CN102135641B - Active optical fiber with photon darkening resistance and preparation method thereof - Google Patents
Active optical fiber with photon darkening resistance and preparation method thereof Download PDFInfo
- Publication number
- CN102135641B CN102135641B CN2011100762891A CN201110076289A CN102135641B CN 102135641 B CN102135641 B CN 102135641B CN 2011100762891 A CN2011100762891 A CN 2011100762891A CN 201110076289 A CN201110076289 A CN 201110076289A CN 102135641 B CN102135641 B CN 102135641B
- Authority
- CN
- China
- Prior art keywords
- ions
- optical fiber
- active
- reaction tube
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 67
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- 239000000835 fiber Substances 0.000 claims abstract description 84
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 71
- -1 rare earth ions Chemical class 0.000 claims abstract description 52
- 150000002500 ions Chemical class 0.000 claims abstract description 44
- 238000006243 chemical reaction Methods 0.000 claims abstract description 38
- 239000010453 quartz Substances 0.000 claims abstract description 29
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 21
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 21
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 20
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 17
- 239000010410 layer Substances 0.000 claims abstract description 13
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 9
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 8
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000000151 deposition Methods 0.000 claims abstract description 6
- 239000012792 core layer Substances 0.000 claims abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 23
- 239000001301 oxygen Substances 0.000 claims description 23
- 229910052760 oxygen Inorganic materials 0.000 claims description 23
- 238000005253 cladding Methods 0.000 claims description 15
- 239000002019 doping agent Substances 0.000 claims description 15
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 239000001307 helium Substances 0.000 claims description 10
- 229910052734 helium Inorganic materials 0.000 claims description 10
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 10
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 9
- 239000000460 chlorine Substances 0.000 claims description 9
- 229910052801 chlorine Inorganic materials 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 9
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 claims description 8
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 8
- 239000005049 silicon tetrachloride Substances 0.000 claims description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 229910001882 dioxygen Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000004038 photonic crystal Substances 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910018503 SF6 Inorganic materials 0.000 claims description 3
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 claims description 3
- 229960000909 sulfur hexafluoride Drugs 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 25
- 239000011159 matrix material Substances 0.000 abstract description 10
- 238000002791 soaking Methods 0.000 abstract description 4
- 238000001035 drying Methods 0.000 abstract description 2
- 239000003795 chemical substances by application Substances 0.000 abstract 2
- 239000011259 mixed solution Substances 0.000 abstract 1
- 238000005498 polishing Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 16
- 238000000576 coating method Methods 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- 229910052769 Ytterbium Inorganic materials 0.000 description 9
- 239000000306 component Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000008358 core component Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229920002100 high-refractive-index polymer Polymers 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229940075624 ytterbium oxide Drugs 0.000 description 1
- 229910003454 ytterbium oxide Inorganic materials 0.000 description 1
Images
Landscapes
- Lasers (AREA)
- Glass Compositions (AREA)
Abstract
Description
技术领域 technical field
本发明涉及种有源光纤及其制备方法,特别涉及一种能够提升抗光子暗化性能的有源光纤及其制备方法。The invention relates to an active optical fiber and a preparation method thereof, in particular to an active optical fiber capable of improving anti-photon darkening performance and a preparation method thereof.
背景技术 Background technique
高功率光纤激光器是以稀土掺杂双包层光纤为工作介质、以半导体激光器为泵浦源的种全固态激光器件。自1988年Snitzer等人提出双包层激光光纤之后,基于包层泵浦技术的光纤激光器和放大器获得了快速发展。特别是近年来随着光纤制备技术和半导体激光器的发展,光纤激光器获得迅猛发展。2005年,美国、英国、德国和日本分别实现单纤输出功率超过kW量级。2009年,美国IPG photonics公司单纤输出已达万瓦量级,且具有近衍射极限的光束质量。因为光纤激光器光束质量好、效率高且结构紧凑,所以在高精度激光焊接、切割等工业应用、激光医疗和国防军事等领域有着重要的应用。但随着光纤激光器功率的攀升,掺稀土光纤纤芯中的光子暗化效应成为限制激光器寿命和稳定性的主要因素之一。High-power fiber laser is an all-solid-state laser device that uses rare earth-doped double-clad fiber as the working medium and semiconductor laser as the pump source. Since Snitzer et al. proposed a double-clad laser fiber in 1988, fiber lasers and amplifiers based on cladding pumping technology have developed rapidly. Especially in recent years, with the development of optical fiber preparation technology and semiconductor lasers, fiber lasers have developed rapidly. In 2005, the United States, the United Kingdom, Germany and Japan respectively achieved a single-fiber output power exceeding the kW level. In 2009, the single-fiber output of IPG photonics in the United States reached the order of 10,000 watts, and the beam quality was near the diffraction limit. Because fiber laser has good beam quality, high efficiency and compact structure, it has important applications in high-precision laser welding, cutting and other industrial applications, laser medical treatment and national defense and military fields. However, as the power of fiber lasers increases, the photon darkening effect in the rare earth-doped fiber core becomes one of the main factors that limit the life and stability of lasers.
光子暗化效应表现为泵浦光泵浦掺稀土光纤后,光纤激光器的输出功率随时间逐渐降低。由光子暗化效应诱导的永久光吸收损耗在可见光波段极为显著,损耗随泵浦时间的增加而持续增加,在经历较长时间后,吸收饱和,损耗趋于稳定。并且,可见光波段的吸收尾部延伸至近红外波段,致使光纤在泵浦波长及激光器工作波长处的传输损耗也随时间延长而增加,导致光纤激光器斜率效率降低。这种现象多发生在以二氧化硅为基质的有源光纤中,已经在掺镱光纤、掺铥光纤、掺镨光纤和掺铕光纤等有源光纤中观测到,其中对掺镱石英基质光纤光子暗化效应的研究尤为广泛。The photon darkening effect is manifested as the output power of the fiber laser gradually decreases with time after the pump light pumps the rare earth-doped fiber. The permanent light absorption loss induced by the photon darkening effect is extremely significant in the visible light band, and the loss continues to increase with the increase of the pumping time. After a long time, the absorption is saturated and the loss tends to be stable. Moreover, the absorption tail of the visible light band extends to the near-infrared band, causing the transmission loss of the fiber at the pump wavelength and the laser operating wavelength to increase with time, resulting in a decrease in the slope efficiency of the fiber laser. This phenomenon mostly occurs in active fibers based on silica, and has been observed in active fibers such as ytterbium-doped fibers, thulium-doped fibers, praseodymium-doped fibers, and europium-doped fibers. Among them, ytterbium-doped silica matrix fibers The photon darkening effect has been particularly extensively studied.
但是,光子暗化效应产生的机理仍未形成定论。通常情况下,掺杂光纤老化的根本物理过程可以归因为石英基质中色心的形成或其它光诱导结构的改变,如聚合物涂层损耗或者是高能量粒子的辐射损伤。由于光子暗化是由信号光和泵浦光引起的纤芯附加损耗,所以很容易同聚合物涂层损耗或高能粒子辐射损伤等效应诱导功率降低区分开,目前基本的共识是色心的形成最终致使光子暗化效应的产生。而对于色心形成机制的解释,主要有两种观点:一种观点是氧缺陷中心是色心形成的前躯体(参见S.Yoo,C.Basu,A.J.Boyland,et.al.,Photodarkening in Yb-doped aluminosilicate fibersinduced by 488nm irradiation.Optics Letters,2007.32(12)),另外一种是认为电荷转移造成稀土离子价态的改变并在氧配位键周围形成空穴,从而诱发色心的产生(参见M.Engholm,L.Norin,et.al.,Strong UV absorption andvisible luminescence in ytterbium-doped aluminosilicate glass under UVexcitation.Optics Letters,2007.32(22))。However, the mechanism of photon darkening effect is still not conclusive. Typically, the underlying physical process of aging in doped fibers can be attributed to the formation of color centers in the silica matrix or other photoinduced structural changes, such as polymer coating loss or radiation damage from high-energy particles. Since photon darkening is the additional loss of the fiber core caused by signal light and pump light, it is easy to distinguish it from the power reduction induced by effects such as polymer coating loss or high-energy particle radiation damage. The current basic consensus is the formation of color centers Eventually lead to the generation of photon darkening effect. For the explanation of the formation mechanism of the color center, there are mainly two views: one view is that the oxygen deficiency center is the precursor of the formation of the color center (see S.Yoo, C.Basu, A.J.Boyland, et.al., Photodarkening in Yb -doped aluminosilicate fibers induced by 488nm irradiation. Optics Letters, 2007.32 (12)), the other is that charge transfer causes changes in the valence state of rare earth ions and forms holes around the oxygen coordination bond, thereby inducing the generation of color centers (see M. Engholm, L. Norin, et.al., Strong UV absorption and visible luminescence in ytterbium-doped aluminum silicate glass under UVexcitation. Optics Letters, 2007.32(22)).
为了降低光子暗化效应提升光纤激光器的稳定性,已有众多高校及研究机构开展相关的实验并提出抑制光子暗化的途径。In order to reduce the photon darkening effect and improve the stability of fiber lasers, many universities and research institutions have carried out related experiments and proposed ways to suppress photon darkening.
美国专利US-A-2000/6154598公开了一种防止光诱导损耗的方法。Pavle Gavrilovic等人通过有意引入适量其它稀土的方式来抑制上转换过程,从而增加光纤激光器的寿命。US-A-2000/6154598 discloses a method of preventing light-induced loss. Pavle Gavrilovic et al. increased the lifetime of fiber lasers by deliberately introducing appropriate amounts of other rare earths to suppress the upconversion process.
美国专利US-2009/0011233-A1提出通过共掺磷的方式,提升光学有源玻璃和光纤的抗光子暗化性能。US-2009/0011233-A1 proposes to improve the anti-photon darkening performance of optical active glass and optical fiber by co-doping phosphorus.
美国专利US-2009/0231683-A1提出一种处理方法以抑制镱掺杂光纤中的光子暗化效应。处理方式为先采用伽马射线、X射线或者电子束中的一种或多种辐照掺镱光纤,辐照能量大于光纤处于激光振荡时光纤中传输的光能,使光纤形成光诱导缺陷。随后,对光纤进行载氢处理,获得具有抗光子暗化效应的掺镱光纤。US-2009/0231683-A1 proposes a treatment method to suppress photon darkening effect in ytterbium-doped optical fiber. The treatment method is to irradiate the ytterbium-doped fiber with one or more of gamma rays, X-rays or electron beams. The irradiation energy is greater than the light energy transmitted in the fiber when the fiber is in laser oscillation, so that the fiber forms light-induced defects. Subsequently, hydrogen-carrying treatment was carried out on the optical fiber to obtain an ytterbium-doped optical fiber with anti-photon darkening effect.
M.Engholm等人研究发现掺镱光纤中铈的掺入可以提升光子暗化性能。他们指出常规掺镱石英光纤运行48小时后,在978nm处产生40%的非饱和损耗,而相同镱掺杂浓度的铈镱共掺光纤运行8小时后,产生7-9%的饱和损耗(参见M.Engholm,P.Jelger,et al.,Improved photodarkeningresistivity in ytterbium-doped fiber lasers by cerium codoping.Optics Letters,2009.34(8):p.1285-1287.)。虽然铈的掺入在一定程度上降低了光子暗化效应,但是对镱稀土离子的发射截面、荧光寿命等都产生了不利的影响,使得光线激光器的斜率效率有所降低。M. Engholm et al. found that the doping of cerium in ytterbium-doped optical fiber can improve the photon darkening performance. They pointed out that conventional ytterbium-doped silica fiber produced 40% unsaturated loss at 978nm after 48 hours of operation, while cerium-ytterbium co-doped fiber with the same ytterbium doping concentration produced 7-9% saturation loss after 8 hours of operation (see M. Engholm, P. Jelger, et al., Improved photodarkening resistance in ytterbium-doped fiber lasers by cerium codoping. Optics Letters, 2009.34(8): p.1285-1287.). Although the doping of cerium reduces the photon darkening effect to a certain extent, it has an adverse effect on the emission cross section and fluorescence lifetime of ytterbium rare earth ions, which reduces the slope efficiency of optical lasers.
S.Yoo等人提出一种用于降低光子暗化的镱掺杂纳米晶体光纤。这种光纤纤芯组份为二氧化硅、氧化镱、氧化钇、氧化铝、氧化磷、氧化锂和氧化钡,其性能相对与铝硅酸盐组份的光纤而言提升10到20倍(参见S.Yoo,M.P.Kalita,et al.,Ytterbium-doped Y2O3nanoparticle silica opticalfibers for high power fiber lasers with suppressed photodarkening.OpticsCommunications,2010.)。但是磷等物质的掺入会降低光纤的机械性能,会造成光纤损伤阈值的降低。而且此文献中钇离子引入量较高,在光纤中形成一定程度的分相。S.Yoo et al. proposed a ytterbium-doped nanocrystal fiber for reducing photon darkening. The core components of this optical fiber are silica, ytterbium oxide, yttrium oxide, aluminum oxide, phosphorus oxide, lithium oxide and barium oxide, and its performance is 10 to 20 times higher than that of aluminosilicate optical fibers ( See S.Yoo, M.P.Kalita, et al., Ytterbium-doped Y2O3nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening. Optics Communications, 2010.). However, the doping of phosphorus and other substances will reduce the mechanical properties of the optical fiber and cause a decrease in the damage threshold of the optical fiber. Moreover, the amount of yttrium ion introduced in this document is relatively high, and a certain degree of phase separation is formed in the optical fiber.
为了进一步解决有源光纤中光子暗化效应造成的光纤激光器输出功率和稳定性等受限的问题,本专利提出一种新的有源光纤及其制备方法。通过光纤纤芯铈、钇、铝新共掺杂剂组份的选定,及确定合适共掺剂浓度和比例,调整光纤纤芯稀土离子所处的微环境,实现光子暗化效应的降低。并结合纤芯结构中有源离子的区域和浓度分布的设计,降低光纤信号光、泵浦光和有源区域的重叠因子,以此来进步提升光纤的抗光子暗化性能。In order to further solve the problem of limited output power and stability of the fiber laser caused by the photon darkening effect in the active fiber, this patent proposes a new active fiber and its preparation method. Through the selection of the new co-dopant components of cerium, yttrium and aluminum in the fiber core, and the determination of the appropriate co-dopant concentration and ratio, the microenvironment of the rare earth ions in the fiber core is adjusted to reduce the photon darkening effect. Combined with the design of the area and concentration distribution of active ions in the core structure, the overlap factor of the fiber signal light, pump light and active area is reduced, so as to further improve the anti-photon darkening performance of the fiber.
发明内容 Contents of the invention
本发明的目的在于提供一种高性能抗光子暗化效应的光纤及其制备方法。The object of the present invention is to provide a high-performance optical fiber resistant to photon darkening effect and a preparation method thereof.
本发明提供了种抗光子暗化的有源光纤,其纤芯以二氧化硅为基质,包含至少一种有源离子以及共掺杂剂,其中有源离子为原子序数为57~71的稀土离子,其特征在于,共掺杂剂为铝、钇和铈离子。The invention provides an anti-photon darkening active optical fiber, the fiber core of which is based on silica and contains at least one active ion and a co-dopant, wherein the active ion is a rare earth with an atomic number of 57-71 ions, characterized in that the co-dopants are aluminum, yttrium and cerium ions.
进一步的,纤芯中有源离子的摩尔百分比为500ppm~15000ppm,有源离子与钇离子的摩尔比为1∶0.05~1∶10,有源离子与铈离子的摩尔比为1∶0.25~1∶8,稀土离子与铝离子的摩尔比为1∶3~1∶10。Further, the molar percentage of active ions in the fiber core is 500ppm-15000ppm, the molar ratio of active ions to yttrium ions is 1:0.05-1:10, and the molar ratio of active ions to cerium ions is 1:0.25-1 :8, the molar ratio of rare earth ions to aluminum ions is 1:3 to 1:10.
进一步的,光纤纤芯中有源离子的浓度分布为纤芯均匀掺杂、环形阶跃掺杂、环形渐变掺杂或圆形点阵掺杂。Further, the concentration distribution of the active ions in the fiber core is uniform core doping, ring step doping, ring gradient doping or circular lattice doping.
本发明还提供了一种抗光子暗化的有源光纤的制备方法,包括以下步骤:The present invention also provides a preparation method of an anti-photon darkening active optical fiber, comprising the following steps:
(1)向纯石英反应管内通入六氟化硫,对纯石英反应管的内壁进行腐蚀抛光处理;(1) Feed sulfur hexafluoride into the pure quartz reaction tube, and corrode and polish the inner wall of the pure quartz reaction tube;
(2)向纯石英反应管内通入四氯化硅和氧气的混合气体,采用正向沉积方式沉积2趟包层;(2) Into the pure quartz reaction tube, a mixed gas of silicon tetrachloride and oxygen is introduced, and the cladding layer is deposited 2 times in a forward deposition mode;
(3)包层沉积完毕后,向纯石英反应管内通入四氯化硅、氧气和氯化铝,采用正向沉积方式沉积1趟芯层;(3) After the cladding is deposited, feed silicon tetrachloride, oxygen and aluminum chloride into the pure quartz reaction tube, and deposit a core layer by forward deposition;
(4)将沉积后的反应管用含有有源离子、铈和钇离子的盐酸酒精混合液浸泡均匀;(4) Soak the deposited reaction tube evenly in a hydrochloric acid alcohol mixture containing active ions, cerium and yttrium ions;
(5)向纯石英反应管内通入氯气和氧气,氯气和氧气的流量比为1∶5-1∶10,对反应管进行烘干处理;(5) Feed chlorine and oxygen into the pure quartz reaction tube, the flow ratio of chlorine and oxygen is 1: 5-1: 10, and the reaction tube is dried;
(6)在氯气、氦气和氧气的混合气氛下将纯石英反应管玻璃化,反应温度为2000-2200摄氏度,氯气流量为5-50sccm,氦气流量为10-50sccm,氧气流量为50-300sccm;(6) Under the mixed atmosphere of chlorine, helium and oxygen, the pure quartz reaction tube is vitrified, the reaction temperature is 2000-2200 degrees Celsius, the flow rate of chlorine gas is 5-50 sccm, the flow rate of helium gas is 10-50 sccm, and the flow rate of oxygen gas is 50- 300 sccm;
(7)判断有源离子的浓度分布是否为纤芯均匀掺杂,若是,直接进入步骤(8),否则,重复步骤(3)到(6),直到完成掺杂纤芯的制备,进入步骤(8);(7) Determine whether the concentration distribution of active ions is uniform doping of the fiber core, if so, directly enter step (8), otherwise, repeat steps (3) to (6), until the preparation of the doped fiber core is completed, enter step (8);
(8)在2000-2200摄氏度,氯气流量为5-30sccm,氧气流量为100-200sccm的气氛下缩棒完成光纤预制棒的制备;(8) shrinking the rod under an atmosphere of 2000-2200 degrees Celsius, a chlorine gas flow rate of 5-30 sccm, and an oxygen flow rate of 100-200 sccm to complete the preparation of the optical fiber preform;
(9)将所制备的光纤预制棒拉丝制成有源光纤。(9) Drawing the prepared optical fiber preform to make an active optical fiber.
本发明的有益效果为:The beneficial effects of the present invention are:
1.本发明所述的有源光纤采用的共掺杂剂对光纤的损伤阈值影响较小,保持了石英基质有源光纤高损伤阈值特性,比共掺磷的有源光纤更适合于制备高功率的光纤激光器。1. The co-dopants used in the active optical fiber of the present invention have less influence on the damage threshold of the optical fiber, and maintain the high damage threshold characteristics of the quartz matrix active optical fiber, and are more suitable for preparing high-density active optical fibers than co-doped phosphorus active optical fibers. power fiber laser.
2.本发明所述的有源光纤吸收截面、发射截面及荧光寿命等特性几乎同铝镱共掺的有源光纤相同,制备的光纤激光器仍保持80%以上的斜率效率,极大地改善了选取其它纤芯组份时,光纤激光器斜率效率降低的问题。2. The characteristics of the active fiber absorption cross section, emission cross section and fluorescence lifetime of the present invention are almost the same as those of the active fiber co-doped with aluminum and ytterbium, and the prepared fiber laser still maintains a slope efficiency of more than 80%, which greatly improves the selection For other fiber core components, the slope efficiency of the fiber laser is reduced.
3.本发明所述有源光纤的抗光子暗化性能获得极大地提升,制备的光纤激光器具有高的稳定性和长的使用寿命。传统有源光纤制备的光纤激光器在运行过程中会发生输出功率不断降低的问题,目前有降低20%的文献报道,本光纤激光器运行50小时后,斜率效率降低小于5%。3. The anti-photon darkening performance of the active optical fiber of the present invention is greatly improved, and the prepared fiber laser has high stability and long service life. The output power of fiber lasers prepared by traditional active fibers will decrease continuously during operation. Currently, there are reports of 20% reduction in output power. After 50 hours of operation of this fiber laser, the slope efficiency decreases by less than 5%.
附图说明 Description of drawings
图1为内包层为六边形的抗光子暗化效应的有源光纤截面及折射率分布示意图;Fig. 1 is the cross section and the schematic diagram of the refractive index distribution of the active optical fiber whose inner cladding is hexagonal and resists the photon darkening effect;
图2为光纤纤芯部分掺杂浓度分布示意图;Fig. 2 is a schematic diagram of the distribution of doping concentration in the core part of the optical fiber;
图3为由实施例一所述的光纤制备激光器的斜率效率图;Fig. 3 is the slope efficiency diagram of the laser prepared by the optical fiber described in embodiment one;
图4为由实施例一所述的光纤制备的激光器输出功率的衰减图;Fig. 4 is the attenuation diagram of the laser output power prepared by the optical fiber described in embodiment one;
图5为采用MCVD和液相掺杂技术制备有源光纤的流程示意图。Fig. 5 is a schematic flow chart of preparing an active optical fiber by MCVD and liquid phase doping technology.
具体实施方式 Detailed ways
下面结合附图及实施例对本发明进行详细描述。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
本发明所述的有源光纤具有新的纤芯结构,该纤芯以二氧化硅为基质,并包含至少一种有源离子以及共掺杂剂,其中共掺杂剂为铝、钇和铈三种离子。所述有源离子为原子序数为57~71的稀土离子。The active optical fiber of the present invention has a new core structure, the core is based on silica, and contains at least one active ion and a co-dopant, wherein the co-dopant is aluminum, yttrium and cerium three ions. The active ions are rare earth ions with atomic number 57-71.
所述纤芯中有源离子的摩尔百分比为500ppm到15000ppm,有源离子与钇离子摩尔比为1∶0.05到1∶10,有源离子与铈离子摩尔比为1∶0.25到1∶8,总的稀土离子与铝离子摩尔比为1∶3到1∶10。The molar percentage of active ions in the fiber core is 500ppm to 15000ppm, the molar ratio of active ions to yttrium ions is 1:0.05 to 1:10, and the molar ratio of active ions to cerium ions is 1:0.25 to 1:8, The total molar ratio of rare earth ions to aluminum ions is 1:3 to 1:10.
光纤纤芯中有源离子的浓度分布,可以是纤芯均匀掺杂、环形阶跃掺杂、环形渐变掺杂以及圆形点阵掺杂等。其中纤芯均匀掺杂指纤芯整个区域内的有源离子有相同的摩尔百分比;如图2(a)所示,环形阶跃掺杂指纤芯内按若干个环形区域引入有源离子,每个区域内的有源离子浓度相同;如图2(b)所示环形渐变掺杂指纤芯内按若干个环形区域引入有源离子,每个区域内有源离子浓度为渐变的;如图2(c)所示,圆形点阵掺杂指纤芯为若干包含有源离子的有源棒堆叠拉制而成,即纤芯内部有源离子掺杂区域为若干个圆形区域。The concentration distribution of active ions in the fiber core can be uniform core doping, ring step doping, ring gradient doping and circular lattice doping, etc. The uniform doping of the core means that the active ions in the entire area of the core have the same mole percentage; as shown in Figure 2(a), the annular step doping refers to the introduction of active ions in several annular areas in the core, The active ion concentration in each area is the same; as shown in Figure 2 (b), the annular gradient doping refers to the introduction of active ions in the core according to several annular areas, and the active ion concentration in each area is gradual; as As shown in Figure 2(c), circular lattice doping means that the core is drawn by stacking several active rods containing active ions, that is, the active ion doping area inside the core is several circular areas.
环形阶跃掺杂、环形渐变掺杂以及圆形点阵掺杂等掺杂方式是通过降低纤芯中心区域有源离子的浓度,从而降低光纤信号光、泵浦光和有源区域的重叠因子,降低泵浦光源泵浦过程中光子暗化效应引起的附加损耗,减缓光子暗化的速率,来提升光纤的抗光子暗化性能。The doping methods such as annular step doping, annular gradient doping, and circular lattice doping reduce the concentration of active ions in the central area of the fiber core, thereby reducing the overlap factor of the fiber signal light, pump light, and active area. , reduce the additional loss caused by the photon darkening effect during the pumping process of the pump light source, slow down the rate of photon darkening, and improve the anti-photon darkening performance of the optical fiber.
本发明的第个实施例所述的有源光纤为双包层掺镱石英光纤,如图1所示,纤芯11的组份为二氧化硅基质、有源离子镱离子以及共掺杂剂铝、钇、铈离子,折射率n1为1.469;内包层12的组份为纯石英,其折射率n2为1.457;外包层13的组份为低折射率的聚合物涂料,折射率n3为1.37;涂覆层14的组份为高折射率的聚合物涂料,折射率n4为1.49。The active optical fiber described in the first embodiment of the present invention is a double-clad ytterbium-doped silica fiber, as shown in Figure 1, the composition of the
纤芯的掺杂结构采取环形阶跃掺杂方式,其中纤芯11的内部区域(即图1中纤芯11内部的圆形区域)的组分包括:有源离子镱离子的摩尔含量约1500ppm,共掺杂剂铈离子约12000ppm,钇离子约1500ppm,铝离子约50000ppm;纤芯11的外部区域包括:二氧化硅基质,有源离子镱离子的摩尔含量约15000ppm,共掺杂剂铈离子约5000ppm,钇离子约7500ppm,铝离子约65000ppm。The doping structure of the fiber core adopts an annular step doping method, wherein the composition of the inner region of the fiber core 11 (that is, the circular region inside the
采用最大功率为15W波长915nm的泵浦源,激光器的工作波长1080nm,通过测试吸收的泵浦功率及输出的激光功率,获得光纤激光器的斜率效率,如图3所示,测试结果显示第一个实施例所述的双包层掺镱石英光纤具有82%的斜率效率。光纤激光器段时间后,输出功率的波动反映光子暗化效应对激光性能的影响。常规镱铝共掺光纤制备的光纤激光器在连续运行一段时间后,激光器的输出功率出现明显的衰减,且衰减程度较大,而采用样品光纤制备的光纤激光器输出功率的衰减较小,如图4所示,测试结果表明,样品光纤具有较高的斜率效率,同时样品光纤的抗光子暗化性能得到极大的提升。A pump source with a maximum power of 15W and a wavelength of 915nm is used, and the working wavelength of the laser is 1080nm. By testing the absorbed pump power and the output laser power, the slope efficiency of the fiber laser is obtained. As shown in Figure 3, the test results show the first The double-clad ytterbium-doped silica fiber described in the examples has a slope efficiency of 82%. After a period of time, the fluctuation of output power of fiber laser reflects the influence of photon darkening effect on laser performance. After a period of continuous operation of the fiber laser prepared by the conventional ytterbium-aluminum co-doped fiber, the output power of the laser has a significant attenuation, and the attenuation is relatively large, while the output power of the fiber laser prepared by the sample fiber is small, as shown in Figure 4 As shown, the test results show that the sample fiber has a high slope efficiency, and the anti-photon darkening performance of the sample fiber is greatly improved.
采用MCVD制造工艺和液相掺杂技术制备本实施例所述的双包层掺镱石英光纤的方法,如图5所示,包括以下步骤:The method for preparing the double-clad ytterbium-doped silica fiber described in this embodiment by using the MCVD manufacturing process and liquid phase doping technology, as shown in Figure 5, includes the following steps:
(1)向纯石英反应管31内通入六氟化硫,对纯石英反应管31的内壁进行腐蚀抛光处理;(1) Feed sulfur hexafluoride into the pure
(2)向纯石英反应管31内通入四氯化硅,以氧气携带四氯化硅气体的方式引入,采用正向沉积方式沉积2趟包层32。(2) Feed silicon tetrachloride into the pure
(3)包层沉积完毕后,向纯石英反应管31内通入四氯化硅,以氧气携带四氯化硅气体的方式引入。采用高温烘烤氯化铝粉末的方式,引入氯化铝。正向沉积1趟芯层33。(3) After the cladding is deposited, silicon tetrachloride is introduced into the pure
(4)将沉积后的反应管用含有有源离子、铈和钇离子的盐酸酒精混合液长时间浸泡,浸泡过程中旋转反应管使浸泡均匀。(4) Soak the deposited reaction tube with a hydrochloric acid alcohol mixture containing active ions, cerium and yttrium ions for a long time, and rotate the reaction tube during the soaking process to make the soaking even.
(5)溶液浸泡充分后,向纯石英反应管31内通入氯气和氧气,其流量比为1∶5,对反应管进行烘干处理。(5) After the solution is fully soaked, chlorine gas and oxygen gas are introduced into the pure
(6)在氯气、氦气和氧气的混合气氛下将纯石英反应管31玻璃化,反应温度为2000摄氏度,氯气流量为5sccm、氦气流量为10sccm、氧气流量为300sccm。(6) Vitrify the pure
(7)重复一次步骤(3)到(6),完成掺杂纤芯的制备。(7) Steps (3) to (6) are repeated once to complete the preparation of the doped fiber core.
(8)在为2000摄氏度,氯气流量为5sccm、氧气流量为100sccm的气氛下缩棒完成光纤预制棒的制备。(8) Shrunk the rod under an atmosphere of 2000 degrees Celsius, a chlorine gas flow rate of 5 sccm, and an oxygen flow rate of 100 sccm to complete the preparation of the optical fiber preform.
(9)采用拉丝塔将光纤预制棒拉制成双包层光纤。即在光纤预制棒制备完毕后,经精密机械加工,将预制棒加工为所需的几何形状。随后,采用拉丝塔将光纤预制棒拉制成光纤。采用低折射率聚合物涂料进行一次涂覆,用高折射率聚合物涂料进行二次涂覆,得到双包层光纤。所述的低折射率聚合物涂料的折射率为1.37,高折射率聚合物涂料的折射率为1.49。(9) Drawing the optical fiber preform into a double-clad optical fiber by using a drawing tower. That is, after the optical fiber preform is prepared, the preform is processed into the required geometric shape through precision machining. Subsequently, the optical fiber preform is drawn into an optical fiber using a drawing tower. A low-refractive-index polymer coating is used for primary coating, and a high-refractive-index polymer coating is used for secondary coating to obtain a double-clad optical fiber. The refractive index of the low refractive index polymer coating is 1.37, and the refractive index of the high refractive index polymer coating is 1.49.
本发明的第二个实施例所述的有源光纤为双包层掺镱石英光纤,纤芯11组份为二氧化硅基质、有源离子镱离子以及共掺杂剂铝、钇、铈离子,折射率n1约为1.459;内包层12组份为纯石英,其折射率n2为1.457;外包层13组份为低折射率的聚合物涂料,折射率n3为1.37;涂覆层14组份为高折射率的聚合物涂料,折射率n4为1.49。The active optical fiber described in the second embodiment of the present invention is a double-clad ytterbium-doped silica optical fiber, and the core 11 components are silica matrix, active ion ytterbium ions and co-dopants aluminum, yttrium, and cerium ions , the refractive index n 1 is about 1.459; the
纤芯的掺杂结构采取均匀掺杂方式,即纤芯11有源离子掺杂浓度为均匀分布。纤芯组份为:二氧化硅基质,有源离子镱离子的摩尔含量约500ppm,共掺杂剂铈离子约500ppm,钇离子约4000ppm,铝离子约10000ppm。The doping structure of the fiber core adopts a uniform doping method, that is, the active ion doping concentration of the
该双包层掺镱石英光纤的制备方法,步骤(1)-(4)与第个实施例中的制备方法相同,步骤(5)向纯石英反应管内通入氯气和氧气,流量比例为1∶10,对反应管进行烘干处理。The preparation method of this double-clad ytterbium-doped silica optical fiber, steps (1)-(4) are the same as the preparation method in the first embodiment, and step (5) feeds chlorine gas and oxygen into the pure silica reaction tube, and the flow ratio is 1 : 10, drying the reaction tube.
(6)在氯气、氦气和氧气的混合气氛下将纯石英反应管玻璃化,反应温度为2200摄氏度,氯气流量为50sccm、氦气流量为50sccm、氧气流量为50sccm,完成纤芯掺杂部分的制备。(6) Vitrify the pure quartz reaction tube in a mixed atmosphere of chlorine, helium and oxygen, the reaction temperature is 2200 degrees Celsius, the flow rate of chlorine gas is 50 sccm, the flow rate of helium gas is 50 sccm, and the flow rate of oxygen gas is 50 sccm, and the core doping part is completed preparation.
(7)在2200摄氏度,氯气流量为30sccm、氧气流量为200sccm的气氛下缩棒完成光纤预制棒的制备。(7) Shrunk the rod under an atmosphere of 2200 degrees Celsius, chlorine gas flow rate of 30 sccm, and oxygen flow rate of 200 sccm to complete the preparation of the optical fiber preform.
(8)采用拉丝塔将光纤预制棒拉制成双包层光纤。(8) Drawing the optical fiber preform into a double-clad optical fiber by using a drawing tower.
本发明的第三个实施例所述的有源光纤为双包层掺镱光子晶体光纤,纤芯11组份为二氧化硅基质、有源离子镱离子以及共掺杂剂铝、钇、铈离子,内空气孔层的毛细管占空比为18%,外空气孔层的毛细管占空比为89%。其中纤芯的掺杂结构采取圆形点阵掺杂方式,如图2(c)所示,纤芯组份为;二氧化硅基质,有源离子镱离子的摩尔含量约3000ppm,共掺杂剂铈离子约1500ppm,钇离子约30000ppm,铝离子约13500ppm。The active optical fiber described in the third embodiment of the present invention is a double-clad ytterbium-doped photonic crystal fiber, and the core 11 components are silica matrix, active ion ytterbium ions and co-dopants aluminum, yttrium, and cerium Ion, the capillary duty cycle of the inner air hole layer is 18%, and the capillary duty cycle of the outer air hole layer is 89%. Among them, the doping structure of the fiber core adopts a circular lattice doping method, as shown in Figure 2(c), the fiber core component is: silica matrix, the molar content of the active ion ytterbium ion is about 3000ppm, co-doped The cerium ion is about 1500ppm, the yttrium ion is about 30000ppm, and the aluminum ion is about 13500ppm.
该双包层掺镱光子晶体光纤的制备方法,步骤(1)-(4)与第一个实施例中的制备方法相同,步骤(5)向纯石英反应管内通入氯气和氧气,流量比例为1∶7,对反应管进行烘干处理。The preparation method of this double-clad ytterbium-doped photonic crystal fiber, steps (1)-(4) are the same as the preparation method in the first embodiment, and step (5) feeds chlorine gas and oxygen into the pure quartz reaction tube, the flow ratio The ratio is 1:7, and the reaction tube is dried.
(6)在氯气、氦气和氧气的混合气氛下将纯石英反应管玻璃化,反应温度为2100摄氏度,氯气流量为25sccm、氦气流量为25sccm、氧气流量为200sccm。(6) Under the mixed atmosphere of chlorine, helium and oxygen, the pure quartz reaction tube is vitrified, the reaction temperature is 2100 degrees Celsius, the flow rate of chlorine gas is 25 sccm, the flow rate of helium gas is 25 sccm, and the flow rate of oxygen gas is 200 sccm.
(7)重复次步骤(3)到(6),完成掺杂纤芯的制备。(7) Steps (3) to (6) are repeated to complete the preparation of the doped fiber core.
(8)在2100摄氏度,氯气流量为15sccm、氧气流量为150sccm的气氛下缩棒完成光纤预制棒的制备。(8) Shrunk the rod at 2100 degrees Celsius under an atmosphere with a chlorine gas flow rate of 15 sccm and an oxygen flow rate of 150 sccm to complete the preparation of the optical fiber preform.
(9)采用二次拉丝法将光纤预制棒拉丝制成有源光子晶体光纤。即光纤预制棒制备完毕后,用拉丝塔将光纤预制棒拉制成1mm的细棒,再将若干细棒堆积后拉制成0.85mm的细棒,作为纤芯。用直径为0.85mm,18%占空比的毛细管堆积5层作为内空气孔层;用石英玻璃管作为石英内包层;石英内包层外部用89%占空比的毛细管排布一层,作为外空气孔层,并套层石英玻璃管作为石英外包层。拉丝,二次涂覆后获得圆形点阵掺杂结构的光子晶体光纤。(9) The optical fiber preform is drawn by a secondary drawing method to make an active photonic crystal optical fiber. That is, after the optical fiber preform is prepared, the optical fiber preform is drawn into a 1mm thin rod with a drawing tower, and then several thin rods are piled up and drawn into a 0.85mm thin rod as the fiber core. 5 layers of capillary tubes with a diameter of 0.85mm and 18% duty ratio are used as the inner air hole layer; quartz glass tubes are used as the quartz inner cladding layer; a layer of capillary tubes with a duty ratio of 89% is arranged outside the quartz inner cladding layer as the outer layer. The air hole layer, and the jacketed quartz glass tube is used as the quartz outer cladding. After drawing, a photonic crystal fiber with a circular lattice doping structure is obtained after the second coating.
本发明不仅局限于上述具体实施方式,本领域一般技术人员根据本发明公开的内容,可以采用其它多种具体实施方式实施本发明,因此,凡是采用本发明的设计结构和思路,做一些简单的变化或更改的设计,都落入本发明保护的范围。The present invention is not limited to the above-mentioned specific embodiments, and those skilled in the art can adopt various other specific embodiments to implement the present invention according to the disclosed content of the present invention. Changes or modified designs all fall within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100762891A CN102135641B (en) | 2011-03-29 | 2011-03-29 | Active optical fiber with photon darkening resistance and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100762891A CN102135641B (en) | 2011-03-29 | 2011-03-29 | Active optical fiber with photon darkening resistance and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102135641A CN102135641A (en) | 2011-07-27 |
CN102135641B true CN102135641B (en) | 2012-07-04 |
Family
ID=44295475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100762891A Active CN102135641B (en) | 2011-03-29 | 2011-03-29 | Active optical fiber with photon darkening resistance and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102135641B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103760633A (en) * | 2014-01-14 | 2014-04-30 | 中国科学院上海光学精密机械研究所 | Double-cladding all-solid photonic crystal gain fiber and manufacturing method thereof |
CN106116121A (en) * | 2016-08-31 | 2016-11-16 | 中国建筑材料科学研究总院 | The preparation method of quartz glass and quartz glass |
CN106405728B (en) * | 2016-10-12 | 2019-05-31 | 长飞光纤光缆股份有限公司 | One kind mixing rare earth doubly clad optical fiber and preparation method thereof |
CN107390315B (en) * | 2017-07-18 | 2020-07-10 | 华中科技大学 | A method for suppressing photo-darkening effect in active optical fibers |
CN108828711B (en) * | 2018-05-03 | 2021-08-03 | 烽火通信科技股份有限公司 | Ytterbium-doped optical fiber |
CN109502961B (en) | 2018-06-06 | 2021-03-02 | 中国科学院上海光学精密机械研究所 | A kind of ytterbium-doped silica optical fiber with anti-photodarkening and preparation method thereof |
CN109975922B (en) * | 2019-03-29 | 2020-11-24 | 华中科技大学 | A light-hardening method and system for improving photo-darkening performance of active optical fibers |
CN110247292B (en) * | 2019-07-04 | 2021-04-13 | 华中科技大学鄂州工业技术研究院 | A device and method for inhibiting photo-darkening and photo-darkening bleaching |
CN110850522A (en) * | 2019-12-10 | 2020-02-28 | 中国电子科技集团公司第四十六研究所 | Partially rare earth-doped optical fiber and preparation method thereof |
CN113113174A (en) * | 2021-02-22 | 2021-07-13 | 深圳市壹电电力技术有限公司 | Cable with fault self-diagnosis function for intelligent cable system |
CN113800761B (en) * | 2021-09-17 | 2023-01-20 | 中国科学院上海光学精密机械研究所 | Photon darkening resistant silicate glass, preparation method and preparation of single-clad optical fiber |
CN114114527B (en) * | 2022-01-25 | 2022-05-20 | 武汉长进激光技术有限公司 | Active optical fiber for homogenizing light intensity distribution of fundamental mode and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101675562A (en) * | 2007-04-17 | 2010-03-17 | 株式会社藤仓 | Yb-doped optical fiber photodarkening suppression processing method, photodarkening-suppressed yb-doped optical fiber, and fiber laser |
CN101796697A (en) * | 2007-07-16 | 2010-08-04 | 科拉克蒂夫高科技公司 | Luminescent device with phosphosilicate glass |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1947065A4 (en) * | 2005-10-26 | 2013-01-30 | Fujikura Ltd | Rare earth-doped core optical fiber and method for manufacture thereof |
JPWO2008133242A1 (en) * | 2007-04-25 | 2010-07-29 | 株式会社フジクラ | Rare earth doped core optical fiber |
US8055115B2 (en) * | 2007-07-05 | 2011-11-08 | Coractive High-Tech Inc. | Optically active glass and optical fiber with reduced photodarkening and method for reducing photodarkening |
WO2010055700A1 (en) * | 2008-11-14 | 2010-05-20 | 株式会社フジクラ | Ytterbium-doped optical fiber, fiber laser and fiber amplifier |
-
2011
- 2011-03-29 CN CN2011100762891A patent/CN102135641B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101675562A (en) * | 2007-04-17 | 2010-03-17 | 株式会社藤仓 | Yb-doped optical fiber photodarkening suppression processing method, photodarkening-suppressed yb-doped optical fiber, and fiber laser |
CN101796697A (en) * | 2007-07-16 | 2010-08-04 | 科拉克蒂夫高科技公司 | Luminescent device with phosphosilicate glass |
Non-Patent Citations (3)
Title |
---|
Kent E.Mattsson,et al.Photo darkening of ytterbium cw fiber lasers.《Proc.of SPIE》.2009,第7195卷第71950V-1~71950V-9页. * |
Kent E.Mattsson.Low photo darkening single mode RMO fiber.《OPTICS EXPRESS》.2009,第17卷(第20期),第17855-17861页. * |
朱宗玖 等.高掺杂浓度掺镱光纤的光子暗化效应.《光子学报》.2007,第36卷(第1期),第26-29页. * |
Also Published As
Publication number | Publication date |
---|---|
CN102135641A (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102135641B (en) | Active optical fiber with photon darkening resistance and preparation method thereof | |
CN102213792B (en) | Large-mode-area active optical fiber and preparation method thereof | |
US11407671B2 (en) | Process of fabrication of Erbium and Ytterbium-co-doped multi-elements silica glass based cladding-pumped fiber | |
CN107390315B (en) | A method for suppressing photo-darkening effect in active optical fibers | |
US11780768B2 (en) | Photodarkening-resistant ytterbium-doped quartz optical fiber and preparation method therefor | |
JP5400587B2 (en) | Amplifying optical fiber and production method | |
Vařák et al. | Luminescence and laser properties of RE-doped silica optical fibers: The role of composition, fabrication processing, and inter-ionic energy transfers | |
CN112094052B (en) | Radiation-resistant quartz optical fiber preform core rod and preparation method thereof | |
CN103373811B (en) | Preparation method of core rod of Yb doped quartz fiber preform | |
CN110510864A (en) | The preparation method and preform of highly doped rare-earth-doped fiber precast rod | |
WO2000021898A1 (en) | Optical fiber for light amplifier | |
CN1994946B (en) | Quartz-based bismuth-gallium-erbium-aluminum co-doped optical fiber and manufacturing method thereof | |
CN115304266B (en) | Anti-irradiation polarization-maintaining erbium-ytterbium co-doped optical fiber and preparation method and application thereof | |
CN104932054A (en) | Three-wrapping-layer thulium-doped optical fiber and preparation method thereof | |
WO2012037003A1 (en) | Photodarkening resistant optical fibers and fiber lasers incorporating the same made by outside vapor deposition | |
CN1500069A (en) | Preparation method of optical fiber doped with rare earth | |
CN101694534A (en) | Single-core multiple rare-earth-doped ion region double-clad optical fiber and manufacturing method thereof | |
CN102421715A (en) | Improved method for preparing rare-earth (RE)-doped optical fibers with novel co-dopants | |
CN118198838A (en) | All-solid-state anti-resonance optical fiber and preparation method thereof | |
Simpson | Fabrication of rare-earth doped glass fibers | |
CN115032735B (en) | Active optical fiber for reducing C + band noise coefficient and preparation method thereof | |
JP7496100B2 (en) | Rare earth doped optical fiber | |
CN104692656A (en) | 2mu m silica fiber core rod glass and preparation method thereof | |
JP2019021922A (en) | Rare earth element doped optical fiber and method for improving radiation resistance of rare earth element doped optical fiber | |
Paul et al. | Multielements doped silica glass based specialty optical fibers for high power optical amplifiers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180108 Address after: 430206 East Lake New Technology Development Zone, Wuhan City, Hubei Province, No. 999 of the future science and technology city overseas talent building A seat 6 Patentee after: WUHAN CHANGJIN LASER TECHNOLOGY CO.,LTD. Address before: 430074 Hubei Province, Wuhan city Hongshan District Luoyu Road No. 1037 Patentee before: Huazhong University of Science and Technology |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 430000 floor 1, building 5, block B, Phoenix Industrial Park (Wuhan - China Optical Valley Cultural and Creative Industrial Park), No. 52, Liufang Avenue, East Lake New Technology Development Zone, Wuhan, Hubei Province Patentee after: Wuhan Changjin Photonics Technology Co.,Ltd. Address before: 430206 Floor 6, Block A, Overseas Talent Building, Future Science and Technology City, No. 999, Gaoxin Avenue, Donghu New Technology Development Zone, Wuhan, Hubei Province Patentee before: WUHAN CHANGJIN LASER TECHNOLOGY CO.,LTD. |