external electrode formed on an outer surface of the multilayer body so as to be electrically connected to the multilayer ceramic capacitor. In this multilayer ceramic capacitor, the dielectric ceramic layer is composed of the above-mentioned dielectric ceramic.
【0019】この発明に係る積層セラミックコンデンサ
において、内部電極は、卑金属を導電成分として含むこ
とが好ましい。In the multilayer ceramic capacitor according to the present invention, the internal electrode preferably contains a base metal as a conductive component.
【0020】また、この発明に係る積層セラミックコン
デンサにおいて、内部電極間に介在する誘電体層の厚み
は、0.6μm以下とされることが好ましい。In the multilayer ceramic capacitor according to the present invention, the thickness of the dielectric layer interposed between the internal electrodes is preferably set to 0.6 μm or less.
【0021】[0021]
【発明の実施の形態】図1は、この発明の一実施形態に
よる積層セラミックコンデンサ1を図解的に示す断面図
である。FIG. 1 is a sectional view schematically showing a multilayer ceramic capacitor 1 according to an embodiment of the present invention.
【0022】積層セラミックコンデンサ1は、複数の積
層された誘電体セラミック層2を有する積層体3とこの
積層体3の第1および第2の端面4および5上にそれぞ
れ形成される第1および第2の外部電極6および7とを
備えている。The multilayer ceramic capacitor 1 has a laminated body 3 having a plurality of laminated dielectric ceramic layers 2, and first and second formed on the first and second end surfaces 4 and 5 of the laminated body 3, respectively. And two external electrodes 6 and 7.
【0023】積層体3の内部には、第1の内部電極8と
第2の内部電極9とが交互に配置されている。第1の内
部電極8は、第1の外部電極6に電気的に接続されるよ
うに、各端縁を第1の端面4に露出させた状態で誘電体
セラミック層2間の特定の複数の界面に沿ってそれぞれ
形成され、他方、第2の内部電極9は、第2の外部電極
7に電気的に接続されるように、各端縁を第2の端面5
に露出させた状態で誘電体セラミック層2間の特定の複
数の界面に沿ってそれぞれ形成されている。Inside the laminate 3, first internal electrodes 8 and second internal electrodes 9 are alternately arranged. The first internal electrode 8 has a specific plurality of dielectric ceramic layers 2 between the dielectric ceramic layers 2 with each edge exposed to the first end face 4 so as to be electrically connected to the first external electrode 6. The second internal electrode 9 is formed along the interface, while the second internal electrode 9 is connected to the second external electrode 7 by connecting each edge to the second end face 5.
Are formed along a plurality of specific interfaces between the dielectric ceramic layers 2 in a state where the dielectric ceramic layers 2 are exposed.
【0024】また、必要に応じて、外部電極6および7
は、それぞれ、Ni、Cu、Ni−Cu合金等からなる
第1めっき層10および11によって被覆され、さら
に、これら第1のめっき層10および11上に、それぞ
れ、半田、錫等からなる第2のめっき層12および13
が形成されてもよい。If necessary, the external electrodes 6 and 7
Are coated with first plating layers 10 and 11 made of Ni, Cu, Ni-Cu alloy, and the like, respectively. Further, on these first plating layers 10 and 11, second Plating layers 12 and 13
May be formed.
【0025】このような積層セラミックコンデンサ1に
おいて、その積層体3に備える誘電体セラミック層2
が、この発明に係る正方晶ペロブスカイト構造を有する
酸化物粉末を主成分とする粉末を焼成して得られた誘電
体セラミックから構成される。この正方晶ペロブスカイ
ト構造を有する酸化物粉末およびその製造方法の詳細に
ついては後述する。In such a laminated ceramic capacitor 1, the dielectric ceramic layer 2 provided in the laminated body 3
Is composed of a dielectric ceramic obtained by sintering a powder mainly containing an oxide powder having a tetragonal perovskite structure according to the present invention. The details of the oxide powder having the tetragonal perovskite structure and the method for producing the same will be described later.
【0026】また、内部電極8および9を形成するた
め、たとえば、Pt、Pd−Ag合金、Niなどを導電
成分として含む導電性ペーストが用いられるが、コスト
面から、Niのような卑金属を用いることが望ましい。In order to form the internal electrodes 8 and 9, a conductive paste containing, for example, Pt, a Pd-Ag alloy, Ni or the like as a conductive component is used. However, a base metal such as Ni is used in terms of cost. It is desirable.
【0027】また、外部電極6および7は、たとえば、
B2 O3 −Li2 O−SiO2 −BaO系ガラスフリッ
トを含有するAgペーストを塗布し、これを還元性雰囲
気中において焼き付けることによって形成されることが
できる。The external electrodes 6 and 7 are, for example,
The Ag paste is applied which contains B 2 O 3 -Li 2 O- SiO 2 -BaO -based glass frit, which may be formed by baking in a reducing atmosphere.
【0028】なお、内部電極8および9ならびに外部電
極6および7のための上述した材料は、特に限定される
ものではない。たとえば、外部電極6および7の形成の
ために、内部電極8および9と同じ材料を用いることも
できる。The above-mentioned materials for the internal electrodes 8 and 9 and the external electrodes 6 and 7 are not particularly limited. For example, the same material as the internal electrodes 8 and 9 can be used for forming the external electrodes 6 and 7.
【0029】前述した誘電体セラミック層2を構成する
誘電体セラミックのための原料粉末となる正方晶ペロブ
スカイト構造を有する酸化物粉末は、湿式法によって合
成された立方晶ペロブスカイト構造を有する酸化物粉末
を、6×103 Pa以下の圧力下で熱処理することによ
って製造されることができる。The oxide powder having a tetragonal perovskite structure, which is a raw material powder for the dielectric ceramic constituting the dielectric ceramic layer 2 described above, is obtained by mixing the oxide powder having a cubic perovskite structure synthesized by a wet method. , At a pressure of 6 × 10 3 Pa or less.
【0030】なお、上述の湿式法としては、たとえば、
加水分解法や水熱合成法が知られているが、工業的に
は、生産性のより高い加水分解法を用いることが好まし
い。The wet method described above includes, for example,
Although a hydrolysis method and a hydrothermal synthesis method are known, industrially, it is preferable to use a hydrolysis method having higher productivity.
【0031】前述したように、熱処理するにあたって、
6×103 Pa以下といった低い圧力を適用すれば、湿
式法によって合成された立方晶ペロブスカイト構造を有
する酸化物粉末の表面や内部に残留する水酸基および原
料塩の未分解物や副生成物をより低温で取り除くことが
できるため、粒成長を抑えて、微粒の正方晶ペロブスカ
イト構造を有する酸化物粉末を得ることができる。As described above, in performing the heat treatment,
When a low pressure of 6 × 10 3 Pa or less is applied, undecomposed products and by-products of hydroxyl groups and raw material salts remaining on the surface and inside of the oxide powder having a cubic perovskite structure synthesized by a wet method are more effectively removed. Since the oxide powder can be removed at a low temperature, grain growth can be suppressed, and an oxide powder having a fine-grained tetragonal perovskite structure can be obtained.
【0032】熱処理する際の圧力が6×103 Paより
高いと、得られた正方晶ペロブスカイト構造を有する酸
化物粉末におけるペロブスカイト構造のa軸とc軸の比
であるc/a軸比が小さくなり、かつ、粒子径が大きく
なるので好ましくない。When the pressure during the heat treatment is higher than 6 × 10 3 Pa, the c / a axis ratio, which is the ratio of the a-axis to the c-axis of the perovskite structure in the obtained oxide powder having a tetragonal perovskite structure, is small. And the particle size increases, which is not preferred.
【0033】なお、熱処理することによって得られた正
方晶ペロブスカイト構造を有する酸化物粉末の粒子径を
より小さくするには、熱処理前の立方晶ペロブスカイト
構造を有する酸化物粉末の粒子径も小さくすることが有
効である。そのため、湿式法によって合成された立方晶
ペロブスカイト構造を有する酸化物粉末の粒子径は、
0.01〜0.1μmの範囲にあることが好ましい。In order to reduce the particle diameter of the oxide powder having a tetragonal perovskite structure obtained by heat treatment, the particle diameter of the oxide powder having a cubic perovskite structure before heat treatment must be reduced. Is valid. Therefore, the particle diameter of the oxide powder having a cubic perovskite structure synthesized by a wet method,
It is preferably in the range of 0.01 to 0.1 μm.
【0034】また、立方晶ペロブスカイト構造を有する
酸化物粉末を熱処理する際、6×103 Pa以下の圧力
を適用すれば、この酸化物粉末の表面や内部に残留する
水酸基および原料塩の未分解物や副生成物の除去のため
に、前述したように、それほど高温を付与する必要がな
く、好ましくは、この熱処理工程において、600〜1
000℃の範囲の温度が適用される。When a pressure of 6 × 10 3 Pa or less is applied to heat-treat the oxide powder having a cubic perovskite structure, undecomposed hydroxyl groups and raw material salts remaining on the surface and inside of the oxide powder are treated. As described above, it is not necessary to apply such a high temperature to remove substances and by-products, and preferably, in this heat treatment step, 600 to 1
Temperatures in the range of 000 ° C. apply.
【0035】この熱処理温度が600℃未満であると、
水酸基および原料塩の未分解物や副生成物の分解が十分
に進まないことがあるばかりでなく、c/a軸比が高く
ならないことがあり、他方、1000℃を超えると、正
方晶ペロブスカイト構造を有する酸化物粉末の粒成長や
粒子同士の焼結が進行し、そのため、粒子径が大きくな
ってしまうことがある。When the heat treatment temperature is lower than 600 ° C.,
Not only does the decomposition of undecomposed products and by-products of hydroxyl groups and raw material salts not sufficiently proceed, but also the c / a axis ratio may not be increased. On the other hand, when the temperature exceeds 1000 ° C., the tetragonal perovskite structure Grain growth and sintering of particles of an oxide powder having the following progress, and therefore, the particle diameter may be increased.
【0036】なお、熱処理を行なう温度および時間は、
湿式法による立方晶ペロブスカイト構造を有する酸化物
粉末の合成に用いられた原料や熱処理時の圧力等によっ
て、表面や内部に残留する水酸基および原料塩の未分解
物や副生成物の分解温度が異なるので、特に限定される
ものではない。しかしながら、このような熱処理を行な
う温度および時間についての最適条件は、低圧力下での
熱分析などに基づいて予め求めておくことが好ましい。The temperature and time for performing the heat treatment are as follows.
The decomposition temperature of undecomposed products and by-products of hydroxyl groups and raw material salts remaining on the surface and inside varies depending on the raw materials used in the synthesis of the oxide powder having a cubic perovskite structure by a wet method, the pressure during heat treatment, and the like. Therefore, it is not particularly limited. However, it is preferable that the optimum conditions for the temperature and time for performing such a heat treatment be determined in advance based on thermal analysis under a low pressure.
【0037】また、同一の湿式合成粉末を用いて、同一
の圧力下で熱処理を行なうならば、熱処理温度が高くな
るに従って、得られた正方晶ペロブスカイト構造を有す
る酸化物粉末の粒子径は大きくなるものの、c/a軸比
はより大きくなることがわかっている。When heat treatment is performed under the same pressure using the same wet synthetic powder, the particle size of the obtained oxide powder having a tetragonal perovskite structure increases as the heat treatment temperature increases. However, it has been found that the c / a axis ratio is larger.
【0038】以上説明したような好ましい条件に基づい
て、正方晶ペロブスカイト構造を有する酸化物粉末を得
るようにすれば、粒子径が0.05〜0.15μmのも
のを得ることができる。If an oxide powder having a tetragonal perovskite structure is obtained under the preferable conditions described above, a powder having a particle diameter of 0.05 to 0.15 μm can be obtained.
【0039】また、このようにして得られた正方晶ペロ
ブスカイト構造を有する酸化物粉末によれば、c/a軸
比を1.003以上とすることができ、これを用いて、
積層セラミックコンデンサとして十分な強誘電性を示す
誘電体セラミックを得ることができる。なお、c/a軸
比が1.003未満の場合には、正方晶ペロブスカイト
構造を有する酸化物粉末を用いて得られた誘電体セラミ
ックの誘電性は、積層セラミックコンデンサとして用い
るには十分でない。According to the oxide powder having a tetragonal perovskite structure thus obtained, the c / a axis ratio can be made 1.003 or more.
A dielectric ceramic exhibiting sufficient ferroelectricity as a multilayer ceramic capacitor can be obtained. When the c / a axis ratio is less than 1.003, the dielectric properties of the dielectric ceramic obtained using the oxide powder having a tetragonal perovskite structure are not sufficient for use as a multilayer ceramic capacitor.
【0040】より具体的には、この発明に従って製造さ
れる正方晶ペロブスカイト構造を有する酸化物粉末は、
たとえば、(Ba1-x Cax )TiO3 (ただし、0≦
x≦0.15)で表わされるものである。More specifically, the oxide powder having a tetragonal perovskite structure produced according to the present invention comprises:
For example, (Ba 1-x Ca x ) TiO 3 (where 0 ≦
x ≦ 0.15).
【0041】なお、この発明に係る正方晶ペロブスカイ
ト構造を有する酸化物粉末は、Aサイト原子とBサイト
原子の比であるA/B比が1のもののみならず、使用の
目的に応じて、たとえば0.95〜1.05のように、
A/B比を変化させた正方晶ペロブスカイト構造を有す
る酸化物粉末であってもよく、特に非還元性の正方晶ペ
ロブスカイト構造を有する酸化物粉末を得るためには、
A/B比が1.000〜1.035の範囲にあることが
好ましい。The oxide powder having a tetragonal perovskite structure according to the present invention has an A / B ratio, which is the ratio of A-site atoms to B-site atoms, of not only one but also one according to the purpose of use. For example, 0.95 to 1.05,
An oxide powder having a tetragonal perovskite structure with a changed A / B ratio may be used. Particularly, in order to obtain an oxide powder having a non-reducible tetragonal perovskite structure,
The A / B ratio is preferably in the range of 1.00 to 1.035.
【0042】正方晶ペロブスカイト構造を有する酸化物
粉末を焼成して得られた誘電体セラミックは、この正方
晶ペロブスカイト構造を有する酸化物粉末に、必要とさ
れる特性に応じて、希土類元素、Zr、Mn、Mg、S
iなどの添加物を添加したり、あるいは、Si、B、A
l、Mg、Liなどを成分とする焼結助剤を添加したり
して作製された誘電体セラミックであってもよい。The dielectric ceramic obtained by firing the oxide powder having a tetragonal perovskite structure is obtained by adding a rare earth element, Zr, or Zr to the oxide powder having a tetragonal perovskite structure according to required characteristics. Mn, Mg, S
i, an additive such as Si, B, A
It may be a dielectric ceramic produced by adding a sintering aid containing l, Mg, Li or the like as a component.
【0043】以下に、この発明を、加水分解法によって
合成した立方晶チタン酸バリウム粉末、すなわち、Ba
1.002 TiO3 粉末と(Ba0.97Ca0.05)TiO3 粉
末とを用いて、正方晶チタン酸バリウム粉末を製造しよ
うとする具体的な実施例、ならびに、得られた正方晶チ
タン酸バリウムを用いて積層セラミックコンデンサを作
製しようとする具体的な実施例について説明する。In the following, the present invention is applied to a cubic barium titanate powder synthesized by a hydrolysis method, that is, Ba
1.002 A specific example of producing a tetragonal barium titanate powder using TiO 3 powder and (Ba 0.97 Ca 0.05 ) TiO 3 powder, and lamination using the obtained tetragonal barium titanate. A specific example in which a ceramic capacitor is to be manufactured will be described.
【0044】なお、これら実施例の説明において、表1
ないし表3を参照するが、これら表1ないし表3におい
て、試料1〜10については、立方晶チタン酸バリウム
としてBa1.002 TiO3 を用い、試料11〜13につ
いては、(Ba0.97Ca0.05)TiO3 を用いた。In the description of these examples, Table 1
Referring to Tables 1 to 3, in Samples 1 to 3, Ba 1.002 TiO 3 was used as cubic barium titanate for Samples 1 to 10, and (Ba 0.97 Ca 0.05 ) TiO 2 was used for Samples 11 to 13. 3 was used.
【0045】まず、Ba1.002 TiO3 の組成を有する
ペロブスカイト構造の酸化物粉末を加水分解法によって
合成した。得られた酸化物粉末は、表1の試料1〜10
において示すように、粒子径が12〜52nmであり、
ペロブスカイト構造の結晶中に多くの水酸基を含む立方
晶ペロブスカイト構造を有する粉末であった。First, an oxide powder having a perovskite structure having a composition of Ba 1.002 TiO 3 was synthesized by a hydrolysis method. The obtained oxide powder was prepared as shown in Tables 1 to 10
As shown in the above, the particle size is 12 to 52 nm,
The powder had a cubic perovskite structure containing many hydroxyl groups in the crystals having the perovskite structure.
【0046】次に、これら粉末を、表1の試料1〜10
において示す種々の圧力および熱処理温度で熱処理する
ことによって、種々の粒子径およびc/a軸比を有する
Ba 1.002 TiO3 粉末を得た。これら熱処理によって
生成した粉末の凝集は、熱処理後において解砕した。Next, these powders were mixed with Samples 1 to 10 shown in Table 1.
Heat treatment at various pressures and heat treatment temperatures shown in
By having various particle diameters and c / a axis ratios
Ba 1.002TiOThreeA powder was obtained. By these heat treatments
Aggregation of the generated powder was broken after the heat treatment.
【0047】他方、上記と同様のプロセスを経て、(B
a0.97Ca0.05)TiO3 の組成を有するペロブスカイ
ト構造の酸化物粉末を合成した。得られた酸化物粉末
は、表1の試料11〜13において示すように、粒子径
が37〜98nmであり、ペロブスカイト構造の結晶中
に多くの水酸基を含む立方晶の粉末であった。On the other hand, through the same process as described above, (B
a 0.97 Ca 0.05 ) An oxide powder having a perovskite structure having a composition of TiO 3 was synthesized. As shown in Samples 11 to 13 of Table 1, the obtained oxide powder was a cubic powder having a particle size of 37 to 98 nm and containing many hydroxyl groups in crystals having a perovskite structure.
【0048】次に、これら粉末を、表1の試料11〜1
3に示す種々の圧力および熱処理温度で熱処理すること
によって、種々の粒径およびc/a軸比を有する(Ba
0.97Ca0.05)TiO3 粉末を得た。これら熱処理によ
って生成した粉末の凝集は、熱処理後において、解砕し
た。Next, these powders were mixed with Samples 11 to 1 in Table 1.
Heat treatment at various pressures and heat treatment temperatures shown in FIG. 3 has various particle sizes and c / a axis ratios (Ba
0.97 Ca 0.05 ) TiO 3 powder was obtained. Aggregation of the powder generated by these heat treatments was broken after the heat treatment.
【0049】なお、上述の粒子径は、試料となる粉末を
走査型電子顕微鏡による観察を行なうことによって測定
したものである。また、c/a軸比は、X線回折を行な
い、その結果をリートベルト解析して、X線プロファイ
ルのフィッティングを行うことによって精密化して格子
定数を求めることによって算出した。The above-mentioned particle diameter is measured by observing a powder to be a sample with a scanning electron microscope. The c / a axis ratio was calculated by performing X-ray diffraction, performing a Rietveld analysis of the result, fitting an X-ray profile, and refining to obtain a lattice constant.
【0050】[0050]
【表1】 [Table 1]
【0051】次に、表1に示した原料粉末としての熱処
理後のチタン酸バリウム粉末に添加されるべき添加物と
して、Dy、Mg、Mn、ならびに(Si−Ba)を主
成分とする焼結助剤を用意した。そして、上述した原料
粉末としてのチタン酸バリウムを有機溶剤中に分散させ
た状態としながら、これら添加物を、それぞれ、有機溶
剤に可溶なアルコキシド化合物として、チタン酸バリウ
ム粉末に添加した。Next, as an additive to be added to the barium titanate powder after heat treatment as a raw material powder shown in Table 1, sintering containing Dy, Mg, Mn, and (Si—Ba) as main components is performed. Auxiliaries were provided. These additives were added to the barium titanate powder as alkoxide compounds soluble in the organic solvent, while the above-mentioned barium titanate as the raw material powder was dispersed in the organic solvent.
【0052】なお、上述した各添加物を、有機溶剤に可
溶な状態とするため、アルコキシドとするほか、アセチ
ルアセトネートまたは金属石鹸のような化合物としても
よい。In order to make each of the above-mentioned additives soluble in an organic solvent, in addition to alkoxide, a compound such as acetylacetonate or metal soap may be used.
【0053】次に、上述のようにチタン酸バリウム粉末
および添加物を分散させている有機溶剤を蒸発乾燥し、
さらに熱処理を施すことによって、有機成分を除去し
た。Next, the organic solvent in which the barium titanate powder and additives are dispersed is evaporated to dryness as described above,
Further, the organic component was removed by performing a heat treatment.
【0054】次に、上述のように各添加物が添加された
原料粉末の各試料に、ポリビニルブチラール系バインダ
およびエタノール等の有機溶剤を加えて、ボールミルを
用いて湿式混合することによって、セラミックスラリー
を作製した。Next, an organic solvent such as a polyvinyl butyral-based binder and ethanol was added to each sample of the raw material powder to which each additive was added as described above, and the mixture was wet-mixed using a ball mill to obtain a ceramic slurry. Was prepared.
【0055】次に、このセラミックスラリーをドクター
ブレード法によってシート状に成形し、厚み0.8μm
の矩形のセラミックグリーンシートを得た。Next, this ceramic slurry was formed into a sheet by a doctor blade method, and the thickness was 0.8 μm.
Was obtained.
【0056】次に、このセラミックグリーンシート上
に、Niを導電成分とする導電性ペーストを印刷し、積
層セラミックコンデンサの内部電極を構成するための導
電性ペースト膜を形成した。Next, a conductive paste containing Ni as a conductive component was printed on the ceramic green sheet to form a conductive paste film for forming internal electrodes of the multilayer ceramic capacitor.
【0057】次いで、セラミックグリーンシートを、上
述の導電性ペースト膜が引き出されている側が互い違い
となるように複数枚積層し、生の積層体を得た。Next, a plurality of ceramic green sheets were laminated so that the side from which the above-mentioned conductive paste film was drawn out was alternated, to obtain a green laminate.
【0058】次に、この生の積層体を、窒素雰囲気中に
おいて350℃の温度に加熱し、バインダを燃焼させた
後、酸素分圧10-9〜10-12 MPaのH2 −N2 −H
2 Oガスからなる還元性雰囲気中において1150℃の
温度で2時間焼成した。これによって、焼結後の誘電体
セラミック層を備える積層体が得られ、前述の導電性ペ
ースト膜は内部電極を与える状態となった。Next, the green laminate is heated to a temperature of 350 ° C. in a nitrogen atmosphere to burn the binder, and then the H 2 —N 2 − at an oxygen partial pressure of 10 −9 to 10 −12 MPa is applied. H
It was fired at a temperature of 1150 ° C. for 2 hours in a reducing atmosphere composed of 2 O gas. As a result, a laminated body including the sintered dielectric ceramic layer was obtained, and the above-mentioned conductive paste film was in a state of providing internal electrodes.
【0059】次に、焼成後の積層体の両端面上に、B2
O3 −Li2 O−SiO2 −BaO系のガラスフリット
を含有するAgペーストを塗布し、窒素雰囲気中におい
て600℃の温度で焼き付け、それによって、内部電極
と電気的に接続された外部電極を形成し、試料となる積
層セラミックコンデンサを完成させた。Next, B 2 was placed on both end surfaces of the fired laminate.
An Ag paste containing an O 3 —Li 2 O—SiO 2 —BaO-based glass frit is applied and baked at a temperature of 600 ° C. in a nitrogen atmosphere, whereby an external electrode electrically connected to the internal electrode is formed. Thus, a multilayer ceramic capacitor as a sample was completed.
【0060】このようにして得られた積層セラミックコ
ンデンサの外形寸法は、幅が5.0mm、長さが5.7
mm、厚さが2.4mmであり、内部電極間に介在する
誘電体セラミック層の厚みは0.5μmであった。ま
た、有効誘電体セラミック層の層数は5であり、1層あ
たりの対向電極面積は16.3×10-6m2 であった。The external dimensions of the multilayer ceramic capacitor thus obtained were as follows: a width of 5.0 mm and a length of 5.7.
mm, the thickness was 2.4 mm, and the thickness of the dielectric ceramic layer interposed between the internal electrodes was 0.5 μm. The number of effective dielectric ceramic layers was 5, and the area of the counter electrode per layer was 16.3 × 10 −6 m 2 .
【0061】次に、得られた積層セラミックコンデンサ
の各試料について、表2に示すように、「焼成後の結晶
粒径」、「ショート不良発生率」、「誘電率」、「誘電
損失」および「比抵抗」を求めた、Next, for each sample of the obtained multilayer ceramic capacitor, as shown in Table 2, “crystal grain size after firing”, “short defect occurrence rate”, “dielectric constant”, “dielectric loss” and The "specific resistance" was determined,
【0062】[0062]
【表2】 [Table 2]
【0063】表2において、「焼成後の結晶粒径」は、
得られた積層セラミックコンデンサに備える誘電体セラ
ミック層を構成する誘電体セラミックの平均結晶粒径
を、積層体の断面研磨面を化学エッチングし、走査型電
子顕微鏡で観察することによって求めた。In Table 2, “crystal grain size after firing” means
The average crystal grain size of the dielectric ceramic constituting the dielectric ceramic layer included in the obtained multilayer ceramic capacitor was determined by chemically etching the cross-section polished surface of the laminate and observing it with a scanning electron microscope.
【0064】「ショート不良発生率」については、得ら
れた積層セラミックコンデンサの試料数に対するショー
ト不良が発生した試料数の比率を示したものである。The “short defect occurrence rate” indicates the ratio of the number of samples having a short defect to the number of samples of the obtained multilayer ceramic capacitor.
【0065】また、「誘電率」については、試料となる
積層セラミックコンデンサの静電容量(C)を自動ブリ
ッジ式測定器を用いてJIS規格5102に従って測定
し、求められた静電容量から誘電率(ε)を算出したも
のである。As for “dielectric constant”, the capacitance (C) of a multilayer ceramic capacitor as a sample was measured according to JIS standard 5102 using an automatic bridge type measuring instrument, and the dielectric constant was determined from the obtained capacitance. (Ε) is calculated.
【0066】また、「誘電損失」(tanδ)は、自動
ブリッジ式測定器を用いてJIS規格5102に従って
測定したものである。The “dielectric loss” (tan δ) is measured according to JIS standard 5102 using an automatic bridge type measuring instrument.
【0067】また、「比抵抗」については、絶縁抵抗計
を用い、試料となる積層セラミックコンデンサに5Vの
直流電圧を2分間印加して25℃での絶縁抵抗(R)を
求め、この絶縁抵抗から算出したものである。As for the “specific resistance”, an insulation resistance meter was used to apply a 5 V DC voltage to a sample laminated ceramic capacitor for 2 minutes to obtain an insulation resistance (R) at 25 ° C. Is calculated from
【0068】表1および表2において、試料番号に*を
付したものは、この発明の範囲から外れたものである。In Tables 1 and 2, those marked with an asterisk (*) are out of the scope of the present invention.
【0069】表1に示すように、この発明の範囲内にあ
る試料2〜13によれば、加水分解法によって合成され
た粒子径12〜98nmの立方晶チタン酸バリウム粉末
を、6×103 Pa以下の圧力下で、600〜1000
℃の範囲の熱処理温度をもって熱処理することによっ
て、粒子径58〜146nmの正方晶チタン酸バリウム
粉末を得ることができ、これら正方晶チタン酸バリウム
粉末のc/a軸比を1.003以上とすることができ
る。As shown in Table 1, according to Samples 2 to 13 within the scope of the present invention, cubic barium titanate powder having a particle diameter of 12 to 98 nm synthesized by the hydrolysis method was mixed with 6 × 10 3. Under a pressure of Pa or less,
By performing heat treatment at a heat treatment temperature in the range of ° C., tetragonal barium titanate powder having a particle size of 58 to 146 nm can be obtained, and the c / a axis ratio of these tetragonal barium titanate powders is set to 1.003 or more. be able to.
【0070】したがって、このような正方晶チタン酸バ
リウム粉末をもって、積層セラミックコンデンサに備え
る誘電体セラミック層を構成すれば、この誘電体セラミ
ック層の厚みが0.5μmというように薄くされても、
表2に示すように、ショート不良発生率が低く、十分な
強誘電性を示す誘電体セラミック層を与えることができ
る。Therefore, if a dielectric ceramic layer provided in a multilayer ceramic capacitor is formed using such tetragonal barium titanate powder, even if the thickness of the dielectric ceramic layer is reduced to 0.5 μm,
As shown in Table 2, it is possible to provide a dielectric ceramic layer having a low short-circuit defect occurrence rate and exhibiting sufficient ferroelectricity.
【0071】これらに対して、この発明の範囲外の試料
1によれば、加水分解法によって合成された立方晶チタ
ン酸バリウム粉末の粒子径が12nmであっても、これ
を熱処理するにあたり、6×103 Paを超える6×1
04 Paの圧力を適用しているので、熱処理後におい
て、正方晶チタン酸バリウム粉末の粒子径が160nm
にまで大きくなっている。そのため、誘電体セラミック
層の厚みが0.6μmの積層セラミックコンデンサを作
製したとき、ショート不良発生率が高くなり、また、誘
電損失が大きくなっている。On the other hand, according to Sample 1 outside the scope of the present invention, even if the particle diameter of the cubic barium titanate powder synthesized by the hydrolysis method is 6 × 1 exceeding × 10 3 Pa
0 4 since the applied pressure Pa, after the heat treatment, the particle size of the tetragonal barium titanate powder 160nm
Up to. Therefore, when a multilayer ceramic capacitor having a dielectric ceramic layer thickness of 0.6 μm is manufactured, a short-circuit defect occurrence rate is increased and a dielectric loss is increased.
【0072】次に、表1および表2に示した試料8に係
る積層セラミックコンデンサについて、表3に示すよう
に、「DCバイアス印加容量変化率」、「容量温度変化
率」、「絶縁破壊電圧」および「平均寿命時間」を評価
した。Next, with respect to the multilayer ceramic capacitor according to Sample 8 shown in Tables 1 and 2, as shown in Table 3, “DC bias applied capacitance change rate”, “capacitance temperature change rate”, “dielectric breakdown voltage” "And" average life time "were evaluated.
【0073】[0073]
【表3】 [Table 3]
【0074】表3において、「DCバイアス印加容量変
化率」は、試料となる積層セラミックコンデンサに対し
て、3kV/mmの直流バイアスを印加したときの静電
容量の変化率を、バイアス印加なしを基準として求めた
ものである。In Table 3, “DC bias applied capacitance change rate” means the change rate of the capacitance when a DC bias of 3 kV / mm was applied to the sampled multilayer ceramic capacitor, It was obtained as a reference.
【0075】「容量温度変化率」については、温度変化
に対する静電容量の変化率を求めたもので、20℃での
静電容量を基準とした−25℃〜+85℃の温度範囲で
の最大変化率(ΔC/C20)と、25℃のでの静電容量
を基準とした−55℃〜+125℃の温度範囲での最大
変化率(ΔC/C25)とを示している。The “capacitance temperature change rate” is obtained by calculating the change rate of the capacitance with respect to the temperature change. The maximum value in the temperature range of −25 ° C. to + 85 ° C. based on the capacitance at 20 ° C. The rate of change (ΔC / C 20 ) and the maximum rate of change (ΔC / C 25 ) in the temperature range of −55 ° C. to + 125 ° C. based on the capacitance at 25 ° C. are shown.
【0076】「絶縁破壊電圧」は、試料となる積層セラ
ミックコンデンサに対して、昇圧速度100V/秒で直
流電圧を印加し、積層セラミックコンデンサが破壊に至
った電圧を求めたものである。The "dielectric breakdown voltage" is obtained by applying a DC voltage to the multilayer ceramic capacitor as a sample at a step-up speed of 100 V / sec, and determining a voltage at which the multilayer ceramic capacitor has broken down.
【0077】「平均寿命時間」は、試料となる積層セラ
ミックコンデンサに対して、150℃の温度にて5Vの
直流電圧を印加して、絶縁抵抗の経時変化を測定し、絶
縁抵抗値が105 Ω以下になった時点を故障と判定し、
平均寿命時間を評価したものである。[0077] "average life time", the laminated ceramic capacitor serving as a sample, by applying a DC voltage of 5V at a temperature of 0.99 ° C., measured the time course of insulation resistance, the insulation resistance value is 10 5 When it becomes Ω or less, it is judged as failure,
The average life time was evaluated.
【0078】表3からわかるように、この発明の範囲内
にある試料8によれば、信頼性の高い積層セラミックコ
ンデンサを得ることができる。As can be seen from Table 3, according to the sample 8 within the scope of the present invention, a highly reliable multilayer ceramic capacitor can be obtained.
【0079】[0079]
【発明の効果】以上のように、この発明に係る正方晶ペ
ロブスカイト構造を有する酸化物粉末の製造方法によれ
ば、湿式法によって合成された立方晶ペロブスカイト構
造を有する酸化物粉末を熱処理するにあたり、6×10
3 Pa以下の比較的低い圧力を適用するので、たとえば
600〜1000℃の範囲の比較的低い温度によって熱
処理されても、立方晶ペロブスカイト構造を有する酸化
物粉末の表面や内部に残留する水酸基および原料塩の未
分解物や副生成物が効率的に除去され、そのため、粒成
長が抑えられて、0.05〜0.15μmといった小さ
い粒子径であり、かつc/a軸比が1.003以上と大
きく、十分な強誘電性を示す、正方晶ペロブスカイト構
造を有する酸化物粉末を得ることができる。As described above, according to the method for producing an oxide powder having a tetragonal perovskite structure according to the present invention, when the oxide powder having a cubic perovskite structure synthesized by a wet method is subjected to heat treatment, 6 × 10
Since a relatively low pressure of 3 Pa or less is applied, hydroxyl groups and raw materials remaining on the surface and inside of the oxide powder having a cubic perovskite structure even when heat-treated at a relatively low temperature in the range of, for example, 600 to 1000 ° C. Undecomposed salts and by-products of the salt are efficiently removed, so that grain growth is suppressed, the particle size is as small as 0.05 to 0.15 μm, and the c / a axis ratio is 1.003 or more. Thus, an oxide powder having a tetragonal perovskite structure and exhibiting sufficient ferroelectricity can be obtained.
【0080】したがって、この正方晶ペロブスカイト構
造を有する酸化物粉末を用いて積層セラミックコンデン
サにおける誘電体セラミック層を構成するようにすれ
ば、誘電体セラミック層の厚みがたとえば0.6μm以
下と薄くなっても、積層セラミックコンデンサを問題な
く製造することができ、そのため、小型で大容量の積層
セラミックコンデンサを高い信頼性をもって実現するこ
とができる。Therefore, when the dielectric ceramic layer in the multilayer ceramic capacitor is formed by using the oxide powder having the tetragonal perovskite structure, the thickness of the dielectric ceramic layer is reduced to, for example, 0.6 μm or less. In addition, a multilayer ceramic capacitor can be manufactured without any problem, and therefore, a small-sized and large-capacity multilayer ceramic capacitor can be realized with high reliability.
【図1】この発明の一実施形態による積層セラミックコ
ンデンサ1を図解的に示す断面図である。FIG. 1 is a sectional view schematically showing a multilayer ceramic capacitor 1 according to an embodiment of the present invention.
1 積層セラミックコンデンサ 2 誘電体セラミック層 3 積層体 4,5 端面 6,7 外部電極 8,9 内部電極 DESCRIPTION OF SYMBOLS 1 Multilayer ceramic capacitor 2 Dielectric ceramic layer 3 Multilayer body 4,5 End surface 6,7 External electrode 8,9 Internal electrode
フロントページの続き Fターム(参考) 4G031 AA04 AA06 AA11 BA09 CA01 CA03 CA04 GA03 5E001 AB03 AC09 AD00 AE00 AE02 AE03 Continued on the front page F term (reference) 4G031 AA04 AA06 AA11 BA09 CA01 CA03 CA04 GA03 5E001 AB03 AC09 AD00 AE00 AE02 AE03
Claims (10)
物粉末を湿式法によって合成する工程と、 前記立方晶ペロブスカイト構造を有する酸化物粉末を、
6×103 Pa以下の圧力下で熱処理する工程とを備え
る、正方晶ペロブスカイト構造を有する酸化物粉末の製
造方法。A step of synthesizing an oxide powder having a cubic perovskite structure by a wet method; and
Heat treating under a pressure of 6 × 10 3 Pa or less, the method for producing an oxide powder having a tetragonal perovskite structure.
ロブスカイト構造を有する酸化物粉末の粒子径は、0.
01〜0.1μmである、請求項1に記載の正方晶ペロ
ブスカイト構造を有する酸化物粉末の製造方法。2. The oxide powder having a cubic perovskite structure synthesized by the wet method has a particle diameter of 0.1.
The method for producing an oxide powder having a tetragonal perovskite structure according to claim 1, which has a diameter of from 0.01 to 0.1 μm.
1000℃の範囲の温度が適用される、請求項1または
2に記載の正方晶ペロブスカイト構造を有する酸化物粉
末の製造方法。3. The method according to claim 1, wherein the heat-treating step comprises:
The method for producing an oxide powder having a tetragonal perovskite structure according to claim 1 or 2, wherein a temperature in a range of 1000 ° C is applied.
造方法によって得られ、かつ粒子径が0.05〜0.1
5μmである、正方晶ペロブスカイト構造を有する酸化
物粉末。4. A particle obtained by the production method according to claim 1 and having a particle diameter of 0.05 to 0.1.
An oxide powder having a tetragonal perovskite structure of 5 μm.
あるc/a軸比が、1.003以上である、請求項4に
記載の正方晶ペロブスカイト構造を有する酸化物粉末。5. The oxide powder having a tetragonal perovskite structure according to claim 4, wherein the c / a axis ratio, which is the ratio of the a-axis to the c-axis of the perovskite structure, is 1.003 or more.
3 (ただし、0≦x≦0.15)で表わされる、請求項
4または5に記載の正方晶ペロブスカイト構造を有する
酸化物粉末。6. General formula: (Ba 1-x Ca x ) TiO
The oxide powder having a tetragonal perovskite structure according to claim 4 or 5, represented by 3 (where 0 ≦ x ≦ 0.15).
方晶ペロブスカイト構造を有する酸化物粉末を主成分と
する粉末を焼成して得られた、誘電体セラミック。7. A dielectric ceramic obtained by sintering a powder containing the oxide powder having a tetragonal perovskite structure according to claim 4 as a main component.
よび前記誘電体セラミック層間の特定の界面に沿って形
成された内部電極を含む、積層体と、前記内部電極の特
定のものに電気的に接続されるように前記積層体の外表
面上に形成される外部電極とを備え、前記誘電体セラミ
ック層は、請求項7に記載の誘電体セラミックからな
る、積層セラミックコンデンサ。8. A laminate comprising a plurality of laminated dielectric ceramic layers and an internal electrode formed along a specific interface between said dielectric ceramic layers, and electrically connected to a specific one of said internal electrodes. An external electrode formed on an outer surface of the multilayer body so as to be connected to the multilayer ceramic capacitor, wherein the dielectric ceramic layer is made of the dielectric ceramic according to claim 7.
て含む、請求項8に記載の積層セラミックコンデンサ。9. The multilayer ceramic capacitor according to claim 8, wherein said internal conductor includes a base metal as a conductive component.
セラミック層の厚みは、0.6μm以下である、請求項
8または9に記載の積層セラミックコンデンサ。10. The multilayer ceramic capacitor according to claim 8, wherein said dielectric ceramic layer interposed between said internal electrodes has a thickness of 0.6 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001027920A JP4660935B2 (en) | 2001-02-05 | 2001-02-05 | Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001027920A JP4660935B2 (en) | 2001-02-05 | 2001-02-05 | Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002234771A true JP2002234771A (en) | 2002-08-23 |
JP4660935B2 JP4660935B2 (en) | 2011-03-30 |
Family
ID=18892507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001027920A Expired - Lifetime JP4660935B2 (en) | 2001-02-05 | 2001-02-05 | Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4660935B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005306728A (en) * | 2004-03-25 | 2005-11-04 | Showa Denko Kk | Titanium-containing perovskite-type compound and manufacturing method therefor |
JP2006124212A (en) * | 2004-10-27 | 2006-05-18 | Kyocera Corp | Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor |
JP2006176388A (en) * | 2004-11-26 | 2006-07-06 | Kyocera Corp | Dielectric porcelain and manufacturing method thereof |
JP2007001840A (en) * | 2005-06-27 | 2007-01-11 | Kyocera Corp | Dielectric ceramics and method for manufacturing the same |
JP2007063056A (en) * | 2005-08-30 | 2007-03-15 | Tdk Corp | Method of manufacturing dielectric ceramic composition |
KR100711427B1 (en) * | 2003-03-24 | 2007-04-24 | 다이요 유덴 가부시키가이샤 | Method for producing ceramic powder having perovskite structure, Ceramic powder and ceramic electronic component having perovskite structure, manufacturing method thereof, multilayer ceramic capacitor and manufacturing method thereof |
JP2007243026A (en) * | 2006-03-10 | 2007-09-20 | Tdk Corp | Ceramic powder and conductive paste using the same, laminated ceramic electronic component, and manufacturing method thereof |
JP2007238407A (en) * | 2006-03-10 | 2007-09-20 | Tdk Corp | Ceramic powder and dielectric paste obtained by using the same, laminated ceramic electronic component, and method for manufacturing the same |
JP2009155118A (en) * | 2007-12-25 | 2009-07-16 | Kyocera Corp | Dielectric porcelain and multilayer ceramic capacitor |
US7566439B2 (en) | 2003-03-24 | 2009-07-28 | Taiyo Yuden Co., Ltd. | Perovskite ceramic powder and electronic component using same and manufacturing methods thereof |
US8084014B2 (en) | 2003-04-25 | 2011-12-27 | Sumitomo Chemical Company, Limited | Barium titanate powder and method for producing same |
CN102903519A (en) * | 2011-07-28 | 2013-01-30 | 三星电机株式会社 | Multilayer ceramic electronic component |
WO2015182411A1 (en) * | 2014-05-28 | 2015-12-03 | 株式会社村田製作所 | Composite oxide powder, method for producing composite oxide powder, and laminated ceramic electric part |
JP2016131240A (en) * | 2015-01-09 | 2016-07-21 | キヤノン株式会社 | Piezoelectric material, piezoelectric element, and apparatus using the same |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61146710A (en) * | 1984-12-19 | 1986-07-04 | Central Glass Co Ltd | Production of fine barium titanate particle of high purity |
JPS63103827A (en) * | 1986-10-18 | 1988-05-09 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Manufacture of barium titanate |
WO1991002697A1 (en) * | 1989-08-21 | 1991-03-07 | Tayca Corporation | Method of producing pulverized perovskite compound |
JPH03159903A (en) * | 1989-11-13 | 1991-07-09 | Nippon Chem Ind Co Ltd | Production of perovskite ceramic powder |
JPH03205316A (en) * | 1989-12-29 | 1991-09-06 | Toyo Ink Mfg Co Ltd | Production of perovskite type compound oxide powder |
JPH05330824A (en) * | 1991-04-19 | 1993-12-14 | Teika Corp | Barium titanate and its production |
JPH0769634A (en) * | 1993-08-27 | 1995-03-14 | Murata Mfg Co Ltd | Production of composition |
JPH07277710A (en) * | 1994-04-05 | 1995-10-24 | Kyowa Chem Ind Co Ltd | Production of perovskite-type multiple oxide powder |
JPH09241074A (en) * | 1996-03-08 | 1997-09-16 | Murata Mfg Co Ltd | Nonreducible dielectric ceramic and laminated ceramic electronic parts using same |
JPH09241075A (en) * | 1996-03-08 | 1997-09-16 | Murata Mfg Co Ltd | Nonreducible dielectric ceramic and laminated ceramic electronic parts using same |
JPH11273986A (en) * | 1998-01-20 | 1999-10-08 | Murata Mfg Co Ltd | Dielectric ceramic and its manufacture and laminated ceramic electronic part and its manufacture |
JPH11273985A (en) * | 1998-01-20 | 1999-10-08 | Murata Mfg Co Ltd | Dielectric ceramic and its manufacture, and laminated ceramic electronic part and its manufacture |
JP2001316114A (en) * | 2000-03-02 | 2001-11-13 | Murata Mfg Co Ltd | Oxide having perovskite structure, barium titanate and its manufacturing method and derivative ceramics and ceramic electronic part |
JP2002060219A (en) * | 2000-08-11 | 2002-02-26 | Murata Mfg Co Ltd | Barium titanate fine powder, calcium-modified barium titanate fine powder and its manufacturing method |
JP2002211926A (en) * | 2000-11-13 | 2002-07-31 | Toda Kogyo Corp | Spherical barium titanate particulate powder and method for producing the same |
JP2002255552A (en) * | 2000-12-27 | 2002-09-11 | Murata Mfg Co Ltd | Barium titanate powder and method for producing the same |
WO2003004416A1 (en) * | 2001-07-04 | 2003-01-16 | Showa Denko K. K. | Barium titanate and its production method |
JP2003026423A (en) * | 2001-07-10 | 2003-01-29 | Rikogaku Shinkokai | Method for preparing barium titanate |
-
2001
- 2001-02-05 JP JP2001027920A patent/JP4660935B2/en not_active Expired - Lifetime
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61146710A (en) * | 1984-12-19 | 1986-07-04 | Central Glass Co Ltd | Production of fine barium titanate particle of high purity |
JPS63103827A (en) * | 1986-10-18 | 1988-05-09 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Manufacture of barium titanate |
WO1991002697A1 (en) * | 1989-08-21 | 1991-03-07 | Tayca Corporation | Method of producing pulverized perovskite compound |
JPH03159903A (en) * | 1989-11-13 | 1991-07-09 | Nippon Chem Ind Co Ltd | Production of perovskite ceramic powder |
JPH03205316A (en) * | 1989-12-29 | 1991-09-06 | Toyo Ink Mfg Co Ltd | Production of perovskite type compound oxide powder |
JPH05330824A (en) * | 1991-04-19 | 1993-12-14 | Teika Corp | Barium titanate and its production |
JPH0769634A (en) * | 1993-08-27 | 1995-03-14 | Murata Mfg Co Ltd | Production of composition |
JPH07277710A (en) * | 1994-04-05 | 1995-10-24 | Kyowa Chem Ind Co Ltd | Production of perovskite-type multiple oxide powder |
JPH09241074A (en) * | 1996-03-08 | 1997-09-16 | Murata Mfg Co Ltd | Nonreducible dielectric ceramic and laminated ceramic electronic parts using same |
JPH09241075A (en) * | 1996-03-08 | 1997-09-16 | Murata Mfg Co Ltd | Nonreducible dielectric ceramic and laminated ceramic electronic parts using same |
JPH11273986A (en) * | 1998-01-20 | 1999-10-08 | Murata Mfg Co Ltd | Dielectric ceramic and its manufacture and laminated ceramic electronic part and its manufacture |
JPH11273985A (en) * | 1998-01-20 | 1999-10-08 | Murata Mfg Co Ltd | Dielectric ceramic and its manufacture, and laminated ceramic electronic part and its manufacture |
JP2001316114A (en) * | 2000-03-02 | 2001-11-13 | Murata Mfg Co Ltd | Oxide having perovskite structure, barium titanate and its manufacturing method and derivative ceramics and ceramic electronic part |
JP2002060219A (en) * | 2000-08-11 | 2002-02-26 | Murata Mfg Co Ltd | Barium titanate fine powder, calcium-modified barium titanate fine powder and its manufacturing method |
JP2002211926A (en) * | 2000-11-13 | 2002-07-31 | Toda Kogyo Corp | Spherical barium titanate particulate powder and method for producing the same |
JP2002255552A (en) * | 2000-12-27 | 2002-09-11 | Murata Mfg Co Ltd | Barium titanate powder and method for producing the same |
WO2003004416A1 (en) * | 2001-07-04 | 2003-01-16 | Showa Denko K. K. | Barium titanate and its production method |
JP2003026423A (en) * | 2001-07-10 | 2003-01-29 | Rikogaku Shinkokai | Method for preparing barium titanate |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100711427B1 (en) * | 2003-03-24 | 2007-04-24 | 다이요 유덴 가부시키가이샤 | Method for producing ceramic powder having perovskite structure, Ceramic powder and ceramic electronic component having perovskite structure, manufacturing method thereof, multilayer ceramic capacitor and manufacturing method thereof |
US7566439B2 (en) | 2003-03-24 | 2009-07-28 | Taiyo Yuden Co., Ltd. | Perovskite ceramic powder and electronic component using same and manufacturing methods thereof |
US8084014B2 (en) | 2003-04-25 | 2011-12-27 | Sumitomo Chemical Company, Limited | Barium titanate powder and method for producing same |
JP2005306728A (en) * | 2004-03-25 | 2005-11-04 | Showa Denko Kk | Titanium-containing perovskite-type compound and manufacturing method therefor |
JP2006124212A (en) * | 2004-10-27 | 2006-05-18 | Kyocera Corp | Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor |
JP2006176388A (en) * | 2004-11-26 | 2006-07-06 | Kyocera Corp | Dielectric porcelain and manufacturing method thereof |
JP2007001840A (en) * | 2005-06-27 | 2007-01-11 | Kyocera Corp | Dielectric ceramics and method for manufacturing the same |
JP2007063056A (en) * | 2005-08-30 | 2007-03-15 | Tdk Corp | Method of manufacturing dielectric ceramic composition |
JP2007243026A (en) * | 2006-03-10 | 2007-09-20 | Tdk Corp | Ceramic powder and conductive paste using the same, laminated ceramic electronic component, and manufacturing method thereof |
JP2007238407A (en) * | 2006-03-10 | 2007-09-20 | Tdk Corp | Ceramic powder and dielectric paste obtained by using the same, laminated ceramic electronic component, and method for manufacturing the same |
JP2009155118A (en) * | 2007-12-25 | 2009-07-16 | Kyocera Corp | Dielectric porcelain and multilayer ceramic capacitor |
CN102903519A (en) * | 2011-07-28 | 2013-01-30 | 三星电机株式会社 | Multilayer ceramic electronic component |
JP2013030754A (en) * | 2011-07-28 | 2013-02-07 | Samsung Electro-Mechanics Co Ltd | Multilayer ceramic electronic component |
US9490069B2 (en) | 2011-07-28 | 2016-11-08 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic electronic component |
JP2017191948A (en) * | 2011-07-28 | 2017-10-19 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Multilayer ceramic electronic component |
WO2015182411A1 (en) * | 2014-05-28 | 2015-12-03 | 株式会社村田製作所 | Composite oxide powder, method for producing composite oxide powder, and laminated ceramic electric part |
JP2016131240A (en) * | 2015-01-09 | 2016-07-21 | キヤノン株式会社 | Piezoelectric material, piezoelectric element, and apparatus using the same |
Also Published As
Publication number | Publication date |
---|---|
JP4660935B2 (en) | 2011-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3780851B2 (en) | Barium titanate, production method thereof, dielectric ceramic and ceramic electronic component | |
JP3391269B2 (en) | Dielectric ceramic and its manufacturing method, and multilayer ceramic electronic component and its manufacturing method | |
JP6502092B2 (en) | Multilayer ceramic capacitor | |
JP3348081B2 (en) | Dielectric porcelain composition and electronic component | |
KR100278416B1 (en) | Dielectric Ceramic, Method for Producing the Same, Laminated Ceramic Electronic Element, and Method for Producing the Same | |
JP3934352B2 (en) | Multilayer ceramic chip capacitor and manufacturing method thereof | |
CN101489953B (en) | Dielectric ceramic, process for producing the same, and multilayer ceramic capacitor | |
JPWO2007026614A1 (en) | Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor | |
TWI441791B (en) | Dielectric ceramic and laminated ceramic capacitor | |
JP5804064B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JP2004214539A (en) | Dielectric ceramic and laminated ceramic capacitor | |
JP4660935B2 (en) | Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure | |
JP2010010157A (en) | Stacked ceramic capacitor, and method of manufacturing the same | |
JP3146967B2 (en) | Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same | |
JP3804474B2 (en) | Method for producing ceramic raw material powder | |
JPWO2009041160A1 (en) | Dielectric ceramic and multilayer ceramic capacitor | |
KR20130027782A (en) | Dielectric composition, fabricating method thereof and multi-layer ceramic electronic parts fabricated by using the same | |
JP4863007B2 (en) | Dielectric porcelain composition and electronic component | |
JP5800408B2 (en) | Multilayer ceramic capacitor | |
JP4587924B2 (en) | Multilayer ceramic capacitor | |
WO2012035935A1 (en) | Dielectric ceramic, multilayer ceramic capacitor, method for producing the dielectric ceramic, and method for manufacturing the multilayer ceramic capacitor | |
JP5488118B2 (en) | Dielectric porcelain composition and electronic component | |
JP2003002738A (en) | Method for producing oxide powder with perovskite structure, oxide powder with perovskite structure, dielectric ceramic and ceramic electronic parts | |
JP5084657B2 (en) | Multilayer ceramic capacitor | |
JP2021141131A (en) | Manufacturing method of ceramic electronic component and metal conductive paste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071031 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4660935 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140114 Year of fee payment: 3 |
|
EXPY | Cancellation because of completion of term |