CN102122997A - Method, device and terminal for detecting long term evolution (LTE) master synchronizing signal - Google Patents
Method, device and terminal for detecting long term evolution (LTE) master synchronizing signal Download PDFInfo
- Publication number
- CN102122997A CN102122997A CN2011100673436A CN201110067343A CN102122997A CN 102122997 A CN102122997 A CN 102122997A CN 2011100673436 A CN2011100673436 A CN 2011100673436A CN 201110067343 A CN201110067343 A CN 201110067343A CN 102122997 A CN102122997 A CN 102122997A
- Authority
- CN
- China
- Prior art keywords
- frequency offset
- value
- branch
- domain data
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000007774 longterm Effects 0.000 title claims description 4
- 238000005070 sampling Methods 0.000 claims abstract description 63
- 238000001514 detection method Methods 0.000 claims abstract description 19
- 238000000926 separation method Methods 0.000 claims description 29
- 238000004364 calculation method Methods 0.000 claims description 14
- 238000010845 search algorithm Methods 0.000 claims description 7
- 230000000875 corresponding effect Effects 0.000 description 30
- 238000010586 diagram Methods 0.000 description 7
- 230000002596 correlated effect Effects 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Circuits Of Receivers In General (AREA)
Abstract
本发明涉及一种LTE主同步信号检测的方法、装置及终端,其中方法包括:将频率偏移范围划分为多个分支,每个分支对应一个频率偏移值,并将每个频率偏移值通过CORDIC算法附加到输入的时域数据上;对加过频率偏移值的时域数据进行采样点分离,将采样点分离后的时域数据分别和三种本地特征序列进行时域滑动相关;对相关结果进行功率值计算,取分离采样点功率值大者输出,得到多路频偏分支数据;获取多路频偏分支数据相关峰值中的最大值,该最大值对应的主同步信号即为当前小区的主同步信号,该最大值对应的频率偏移值即为初始频偏估计值。本发明极大的提高了主同步信号位置的检测成功率,扩大了检测频偏的范围,降低了系统资源,而且实现方便。
The present invention relates to a method, device and terminal for detecting an LTE primary synchronization signal, wherein the method includes: dividing the frequency offset range into a plurality of branches, each branch corresponding to a frequency offset value, and dividing each frequency offset value Add the CORDIC algorithm to the input time-domain data; separate the sampling points from the time-domain data with frequency offset added, and perform time-sliding correlation between the separated time-domain data and the three local feature sequences; Calculate the power value of the correlation result, and output the one with the larger power value of the separated sampling point to obtain the multi-channel frequency offset branch data; obtain the maximum value among the correlation peak values of the multi-channel frequency offset branch data, and the main synchronization signal corresponding to the maximum value is For the primary synchronization signal of the current cell, the frequency offset value corresponding to the maximum value is the initial frequency offset estimation value. The invention greatly improves the detection success rate of the position of the main synchronization signal, expands the detection range of the frequency deviation, reduces system resources, and is convenient to implement.
Description
技术领域technical field
本发明涉及通信技术领域,尤其涉及一种LTE(Long Term Evolution,长期演进)主同步信号检测的方法、装置及终端。The present invention relates to the field of communication technology, in particular to a method, device and terminal for detecting an LTE (Long Term Evolution, long-term evolution) primary synchronization signal.
背景技术Background technique
LTE系统是一种标准化的新一代无线通信技术,其采用恒包络零自相关(CAZAC)序列用于主同步信号。The LTE system is a standardized next-generation wireless communication technology that uses a Constant Envelope Zero Autocorrelation (CAZAC) sequence for a primary synchronization signal.
在传统的小区主同步信号的搜索方案中,通常利用本地特征序列和接收的信号做滑动相关,然后检测相关峰值得到主同步信号的位置。In the traditional cell primary synchronization signal search scheme, the local characteristic sequence is usually used to perform sliding correlation with the received signal, and then the correlation peak is detected to obtain the location of the primary synchronization signal.
该现有技术存在如下缺点:在收发机之间的晶振偏差较小时,该恒包络零自相关序列在时域具有非常好的相关性,从而可以利用相关峰检测,实现时间同步;然而当晶振偏差较大时,恒包络零自相关序列的时域相关性会变差,由此导致相关峰检测的偏差,而系统的同步性能以及主同步信号的检测性能均受到了影响。This prior art has the following disadvantages: when the crystal oscillator deviation between transceivers is small, the constant envelope zero autocorrelation sequence has a very good correlation in the time domain, so that the correlation peak detection can be used to realize time synchronization; however when When the deviation of the crystal oscillator is large, the time-domain correlation of the constant-envelope zero autocorrelation sequence will deteriorate, which will lead to the deviation of the correlation peak detection, and the synchronization performance of the system and the detection performance of the main synchronization signal will be affected.
发明内容Contents of the invention
本发明的主要目的在于提供一种LTE主同步信号检测的方法、装置及终端,在不同的初始频偏下,提高主同步信号的检测成功率。The main purpose of the present invention is to provide a method, device and terminal for detecting an LTE primary synchronization signal, which can improve the detection success rate of the primary synchronization signal under different initial frequency offsets.
为了达到上述目的,本发明提出一种LTE主同步信号检测的方法,包括:In order to achieve the above object, the present invention proposes a method for detecting an LTE primary synchronization signal, including:
将频率偏移范围划分为多个分支,每个分支对应一个频率偏移值,并将每个频率偏移值通过约定算法附加到输入的时域数据上;Divide the frequency offset range into multiple branches, each branch corresponds to a frequency offset value, and attach each frequency offset value to the input time domain data through the agreed algorithm;
对加过频率偏移值的时域数据进行采样点分离,并将采样点分离后的时域数据分别和三种本地特征序列进行时域滑动相关;Separating the sampling points of the time-domain data with the frequency offset value added, and performing time-domain sliding correlation with the time-domain data after sampling point separation and three kinds of local feature sequences;
对相关结果进行功率值计算,取分离采样点功率值大者输出,得到多路频偏分支数据;Calculate the power value of the correlation result, and output the one with the larger power value of the separated sampling point to obtain multi-channel frequency offset branch data;
获取多路频偏分支数据相关峰值中的最大值,该最大值对应的本地特征序列即为当前小区的主同步信号。Obtain the maximum value among the correlation peak values of the multi-channel frequency offset branch data, and the local characteristic sequence corresponding to the maximum value is the primary synchronization signal of the current cell.
优选地,所述将频率偏移范围划分为多个分支,每个分支对应一个频率偏移值,并将每个频率偏移值通过约定算法附加到输入的时域数据上的步骤包括:Preferably, the step of dividing the frequency offset range into multiple branches, each branch corresponding to a frequency offset value, and adding each frequency offset value to the input time domain data through an agreed algorithm includes:
根据当前环境将频率偏移范围划分为多个分支;Divide the frequency offset range into multiple branches according to the current environment;
确定每个分支对应的频率偏移值;determining a frequency offset value corresponding to each branch;
根据所述每个分支对应的频率偏移值以及数据的采样率,计算出所述约定算法所需角度值;Calculate the angle value required by the agreed algorithm according to the frequency offset value corresponding to each branch and the sampling rate of the data;
利用所述约定算法将每个频率偏移值附加到输入的时域数据上,得到多路时域数据。Each frequency offset value is added to the input time domain data by using the agreed algorithm to obtain multiple time domain data.
优选地,所述约定算法至少包括CORDIC算法或旋转查找算法。Preferably, the agreed algorithm includes at least a CORDIC algorithm or a rotation search algorithm.
优选地,所述对相关结果进行功率值计算包括对接收机的每根天线的功率值进行累加。Preferably, said calculating the power value of the correlation result includes accumulating the power value of each antenna of the receiver.
优选地,采样点分离前的采样率为960K的整数倍,至少包括1.92M或3.84M中的一种。Preferably, the sampling rate before separation of sampling points is an integer multiple of 960K, at least including one of 1.92M or 3.84M.
优选地,所述采样点分离包括奇偶样点分离。Preferably, the sampling point separation includes odd-even sampling point separation.
本发明还提出一种LTE主同步信号检测的装置,包括:The present invention also proposes a device for detecting an LTE primary synchronization signal, including:
运算模块,用于将频率偏移范围划分为多个分支,每个分支对应一个频率偏移值,并将每个频率偏移值通过约定算法附加到输入的时域数据上;An operation module, configured to divide the frequency offset range into a plurality of branches, each branch corresponds to a frequency offset value, and attach each frequency offset value to the input time domain data through an agreed algorithm;
匹配滤波模块,用于对加过频率偏移值的时域数据进行采样点分离,并将采样点分离后的时域数据分别和三种本地特征序列进行时域滑动相关;The matched filter module is used to separate the sampling points of the time-domain data with the frequency offset value added, and perform time-domain sliding correlation with the time-domain data after the sampling point separation and three kinds of local feature sequences;
功率值计算选择模块,用于对相关结果进行功率值计算,取分离采样点功率值大者输出,得到多路频偏分支数据;The power value calculation selection module is used to calculate the power value of the relevant results, and output the one with the larger power value of the separated sampling point to obtain multi-channel frequency offset branch data;
峰值搜索模块,用于获取多路频偏分支数据相关峰值中的最大值,该最大值对应的本地特征序列即为当前小区的主同步信号。The peak search module is used to obtain the maximum value among the correlation peak values of the multi-channel frequency offset branch data, and the local characteristic sequence corresponding to the maximum value is the primary synchronization signal of the current cell.
优选地,所述运算模块包括:Preferably, the computing module includes:
频偏分支划分单元,用于根据当前环境将频率偏移范围划分为多个分支;A frequency offset branch division unit, configured to divide the frequency offset range into multiple branches according to the current environment;
频率偏移值确定单元,用于确定每个分支对应的频率偏移值;a frequency offset value determining unit, configured to determine a frequency offset value corresponding to each branch;
角度值计算单元,用于根据所述每个分支对应的频率偏移值以及数据的采样率,计算出所述约定算法所需的角度值;An angle value calculation unit, configured to calculate the angle value required by the agreed algorithm according to the frequency offset value corresponding to each branch and the sampling rate of the data;
附加单元,用于利用所述约定算法将每个频率偏移值附加到输入的时域数据上,得到多路时域数据。An adding unit, configured to use the agreed algorithm to add each frequency offset value to the input time domain data to obtain multiple channels of time domain data.
优选地,采样点分离前的采样率为960K的整数倍,至少包括1.92M或3.84M中的一种。Preferably, the sampling rate before separation of sampling points is an integer multiple of 960K, at least including one of 1.92M or 3.84M.
优选地,所述采样点分离至少包括奇偶样点分离。Preferably, the sampling point separation includes at least odd-even sampling point separation.
本发明还提出一种LTE主同步信号检测的终端,所述终端包括如上所述的装置。The present invention also proposes a terminal for detecting an LTE primary synchronization signal, and the terminal includes the above-mentioned device.
本发明提出的一种LTE主同步信号检测的方法、装置及终端,在不同的初始频偏下,极大的提高了主同步信号位置的检测的成功率,扩大了检测频偏的范围,同时在IC(Integrated Circuit,集成电路)硬件设计的时候,极大的降低系统资源,实现十分方便。具体地,其相比现有技术,存在以下有益效果:A method, device, and terminal for detecting an LTE primary synchronization signal proposed by the present invention greatly improve the success rate of detecting the position of the primary synchronization signal under different initial frequency offsets, expand the range of frequency offset detection, and at the same time In the IC (Integrated Circuit, integrated circuit) hardware design, the system resources are greatly reduced, and the implementation is very convenient. Specifically, compared with the prior art, it has the following beneficial effects:
1、没有将本地特征序列和频率相位偏移绑定相乘,而是将输入的时域数据进行相位旋转,这样可以实现可配置的频率偏移,硬件灵活性强;1. Instead of multiplying the local eigensequence and frequency-phase offset binding, the input time-domain data is phase-rotated, so that configurable frequency offset can be realized, and the hardware flexibility is strong;
2、没有将接收信号与频偏分支序列进行滑动相关,而是将相位旋转后的接收信号与本地主同步序列进行滑动相关,这样可以实现匹配滤波器的复用,节省资源;2. The received signal is not slidingly correlated with the frequency offset branch sequence, but the phase-rotated received signal is slidingly correlated with the local main synchronization sequence, which can realize multiplexing of matched filters and save resources;
3、在过采样的数据下,进行采样点选择,极大提高主同步序列峰值检测的精度,而且不增加存储RAM;3. Under the oversampled data, select the sampling point, which greatly improves the accuracy of the peak detection of the main synchronization sequence, and does not increase the storage RAM;
4、采用CORDIC或旋转查找算法对接收信号的频率偏移,资源消耗小,可配置性强。4. Use CORDIC or rotation search algorithm to offset the frequency of the received signal, with low resource consumption and strong configurability.
附图说明Description of drawings
图1是现有技术中TDD LTE的帧格式示意图;Fig. 1 is a schematic diagram of a frame format of TDD LTE in the prior art;
图2是本发明LTE主同步信号检测的方法一实施例流程示意图;Fig. 2 is a schematic flow chart of an embodiment of a method for detecting an LTE primary synchronization signal of the present invention;
图3是上述实施例中CORDIC迭代的角度初始值生成示意图;Fig. 3 is the angle initial value generation schematic diagram of CORDIC iteration in the foregoing embodiment;
图4是上述实施例中匹配滤波器的结构示意图;FIG. 4 is a schematic structural diagram of a matched filter in the foregoing embodiment;
图5是上述实施例中主同步信号检测的原理示意图;FIG. 5 is a schematic diagram of the principle of master synchronization signal detection in the foregoing embodiment;
图6是上述实施例中将频率偏移范围划分为多个分支,每个分支对应一个频率偏移值,并将每个频率偏移值通过约定算法附加到输入的时域数据上的流程示意图;Fig. 6 is a schematic flowchart of dividing the frequency offset range into multiple branches in the above-mentioned embodiment, each branch corresponds to a frequency offset value, and attaching each frequency offset value to the input time domain data through the agreed algorithm ;
图7是本发明LTE主同步信号检测的装置一实施例结构示意图;7 is a schematic structural diagram of an embodiment of a device for detecting an LTE primary synchronization signal according to the present invention;
图8是本发明LTE主同步信号检测的装置一实施例中运算模块的结构示意图;8 is a schematic structural diagram of an arithmetic module in an embodiment of an apparatus for detecting an LTE primary synchronization signal according to the present invention;
图9是本发明LTE主同步信号检测的终端一实施例结构示意图。FIG. 9 is a schematic structural diagram of an embodiment of a terminal for detecting an LTE primary synchronization signal according to the present invention.
为了使本发明的技术方案更加清楚、明了,下面将结合附图作进一步详述。In order to make the technical solution of the present invention clearer and clearer, it will be further described below in conjunction with the accompanying drawings.
具体实施方式Detailed ways
本发明实施例的核心在于,在没有先验信息的前提下,避免大的频偏对同步精度以及主同步信号检测性能的影响,将输入的数据进行频偏的添加,通过将附加频偏的输入信号和本地特征序列进行滑动相关,来实现主同步信号位置的计算以及频偏的初始估计。The core of the embodiment of the present invention is to avoid the influence of a large frequency offset on the synchronization accuracy and the detection performance of the main synchronization signal without prior information, to add the frequency offset to the input data, and to add the additional frequency offset The input signal and the local feature sequence are slidingly correlated to realize the calculation of the position of the primary synchronization signal and the initial estimation of the frequency offset.
下面以TDD LTE系统为例,结合附图和实施方式对本发明技术方案进行详细的说明。Taking the TDD LTE system as an example, the technical solution of the present invention will be described in detail in combination with the accompanying drawings and implementation modes.
如图1所示,其为TDD LTE的帧格式,第1、6子帧用于特殊子帧。主同步信号的发送周期为5ms,前后2个半帧发送的内容相同。根据现有标准协议,PSCH采用Zadoff-Chu(ZC)序列,其表达式为:As shown in Figure 1, it is the frame format of TDD LTE, and the first and sixth subframes are used for special subframes. The sending period of the main synchronization signal is 5ms, and the contents sent in the two half-frames before and after are the same. According to the existing standard protocol, PSCH adopts Zadoff-Chu (ZC) sequence, and its expression is:
其中u包含了组内ID的信息,该ZC序列在时域和频域均具有非常好的相关性。本发明实施例正是利用ZC序列的时域相关性。Among them, u contains the information of the ID within the group, and the ZC sequence has a very good correlation in both the time domain and the frequency domain. The embodiment of the present invention utilizes the time-domain correlation of the ZC sequence.
如图2所示,本发明一实施例提出一种LTE主同步信号检测的方法,包括:As shown in Figure 2, an embodiment of the present invention proposes a method for detecting an LTE primary synchronization signal, including:
步骤S101,将频率偏移范围划分为多个分支,每个分支对应一个频率偏移值,并将每个频率偏移值通过约定算法附加到输入的时域数据上;Step S101, dividing the frequency offset range into multiple branches, each branch corresponding to a frequency offset value, and adding each frequency offset value to the input time domain data through an agreed algorithm;
其中约定算法可以为CORDIC算法或旋转查找算法等,相比旋转查找算法,CORDIC算法具有更好的运算精度,因此本实施例优选CORDIC算法,并在以下实施方式中具体以CORDIC算法为例进行说明。The agreed algorithm can be the CORDIC algorithm or the rotation search algorithm, etc. Compared with the rotation search algorithm, the CORDIC algorithm has better operation accuracy, so this embodiment prefers the CORDIC algorithm, and in the following implementation modes, the CORDIC algorithm is taken as an example for illustration .
本实施例中频率偏移范围(以下简称频偏)分支的划分根据当前的环境确定。由于LTE系统子载波间隔为15KHz,因此可以将分支分为-15KHz~-9KHz、-9KHz~-3KHz、-3KHz~+3KHz、+3KHz~+9KHz和+9KHz~+12KHz一共5个分支。该5个分支对应的频率偏移值Δf为-12KHz、-6KHz、0KHz、+6KHz、+12KHz。接着根据每支的频率偏移值以及数据的采样率,计算出每次CORDIC迭代的角度值。In this embodiment, division of frequency offset range (hereinafter referred to as frequency offset) branches is determined according to the current environment. Since the subcarrier spacing of the LTE system is 15KHz, the branches can be divided into five branches: -15KHz~-9KHz, -9KHz~-3KHz, -3KHz~+3KHz, +3KHz~+9KHz and +9KHz~+12KHz. The frequency offset values Δf corresponding to the five branches are -12KHz, -6KHz, 0KHz, +6KHz, +12KHz. Then, according to the frequency offset value of each branch and the sampling rate of the data, the angle value of each CORDIC iteration is calculated.
具体的CORDIC迭代的角度初始值生成如图3所示。The specific angle initial value generation of CORDIC iteration is shown in Figure 3.
本实施例利用CORDIC算法,将5种频率偏移值添加到输入的时域数据上。这样初始频偏估计的精度为±3KHz。经过CORDIC的迭代后,输出5路时域数据。In this embodiment, the CORDIC algorithm is used to add five kinds of frequency offset values to the input time domain data. In this way, the accuracy of the initial frequency offset estimation is ±3KHz. After the iteration of CORDIC,
其中,为了降低计算的复杂度以及计算量,输入的时域数据可以采用1.92M的采样率,这样每个符号的采样点数为128。Wherein, in order to reduce the complexity and amount of calculation, the input time-domain data may adopt a sampling rate of 1.92M, so that the number of sampling points for each symbol is 128.
由于本实施例中CORDIC迭代的每个频率分支的角度值是可配置的,因此,可以进行多次CORDIC迭代,实现频偏的进一步估计。如将分支分为-2.5KHz~-1.5KHz、-1.5KHz~-0.5KHz、-0.5KHz~+0.5KHz、+5KHz~+1.5KHz和+1.5KHz~+2.5KHz,这样每个分支对应的频率偏移值Δf为-2KHz、-1KHz、0KHz、+1KHz、+2KHz。此时,初始频偏估计精度为±0.5KHz。Since the angle value of each frequency branch of the CORDIC iteration in this embodiment is configurable, multiple CORDIC iterations can be performed to realize further estimation of the frequency offset. For example, the branches are divided into -2.5KHz~-1.5KHz, -1.5KHz~-0.5KHz, -0.5KHz~+0.5KHz, +5KHz~+1.5KHz and +1.5KHz~+2.5KHz, so that each branch corresponds to The frequency offset value Δf is -2KHz, -1KHz, 0KHz, +1KHz, +2KHz. At this time, the initial frequency offset estimation accuracy is ±0.5KHz.
步骤S102,对加过频率偏移值的时域数据进行采样点分离,并将采样点分离后的时域数据分别和三种本地特征序列进行时域滑动相关;Step S102, performing sampling point separation on the time-domain data to which the frequency offset value has been added, and performing time-domain sliding correlation on the time-domain data after sampling point separation and three kinds of local characteristic sequences;
其中,采样点分离前的采样率为960K的整数倍,采样点分离可以采用奇偶点分离或者四分之一点分离等,具体采用何种分离与前述采用率成对应关系,如果采用率为1.92M,则为基偶分离,若采用率为3.84M,则为四分之一点分离,本实施例以奇偶分离为例进行说明。Among them, the sampling rate before the separation of sampling points is an integer multiple of 960K, and the separation of sampling points can be separated by odd-even point separation or quarter-point separation, etc. The specific separation used corresponds to the aforementioned adoption rate. M, it is base-even separation, if the adoption rate is 3.84M, then it is quarter-point separation, this embodiment uses parity separation as an example for illustration.
将CORDIC迭代后的5路1.92M的不同频偏的时域数据,进行奇偶点分离,相当于一个2倍下采样过程。这样会得到10路时域数据(2种下采样点*5种频偏)。下采样后,利用本地的3个特征序列(分别对应三种组内ID)分别和10路数据进行滑动相关。由于下采样后,时域数据的数据速率为960K,因此此时每个符号的采样点数为64,且每5ms的采样点数为4800。因此,滑动相关的过程可以用时域的64阶匹配滤波器实现。After CORDIC iteration, 5 channels of 1.92M time-domain data with different frequency offsets are separated for parity, which is equivalent to a 2-fold downsampling process. In this way, 10 channels of time domain data (2 types of downsampling points * 5 types of frequency offset) will be obtained. After down-sampling, use three local feature sequences (corresponding to three kinds of intra-group IDs) to perform sliding correlation with 10 channels of data. Since the data rate of the time-domain data is 960K after downsampling, the number of sampling points per symbol is 64 at this time, and the number of sampling points per 5 ms is 4800. Therefore, the process of sliding correlation can be realized with a 64-order matched filter in the time domain.
时域的匹配滤波器的表达式为:The expression of the matched filter in the time domain is:
其中X(k)为输入的时域数据,P*(n-k)为本地特征序列的共轭。具体的匹配滤波器的结构如图4所示。where X(k) is the input time-domain data, and P * (nk) is the conjugate of the local feature sequence. The structure of the specific matched filter is shown in Fig. 4 .
其中,本地特征序列的产生方法为:在LTE系统中,有三个本地的频域的主同步特征序列,将这三个62点的频域的主同步特征序列补0后,进行64点IFFT操作,即可得到三个时域的主同步序列P(K),该三个时域的主同步序列P(K)即为本实施例中所述的三个本地特征序列。Among them, the generation method of the local characteristic sequence is as follows: in the LTE system, there are three local primary synchronization characteristic sequences in the frequency domain, and after the three 62-point primary synchronization characteristic sequences in the frequency domain are filled with 0, a 64-point IFFT operation is performed , the primary synchronization sequences P(K) in the three time domains can be obtained, and the primary synchronization sequences P(K) in the three time domains are the three local signature sequences described in this embodiment.
由此一共可以得到三个本地特征序列*10路IQ=30路分支数据,每路分支数据为4800个。Thus, three local feature sequences*10 IQs=30 branch data can be obtained in total, and each branch data is 4800 pieces.
在本实施例中,没有将本地特征序列与频率偏移相乘,而是将输入时域数据与频率偏移值相乘,这样就可以通过复用三个匹配滤波器(分别对应三种主同步信号)即可实现多种频偏的时域相关。在IC设计时,节省了极大的资源。In this embodiment, the local feature sequence is not multiplied by the frequency offset, but the input time domain data is multiplied by the frequency offset value, so that three matched filters (corresponding to three main Synchronization signal) can realize the time-domain correlation of various frequency offsets. In IC design, great resources are saved.
步骤S103,对相关结果进行功率值计算,取分离采样点功率值大者输出,得到多路频偏分支数据;Step S103, calculate the power value of the correlation result, and output the one with the larger power value of the separated sampling point to obtain multi-channel frequency offset branch data;
对每路匹配滤波器输出的时域相关结果进行功率计算,当接收机采用双天线接收时,需要对双天线的功率值进行累加。由于在CORDIC迭代中进行了时域数据的下采样,因此,需要在下采样的奇点和偶点选择其中功率值大者输出。奇偶样点的选择可以提高主同步信号检测的成功率。因此,上述相关结果中30路分支数据变成15路分支数据,对应于3个本地特征序列*5种频偏。Perform power calculation on the time-domain correlation results output by each matched filter. When the receiver uses dual antennas for reception, it is necessary to accumulate the power values of the dual antennas. Since the time-domain data is down-sampled in the CORDIC iteration, it is necessary to select the one with the larger power value to output at the odd point and the even point of the down-sampling. The selection of odd and even sample points can improve the success rate of master synchronization signal detection. Therefore, the 30-way branch data in the above correlation result becomes 15-way branch data, corresponding to 3 local feature sequences*5 kinds of frequency offsets.
本步骤中的采样点选择,可以在不增大RAM的情况下,实现过采样率的同时提高主同步信号的精度。The selection of the sampling point in this step can improve the precision of the main synchronization signal while realizing the oversampling rate without increasing the RAM.
为了提高检测的成功率,可以采用对多个半帧的相关结果进行累加平滑,即以4800点为周期,对对应的位置的相关值进行累加。In order to improve the success rate of detection, it is possible to accumulate and smooth the correlation results of multiple half-frames, that is, to accumulate the correlation values of the corresponding positions with a period of 4800 points.
步骤S104,获取多路频偏分支数据相关峰值中的最大值,该最大值对应的主同步信号即为当前小区的主同步信号。Step S104, obtaining the maximum value among the correlation peak values of the multi-channel frequency offset branch data, and the primary synchronization signal corresponding to the maximum value is the primary synchronization signal of the current cell.
取多个频偏分支中的最大值,将该最大值对应的本地特征序列作为当前小区的主同步信号,同时,该频偏分支对应的频偏即为初始估计的频率偏移值。Taking the maximum value among multiple frequency offset branches, and using the local characteristic sequence corresponding to the maximum value as the primary synchronization signal of the current cell, and meanwhile, the frequency offset corresponding to the frequency offset branch is the initially estimated frequency offset value.
本实施例中主同步信号检测的原理如图5所示。The principle of master synchronization signal detection in this embodiment is shown in FIG. 5 .
如图6所示,步骤S101包括:As shown in Figure 6, step S101 includes:
步骤S1011,根据当前环境将频率偏移范围划分为多个分支;Step S1011, divide the frequency offset range into multiple branches according to the current environment;
步骤S1012,确定每个分支对应的频率偏移值;Step S1012, determining the frequency offset value corresponding to each branch;
步骤S1013,根据每个分支对应的频率偏移值以及数据的采样率,计算出约定算法所需的角度值;Step S1013, calculate the angle value required by the agreed algorithm according to the frequency offset value corresponding to each branch and the sampling rate of the data;
对于CORDIC算法而言,根据每个分支对应的频率偏移值以及数据的采样率,可计算出CORDIC每次迭代的角度值。For the CORDIC algorithm, according to the frequency offset value corresponding to each branch and the sampling rate of the data, the angle value of each iteration of CORDIC can be calculated.
步骤S1014,利用约定算法将每个频率偏移值附加到输入的时域数据上,得到多路时域数据。Step S1014, using the agreed algorithm to add each frequency offset value to the input time domain data to obtain multiple channels of time domain data.
如图7所示,本发明一实施例提出一种LTE主同步信号检测的装置,包括:运算模块701、匹配滤波模块702、功率值计算选择模块703以及峰值搜索模块704,其中:As shown in FIG. 7 , an embodiment of the present invention proposes a device for detecting an LTE primary synchronization signal, including: an
运算模块701,用于将频率偏移范围划分为多个分支,每个分支对应一个频率偏移值,并将每个频率偏移值通过约定算法附加到输入的时域数据上;An
匹配滤波模块702,用于对加过频率偏移值的时域数据进行采样点分离,并将采样点分离后的时域数据分别和三种本地特征序列进行时域滑动相关;The matched
功率值计算选择模块703,用于对相关结果进行功率值计算,取分离采样点功率值大者输出,得到多路频偏分支数据;The power value calculation and
峰值搜索模块704,用于获取多路频偏分支数据相关峰值中的最大值,该最大值对应的本地特征序列即为当前小区的主同步信号。The
本实施例中约定算法可以为CORDIC算法或旋转查找算法等,相比旋转查找算法,CORDIC算法具有更好的运算精度,因此本实施例优选CORDIC算法,并在以下实施方式中具体以CORDIC算法为例进行说明。In this embodiment, the agreed algorithm can be the CORDIC algorithm or the rotation search algorithm, etc. Compared with the rotation search algorithm, the CORDIC algorithm has better operation accuracy, so the CORDIC algorithm is preferred in this embodiment, and in the following embodiments, the CORDIC algorithm is specifically used as example to illustrate.
本实施例基本原理如下:The basic principles of this embodiment are as follows:
其中运算模块701对频率偏移范围(以下简称频偏)分支的划分根据当前的环境确定。由于LTE系统子载波间隔为15KHz,因此可以将分支分为-15KHz~-9KHz、-9KHz~-3KHz、-3KHz~+3KHz、+3KHz~+9KHz和+9KHz~+12KHz一共5个分支。该5个分支对应的频率偏移值Δf为-12KHz、-6KHz、0KHz、+6KHz、+12KHz。接着根据每支的频率偏移值以及数据的采样率,计算出每次CORDIC迭代的角度值。The
具体的CORDIC迭代的角度初始值生成如图3所示。The specific angle initial value generation of CORDIC iteration is shown in Figure 3.
本实施例利用CORDIC算法,将5种频率偏移值添加到输入的时域数据上。这样初始频偏估计的精度为±3KHz。经过CORDIC的迭代后,输出5路时域数据。In this embodiment, the CORDIC algorithm is used to add five kinds of frequency offset values to the input time domain data. In this way, the accuracy of the initial frequency offset estimation is ±3KHz. After the iteration of CORDIC,
其中,为了降低计算的复杂度以及计算量,输入的时域数据可以采用1.92M的采样率,这样每个符号的采样点数为128。采样点分离可以采用奇偶点分离或者四分之一点分离等,本实施例以奇偶分离为例进行说明。Wherein, in order to reduce the complexity and amount of calculation, the input time-domain data may adopt a sampling rate of 1.92M, so that the number of sampling points for each symbol is 128. Sampling points can be separated by odd-even point separation or quarter-point separation.
由于本实施例中输入运算模块701的每个频率分支的角度值是可配置的,因此,可以多次调度本运算模块,实现频偏的进一步估计。如将分支分为-2.5KHz~-1.5KHz、-1.5KHz~-0.5KHz、-0.5KHz~+0.5KHz、+5KHz~+1.5KHz和+1.5KHz~+2.5KHz,这样每分支对应的频率偏移值Δf为-2KHz、-1KHz、0KHz、+1KHz、+2KHz。此时,初始频偏估计精度为±0.5KHz。Since the angle value of each frequency branch input to the
匹配滤波模块702将运算模块701输出的5路1.92M的不同频偏的时域数据,进行奇偶点分离,相当于一个2倍下采样过程。这样会得到10路时域数据(2种下采样点*5种频偏)。下采样后,利用本地的3个特征序列(分别对应三种组内ID)分别和10路数据进行滑动相关。由于下采样后,时域数据的数据速率为960K,因此此时每个符号的采样点数为64,且每5ms的采样点数为4800。因此,滑动相关的过程可以用时域的64阶匹配滤波器实现。The matched
时域的匹配滤波器的表达式为:The expression of the matched filter in the time domain is:
其中X(k)为输入的时域数据,P*(n-k)为本地特征序列的共轭。具体的匹配滤波器的结构如图4所示。where X(k) is the input time-domain data, and P * (nk) is the conjugate of the local feature sequence. The structure of the specific matched filter is shown in Fig. 4 .
其中,本地特征序列的产生方法为:在LTE系统中,有三个本地的频域的主同步特征序列,将这三个62点的频域的主同步特征序列补0后,进行64点IFFT操作,即可得到三个时域的主同步序列P(K),该三个时域的主同步序列P(K)即为本实施例中所述的三个本地特征序列。Among them, the generation method of the local characteristic sequence is as follows: in the LTE system, there are three local primary synchronization characteristic sequences in the frequency domain, and after the three 62-point primary synchronization characteristic sequences in the frequency domain are filled with 0, a 64-point IFFT operation is performed , the primary synchronization sequences P(K) in the three time domains can be obtained, and the primary synchronization sequences P(K) in the three time domains are the three local signature sequences described in this embodiment.
由此一共可以得到三个本地序列*10路IQ=30路分支数据,每路分支数据为4800个。Thus, three local sequences*10 IQ=30 branch data can be obtained in total, and each branch data is 4800 pieces.
在本实施例中,没有将本地特征序列与频率偏移相乘,而是将输入时域数据与频率偏移值相乘,这样就可以通过复用三个匹配滤波器(分别对应三种主同步信号)即可实现多种频偏的时域相关。在IC设计时,节省了极大的资源。In this embodiment, the local feature sequence is not multiplied by the frequency offset, but the input time domain data is multiplied by the frequency offset value, so that three matched filters (corresponding to three main Synchronization signal) can realize the time-domain correlation of various frequency offsets. In IC design, great resources are saved.
功率值计算选择模块703对每路匹配滤波器输出的时域相关结果进行功率计算,当接收机采用双天线接收时,需要对双天线的功率值进行累加。由于在CORDIC迭代中进行了时域数据的下采样,因此,需要在下采样的奇点和偶点选择其中功率值大者输出。奇偶样点的选择可以提高主同步信号检测的成功率。因此,上述相关结果中30路分支数据变成15路分支数据,对应于3个本地特征序列*5种频偏。The power value calculation and
本步骤中的采样点选择,可以在不增大RAM的情况下,实现过采样率的同时提高主同步信号的精度。The selection of the sampling point in this step can improve the precision of the main synchronization signal while realizing the oversampling rate without increasing the RAM.
为了提高检测的成功率,可以采用对多个半帧的相关结果进行累加平滑,即以4800点为周期,对对应的位置的相关值进行累加。In order to improve the success rate of detection, it is possible to accumulate and smooth the correlation results of multiple half-frames, that is, to accumulate the correlation values of the corresponding positions with a period of 4800 points.
峰值搜索模块704取多个频偏分支中的最大值,将该最大值对应的本地特征序列作为当前小区的主同步信号,同时,该频偏分支对应的频偏即为初始估计的频率偏移值。The
本实施例中主同步信号检测的原理如图5所示。The principle of master synchronization signal detection in this embodiment is shown in FIG. 5 .
如图8所示,运算模块701包括:频偏分支划分单元7011、频率偏移值确定单元7012、角度值计算单元7013以及附加单元7014,其中:As shown in FIG. 8, the
频偏分支划分单元7011,用于根据当前环境将频率偏移范围划分为多个分支;A frequency offset
频率偏移值确定单元7012,用于确定每个分支对应的频率偏移值;A frequency offset
角度值计算单元7013,用于根据每个分支对应的频率偏移值以及数据的采样率,计算出约定算法所需的角度值;The angle
附加单元7014,用于利用约定算法将每个频率偏移值附加到输入的时域数据上,得到多路时域数据。The
如图9所示,本发明一实施例提出一种LTE主同步信号检测的终端,该终端包括如上所述的装置901。As shown in FIG. 9 , an embodiment of the present invention proposes a terminal for detecting an LTE primary synchronization signal, and the terminal includes the above-mentioned
本发明实施例LTE主同步信号检测的方法、装置及终端,相比现有技术,没有将本地特征序列和频率相位偏移绑定相乘,而是将输入的时域数据进行相位旋转,这样可以实现可配置的频率偏移,硬件灵活性强;没有将接收信号与所述频偏分支序列进行滑动相关,而是将相位旋转后的接收信号与本地主同步序列进行滑动相关,这样可以实现匹配滤波器的复用,节省资源;在过采样的数据下,进行采样点选择,极大提高主同步序列峰值检测的精度,而且不增加存储RAM;采用用约定算法比如CORDIC算法等对接收信号的频率偏移,资源消耗小,可配置性强。The method, device and terminal for detecting the LTE primary synchronization signal in the embodiment of the present invention, compared with the prior art, does not multiply the local signature sequence and the frequency phase offset binding, but performs phase rotation on the input time domain data, thus Configurable frequency offset can be realized, and the hardware is flexible; the received signal is not slidingly correlated with the frequency offset branch sequence, but the phase-rotated received signal is slidingly correlated with the local main synchronization sequence, which can realize The multiplexing of matched filters saves resources; under the oversampled data, the sampling point selection greatly improves the accuracy of the peak detection of the main synchronization sequence, and does not increase the storage RAM; the received signal is processed by a conventional algorithm such as the CORDIC algorithm. frequency offset, low resource consumption, and strong configurability.
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only a preferred embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or process transformation made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technical fields , are all included in the scope of patent protection of the present invention in the same way.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110067343.6A CN102122997B (en) | 2011-03-21 | 2011-03-21 | Method, device and terminal for detecting long term evolution (LTE) master synchronizing signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110067343.6A CN102122997B (en) | 2011-03-21 | 2011-03-21 | Method, device and terminal for detecting long term evolution (LTE) master synchronizing signal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102122997A true CN102122997A (en) | 2011-07-13 |
CN102122997B CN102122997B (en) | 2014-03-19 |
Family
ID=44251464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110067343.6A Active CN102122997B (en) | 2011-03-21 | 2011-03-21 | Method, device and terminal for detecting long term evolution (LTE) master synchronizing signal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102122997B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013029397A1 (en) * | 2011-09-02 | 2013-03-07 | 中兴通讯股份有限公司 | Method, device and terminal of detecting primary synchronization signals based on pre-processing |
CN103327516A (en) * | 2013-05-21 | 2013-09-25 | 上海晨思电子科技有限公司 | Method and device for detecting main synchronizing signals |
CN104301264A (en) * | 2013-07-15 | 2015-01-21 | 普天信息技术研究院有限公司 | Frequency Offset Compensation Method |
CN104539564A (en) * | 2015-01-19 | 2015-04-22 | 福建京奥通信技术有限公司 | Frequency offset estimation method and device for LTE (Long Term Evolution) system |
CN105553534A (en) * | 2015-12-07 | 2016-05-04 | 合肥东芯通信股份有限公司 | Signal processing method and device and baseband processing chip |
CN105847212A (en) * | 2016-03-23 | 2016-08-10 | 北京裕源大通科技股份有限公司 | Detection method and device of downlink primary synchronization signals in LTE system |
CN109474984A (en) * | 2017-09-07 | 2019-03-15 | 展讯通信(上海)有限公司 | Primary synchronization signal detection method and device, user terminal and readable storage medium storing program for executing |
CN111106924A (en) * | 2017-02-05 | 2020-05-05 | 肖慧 | Synchronization device in narrow-band wireless communication terminal |
CN111343694A (en) * | 2014-01-24 | 2020-06-26 | 华为技术有限公司 | Information transmission method, user equipment and base station |
CN114025420A (en) * | 2021-11-05 | 2022-02-08 | 北京中科晶上科技股份有限公司 | 5G NR (noise generation and noise reduction) master synchronization detection method and device and wireless terminal |
CN114257479A (en) * | 2020-09-23 | 2022-03-29 | 紫光展锐(重庆)科技有限公司 | Frequency offset estimation method and device, storage medium and terminal |
US11510195B2 (en) | 2014-01-24 | 2022-11-22 | Huawei Technologies Co., Ltd. | Information transmission method, user equipment, and base station |
US11683809B2 (en) | 2013-01-18 | 2023-06-20 | Huawei Technologies Co., Ltd. | Detecting method, transmitting method and apparatus for common control channel |
WO2023241318A1 (en) * | 2022-06-15 | 2023-12-21 | 中兴通讯股份有限公司 | Data transmission method and device, and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101651650A (en) * | 2009-09-15 | 2010-02-17 | 北京天碁科技有限公司 | Synchronization and frequency deviation combining evaluating method and device |
CN101827052A (en) * | 2010-04-14 | 2010-09-08 | 中国科学院计算技术研究所 | Method and device for time synchronization and frequency synchronization of LTE system |
CN101834657A (en) * | 2010-04-01 | 2010-09-15 | 复旦大学 | A 3GPP LTE downlink initial master synchronization detection method |
-
2011
- 2011-03-21 CN CN201110067343.6A patent/CN102122997B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101651650A (en) * | 2009-09-15 | 2010-02-17 | 北京天碁科技有限公司 | Synchronization and frequency deviation combining evaluating method and device |
CN101834657A (en) * | 2010-04-01 | 2010-09-15 | 复旦大学 | A 3GPP LTE downlink initial master synchronization detection method |
CN101827052A (en) * | 2010-04-14 | 2010-09-08 | 中国科学院计算技术研究所 | Method and device for time synchronization and frequency synchronization of LTE system |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013029397A1 (en) * | 2011-09-02 | 2013-03-07 | 中兴通讯股份有限公司 | Method, device and terminal of detecting primary synchronization signals based on pre-processing |
US11683809B2 (en) | 2013-01-18 | 2023-06-20 | Huawei Technologies Co., Ltd. | Detecting method, transmitting method and apparatus for common control channel |
US12193028B2 (en) | 2013-01-18 | 2025-01-07 | Huawei Technologies Co., Ltd. | Detecting method, transmitting method and apparatus for common control channel |
TWI551171B (en) * | 2013-05-21 | 2016-09-21 | 晨星半導體股份有限公司 | Method and device for detecting primary synchronization signal |
CN103327516A (en) * | 2013-05-21 | 2013-09-25 | 上海晨思电子科技有限公司 | Method and device for detecting main synchronizing signals |
CN103327516B (en) * | 2013-05-21 | 2017-04-12 | 上海晨思电子科技有限公司 | Method and device for detecting main synchronizing signals |
US9444610B2 (en) | 2013-05-21 | 2016-09-13 | Mstar Semiconductor, Inc. | Method and device for detecting primary synchronization signal |
CN104301264B (en) * | 2013-07-15 | 2017-09-22 | 普天信息技术研究院有限公司 | Frequency bias compensation method |
CN104301264A (en) * | 2013-07-15 | 2015-01-21 | 普天信息技术研究院有限公司 | Frequency Offset Compensation Method |
US11510195B2 (en) | 2014-01-24 | 2022-11-22 | Huawei Technologies Co., Ltd. | Information transmission method, user equipment, and base station |
CN111343694A (en) * | 2014-01-24 | 2020-06-26 | 华为技术有限公司 | Information transmission method, user equipment and base station |
CN104539564A (en) * | 2015-01-19 | 2015-04-22 | 福建京奥通信技术有限公司 | Frequency offset estimation method and device for LTE (Long Term Evolution) system |
CN105553534A (en) * | 2015-12-07 | 2016-05-04 | 合肥东芯通信股份有限公司 | Signal processing method and device and baseband processing chip |
CN105553534B (en) * | 2015-12-07 | 2019-01-01 | 合肥东芯通信股份有限公司 | Signal processing method, device and baseband processing chip |
CN105847212A (en) * | 2016-03-23 | 2016-08-10 | 北京裕源大通科技股份有限公司 | Detection method and device of downlink primary synchronization signals in LTE system |
CN111106924B (en) * | 2017-02-05 | 2022-03-04 | 吴洁 | Synchronous detection device applied to narrow-band wireless communication system terminal |
CN111106924A (en) * | 2017-02-05 | 2020-05-05 | 肖慧 | Synchronization device in narrow-band wireless communication terminal |
CN109474984A (en) * | 2017-09-07 | 2019-03-15 | 展讯通信(上海)有限公司 | Primary synchronization signal detection method and device, user terminal and readable storage medium storing program for executing |
CN114257479A (en) * | 2020-09-23 | 2022-03-29 | 紫光展锐(重庆)科技有限公司 | Frequency offset estimation method and device, storage medium and terminal |
CN114257479B (en) * | 2020-09-23 | 2023-09-22 | 紫光展锐(重庆)科技有限公司 | Frequency offset estimation method and device, storage medium and terminal |
CN114025420A (en) * | 2021-11-05 | 2022-02-08 | 北京中科晶上科技股份有限公司 | 5G NR (noise generation and noise reduction) master synchronization detection method and device and wireless terminal |
CN114025420B (en) * | 2021-11-05 | 2023-09-26 | 北京中科晶上科技股份有限公司 | 5G NR master synchronization detection method and device and wireless terminal |
WO2023241318A1 (en) * | 2022-06-15 | 2023-12-21 | 中兴通讯股份有限公司 | Data transmission method and device, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN102122997B (en) | 2014-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102122997B (en) | Method, device and terminal for detecting long term evolution (LTE) master synchronizing signal | |
CN102130883B (en) | Time frequency synchronization method for time division long-term evolution (TD-LTE) system | |
KR101974621B1 (en) | Method and apparatus for receiving preamble symbol | |
CN101827052B (en) | Method and device for time synchronization and frequency synchronization of LTE system | |
KR20150143645A (en) | Cpfsk receiver with frequency offset correction and matched filter bank decoding | |
TW200915795A (en) | Simplified RACH preamble detection receiver | |
CN103701730B (en) | Channel estimation method and device based on channel time-domain correlation and low-complexity compressed sensing | |
US20120027419A1 (en) | Frame/symbol synchronization in coherent optical ofdm | |
CN105119701B (en) | A kind of low complex degree synchronous method of satellite AIS ship oceangoing ship positioning system | |
US9621340B1 (en) | Method and device for detecting primary synchronization signal in LTE and LTE advanced communication system | |
CN102318301A (en) | OFDM receiver having a plurality of FFTs according to G-RAKE structure | |
US8705661B2 (en) | Techniques for channel estimation in millimeter wave communication systems | |
US20100182899A1 (en) | OFDM Time Basis Matching With Pre-FFT Cyclic Shift | |
CN101552635B (en) | Method and device for capturing frequency deviation | |
KR100602189B1 (en) | Frame and symbol time synchronization detection apparatus and detection method | |
CN106953823A (en) | A High-precision Frame Synchronization Method for Wireless Communication Based on Synchronization Sequence | |
CN102832981B (en) | A kind of method and apparatus for determining time synchronized position | |
US8320234B2 (en) | Method of generating and detecting synchronization signals | |
US10652068B2 (en) | Synchronization signal detection | |
CN103428846B (en) | Cell synchronous location filtering method, device and equipment | |
CN102625437A (en) | Synchronization signal detection method and terminal | |
CN103595682B (en) | A kind of for the frame synchornization method of OFDM, device and receiver | |
CN101860502B (en) | A kind of method and apparatus detecting LTE system duplex mode | |
CN104904172B (en) | Estimation and the method for removing DC offsets | |
US8649255B2 (en) | Device and method for fast fourier transform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20151125 Address after: Dameisha Yantian District of Shenzhen City, Guangdong province 518085 Building No. 1 Patentee after: SHENZHEN ZTE MICROELECTRONICS TECHNOLOGY CO., LTD. Address before: 518057 Nanshan District Guangdong high tech Industrial Park, South Road, science and technology, ZTE building, Ministry of Justice Patentee before: ZTE Corporation |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110713 Assignee: Xi'an Chris Semiconductor Technology Co. Ltd. Assignor: SHENZHEN ZTE MICROELECTRONICS TECHNOLOGY CO., LTD. Contract record no.: 2019440020036 Denomination of invention: Method, device and terminal for detecting long term evolution (LTE) master synchronizing signal Granted publication date: 20140319 License type: Common License Record date: 20190619 |