CN102099923B - 使用注入的太阳能电池制作 - Google Patents
使用注入的太阳能电池制作 Download PDFInfo
- Publication number
- CN102099923B CN102099923B CN200980127945.7A CN200980127945A CN102099923B CN 102099923 B CN102099923 B CN 102099923B CN 200980127945 A CN200980127945 A CN 200980127945A CN 102099923 B CN102099923 B CN 102099923B
- Authority
- CN
- China
- Prior art keywords
- doped region
- silicon substrate
- heavily doped
- crystal layer
- selective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000758 substrate Substances 0.000 claims abstract description 126
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 118
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 118
- 239000010703 silicon Substances 0.000 claims abstract description 118
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 8
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 83
- 238000000137 annealing Methods 0.000 claims description 62
- 239000000463 material Substances 0.000 claims description 42
- 230000008569 process Effects 0.000 claims description 34
- 238000005468 ion implantation Methods 0.000 claims description 28
- 238000002513 implantation Methods 0.000 claims description 24
- 239000013078 crystal Substances 0.000 claims description 22
- 230000015572 biosynthetic process Effects 0.000 claims description 21
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims 9
- 239000000956 alloy Substances 0.000 claims 9
- 239000011248 coating agent Substances 0.000 claims 3
- 238000000576 coating method Methods 0.000 claims 3
- 239000002019 doping agent Substances 0.000 abstract description 68
- 239000006117 anti-reflective coating Substances 0.000 abstract description 23
- 238000010884 ion-beam technique Methods 0.000 description 66
- 239000007943 implant Substances 0.000 description 42
- 239000010408 film Substances 0.000 description 19
- 235000012431 wafers Nutrition 0.000 description 19
- 230000004913 activation Effects 0.000 description 15
- 239000004065 semiconductor Substances 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000002411 adverse Effects 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 238000007650 screen-printing Methods 0.000 description 6
- 239000002210 silicon-based material Substances 0.000 description 6
- 238000005224 laser annealing Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000002800 charge carrier Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 238000002508 contact lithography Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 206010010144 Completed suicide Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/266—Bombardment with radiation with high-energy radiation producing ion implantation using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26513—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/2658—Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Computer Hardware Design (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photovoltaic Devices (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
Abstract
一种太阳能电池器件包括硅衬底,该硅衬底包括预先存在的掺杂物。均匀轻掺杂区域形成于硅衬底的表面上以在预先存在的掺杂物与轻掺杂区域之间形成结。重掺杂区域选择性地注入于硅衬底的表面上。籽晶层形成于重掺杂区域之上。金属接触形成于籽晶层之上。该器件可以包括防反射涂层。在一个实施例中,重掺杂区域形成抛物线形状。重掺杂区域可以按一定距离在硅衬底上各自是范围为50至200微米的宽度。重掺杂区域也可以在硅衬底上相互横向隔开范围为1至3mm的距离。籽晶层可以是硅化物。
Description
相关申请的交叉引用
本申请要求对如下申请的优先权:于2008年6月11日提交、标题为“SOLARCELLFABRICATIONUSINGIMPLANTATION”的第61/131,687号共同未决美国临时申请;于2008年6月11日提交、标题为“APPLICATIONSSPECIFICIMPLANTSYSTEMFORUSEINSOLARCELLFABRICATIONS”的第61/131,688号共同未决美国临时申请;于2008年6月11日提交、标题为“FORMATIONOFSOLARCELL-SELECTIVEEMITTERUSINGIMPLANTATIONANDANNEALMETHODS”的第61/131,698号共同未决美国临时申请;于2008年6月24日提交、标题为“SOLARCELLFABRICATIONWITHFACETINGANDIMPLANTATION”的第61/133,028号共同未决美国临时申请;以及于2009年3月20日提交、标题为“ADVANCEDHIGHEFFICIENCYCRYSTALLINESOLARCELLFABRICATIONMETHOD”的第61/210,545号共同未决美国临时申请,这些申请都如同这里阐述一样通过参考结合于此。
技术领域
本发明涉及太阳能电池领域。更具体而言,本发明涉及一种太阳能电池器件和其制造方法。
背景技术
当在半导体衬底的表面上形成掺杂物时使用扩散受若干问题困扰。一个问题在于随着向半导体材料块中驱动未激活的掺杂物而在表面附近过量积累掺杂物。这一过量积累会在半导体衬底的不同区域中改变电阻率、因此造成太阳能电池的变化的吸光能力以及变化的电子-空穴形成和复合性能。具体而言,遇到的一个问题在于由于形成“死层”而缺乏对蓝光的利用。
常规扩散形成系统的另一弊端在于随着线宽和晶片厚度变小而难以跨半导体衬底对掺杂物横向地定位。随着发射极尺度从200微米缩减至少于50微米而预计太阳能电池产业需要掺杂物横向放置。这样的小型化对于当前在形成太阳能电池时的扩散和丝网印刷方法而言有困难或者甚至是不可能的。相对于在网格线之间的区域选择性地更改金属网格线下面区域的电阻率,提供了收集和生成电荷的优点并且因此获得效率增益。
扩散工艺通常使用向半导体衬底的表面上作为膏涂敷或者喷涂的掺杂物材料。然后加热半导体衬底以将掺杂物驱动至特定深度以形成结。通常在扩散熔炉或者类似加热装置中加热半导体衬底。n型或者p型掺杂物可以用来根据背景掺杂类型形成结。后续丝网印刷步骤用来在完成太阳能电池时向晶片的表面上形成接触线。
金属接触与半导体的界面影响太阳能电池的性能。常规地,加热在金属接触与硅之间的结以形成硅化物。这一加热工艺改进了界面但也包括弊端。
因而希望提供一种形成太阳能电池的改进的更经济的方法以克服常规太阳能电池制造方法的弊端、允许生产尺度更小而对剂量和掺杂物位置的控制更严密的太阳能电池。
发明内容
根据本发明的第一方面,提供一种太阳能电池器件。该器件包括硅衬底,该硅衬底包括预先存在的掺杂物。均匀轻掺杂区域在预先存在的掺杂物之上形成于硅衬底的表面上。结形成于预先存在的掺杂物与轻掺杂区域之间。结形成于与硅衬底的表面有预定距离处。重掺杂区域选择性地注入于轻掺杂区域内硅衬底的表面上。籽晶层形成于重掺杂区域之上。金属接触形成于籽晶层之上。该器件可以包括防反射涂层。
在一个示例实施例中,该器件包括电阻率范围为80至160欧姆/平方的均匀轻掺杂区域和电阻率范围为10至40欧姆/平方的重掺杂区域。在一个实施例中,均匀轻掺杂区域包括约100欧姆/平方的电阻率,并且重掺杂区域包括约25欧姆/平方的电阻率。重掺杂区域可以按一定距离在硅衬底上各自是范围为50至200微米的宽度。
籽晶层可以是硅化物。籽晶层也可以是材料层,该材料包括材料Ni、Ta、Ti、W或者Cu中的任一种。硅衬底可以包括用于在离子注入工艺期间对准重掺杂区域的放置的基准标记。
根据本发明的第二方面,提供一种形成太阳能电池器件的方法。该方法包括提供硅衬底,该硅衬底包括预先存在的掺杂物。使用离子注入工艺来在预先存在的掺杂物之上的硅衬底的表面上形成均匀轻掺杂区域。在预先存在的掺杂物与轻掺杂区域之间形成结。结形成于与硅衬底的表面有预定距离处。使用选择离子注入工艺来形成轻掺杂区域内硅衬底的表面上注入的重掺杂区域。重掺杂区域在硅衬底表面上的预定位置注入。使用选择离子注入工艺来在重掺杂区域之上形成籽晶层。在籽晶层之上形成金属接触。该方法可以包括形成防反射涂层。
使用物理掩模在硅衬底表面上的预定位置处注入重掺杂区域。物理掩模包括与预定位置对准的开口。物理掩模形成于硅衬底的表面上。物理掩模在选择离子注入工艺期间定位于硅衬底的表面上方的预定距离处,以形成重掺杂区域。在一个替代实施例中,选择离子注入工艺使用与预定位置对准的成形离子束以形成重掺杂区域。在又一实施例中,可以通过在衬底的表面上的掩模完成这样的选择注入。可以使用形成重掺杂区域的所有上述实施例的组合。
在一个示例实施例中,均匀轻掺杂区域包括范围为80至160欧姆/平方的电阻率,并且均匀轻掺杂区域包括约100欧姆/平方的电阻率。重掺杂区域可以包括范围为10至40欧姆/平方的电阻率。在一个实施例中,重掺杂区域包括约25欧姆/平方的电阻率。重掺杂区域各自按一定距离在硅衬底上包括范围为50至200微米的宽度,并且重掺杂区域按一定距离在硅衬底上相互横向隔开范围为1至3mm的距离。
籽晶层优选为硅化物。籽晶层可以是材料层,该材料包括材料Ni、Ta、Ti、W或者Cu中的任一种。硅衬底可以包括配置用于在选择离子注入工艺期间对准重掺杂区域的放置的基准标记。该方法包括在具有均匀轻掺杂区域的硅衬底上使用退火工艺。取而代之,在形成金属接触之后在硅衬底上使用退火工艺。在形成金属接触之后使用退火允许比常规工艺更低的退火温度。因此允许使用载体上的衬底或者薄衬底,否则这些衬底可能在更高温度退化。
考虑结合附图进行的下文描述将清楚本发明的其它特征。
附图说明
在所附权利要求书中阐述了本发明的新颖特征。然而出于说明目的,在以下图中阐述本发明的若干实施例:
图1图示了根据本发明一个实施例的制造太阳能电池的选择性发射极结构的方法。
图2图示了根据本发明一个替代实施例的制造太阳能电池的选择性发射极结构的方法。
图3图示了根据本发明又一实施例的制造太阳能电池的选择性发射极结构的方法。
图4图示了根据本发明一个实施例的形成太阳能电池的籽晶层的方法。
图5图示了根据本发明一个实施例的形成太阳能电池的接触层的方法。
图6图示了根据本发明一个实施例的太阳能电池器件的侧视图。
图7图示了根据本发明一个替代实施例的太阳能电池器件的侧视图。
图7A图示了根据本发明又一实施例的太阳能电池器件的侧视图。
图8图示了根据本发明一个实施例的形成太阳能电池器件的工艺流程图。
具体实施方式
在下文描述中出于说明目的阐述诸多细节和替代方式。然而本领域普通技术人员将认识到,不使用这些具体细节仍可实现本发明。在其它实例中以框图形式示出了公知结构和器件以免本发明的描述因不必要的细节而难以理解。
本发明使用注入以形成均匀和选择性发射极区域。本发明致力于用于形成太阳能电池并且具体通过一系列注入工艺形成选择性发射极的方法。目前,这样横向地操纵和放置掺杂物的能力用常规扩散或者网印工艺是有难度的。本发明选择性地控制网格线、接触的电阻并且选择性地控制金属/半导体界面的接触电阻。另外,用离子注入对选择性发射极的有利形成允许提高太阳能电池器件的性能。本发明可以应用于生长的单晶硅、多晶硅以及放置于载体(比如玻璃)上的很薄的硅或者很薄的膜沉积硅或者用于太阳能电池形成的其它材料。本发明可以延及用于在结制作中使用的任何其它材料的原子核素放置。
图1图示了根据本发明一个实施例的使用注入工艺来制造选择性发射极结构105的方法(步骤101D)。在步骤101A,提供用掺杂物102预掺杂的硅衬底101。硅衬底101包括单晶硅材料或者多晶硅材料的晶片。在一个示例实施例中,硅衬底包括156乘156mm晶片。本领域普通技术人员所知的其它适当衬底也可以用于硅衬底101。在一个示例实施例中,硅衬底101包括预掺杂材料102。向预掺杂材料102预掺杂p型掺杂物(通常为或者取而代之以n型掺杂物)。预掺杂材料102可以具有范围为0.5-1.5欧姆/厘米的电阻率和少于5E16/立方厘米的原子浓度。使用生产率高的注入系统(未示出)来形成均匀轻掺杂区域或者均匀层104。这样的注入系统是通过整体引用结合于此、于2009年6月10日提交、标题为“ApplicationSpecificImplantSystemforUseinSolarCellFabrications”的第61/185,596号共同未决专利申请的主题。均匀层104为高电阻率区域。均匀层104允许由于光入射而形成电子-空穴对。在操作中,均匀层104优选地使用相对低水平的掺杂物(高电阻率)以有助于形成电荷载流子而又避免复合并且因此避免“死层”效应。
离子束“A”用于注入均匀层104。离子束A在预掺杂材料102中以均厚方式注入均匀层104。在注入均匀层104时,使用斑束或者宽等离子体束来跨硅衬底101提供全覆盖。可以跨晶片扫描束、可以在束之下移动晶片或者其组合以实现全覆盖。注入系统的生产率可以包括每小时约1000个或者更多晶片。
形成如下p-n结103,预掺杂材料102和均匀层104汇合于该结。可以在与硅衬底101的表面107有预定距离处形成结103。根据离子束A中使用的能量数量E1确定结103与表面107的距离。能量数量E1根据用于太阳能电池器件的所需规格可以范围为1至150KeV。均匀层104可以具有范围为80至160欧姆/平方的电阻率。在一个示例实施例中,均匀层104的电阻率包括约100欧姆/平方。这里可以进行退火步骤并且下文在步骤101C具体描述退火步骤。取而代之,可以取消这里的退火步骤直至下文的最终退火步骤(图6)。
在步骤101B,在硅衬底101的表面107上形成接触掩模106。接触掩模106允许掺杂物在硅衬底101中在预定位置的选择性放置。接触掩模106可以是本领域普通技术人员公知的任何适当掩模。这样的掩模的例子可以包括光致抗蚀剂、氮化物层、氧化物层、丝网印刷或者任何其它适当膜。可以使用本领域普通技术人员公知的工艺来形成接触掩模106。在一个实施例中,可以使用光刻或者接触印刷工艺来形成接触掩模106。在接触掩模106中的开口109可以是与约200微米宽一样大的尺度。取而代之,开口109可以是与50微米宽一样小的尺度。可以通过开口109在硅衬底101内注入掺杂物来形成与开口109相同尺寸的选择性发射极108。在各选择性发射极108之间的距离或者节距111(步骤101C)可以在约1至3mm的范围中。
步骤101C图示了使用离子注入束‘B’来注入用于选择性发射极108的重掺杂区域。离子束B在接触掩模106未保护的均匀层104中注入选择性发射极108。可以在整个硅衬底101之上以均厚方式施加离子束B,其中接触掩模106将防止离子进入衬底。取而代之,可以使用适当定向的成形束以瞄准方式施加离子束B。使用成形束可以帮助减少掺杂物使用并且增加注入工艺生产率。离子束B包括根据制造商规格选择的掺杂物。在一个示例实施例中,用于选择性发射极108的掺杂物包括n型掺杂物,比如磷或者砷。取而代之,在将n型预掺杂材料102用于硅衬底101的一个实施例中,离子束B可以包括p型掺杂物,比如硼。向预掺杂材料102中与表面107有一定深度和距离地注入选择性发射极108。根据离子束B中使用的能量数量E2来确定选择性发射极108与表面107的距离。该距离也依赖于为离子束B选择的掺杂物浓度水平。能量数量E2可以依赖于用于太阳能电池器件的所需规格。在一个替代实施例中,步骤101C包括使用离子束B的可变能量水平和可变掺杂物浓度水平的多次注入。在一个实施例中,能量E2可以是用于提供定制原子分布的可变性连续群。在通过整体引用结合于此、于2009年6月11日提交、标题为“FormationofSolarCellSelectiveEmitterUsingImplantandAnnealMethod”的第12/483,017号共同未决专利申请中具体描述这样的分布定制。
退火步骤将硅衬底101加热至接近但是适当地低于熔化的温度并且恢复离子注入引起的对硅衬底101的晶体结构的任何损坏。这样的退火也将引起掺杂物原子的激活。这样的退火和激活的温度和时间可以与400至500摄氏度一样低,这是足以消除任何双空位(硅衬底101的晶格结构的丢失原子)并且提供掺杂物原子的足够激活的温度。退火步骤可以包括熔炉退火。取而代之,可以使用激光退火或者闪光灯退火取代熔炉退火。退火步骤并未不利地影响下文描述的后续工艺步骤。在一个替代实施例中,可以取消这一退火步骤直至下文的最终退火步骤(图6)。
可以与步骤101C的注入选择性发射极108一起包括表面纹理化工艺。表面纹理化提供良好的捕光和对表面轮廓的附着并且因此将改进下文描述的接触形成。选择性发射极108可以具有范围为10至40欧姆/平方的电阻率。在一个示例实施例中,选择性发射极108的电阻率包括约25欧姆/平方。
步骤101D图示了完成的选择性发射极结构105。
图2图示了根据本发明一个替代实施例的使用注入工艺来制造选择性发射极结构205的方法(步骤201C)。类似于上文在图1中描述的步骤,在步骤201A提供用掺杂物202预掺杂的硅衬底201。硅衬底201包括单晶硅材料或者多晶硅材料的晶片。在一个示例实施例中,硅衬底包括156x156mm晶片。本领域普通技术人员已知的其它适当衬底也可以用于硅衬底201。在一个示例实施例中,硅衬底201包括预掺杂材料202。向预掺杂材料202预掺杂p型掺杂物。预掺杂材料202可以具有范围为0.5-1.5欧姆/厘米的电阻率和少于5E16/立方厘米的原子浓度。如上文描述的注入系统包括用于形成均匀轻掺杂区域或者均匀层204的高生产率。均匀层204为高电阻率区域。均匀层204的目的在于由于光入射而形成电子-空穴对。在操作中,均匀层204需要相对低水平的掺杂物(高电阻率)以有助于形成电荷载流子。离子束A用于注入均匀层204。离子束A在预掺杂材料202中以均厚方式注入均匀层204。在注入均匀层204时,使用斑束或者宽等离子体束来跨硅衬底201提供全覆盖。注入系统的生产率包括每小时约1000个或者更多晶片。
形成如下p-n结203,预掺杂材料202和均匀层204相交于该结。可以在与硅衬底201的表面207有预定距离处形成结203。根据离子束A中使用的能量数量E1确定结203与表面207的距离。能量数量E1根据用于太阳能电池器件的所需规格可以在1至150KeV的范围中。均匀层204可以具有范围为80至160欧姆/平方的电阻率。在一个示例实施例中,均匀层204的电阻率包括约100欧姆/平方。这里可以进行退火步骤,并且下文在步骤201B具体描述退火步骤。取而代之,可以取消这里的退火步骤直至下文的最终退火步骤(图6)。
在步骤201B,使用硬掩模206来辅助选择性发射极208的注入。可以在注入系统(未示出)的注入器(未示出)中包括硬掩模。硬掩模206允许掺杂物在硅衬底201上在预定位置的选择性放置。硬掩模206可以是用来制作这样的掩模的任何适当材料。硬掩模206的适当材料并未影响通过溅射的太阳能电池器件的注入工艺。硬掩模206的适当材料能够容许在离子束加热期间经历的提升温度。在一个实施例中,硬掩模206可以包括硅或者SiC。然而本领域普通技术人员将理解许多适当其它材料。硬掩模206的适当厚度允许在硬掩模206的加热和冷却期间控制和管理硬掩模206的温度。硬掩模206的放置和支撑依赖于为硬掩模206选择的材料和厚度。硬掩模206可以在开始离子注入之前放置于晶片上。硬掩模206可以直接放置于硅衬底表面207上。取而代之,可以使用支撑件或者间隔物(未示出)来在硬掩模与硅衬底表面207之间提供间隙。在另一实施例中,硬掩模206可以是与表面207分开放置的阵列。
在硬掩模206中的开口209可以是用于产生与约200微米宽一样大的选择性发射极208的距离。取而代之,开口209可以被调节或者可以是用于产生与50微米宽一样小的选择性发射极208的距离。在各选择性发射极208之间的距离或者节距211可以在约1至3mm的范围中。可以使用注入系统向硅衬底201上刻画配准标记或者基准标记。配准标记可以用于对准硬掩模206与硅衬底201。配准标记可以在选择性发射极208的注入工艺的后续步骤期间用于对准。在一个替代实施例中,光学限定晶片的虚拟中心并且相应地对准硬掩模206和晶片以在许多晶片上提供一致和可重复的图案。
仍然参照步骤201B,示出了用于注入重掺杂区域或者选择性发射极208的离子注入束‘C’。离子束C在硬掩模206未遮蔽的均匀层204中注入选择性发射极208。可以在包括硬掩模206的整个硅衬底201之上以均厚方式施加离子束C。取而代之,可以使用成形束以瞄准方式施加离子束C。使用成形束可以帮助减少掺杂物使用并且增加注入工艺生产率。在一个示例实施例中,离子束C可以包括宽成形离子束。在另一实施例中,离子束C可以包括可动斑离子束。可以使用宽成形离子束和可动斑束以有助于形成接近50微米宽度的选择性发射极208。
离子束C包括根据制造商规格选择的掺杂物。在一个示例实施例中,用于选择性发射极208的掺杂物包括n型掺杂物,比如磷或者砷。取而代之,在将n型预掺杂材料202用于硅衬底201的一个实施例中,离子束C可以包括p型掺杂物。向预掺杂材料202中与表面207有一定深度和距离地注入选择性发射极208。根据离子束C中使用的能量数量E2确定选择性发射极208与表面207的距离。该距离也依赖于为离子束C选择的掺杂物浓度水平。能量数量E2可以依赖于用于太阳能电池器件的所需规格。在一个替代实施例中,步骤201B包括使用离子束C的可变能量水平和可变掺杂物浓度水平的多次注入。在一个实施例中,能量E2可以是用于提供定制原子分布的可变性连续群。在通过整体引用结合于此、于2009年6月11日提交、标题为“FormationofSolarCellSelectiveEmitterUsingImplantandAnnealMethod”的第12/483,017号共同未决专利申请中具体描述这样的分布定制。
退火步骤将硅衬底201加热至接近但是适当地低于熔化的温度并且恢复离子注入引起的对硅衬底201的晶体结构的任何损坏。这样的退火也将引起掺杂物原子的激活。这样的退火和激活的温度和时间可以与400至500摄氏度一样低,这是足以消除任何双空位(硅衬底201的晶格结构的丢失原子)并且提供掺杂物原子的足够激活的温度。退火步骤可以包括熔炉退火。取而代之,可以使用激光退火或者闪光灯退火取代熔炉退火。退火步骤并未不利地影响下文描述的后续工艺步骤。在一个替代实施例中,取消这里的退火步骤直至下文的最终退火步骤(图6)。
可以与步骤201B的注入选择性发射极208一起包括表面纹理化工艺。表面纹理化提供良好捕光和对表面轮廓的附着并且因此将改进下文描述的接触形成。选择性发射极208可以具有范围为10至40欧姆/平方的电阻率。在一个示例实施例中,选择性发射极208的电阻率包括约25欧姆/平方。
步骤201C图示了完成的选择性发射极结构205。
图3图示了根据本发明又一实施例的使用注入工艺来制造选择性发射极结构(步骤301C)305的方法。选择性发射极结构305类似于上文在图2中描述的选择性发射极结构205。在步骤301A,提供用掺杂物302预掺杂的硅衬底301。硅衬底301包括单晶硅材料或者多晶硅材料的晶片。在一个示例实施例中,硅衬底包括156x156mm晶片。本领域普通技术人员公知的其它适当衬底也可以用于硅衬底301。在一个示例实施例中,硅衬底301包括预掺杂材料302。向预掺杂材料302预掺杂p型掺杂物。预掺杂材料302可以具有范围为0.5至1.5欧姆/厘米的电阻率和少于5E16/立方厘米的原子浓度。如上文描述的注入系统包括用于形成均匀轻掺杂区域或者均匀层304的高生产率。均匀层304为高电阻率区域。均匀层304的目的在于由于光入射而形成电子-空穴对。在操作中,均匀层304需要相对低水平的掺杂物(高电阻率)以有助于形成电荷载流子。离子束A用于注入均匀层304。离子束A在预掺杂材料302中以均厚方式注入均匀层304。在注入均匀层304时,使用斑束或者宽等离子体束来跨硅衬底301提供全覆盖。注入系统的生产率包括每小时约1000个或者更多晶片。
形成如下p-n结303,预掺杂材料302和均匀层304汇合于该结。可以与硅衬底301的表面307有预定距离地形成结303。根据离子束A中使用的能量数量E1确定结303与表面307的距离。能量数量E1根据用于太阳能电池器件的所需规格可以在1KeV至150KeV的范围中。均匀层304可以具有范围为80至160欧姆/平方的电阻率。在一个示例实施例中,均匀层304的电阻率包括约100欧姆/平方。这里可以进行退火步骤。取而代之,可以取消这里的退火步骤直至下文的最终退火步骤(图6)。
在步骤301B,使用离子注入束‘D’以有助于注入选择性发射极308。可以使用注入系统向硅衬底301中刻画配准标记或者基准标记。配准标记可以在下文在步骤301B中示出的选择性发射极308的注入工艺期间用于对准。
仍然参照步骤301B,示出了用于注入重掺杂区域或者选择性发射极308的离子注入束D。可以通过使用磁手段、静电手段或者这些手段的组合对离子束D进行成形以瞄准方式施加离子束D。可以将离子束D成形为与选择性发射极308的宽度309一致的指定尺寸。可以在与硅衬底301的长度和宽度一致的一个或者两个方向上使离子束D变窄。可以在一个方向上使离子束D变窄而跨硅衬底301的长度扫描离子束D。取而代之,可以沿着硅衬底301的宽度伸长或者快速扫描离子束D。在另一实施例中,可以在选择性发射极308的注入期间在高帽成形束(tophatshapedbeam)中形成离子束D。使用成形束可以帮助减少掺杂物使用并且增加注入工艺生产率。在一个示例实施例中,离子束D可以包括宽成形离子束。在一个示例实施例中,离子束D可以包括成形束或者扫描束以无需任何遮蔽地通过束的操纵、晶片位置的操纵或者通过束脉冲调制来生成高和低掺杂物区域。使用成形或者扫描束而无需任何遮蔽提供离子束D的附加和重叠扩展。
离子束D在硅衬底301的表面307上的预定位置在均匀层304中注入选择性发射极308。可以对离子束D进行成形以提供与约200微米宽一样大的选择性发射极308。取而代之,可以对离子束D进行成形以提供与50微米宽一样小的选择性发射极308。在各选择性发射极308之间的距离或者节距311可以在约1至3mm的范围内。
离子束D包括根据制造商规格选择的掺杂物。在一个示例实施例中,用于选择性发射极308的掺杂物包括n型掺杂物,比如磷或者砷。取而代之,在将n型预掺杂材料302用于硅衬底301的一个实施例中,离子束D可以包括p型掺杂物,比如硼。向预掺杂材料302中与表面307有一定深度和距离地注入选择性发射极308。根据离子束D中使用的能量数量E2确定选择性发射极308与表面307的距离。该距离也依赖于为离子束D选择的掺杂物浓度水平。能量数量E2可以依赖于用于太阳能电池器件的所需规格。在一个替代实施例中,步骤301B包括使用离子束D的可变能量水平和可变掺杂物浓度水平的多次注入。在一个实施例中,能量E2可以是用于提供定制原子分布的可变性连续群。在通过整体引用结合于此、于2009年6月11日提交、标题为“FormationofSolarCellSelectiveEmitterUsingImplantandAnnealMethod”的第12/483,017号共同未决专利申请中具体描述这样的分布定制。
退火步骤将硅衬底301加热至接近但是适当地低于熔化的温度并且恢复离子注入引起的对硅衬底301的晶体结构的任何损坏。这样的退火也将引起掺杂物原子的激活。这样的退火和激活的温度和时间可以与400至500摄氏度一样低,这是足以消除任何双空位(硅衬底301的晶格结构的丢失原子)并且提供掺杂物原子的足够激活的温度。退火步骤可以包括熔炉退火。取而代之,可以使用激光退火或者闪光灯退火取代熔炉退火。退火步骤并未不利地影响下文描述的后续工艺步骤。在一个替代实施例中,可以取消这里的退火步骤直至下文的最终退火步骤(图6)。
可以与步骤301B的注入选择性发射极308一起包括表面纹理化工艺。表面纹理化提供良好捕光和对表面轮廓的附着并且因此将改进下文描述的接触形成。选择性发射极308可以具有范围为10至40欧姆/平方的电阻率。在一个示例实施例中,选择性发射极308的电阻率包括约25欧姆/平方。
步骤301C图示了完成的选择性发射极结构305。步骤301D图示了完成的选择性发射极结构305A的一个替代实施例。选择性发射极结构305A类似于完成的选择性发射极结构305,不同在于选择性发射极结构305A包括选择性发射极308A。
图4图示了根据本发明一个实施例的过渡层或者籽晶层312的形成。与上文在图1中所述类似地在选择性发射极结构305上形成接触掩模310。接触掩模310形成于选择性发射极结构305的表面上。接触掩模310可以是本领域普通技术人员公知的任何适当掩模。这样的掩模的例子可以包括防反射覆盖物、氮化物层、氧化物层、丝网印刷或者任何其它适当膜。可以使用本领域普通技术人员公知的工艺来形成接触掩模310。在一个实施例中,可以使用光刻或者接触印刷工艺来形成接触掩模310。也可以运用与硬掩模206(图2)类似的物理掩模。
离子束‘E’用来在选择性发射极308之上注入籽晶层312。离子束E可以包括相对高剂量的金属。离子束E的布置可以类似于上文描述的布置。离子束E可以包括与上文所述类似的成形离子束。籽晶层312可以包括硅化物层。籽晶层312可以包括各种金属注入,比如Ni、Ta、Ti、W或者Cu。在一个示例实施例中,籽晶层312可以包括各自为不同材料的一层或者更多层。籽晶层312更改在接触314(图5)与选择性发射极308之间的金属/半导体界面的功函数。在一个示例实施例中,籽晶层312的功函数在选择性发射极308的功函数与接触314的功函数之间(图5)。这样的功函数或者带隙设计可以改进接触的金属/半导体界面并且改进太阳能电池600(图6)的总体性能。在一个示例实施例中,注入籽晶层312以包括比选择性发射极308的宽度略小的宽度。籽晶层312的略小宽度允许减少接触泄漏并且允许形成肖特基二极管。金属到半导体的接触非常重要,因为它们存在于每个光电器件中。它们根据金属/半导体界面的特性可以表现为肖特基势垒或者欧姆接触。金属/半导体界面的控制和管理在提高太阳能电池600(图6)的性能中颇为有益。
图5图示了根据本发明一个实施例的接触层或者接触314的形成。使用适当金属材料来形成接触314。可以使用任何公知金属沉积技术、丝网印刷技术或者镀覆技术来形成接触314。
退火步骤将硅衬底301加热至接近但是适当地低于熔化的温度并且恢复离子注入和接触形成引起的对硅衬底301的晶体结构的任何损坏。这样的退火也将引起掺杂物原子的激活。这样的退火和激活的温度和时间可以与400至500摄氏度一样低,这是足以消除任何双空位(硅衬底301的晶格结构的丢失原子)并且提供掺杂物原子的足够激活的温度。退火步骤可以包括熔炉退火。取而代之,可以使用激光退火或者闪光灯退火取代熔炉退火。退火步骤并未不利地影响下文描述的后续工艺步骤。在一个替代实施例中,可以取消这里的退火步骤直至下文的最终退火步骤(图6)。
图6图示了根据本发明一个实施例的太阳能电池600。比如通过化学剥离或者可以通过灰化来去除接触掩模310(图5)。在一个示例实施例中,NaOH(<3wt%)或者KOH(<3wt%)溶液用于在55摄氏度按数秒停留时间以2.4帕压强的溅射剥离接触掩模310。本领域普通技术人员将理解用于剥离接触掩模310的其它适当溶液。防反射涂层(ARC)或者ARC膜318可以形成于硅衬底301的暴露表面307之上。ARC膜318也可以用于钝化均匀层304。ARC膜318也充当防反射膜以增加入射光在太阳能电池600内的俘获。因此,ARC膜318可以提高太阳能电池600的效率。使用双层有机膜的简单辊系统(比如DupontMM500或者ShellSU8)和其它替代系统可以层积于表面307上。ARC膜318的粘性和连续性在这一层积阶段是关键的。在约50-100摄氏度的低温进行层积阶段。在一个示例实施例中,预热并且按1至2毫米/分钟的速度操作辊系统的辊以保证硅衬底310优选地未达到约50摄氏度以上的温度。
在一个替代实施例中,可以使用与上述类似的离子注入束来形成ARC膜318。ARC膜318可以在均匀层304上方形成于硅衬底310的表面307上。在一个替代实施例中,可以在形成图3的步骤301A的均匀层304之前形成ARC膜318。均匀层304的轻度掺杂并未不利地影响ARC膜318的质量。可以进行与上文描述的这样的退火类似的最终退火步骤。在一个示例实施例中,仅进行最终退火步骤而不是如上文所述使用在各注入之后的多个退火步骤。
太阳能电池600包括网格线或者接触314之间中的高效光转换效率。太阳能电池600也提供接触314之下的高度传导选择性发射极308并且因此提供比无这里描述的选择性发射极308的太阳能电池高1至2个绝对百分点量级的效率增益。
图7图示了根据本发明一个替代实施例的太阳能电池700。太阳能电池700包括预掺杂材料702和均匀层704。太阳能电池700包括与上文描述的选择性发射极结构305A(图3)类似的选择性发射极结构705。选择性发射极结构705包括选择性发射极708。使用适当金属材料使用离子注入来形成接触714。可以使用离子束外延或者如上文描述的任何公知金属沉积技术来形成接触714。在一个替代实施例中,太阳能电池700可以包括形成于均匀层704的暴露表面707之上的防反射涂层(ARC)或者ARC膜(未示出)。因此,电荷载流子有利地耦合到太阳能电池700的接触714。
图7A图示了根据本发明又一实施例的太阳能电池700A。选择性发射极708A可以如图7A中所示比接触714明显更宽。选择性发射极708A有利地减少从接触714向太阳能电池700A的其它区域漏电的可能性。可以通过调节上述离子束D(图3)的尺度来增加选择性发射极708A的宽度。另外,可以通过调节上文分别在图1和图2中描述的接触掩模106或者硬掩模201的尺度来增加选择性发射极708A的宽度。
考察图8、参照图1至图7A,示出了根据本发明一个实施例的用于形成太阳能电池器件600的方法的工艺流程图800。在步骤810,方法开始。提供用掺杂物102预掺杂的硅衬底101。在一个示例实施例中,掺杂物102包括p型掺杂物。在步骤820,使用注入系统形成均匀层104。均匀层104包括高电阻率区域。使用离子束A注入均匀层104。离子束A在预掺杂材料102中以均厚方式注入均匀层104。在注入均匀层104时,使用斑束或者宽等离子体束来跨硅衬底101提供全覆盖。注入系统的生产率包括每小时约1000个或者更多晶片。均匀层104可以具有范围为80至160欧姆/平方的电阻率。在一个示例实施例中,均匀层104的电阻率包括约100欧姆/平方。可以进行退火步骤。取而代之,可以取消退火步骤。
在步骤830,在轻度掺杂均匀层104内注入重度掺杂或者选择性发射极108(图1)。在硅衬底101上的预定位置注入选择性发射极108。在一个示例实施例中,使用接触掩模106以有助于以均厚方式使用离子注入束A来注入选择性发射极108。在又一实施例中,以瞄准方式使用成形离子注入束D来注入选择性发射极308(图3)。配准标记可以在选择性发射极308的注入工艺期间用于对准成形离子注入束D。注入的选择性发射极308可以约200微米宽。取而代之,可以形成约50微米宽的选择性发射极308。在各选择性发射极308之间的距离或者节距311可以在约1至3mm的范围内。选择性发射极308可以具有范围为10至40欧姆/平方的电阻率。在一个示例实施例中,选择性发射极308的电阻率包括约25欧姆/平方。可以进行退火步骤。取而代之,可以取消退火步骤。
在步骤840,根据本发明的一个实施例形成籽晶层312(图4)。接触掩模310形成于选择性发射极结构305的表面上。在一个实施例中,可以使用光刻或者接触印刷工艺来形成接触掩模310。离子束E用来在选择性发射极308之上注入籽晶层312。离子束E可以包括相对高剂量的金属。离子束E可以包括与上文所述类似的成形离子束。籽晶层312可以包括硅化物层。籽晶层312可以包括各种金属注入,比如Ni、Ta、Ti、W或者Cu。在一个示例实施例中,注入籽晶层312以包括比选择性发射极308的宽度略小的宽度。籽晶层312的略小宽度允许减少接触泄漏并且允许形成肖特基二极管。
在步骤850,根据本发明的一个实施例形成接触314(图5)。使用适当金属材料使用离子注入来形成接触314。可以使用与上述类似的离子束注入来形成接触314。可以在形成接触314时使用与等离子体掺杂类似的掺杂物浓度或者掺杂物比率。取而代之,可以在形成接触314时使用束线注入系统。在又一实施例中,可以使用高剂量比率系统(比如分子束外延、分子束注入或者等离子体离子注入系统)来形成接触314。在注入接触314之后,可以使用接触314的类似或者匹配功函数的高得多的注入浓度的附加注入步骤来进一步形成接触314。取而代之,可以在接触314上使用后续沉积步骤。在又一实施例中,可以在进一步形成接触314时使用后续喷墨溅射步骤。
退火步骤将硅衬底301加热至接近但是适当地低于熔化的温度并且恢复离子注入和接触形成引起的对硅衬底301的晶体结构的任何损坏。这样的退火也将引起掺杂物原子的激活。这样的退火和激活的温度和时间可以与400至500摄氏度一样低,这是足以消除任何双空位(硅衬底301的晶格结构的丢失原子)并且提供掺杂物原子的足够激活的温度。退火步骤可以包括熔炉退火。取而代之,可以使用激光退火或者闪光灯退火取代熔炉退火。退火步骤并未不利地影响下文描述的后续工艺步骤。在一个示例实施例中仅进行最终退火步骤而不是如上文所述使用在各注入之后的多个退火步骤。
提供根据方法800的完成的太阳能电池600(图6)。太阳能电池600包括形成于硅衬底301的暴露表面307之上的防反射涂层(ARC)或者ARC膜318。ARC膜318可以用于钝化均匀层304。ARC膜318也充当防反射膜以增加太阳能电池600内俘获的光入射。因此,ARC膜318可以提高太阳能电池600的效率。太阳能电池600包括网格线或者接触314之间中的高效光转换效率。太阳能电池600也提供接触下面的高度传导的选择性发射极308并且因此提供比无这里描述的选择性发射极308的太阳能电池高1至2个绝对百分点量级的效率增益。在步骤860,方法800结束。
尽管已经参照诸多具体细节描述本发明,但是本领域普通技术人员将认识到,可以用其它具体形式实施本发明而不脱离本发明的精神实质。因此,本领域普通技术人员将理解,本发明将不受前述示例细节限制而实际上将由所附权利要求限定。
Claims (48)
1.一种太阳能电池器件,包括:
硅衬底,其中包括有预先存在的掺杂物;
均匀轻掺杂区域,其在所述预先存在的掺杂物之上形成于所述硅衬底的表面上,由此在所述预先存在的掺杂物与所述轻掺杂区域之间形成结;
重掺杂选择性注入区域,其在所述轻掺杂区域内所述硅衬底的所述表面上,由此形成选择性发射极结构;
籽晶层,其直接形成于所述重掺杂区域之上,其中所述籽晶层的宽度小于所述重掺杂选择性注入区域的宽度;以及
金属接触,其形成于所述籽晶层之上。
2.根据权利要求1所述的器件,其中所述均匀轻掺杂区域被均匀地注入。
3.根据权利要求1所述的器件,还包括所述轻掺杂区域顶上的防反射涂层。
4.根据权利要求1所述的器件,其中所述均匀轻掺杂区域包括范围为80至160欧姆/平方的电阻率。
5.根据权利要求4所述的器件,其中所述均匀轻掺杂区域包括约100欧姆/平方的电阻率。
6.根据权利要求1所述的器件,其中所述重掺杂区域包括范围为10至40欧姆/平方的电阻率。
7.根据权利要求6所述的器件,其中所述重掺杂区域包括约25欧姆/平方的电阻率。
8.根据权利要求1所述的器件,其中所述结形成于与所述硅衬底的所述表面有预定距离处。
9.根据权利要求1所述的器件,其中所述籽晶层包括硅化物。
10.根据权利要求1所述的器件,其中通过注入来自包括Ni、Ta、Ti、W或者Cu中的一种或者更多种的组的材料来形成所述籽晶层。
11.根据权利要求1所述的器件,其中所述重掺杂区域各自按一定距离在所述硅衬底上包括范围为50至200微米的宽度。
12.根据权利要求1所述的器件,其中所述重掺杂区域在所述硅衬底上相互横向隔开范围为1至3mm的距离。
13.根据权利要求1所述的器件,其中所述硅衬底包括配置用于在离子注入工艺期间对准所述重掺杂区域的放置的基准标记。
14.一种形成太阳能电池器件的方法,包括以下步骤:
提供硅衬底,所述硅衬底其中包括有预先存在的掺杂物;
使用离子注入工艺以在所述预先存在的掺杂物之上在所述硅衬底的表面上形成均匀轻掺杂区域,由此在所述预先存在的掺杂物与所述轻掺杂区域之间形成结;
使用选择离子注入工艺以形成在所述轻掺杂区域内所述硅衬底的所述表面上注入的重掺杂区域,所述重掺杂区域在预定位置注入于所述硅衬底的表面上以由此形成选择性发射极结构;
使用所述选择离子注入工艺以在所述重掺杂区域之上直接形成籽晶层,其中所述籽晶层的宽度小于所述重掺杂选择性注入区域的宽度;以及
使用所述选择离子注入工艺以在所述籽晶层之上形成金属接触;
其中所述籽晶层改变金属对所述接触和所述选择性发射极之间的半导体界面的功函数,以由此改进所述金属接触和所述选择性发射极之间的所述界面。
15.根据权利要求14所述的方法,还包括使用所述选择离子注入工艺以形成防反射涂层。
16.根据权利要求14所述的方法,其中使用物理掩模在所述硅衬底表面上的预定位置注入所述重掺杂区域,所述物理掩模具有与所述预定位置对准的开口。
17.根据权利要求16所述的方法,其中所述物理掩模形成于所述硅衬底的所述表面上。
18.根据权利要求16所述的方法,其中所述物理掩模在所述选择离子注入工艺期间定位于所述硅衬底的所述表面上方的预定距离处以形成所述重掺杂区域。
19.根据权利要求14所述的方法,其中所述选择离子注入工艺使用与所述预定位置对准的成形离子束以形成所述重掺杂区域。
20.根据权利要求14所述的方法,其中所述均匀轻掺杂区域包括范围为80至160欧姆/平方的电阻率。
21.根据权利要求20所述的方法,其中所述均匀轻掺杂区域包括约100欧姆/平方的电阻率。
22.根据权利要求14所述的方法,其中所述重掺杂区域包括范围为10至40欧姆/平方的电阻率。
23.根据权利要求22所述的方法,其中所述重掺杂区域包括约25欧姆/平方的电阻率。
24.根据权利要求14所述的方法,其中所述结形成于与所述硅衬底的所述表面有预定距离处。
25.根据权利要求14所述的方法,其中所述籽晶层包括硅化物。
26.根据权利要求14所述的方法,其中所述籽晶层包括材料层,其中所述材料为Ni、Ta、Ti、W或者Cu。
27.根据权利要求14所述的方法,其中所述重掺杂区域各自按一定距离在所述硅衬底上包括范围为50至200微米的宽度。
28.根据权利要求14所述的方法,其中所述重掺杂区域在所述硅衬底上相互横向隔开范围为1至3mm的距离。
29.根据权利要求14所述的方法,其中所述硅衬底包括配置用于在所述选择离子注入工艺期间对准所述重掺杂区域的放置的基准标记。
30.根据权利要求14所述的方法,还包括在具有所述均匀轻掺杂区域的所述硅衬底上使用退火工艺。
31.根据权利要求14所述的方法,还包括在形成所述金属接触之后在所述硅衬底上使用退火工艺。
32.根据权利要求14所述的方法,其中所述籽晶层被配置成具有如下功函数,即所述功函数是所述选择性发射极的功函数和所述金属接触的功函数的中间值。
33.根据权利要求14所述的方法,其中所述籽晶层被注入以包括如下宽度,即所述宽度略小于所述选择性发射极的限定宽度。
34.根据权利要求14所述的方法,其中所述籽晶层被配置成减少所述金属接触的所述接触泄漏。
35.根据权利要求14所述的方法,其中所述选择性发射极、所述籽晶层、以及所述金属接触被配置成形成肖特基二极管。
36.一种太阳能电池器件,包括:
硅衬底,其中包括有预先存在的掺杂物;
均匀轻掺杂区域,其在所述预先存在的掺杂物之上形成于所述硅衬底的表面上,由此在所述预先存在的掺杂物与所述轻掺杂区域之间形成结;
重掺杂区域,其选择性地注入于所述轻掺杂区域内所述硅衬底的所述表面上,所述重掺杂区域随着与所述硅衬底的所述表面的距离而改变以由此形成选择性发射极结构;以及
金属接触,其形成于所述重掺杂区域之上;以及
籽晶层,其直接形成在所述重掺杂区域之上和所述金属接触之下,其中所述籽晶层的宽度小于所述重掺杂选择性注入区域的宽度;
其中所述籽晶层改变金属对所述接触和所述选择性发射极之间的半导体界面的功函数,以由此改进所述金属接触和所述选择性发射极之间的所述界面。
37.根据权利要求36所述的器件,还包括防反射涂层。
38.根据权利要求36所述的器件,其中所述均匀轻掺杂区域包括范围为80至160欧姆/平方的电阻率。
39.根据权利要求38所述的器件,其中所述均匀轻掺杂区域包括约100欧姆/平方的电阻率。
40.根据权利要求36所述的器件,其中所述重掺杂区域包括范围为10至40欧姆/平方的电阻率。
41.根据权利要求40所述的器件,其中所述重掺杂区域包括约25欧姆/平方的电阻率。
42.根据权利要求36所述的器件,其中所述结形成于与所述硅衬底的所述表面有预定距离处。
43.根据权利要求36所述的器件,其中所述重掺杂区域的横向梯度包括抛物线形状。
44.根据权利要求36所述的器件,其中所述籽晶层包括硅化物。
45.根据权利要求36所述的器件,其中所述籽晶层包括材料层,其中所述材料为Ni、Ta、Ti、W或者Cu。
46.根据权利要求36所述的器件,其中所述重掺杂区域各自按一定距离在所述硅衬底上包括范围为50至200微米的宽度。
47.根据权利要求36所述的器件,其中所述重掺杂区域在所述硅衬底上相互横向隔开范围1至3mm的距离。
48.根据权利要求36所述的器件,其中所述硅衬底包括配置用于在离子注入工艺期间对准所述重掺杂区域的放置的基准标记。
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13168808P | 2008-06-11 | 2008-06-11 | |
US13169808P | 2008-06-11 | 2008-06-11 | |
US13168708P | 2008-06-11 | 2008-06-11 | |
US61/131,688 | 2008-06-11 | ||
US61/131,698 | 2008-06-11 | ||
US61/131,687 | 2008-06-11 | ||
US13302808P | 2008-06-24 | 2008-06-24 | |
US61/133,028 | 2008-06-24 | ||
US21054509P | 2009-03-20 | 2009-03-20 | |
US61/210,545 | 2009-03-20 | ||
PCT/US2009/047102 WO2009152375A1 (en) | 2008-06-11 | 2009-06-11 | Solar cell fabrication using implantation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102099923A CN102099923A (zh) | 2011-06-15 |
CN102099923B true CN102099923B (zh) | 2016-04-27 |
Family
ID=41413647
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980127945.7A Expired - Fee Related CN102099923B (zh) | 2008-06-11 | 2009-06-11 | 使用注入的太阳能电池制作 |
CN2009801279442A Pending CN102099870A (zh) | 2008-06-11 | 2009-06-11 | 用于在太阳能电池制作中使用的专用注入系统和方法 |
CN200980128202.1A Pending CN102150278A (zh) | 2008-06-11 | 2009-06-11 | 使用注入和退火方法的太阳能电池-选择性发射极的形成 |
CN2009801282017A Pending CN102150277A (zh) | 2008-06-11 | 2009-06-11 | 使用小面化和离子注入的太阳能电池制造 |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009801279442A Pending CN102099870A (zh) | 2008-06-11 | 2009-06-11 | 用于在太阳能电池制作中使用的专用注入系统和方法 |
CN200980128202.1A Pending CN102150278A (zh) | 2008-06-11 | 2009-06-11 | 使用注入和退火方法的太阳能电池-选择性发射极的形成 |
CN2009801282017A Pending CN102150277A (zh) | 2008-06-11 | 2009-06-11 | 使用小面化和离子注入的太阳能电池制造 |
Country Status (7)
Country | Link |
---|---|
US (4) | US20090308439A1 (zh) |
EP (4) | EP2319088A1 (zh) |
JP (4) | JP2011525301A (zh) |
KR (4) | KR20110050423A (zh) |
CN (4) | CN102099923B (zh) |
HK (1) | HK1158366A1 (zh) |
WO (4) | WO2009152365A1 (zh) |
Families Citing this family (133)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7057256B2 (en) | 2001-05-25 | 2006-06-06 | President & Fellows Of Harvard College | Silicon-based visible and near-infrared optoelectric devices |
US7442629B2 (en) | 2004-09-24 | 2008-10-28 | President & Fellows Of Harvard College | Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate |
KR20080104130A (ko) * | 2006-02-28 | 2008-12-01 | 시바 홀딩 인코포레이티드 | 항균성 화합물 |
US8542102B2 (en) * | 2006-05-04 | 2013-09-24 | Intermec Ip Corp. | Method for operating an RFID network |
US8461032B2 (en) * | 2008-03-05 | 2013-06-11 | Varian Semiconductor Equipment Associates, Inc. | Use of dopants with different diffusivities for solar cell manufacture |
US20090317937A1 (en) * | 2008-06-20 | 2009-12-24 | Atul Gupta | Maskless Doping Technique for Solar Cells |
US20090239363A1 (en) * | 2008-03-24 | 2009-09-24 | Honeywell International, Inc. | Methods for forming doped regions in semiconductor substrates using non-contact printing processes and dopant-comprising inks for forming such doped regions using non-contact printing processes |
CN102099923B (zh) * | 2008-06-11 | 2016-04-27 | 因特瓦克公司 | 使用注入的太阳能电池制作 |
US8053867B2 (en) | 2008-08-20 | 2011-11-08 | Honeywell International Inc. | Phosphorous-comprising dopants and methods for forming phosphorous-doped regions in semiconductor substrates using phosphorous-comprising dopants |
US7951696B2 (en) | 2008-09-30 | 2011-05-31 | Honeywell International Inc. | Methods for simultaneously forming N-type and P-type doped regions using non-contact printing processes |
WO2010048537A2 (en) | 2008-10-23 | 2010-04-29 | Alta Devices, Inc. | Photovoltaic device |
US8518170B2 (en) | 2008-12-29 | 2013-08-27 | Honeywell International Inc. | Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks |
US7820532B2 (en) | 2008-12-29 | 2010-10-26 | Honeywell International Inc. | Methods for simultaneously forming doped regions having different conductivity-determining type element profiles |
JP5297840B2 (ja) * | 2009-03-03 | 2013-09-25 | シャープ株式会社 | 積層体、薄膜光電変換素子、集積型薄膜太陽電池およびそれらの製造方法 |
US9006688B2 (en) * | 2009-04-08 | 2015-04-14 | Varian Semiconductor Equipment Associates, Inc. | Techniques for processing a substrate using a mask |
US8900982B2 (en) | 2009-04-08 | 2014-12-02 | Varian Semiconductor Equipment Associates, Inc. | Techniques for processing a substrate |
US9076914B2 (en) | 2009-04-08 | 2015-07-07 | Varian Semiconductor Equipment Associates, Inc. | Techniques for processing a substrate |
US8330128B2 (en) * | 2009-04-17 | 2012-12-11 | Varian Semiconductor Equipment Associates, Inc. | Implant mask with moveable hinged mask segments |
US9318644B2 (en) | 2009-05-05 | 2016-04-19 | Solexel, Inc. | Ion implantation and annealing for thin film crystalline solar cells |
US20110027463A1 (en) * | 2009-06-16 | 2011-02-03 | Varian Semiconductor Equipment Associates, Inc. | Workpiece handling system |
US8749053B2 (en) | 2009-06-23 | 2014-06-10 | Intevac, Inc. | Plasma grid implant system for use in solar cell fabrications |
TW201104822A (en) * | 2009-07-20 | 2011-02-01 | E Ton Solar Tech Co Ltd | Aligning method of patterned electrode in a selective emitter structure |
US8324089B2 (en) | 2009-07-23 | 2012-12-04 | Honeywell International Inc. | Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions |
US8008176B2 (en) * | 2009-08-11 | 2011-08-30 | Varian Semiconductor Equipment Associates, Inc. | Masked ion implant with fast-slow scan |
US9673243B2 (en) | 2009-09-17 | 2017-06-06 | Sionyx, Llc | Photosensitive imaging devices and associated methods |
US9911781B2 (en) | 2009-09-17 | 2018-03-06 | Sionyx, Llc | Photosensitive imaging devices and associated methods |
US9691921B2 (en) | 2009-10-14 | 2017-06-27 | Alta Devices, Inc. | Textured metallic back reflector |
US20170141256A1 (en) | 2009-10-23 | 2017-05-18 | Alta Devices, Inc. | Multi-junction optoelectronic device with group iv semiconductor as a bottom junction |
US9502594B2 (en) * | 2012-01-19 | 2016-11-22 | Alta Devices, Inc. | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching |
US20150380576A1 (en) | 2010-10-13 | 2015-12-31 | Alta Devices, Inc. | Optoelectronic device with dielectric layer and method of manufacture |
US9136422B1 (en) | 2012-01-19 | 2015-09-15 | Alta Devices, Inc. | Texturing a layer in an optoelectronic device for improved angle randomization of light |
US9768329B1 (en) | 2009-10-23 | 2017-09-19 | Alta Devices, Inc. | Multi-junction optoelectronic device |
US11271128B2 (en) | 2009-10-23 | 2022-03-08 | Utica Leaseco, Llc | Multi-junction optoelectronic device |
US9012766B2 (en) | 2009-11-12 | 2015-04-21 | Silevo, Inc. | Aluminum grid as backside conductor on epitaxial silicon thin film solar cells |
US8461030B2 (en) | 2009-11-17 | 2013-06-11 | Varian Semiconductor Equipment Associates, Inc. | Apparatus and method for controllably implanting workpieces |
KR20110089497A (ko) * | 2010-02-01 | 2011-08-09 | 삼성전자주식회사 | 기판에의 불순물 도핑 방법, 이를 이용한 태양 전지의 제조 방법 및 이를 이용하여 제조된 태양 전지 |
US8735234B2 (en) * | 2010-02-18 | 2014-05-27 | Varian Semiconductor Equipment Associates, Inc. | Self-aligned ion implantation for IBC solar cells |
US8921149B2 (en) * | 2010-03-04 | 2014-12-30 | Varian Semiconductor Equipment Associates, Inc. | Aligning successive implants with a soft mask |
US8912082B2 (en) * | 2010-03-25 | 2014-12-16 | Varian Semiconductor Equipment Associates, Inc. | Implant alignment through a mask |
TW201133905A (en) * | 2010-03-30 | 2011-10-01 | E Ton Solar Tech Co Ltd | Method of forming solar cell |
US8084293B2 (en) * | 2010-04-06 | 2011-12-27 | Varian Semiconductor Equipment Associates, Inc. | Continuously optimized solar cell metallization design through feed-forward process |
JP2011228360A (ja) * | 2010-04-15 | 2011-11-10 | Institute Of Physical & Chemical Research | 太陽電池 |
US8692198B2 (en) | 2010-04-21 | 2014-04-08 | Sionyx, Inc. | Photosensitive imaging devices and associated methods |
WO2011140273A2 (en) * | 2010-05-04 | 2011-11-10 | Sionyx, Inc. | Photovoltaic devices and associated methods |
CN101866971A (zh) * | 2010-05-18 | 2010-10-20 | 常州亿晶光电科技有限公司 | 具有选择性发射级太阳能电池片 |
TWI399863B (zh) * | 2010-05-26 | 2013-06-21 | Inventec Solar Energy Corp | 快速升溫退火裝置及形成太陽能電池選擇性射極結構的方法 |
US8110431B2 (en) * | 2010-06-03 | 2012-02-07 | Suniva, Inc. | Ion implanted selective emitter solar cells with in situ surface passivation |
US8071418B2 (en) * | 2010-06-03 | 2011-12-06 | Suniva, Inc. | Selective emitter solar cells formed by a hybrid diffusion and ion implantation process |
US9214576B2 (en) | 2010-06-09 | 2015-12-15 | Solarcity Corporation | Transparent conducting oxide for photovoltaic devices |
US9105803B2 (en) | 2010-06-17 | 2015-08-11 | Panasonic Intellectual Property Management Co., Ltd. | Polycrystalline-type solar cell panel and process for production thereof |
WO2011160130A2 (en) | 2010-06-18 | 2011-12-22 | Sionyx, Inc | High speed photosensitive devices and associated methods |
US8563351B2 (en) | 2010-06-25 | 2013-10-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for manufacturing photovoltaic device |
US8293645B2 (en) | 2010-06-30 | 2012-10-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for forming photovoltaic cell |
US8664100B2 (en) * | 2010-07-07 | 2014-03-04 | Varian Semiconductor Equipment Associates, Inc. | Manufacturing high efficiency solar cell with directional doping |
CN102376789A (zh) * | 2010-08-24 | 2012-03-14 | 中芯国际集成电路制造(上海)有限公司 | 选择性发射极太阳能电池及制备方法 |
US20110139231A1 (en) * | 2010-08-25 | 2011-06-16 | Daniel Meier | Back junction solar cell with selective front surface field |
US9773928B2 (en) | 2010-09-10 | 2017-09-26 | Tesla, Inc. | Solar cell with electroplated metal grid |
US9800053B2 (en) | 2010-10-08 | 2017-10-24 | Tesla, Inc. | Solar panels with integrated cell-level MPPT devices |
TWI431797B (zh) | 2010-10-19 | 2014-03-21 | Ind Tech Res Inst | 選擇性射極之太陽能電池及其製作方法 |
US9231061B2 (en) | 2010-10-25 | 2016-01-05 | The Research Foundation Of State University Of New York | Fabrication of surface textures by ion implantation for antireflection of silicon crystals |
TWI469368B (zh) * | 2010-11-17 | 2015-01-11 | Intevac Inc | 在太陽能電池製造中供固態磊晶成長之直流電離子注入 |
TWI520176B (zh) * | 2010-12-10 | 2016-02-01 | Teijin Ltd | Semiconductor laminates, semiconductor devices, and the like |
EP2490268A1 (en) * | 2011-02-03 | 2012-08-22 | Imec | Method for fabricating photovoltaic cells |
US11251318B2 (en) * | 2011-03-08 | 2022-02-15 | Alliance For Sustainable Energy, Llc | Efficient black silicon photovoltaic devices with enhanced blue response |
JP5496136B2 (ja) * | 2011-03-25 | 2014-05-21 | 三菱電機株式会社 | 光起電力装置および光起電力モジュール |
TWI424582B (zh) * | 2011-04-15 | 2014-01-21 | Au Optronics Corp | 太陽能電池的製造方法 |
JP5665975B2 (ja) * | 2011-04-15 | 2015-02-04 | 三菱電機株式会社 | 太陽電池およびその製造方法、太陽電池モジュール |
EP2715797A4 (en) * | 2011-05-27 | 2015-05-27 | Solexel Inc | ION IMPLANTATION AND GLOWING FOR HIGHLY EFFICIENT SOLAR CELLS WITH BACK CONTACT AND BINDING |
US9054256B2 (en) | 2011-06-02 | 2015-06-09 | Solarcity Corporation | Tunneling-junction solar cell with copper grid for concentrated photovoltaic application |
US9496308B2 (en) | 2011-06-09 | 2016-11-15 | Sionyx, Llc | Process module for increasing the response of backside illuminated photosensitive imagers and associated methods |
US8697559B2 (en) | 2011-07-07 | 2014-04-15 | Varian Semiconductor Equipment Associates, Inc. | Use of ion beam tails to manufacture a workpiece |
JP2014525091A (ja) | 2011-07-13 | 2014-09-25 | サイオニクス、インク. | 生体撮像装置および関連方法 |
US8778448B2 (en) * | 2011-07-21 | 2014-07-15 | International Business Machines Corporation | Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys |
JP5726308B2 (ja) * | 2011-07-28 | 2015-05-27 | 京セラ株式会社 | 太陽電池素子および太陽電池モジュール |
US8629294B2 (en) | 2011-08-25 | 2014-01-14 | Honeywell International Inc. | Borate esters, boron-comprising dopants, and methods of fabricating boron-comprising dopants |
CN102969214B (zh) * | 2011-08-31 | 2017-08-25 | 圆益Ips股份有限公司 | 基板处理装置及具有其的基板处理系统 |
US8975170B2 (en) | 2011-10-24 | 2015-03-10 | Honeywell International Inc. | Dopant ink compositions for forming doped regions in semiconductor substrates, and methods for fabricating dopant ink compositions |
SG10201508582WA (en) | 2011-11-08 | 2015-11-27 | Intevac Inc | Substrate processing system and method |
US8507298B2 (en) | 2011-12-02 | 2013-08-13 | Varian Semiconductor Equipment Associates, Inc. | Patterned implant of a dielectric layer |
KR101902887B1 (ko) * | 2011-12-23 | 2018-10-01 | 엘지전자 주식회사 | 태양 전지의 제조 방법 |
CN103199146A (zh) * | 2012-01-04 | 2013-07-10 | 茂迪股份有限公司 | 太阳能电池制造方法 |
US11038080B2 (en) | 2012-01-19 | 2021-06-15 | Utica Leaseco, Llc | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching |
KR102044464B1 (ko) * | 2012-01-30 | 2019-11-13 | 엘지전자 주식회사 | 태양 전지 및 그 제조 방법 |
US20130199604A1 (en) * | 2012-02-06 | 2013-08-08 | Silicon Solar Solutions | Solar cells and methods of fabrication thereof |
KR101807791B1 (ko) | 2012-03-05 | 2018-01-18 | 엘지전자 주식회사 | 태양 전지의 제조 방법 |
US9064764B2 (en) | 2012-03-22 | 2015-06-23 | Sionyx, Inc. | Pixel isolation elements, devices, and associated methods |
US9099578B2 (en) | 2012-06-04 | 2015-08-04 | Nusola, Inc. | Structure for creating ohmic contact in semiconductor devices and methods for manufacture |
US20130255774A1 (en) * | 2012-04-02 | 2013-10-03 | Nusola, Inc. | Photovoltaic cell and process of manufacture |
JP2015519729A (ja) * | 2012-04-02 | 2015-07-09 | ヌソラ インコーポレイテッドnusola Inc. | 光電変換素子及びその製造方法 |
WO2013152054A1 (en) * | 2012-04-02 | 2013-10-10 | Nusola Inc. | Photovoltaic cell and process of manufacture |
US9412895B2 (en) | 2012-04-04 | 2016-08-09 | Samsung Sdi Co., Ltd. | Method of manufacturing photoelectric device |
US8895325B2 (en) * | 2012-04-27 | 2014-11-25 | Varian Semiconductor Equipment Associates, Inc. | System and method for aligning substrates for multiple implants |
KR101879781B1 (ko) * | 2012-05-11 | 2018-08-16 | 엘지전자 주식회사 | 태양 전지, 불순물층의 형성 방법 및 태양 전지의 제조 방법 |
US9865754B2 (en) | 2012-10-10 | 2018-01-09 | Tesla, Inc. | Hole collectors for silicon photovoltaic cells |
MY178951A (en) | 2012-12-19 | 2020-10-23 | Intevac Inc | Grid for plasma ion implant |
US9530923B2 (en) * | 2012-12-21 | 2016-12-27 | Sunpower Corporation | Ion implantation of dopants for forming spatially located diffusion regions of solar cells |
US9412884B2 (en) | 2013-01-11 | 2016-08-09 | Solarcity Corporation | Module fabrication of solar cells with low resistivity electrodes |
US9219174B2 (en) | 2013-01-11 | 2015-12-22 | Solarcity Corporation | Module fabrication of solar cells with low resistivity electrodes |
US10074755B2 (en) | 2013-01-11 | 2018-09-11 | Tesla, Inc. | High efficiency solar panel |
US9762830B2 (en) | 2013-02-15 | 2017-09-12 | Sionyx, Llc | High dynamic range CMOS image sensor having anti-blooming properties and associated methods |
US9029049B2 (en) * | 2013-02-20 | 2015-05-12 | Infineon Technologies Ag | Method for processing a carrier, a carrier, an electronic device and a lithographic mask |
WO2014151093A1 (en) | 2013-03-15 | 2014-09-25 | Sionyx, Inc. | Three dimensional imaging utilizing stacked imager devices and associated methods |
FR3003687B1 (fr) * | 2013-03-20 | 2015-07-17 | Mpo Energy | Procede de dopage de plaques de silicium |
CN104078519A (zh) * | 2013-03-28 | 2014-10-01 | 比亚迪股份有限公司 | 一种太阳能电池片及其制备方法 |
CN103268905B (zh) * | 2013-05-17 | 2017-02-08 | 浙江正泰太阳能科技有限公司 | 太阳能晶硅电池的制造方法 |
CN103280489B (zh) * | 2013-05-17 | 2016-02-03 | 浙江正泰太阳能科技有限公司 | 一种实现选择性发射极的方法 |
US9209345B2 (en) | 2013-06-29 | 2015-12-08 | Sionyx, Inc. | Shallow trench textured regions and associated methods |
FR3010227B1 (fr) * | 2013-09-04 | 2015-10-02 | Commissariat Energie Atomique | Procede de formation d'une cellule photovoltaique |
US9577134B2 (en) | 2013-12-09 | 2017-02-21 | Sunpower Corporation | Solar cell emitter region fabrication using self-aligned implant and cap |
US9960287B2 (en) | 2014-02-11 | 2018-05-01 | Picasolar, Inc. | Solar cells and methods of fabrication thereof |
FR3018391B1 (fr) * | 2014-03-07 | 2016-04-01 | Commissariat Energie Atomique | Procede de realisation d’une cellule photovoltaique a dopage selectif |
US9337369B2 (en) | 2014-03-28 | 2016-05-10 | Sunpower Corporation | Solar cells with tunnel dielectrics |
US10309012B2 (en) | 2014-07-03 | 2019-06-04 | Tesla, Inc. | Wafer carrier for reducing contamination from carbon particles and outgassing |
US9343312B2 (en) * | 2014-07-25 | 2016-05-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | High temperature intermittent ion implantation |
CN105489489B (zh) * | 2014-10-09 | 2019-03-15 | 江苏中科君芯科技有限公司 | 半导体器件的制作方法、ti-igbt的制作方法 |
US9899546B2 (en) | 2014-12-05 | 2018-02-20 | Tesla, Inc. | Photovoltaic cells with electrodes adapted to house conductive paste |
US9947822B2 (en) | 2015-02-02 | 2018-04-17 | Tesla, Inc. | Bifacial photovoltaic module using heterojunction solar cells |
US20160284913A1 (en) * | 2015-03-27 | 2016-09-29 | Staffan WESTERBERG | Solar cell emitter region fabrication using substrate-level ion implantation |
CN105070789B (zh) * | 2015-08-20 | 2017-11-10 | 苏州阿特斯阳光电力科技有限公司 | 一种晶体硅太阳能电池发射极的制备方法 |
US9761744B2 (en) | 2015-10-22 | 2017-09-12 | Tesla, Inc. | System and method for manufacturing photovoltaic structures with a metal seed layer |
US9842956B2 (en) | 2015-12-21 | 2017-12-12 | Tesla, Inc. | System and method for mass-production of high-efficiency photovoltaic structures |
US10115838B2 (en) | 2016-04-19 | 2018-10-30 | Tesla, Inc. | Photovoltaic structures with interlocking busbars |
CN105845776A (zh) * | 2016-04-26 | 2016-08-10 | 泰州中来光电科技有限公司 | 局部背场n型光伏电池的制备方法及其电池和组件、系统 |
US11018225B2 (en) | 2016-06-28 | 2021-05-25 | International Business Machines Corporation | III-V extension by high temperature plasma doping |
US10672919B2 (en) | 2017-09-19 | 2020-06-02 | Tesla, Inc. | Moisture-resistant solar cells for solar roof tiles |
KR101833936B1 (ko) | 2017-11-24 | 2018-03-02 | 엘지전자 주식회사 | 태양 전지 및 그 제조 방법 |
US11190128B2 (en) | 2018-02-27 | 2021-11-30 | Tesla, Inc. | Parallel-connected solar roof tile modules |
US10796899B2 (en) * | 2018-12-28 | 2020-10-06 | Micron Technology, Inc. | Silicon doping for laser splash blockage |
CN110098283A (zh) * | 2019-04-25 | 2019-08-06 | 晶科能源科技(海宁)有限公司 | 一种匹配激光选择性掺杂的离子注入磷扩散方法 |
JP7645138B2 (ja) | 2021-06-17 | 2025-03-13 | 株式会社アルバック | ハードマスクの製造方法及び太陽電池の製造方法 |
KR102676355B1 (ko) * | 2021-12-22 | 2024-06-19 | 재단법인 구미전자정보기술원 | 단결정 실리콘 기반 자외선 센서를 이용한 라인 스캐너 및 이의 제조 방법 |
CN117238977B (zh) | 2023-11-15 | 2024-02-27 | 天合光能股份有限公司 | 太阳能电池及其制作方法、光伏组件及光伏系统 |
CN117316759B (zh) * | 2023-11-28 | 2024-02-20 | 武汉鑫威源电子科技有限公司 | 提高p型氮化镓掺杂效率的方法以及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4179311A (en) * | 1977-01-17 | 1979-12-18 | Mostek Corporation | Method of stabilizing semiconductor device by converting doped poly-Si to polyoxides |
CN1198597A (zh) * | 1997-04-28 | 1998-11-11 | 夏普公司 | 太阳电池及其制备方法 |
US6271566B1 (en) * | 1997-03-25 | 2001-08-07 | Toshiba Corporation | Semiconductor device having a carbon containing insulation layer formed under the source/drain |
US6383876B1 (en) * | 1997-05-06 | 2002-05-07 | Lg Semicon Co., Ltd. | MOS device having non-uniform dopant concentration and method for fabricating the same |
US6507689B2 (en) * | 1998-06-19 | 2003-01-14 | Pirelli Cavi E Sistemi S.P.A. | Optical fiber having low non-linearity for WDM transmission |
US6552414B1 (en) * | 1996-12-24 | 2003-04-22 | Imec Vzw | Semiconductor device with selectively diffused regions |
Family Cites Families (322)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US554854A (en) * | 1896-02-18 | John f | ||
US3786359A (en) | 1969-03-28 | 1974-01-15 | Alpha Ind Inc | Ion accelerator and ion species selector |
US3607450A (en) * | 1969-09-26 | 1971-09-21 | Us Air Force | Lead sulfide ion implantation mask |
US3790412A (en) | 1972-04-07 | 1974-02-05 | Bell Telephone Labor Inc | Method of reducing the effects of particle impingement on shadow masks |
US3969746A (en) | 1973-12-10 | 1976-07-13 | Texas Instruments Incorporated | Vertical multijunction solar cell |
US3969163A (en) | 1974-09-19 | 1976-07-13 | Texas Instruments Incorporated | Vapor deposition method of forming low cost semiconductor solar cells including reconstitution of the reacted gases |
US3948682A (en) * | 1974-10-31 | 1976-04-06 | Ninel Mineevna Bordina | Semiconductor photoelectric generator |
US3976508A (en) | 1974-11-01 | 1976-08-24 | Mobil Tyco Solar Energy Corporation | Tubular solar cell devices |
JPS5165774U (zh) | 1974-11-20 | 1976-05-24 | ||
US4004949A (en) * | 1975-01-06 | 1977-01-25 | Motorola, Inc. | Method of making silicon solar cells |
US4144094A (en) | 1975-01-06 | 1979-03-13 | Motorola, Inc. | Radiation responsive current generating cell and method of forming same |
US4072541A (en) * | 1975-11-21 | 1978-02-07 | Communications Satellite Corporation | Radiation hardened P-I-N and N-I-P solar cells |
US4095329A (en) | 1975-12-05 | 1978-06-20 | Mobil Tyco Soalar Energy Corporation | Manufacture of semiconductor ribbon and solar cells |
US4152536A (en) * | 1975-12-05 | 1979-05-01 | Mobil Tyco Solar Energy Corp. | Solar cells |
US4021276A (en) * | 1975-12-29 | 1977-05-03 | Western Electric Company, Inc. | Method of making rib-structure shadow mask for ion implantation |
US4070689A (en) | 1975-12-31 | 1978-01-24 | Motorola Inc. | Semiconductor solar energy device |
US4131488A (en) | 1975-12-31 | 1978-12-26 | Motorola, Inc. | Method of semiconductor solar energy device fabrication |
US4001864A (en) * | 1976-01-30 | 1977-01-04 | Gibbons James F | Semiconductor p-n junction solar cell and method of manufacture |
US4056404A (en) | 1976-03-29 | 1977-11-01 | Mobil Tyco Solar Energy Corporation | Flat tubular solar cells and method of producing same |
US4090213A (en) * | 1976-06-15 | 1978-05-16 | California Institute Of Technology | Induced junction solar cell and method of fabrication |
US4116717A (en) | 1976-12-08 | 1978-09-26 | The United States Of America As Represented By The Secretary Of The Air Force | Ion implanted eutectic gallium arsenide solar cell |
US4070205A (en) * | 1976-12-08 | 1978-01-24 | The United States Of America As Represented By The Secretary Of The Air Force | Aluminum arsenide eutectic gallium arsenide solar cell |
US4086102A (en) | 1976-12-13 | 1978-04-25 | King William J | Inexpensive solar cell and method therefor |
US4131486A (en) | 1977-01-19 | 1978-12-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Back wall solar cell |
US4141756A (en) * | 1977-10-14 | 1979-02-27 | Honeywell Inc. | Method of making a gap UV photodiode by multiple ion-implantations |
US4152824A (en) * | 1977-12-30 | 1979-05-08 | Mobil Tyco Solar Energy Corporation | Manufacture of solar cells |
US4301592A (en) | 1978-05-26 | 1981-11-24 | Hung Chang Lin | Method of fabricating semiconductor junction device employing separate metallization |
US4219830A (en) | 1978-06-19 | 1980-08-26 | Gibbons James F | Semiconductor solar cell |
US4253881A (en) * | 1978-10-23 | 1981-03-03 | Rudolf Hezel | Solar cells composed of semiconductive materials |
US4227941A (en) | 1979-03-21 | 1980-10-14 | Massachusetts Institute Of Technology | Shallow-homojunction solar cells |
US4273950A (en) | 1979-05-29 | 1981-06-16 | Photowatt International, Inc. | Solar cell and fabrication thereof using microwaves |
DE2941908C2 (de) * | 1979-10-17 | 1986-07-03 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Verfahren zum Herstellen einer eine Silizium-Schicht aufweisenden Solarzelle |
US4490573A (en) | 1979-12-26 | 1984-12-25 | Sera Solar Corporation | Solar cells |
DK79780A (da) * | 1980-02-25 | 1981-08-26 | Elektronikcentralen | Solcelle med et halvlederkrystal og med en belyst overflade batteri af solceller og fremgangsmaade til fremstilling af samme |
JPS5713777A (en) | 1980-06-30 | 1982-01-23 | Shunpei Yamazaki | Semiconductor device and manufacture thereof |
USRE31151E (en) | 1980-04-07 | 1983-02-15 | Inexpensive solar cell and method therefor | |
US4295002A (en) | 1980-06-23 | 1981-10-13 | International Business Machines Corporation | Heterojunction V-groove multijunction solar cell |
US4322571A (en) * | 1980-07-17 | 1982-03-30 | The Boeing Company | Solar cells and methods for manufacture thereof |
DE3135933A1 (de) | 1980-09-26 | 1982-05-19 | Unisearch Ltd., Kensington, New South Wales | Solarzelle und verfahren zu ihrer herstellung |
US4421577A (en) | 1980-11-10 | 1983-12-20 | The Board Of Trustees Of The Leland Stanford, Junior University | Method for making Schottky barrier diodes with engineered heights |
US4353160A (en) | 1980-11-24 | 1982-10-12 | Spire Corporation | Solar cell junction processing system |
DE3049376A1 (de) | 1980-12-29 | 1982-07-29 | Heliotronic Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH, 8263 Burghausen | Verfahren zur herstellung vertikaler pn-uebergaenge beim ziehen von siliciumscheiben aus einer siliciumschmelze |
US4379944A (en) | 1981-02-05 | 1983-04-12 | Varian Associates, Inc. | Grooved solar cell for deployment at set angle |
JPS57132373A (en) * | 1981-02-10 | 1982-08-16 | Agency Of Ind Science & Technol | Manufacture of solar battery |
EP0078336B1 (de) | 1981-10-30 | 1988-02-03 | Ibm Deutschland Gmbh | Schattenwurfmaske für die Ionenimplantation und die Ionenstrahllithographie |
JPS58164134A (ja) | 1982-03-24 | 1983-09-29 | Hitachi Ltd | 半導体装置の製造方法 |
DE3234678A1 (de) | 1982-09-18 | 1984-04-05 | Battelle-Institut E.V., 6000 Frankfurt | Solarzelle |
US4479027A (en) | 1982-09-24 | 1984-10-23 | Todorof William J | Multi-layer thin-film, flexible silicon alloy photovoltaic cell |
US4456489A (en) | 1982-10-15 | 1984-06-26 | Motorola, Inc. | Method of forming a shallow and high conductivity boron doped layer in silicon |
US4587430A (en) | 1983-02-10 | 1986-05-06 | Mission Research Corporation | Ion implantation source and device |
DE3308269A1 (de) | 1983-03-09 | 1984-09-13 | Licentia Patent-Verwaltungs-Gmbh | Solarzelle |
US4539431A (en) | 1983-06-06 | 1985-09-03 | Sera Solar Corporation | Pulse anneal method for solar cell |
US4847504A (en) * | 1983-08-15 | 1989-07-11 | Applied Materials, Inc. | Apparatus and methods for ion implantation |
US4522657A (en) * | 1983-10-20 | 1985-06-11 | Westinghouse Electric Corp. | Low temperature process for annealing shallow implanted N+/P junctions |
US4589191A (en) | 1983-10-20 | 1986-05-20 | Unisearch Limited | Manufacture of high efficiency solar cells |
US4524237A (en) | 1984-02-08 | 1985-06-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Increased voltage photovoltaic cell |
US4542256A (en) | 1984-04-27 | 1985-09-17 | University Of Delaware | Graded affinity photovoltaic cell |
JPH0630237B2 (ja) * | 1984-09-10 | 1994-04-20 | 株式会社日立製作所 | イオン打込み装置 |
GB8423558D0 (en) | 1984-09-18 | 1984-10-24 | Secr Defence | Semi-conductor solar cells |
US4667060A (en) * | 1985-05-28 | 1987-05-19 | Spire Corporation | Back junction photovoltaic solar cell |
JPS61294866A (ja) * | 1985-06-21 | 1986-12-25 | Nippon Texas Instr Kk | 電荷結合型半導体装置 |
JPS6215864A (ja) * | 1985-07-15 | 1987-01-24 | Hitachi Ltd | 太陽電池の製造方法 |
DE3536299A1 (de) | 1985-10-11 | 1987-04-16 | Nukem Gmbh | Solarzelle aus silizium |
US4676845A (en) | 1986-02-18 | 1987-06-30 | Spire Corporation | Passivated deep p/n junction |
US4665277A (en) * | 1986-03-11 | 1987-05-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Floating emitter solar cell |
US4719355A (en) * | 1986-04-10 | 1988-01-12 | Texas Instruments Incorporated | Ion source for an ion implanter |
US4737688A (en) * | 1986-07-22 | 1988-04-12 | Applied Electron Corporation | Wide area source of multiply ionized atomic or molecular species |
JPS63143876A (ja) | 1986-12-08 | 1988-06-16 | Hitachi Ltd | 太陽電池の製造方法 |
DE3712503A1 (de) | 1987-04-13 | 1988-11-03 | Nukem Gmbh | Solarzelle |
US4830678A (en) * | 1987-06-01 | 1989-05-16 | Todorof William J | Liquid-cooled sealed enclosure for concentrator solar cell and secondary lens |
US4834805A (en) * | 1987-09-24 | 1989-05-30 | Wattsun, Inc. | Photovoltaic power modules and methods for making same |
JPH01290267A (ja) * | 1988-05-18 | 1989-11-22 | Fuji Electric Co Ltd | 光電変換素子の製造方法 |
DE68923061T2 (de) | 1988-11-16 | 1995-11-09 | Mitsubishi Electric Corp | Sonnenzelle. |
JP2808004B2 (ja) * | 1989-01-30 | 1998-10-08 | 京セラ株式会社 | 太陽電池 |
US5132544A (en) * | 1990-08-29 | 1992-07-21 | Nissin Electric Company Ltd. | System for irradiating a surface with atomic and molecular ions using two dimensional magnetic scanning |
JP2875892B2 (ja) * | 1990-12-20 | 1999-03-31 | 三菱重工業株式会社 | 立方晶窒化ほう素膜の形成方法 |
US5112409A (en) * | 1991-01-23 | 1992-05-12 | Solarex Corporation | Solar cells with reduced recombination under grid lines, and method of manufacturing same |
US5125983A (en) * | 1991-04-22 | 1992-06-30 | Electric Power Research Institute, Inc. | Generating electric power from solar radiation |
US5113735A (en) * | 1991-04-23 | 1992-05-19 | Alcan International Limited | Slitting apparatus |
USH1637H (en) * | 1991-09-18 | 1997-03-04 | Offord; Bruce W. | Laser-assisted fabrication of bipolar transistors in silicon-on-sapphire (SOS) |
JPH0797653B2 (ja) * | 1991-10-01 | 1995-10-18 | 工業技術院長 | 光電変換素子 |
JP2837296B2 (ja) | 1991-10-17 | 1998-12-14 | シャープ株式会社 | 太陽電池 |
DE4217428A1 (de) * | 1991-12-09 | 1993-06-17 | Deutsche Aerospace | Hochleistungs-solarzellenstruktur |
US5356488A (en) | 1991-12-27 | 1994-10-18 | Rudolf Hezel | Solar cell and method for its manufacture |
DE4202455C1 (zh) * | 1992-01-29 | 1993-08-19 | Siemens Ag, 8000 Muenchen, De | |
TW232079B (zh) * | 1992-03-17 | 1994-10-11 | Wisconsin Alumni Res Found | |
US5374456A (en) | 1992-12-23 | 1994-12-20 | Hughes Aircraft Company | Surface potential control in plasma processing of materials |
US6084175A (en) * | 1993-05-20 | 2000-07-04 | Amoco/Enron Solar | Front contact trenches for polycrystalline photovoltaic devices and semi-conductor devices with buried contacts |
US5421889A (en) | 1993-06-29 | 1995-06-06 | Tokyo Electron Limited | Method and apparatus for inverting samples in a process |
JP3159583B2 (ja) * | 1993-11-10 | 2001-04-23 | シャープ株式会社 | 太陽電池およびその製造方法 |
KR100366910B1 (ko) * | 1994-04-05 | 2003-03-04 | 소니 가부시끼 가이샤 | 반도체장치의제조방법 |
FR2722612B1 (fr) | 1994-07-13 | 1997-01-03 | Centre Nat Rech Scient | Procede de fabrication d'un materiau ou dispositif photovoltaique, materiau ou dispositif ainsi obteu et photopile comprenant un tel materiau ou dispositif |
US5583368A (en) | 1994-08-11 | 1996-12-10 | International Business Machines Corporation | Stacked devices |
US5693376A (en) | 1995-06-23 | 1997-12-02 | Wisconsin Alumni Research Foundation | Method for plasma source ion implantation and deposition for cylindrical surfaces |
US5554854A (en) * | 1995-07-17 | 1996-09-10 | Eaton Corporation | In situ removal of contaminants from the interior surfaces of an ion beam implanter |
US5653811A (en) | 1995-07-19 | 1997-08-05 | Chan; Chung | System for the plasma treatment of large area substrates |
US5863831A (en) | 1995-08-14 | 1999-01-26 | Advanced Materials Engineering Research, Inc. | Process for fabricating semiconductor device with shallow p-type regions using dopant compounds containing elements of high solid solubility |
GB2344213B (en) * | 1995-11-08 | 2000-08-09 | Applied Materials Inc | An ion implanter with improved field control |
GB2343545B (en) | 1995-11-08 | 2000-06-21 | Applied Materials Inc | An ion implanter with three electrode deceleration structure and upstream mass selection |
US5641362A (en) | 1995-11-22 | 1997-06-24 | Ebara Solar, Inc. | Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell |
US5760405A (en) | 1996-02-16 | 1998-06-02 | Eaton Corporation | Plasma chamber for controlling ion dosage in ion implantation |
US6827824B1 (en) * | 1996-04-12 | 2004-12-07 | Micron Technology, Inc. | Enhanced collimated deposition |
US7118996B1 (en) * | 1996-05-15 | 2006-10-10 | Semiconductor Energy Laboratory Co., Ltd. | Apparatus and method for doping |
GB2314202B (en) * | 1996-06-14 | 2000-08-09 | Applied Materials Inc | Ion implantation apparatus and a method of monitoring high energy neutral contamination in an ion implantation process |
GB2316224B (en) * | 1996-06-14 | 2000-10-04 | Applied Materials Inc | Ion implantation method |
US5885896A (en) * | 1996-07-08 | 1999-03-23 | Micron Technology, Inc. | Using implants to lower anneal temperatures |
JP4197193B2 (ja) * | 1996-07-08 | 2008-12-17 | 株式会社半導体エネルギー研究所 | 光電変換装置の製造方法 |
EP0837333A3 (en) * | 1996-10-18 | 1999-06-09 | Tokyo Electron Limited | Apparatus for aligning a semiconductor wafer with an inspection contactor |
US6091021A (en) | 1996-11-01 | 2000-07-18 | Sandia Corporation | Silicon cells made by self-aligned selective-emitter plasma-etchback process |
US5963801A (en) | 1996-12-19 | 1999-10-05 | Lsi Logic Corporation | Method of forming retrograde well structures and punch-through barriers using low energy implants |
US6239441B1 (en) | 1997-01-20 | 2001-05-29 | Kabushiki Kaisha Toshiba | Apparatus for manufacturing a semiconductor device and a method for manufacturing a semiconductor device |
US5945012A (en) | 1997-02-18 | 1999-08-31 | Silicon Genesis Corporation | Tumbling barrel plasma processor |
US6291313B1 (en) | 1997-05-12 | 2001-09-18 | Silicon Genesis Corporation | Method and device for controlled cleaving process |
US6146979A (en) * | 1997-05-12 | 2000-11-14 | Silicon Genesis Corporation | Pressurized microbubble thin film separation process using a reusable substrate |
US6033974A (en) * | 1997-05-12 | 2000-03-07 | Silicon Genesis Corporation | Method for controlled cleaving process |
US5907158A (en) | 1997-05-14 | 1999-05-25 | Ebara Corporation | Broad range ion implanter |
GB2325561B (en) * | 1997-05-20 | 2001-10-17 | Applied Materials Inc | Apparatus for and methods of implanting desired chemical species in semiconductor substrates |
US6103599A (en) | 1997-07-25 | 2000-08-15 | Silicon Genesis Corporation | Planarizing technique for multilayered substrates |
GB2343550A (en) | 1997-07-29 | 2000-05-10 | Silicon Genesis Corp | Cluster tool method and apparatus using plasma immersion ion implantation |
WO1999010927A1 (en) * | 1997-08-29 | 1999-03-04 | Farrens Sharon N | In situ plasma wafer bonding method |
US5998282A (en) | 1997-10-21 | 1999-12-07 | Lukaszek; Wieslaw A. | Method of reducing charging damage to integrated circuits in ion implant and plasma-based integrated circuit process equipment |
US6006253A (en) | 1997-10-31 | 1999-12-21 | Intel Corporation | Method and apparatus to provide a backchannel for receiver terminals in a loosely-coupled conference |
US6016036A (en) | 1998-01-28 | 2000-01-18 | Eaton Corporation | Magnetic filter for ion source |
US6265328B1 (en) * | 1998-01-30 | 2001-07-24 | Silicon Genesis Corporation | Wafer edge engineering method and device |
US6269765B1 (en) | 1998-02-11 | 2001-08-07 | Silicon Genesis Corporation | Collection devices for plasma immersion ion implantation |
US6120660A (en) | 1998-02-11 | 2000-09-19 | Silicon Genesis Corporation | Removable liner design for plasma immersion ion implantation |
US6186091B1 (en) * | 1998-02-11 | 2001-02-13 | Silicon Genesis Corporation | Shielded platen design for plasma immersion ion implantation |
US6228176B1 (en) * | 1998-02-11 | 2001-05-08 | Silicon Genesis Corporation | Contoured platen design for plasma immerson ion implantation |
US6217724B1 (en) * | 1998-02-11 | 2001-04-17 | Silicon General Corporation | Coated platen design for plasma immersion ion implantation |
US6051073A (en) * | 1998-02-11 | 2000-04-18 | Silicon Genesis Corporation | Perforated shield for plasma immersion ion implantation |
US6274459B1 (en) | 1998-02-17 | 2001-08-14 | Silicon Genesis Corporation | Method for non mass selected ion implant profile control |
US6083324A (en) | 1998-02-19 | 2000-07-04 | Silicon Genesis Corporation | Gettering technique for silicon-on-insulator wafers |
US6060718A (en) | 1998-02-26 | 2000-05-09 | Eaton Corporation | Ion source having wide output current operating range |
US6113735A (en) | 1998-03-02 | 2000-09-05 | Silicon Genesis Corporation | Distributed system and code for control and automation of plasma immersion ion implanter |
US6034321A (en) * | 1998-03-24 | 2000-03-07 | Essential Research, Inc. | Dot-junction photovoltaic cells using high-absorption semiconductors |
US6221774B1 (en) * | 1998-04-10 | 2001-04-24 | Silicon Genesis Corporation | Method for surface treatment of substrates |
US6335534B1 (en) * | 1998-04-17 | 2002-01-01 | Kabushiki Kaisha Toshiba | Ion implantation apparatus, ion generating apparatus and semiconductor manufacturing method with ion implantation processes |
DE19820152A1 (de) * | 1998-05-06 | 1999-11-11 | Rossendorf Forschzent | Stickstoffhaltige Randschicht auf Bauteilen aus nichtrostendem Stahl und Verfahren zur Herstellung der Randschicht |
US6291326B1 (en) | 1998-06-23 | 2001-09-18 | Silicon Genesis Corporation | Pre-semiconductor process implant and post-process film separation |
US6291314B1 (en) | 1998-06-23 | 2001-09-18 | Silicon Genesis Corporation | Controlled cleavage process and device for patterned films using a release layer |
US6248649B1 (en) * | 1998-06-23 | 2001-06-19 | Silicon Genesis Corporation | Controlled cleavage process and device for patterned films using patterned implants |
AUPP437598A0 (en) | 1998-06-29 | 1998-07-23 | Unisearch Limited | A self aligning method for forming a selective emitter and metallization in a solar cell |
JP2002520818A (ja) * | 1998-07-02 | 2002-07-09 | アストロパワー | シリコン薄膜,集積化された太陽電池,モジュール,及びその製造方法 |
JP2000026975A (ja) | 1998-07-09 | 2000-01-25 | Komatsu Ltd | 表面処理装置 |
JP2000123778A (ja) * | 1998-10-14 | 2000-04-28 | Hitachi Ltd | イオン注入装置およびイオン注入方法 |
US6150708A (en) | 1998-11-13 | 2000-11-21 | Advanced Micro Devices, Inc. | Advanced CMOS circuitry that utilizes both sides of a wafer surface for increased circuit density |
US20010002584A1 (en) | 1998-12-01 | 2001-06-07 | Wei Liu | Enhanced plasma mode and system for plasma immersion ion implantation |
US6213050B1 (en) * | 1998-12-01 | 2001-04-10 | Silicon Genesis Corporation | Enhanced plasma mode and computer system for plasma immersion ion implantation |
US20010017109A1 (en) | 1998-12-01 | 2001-08-30 | Wei Liu | Enhanced plasma mode and system for plasma immersion ion implantation |
US6300227B1 (en) | 1998-12-01 | 2001-10-09 | Silicon Genesis Corporation | Enhanced plasma mode and system for plasma immersion ion implantation |
US6534381B2 (en) * | 1999-01-08 | 2003-03-18 | Silicon Genesis Corporation | Method for fabricating multi-layered substrates |
US6171965B1 (en) * | 1999-04-21 | 2001-01-09 | Silicon Genesis Corporation | Treatment method of cleaved film for the manufacture of substrates |
US6287941B1 (en) | 1999-04-21 | 2001-09-11 | Silicon Genesis Corporation | Surface finishing of SOI substrates using an EPI process |
US6204151B1 (en) * | 1999-04-21 | 2001-03-20 | Silicon Genesis Corporation | Smoothing method for cleaved films made using thermal treatment |
US6458723B1 (en) | 1999-06-24 | 2002-10-01 | Silicon Genesis Corporation | High temperature implant apparatus |
US6263941B1 (en) * | 1999-08-10 | 2001-07-24 | Silicon Genesis Corporation | Nozzle for cleaving substrates |
US6500732B1 (en) | 1999-08-10 | 2002-12-31 | Silicon Genesis Corporation | Cleaving process to fabricate multilayered substrates using low implantation doses |
US6221740B1 (en) * | 1999-08-10 | 2001-04-24 | Silicon Genesis Corporation | Substrate cleaving tool and method |
TW419834B (en) | 1999-09-01 | 2001-01-21 | Opto Tech Corp | Photovoltaic generator |
US6489241B1 (en) | 1999-09-17 | 2002-12-03 | Applied Materials, Inc. | Apparatus and method for surface finishing a silicon film |
US7066703B2 (en) * | 1999-09-29 | 2006-06-27 | Tokyo Electron Limited | Chuck transport method and system |
JP2001189483A (ja) * | 1999-10-18 | 2001-07-10 | Sharp Corp | バイパス機能付太陽電池セルおよびバイパス機能付き多接合積層型太陽電池セルおよびそれらの製造方法 |
US6486478B1 (en) | 1999-12-06 | 2002-11-26 | Epion Corporation | Gas cluster ion beam smoother apparatus |
DE10060002B4 (de) | 1999-12-07 | 2016-01-28 | Komatsu Ltd. | Vorrichtung zur Oberflächenbehandlung |
JP4820038B2 (ja) | 1999-12-13 | 2011-11-24 | セメクイップ, インコーポレイテッド | イオン注入イオン源、システム、および方法 |
US6544862B1 (en) * | 2000-01-14 | 2003-04-08 | Silicon Genesis Corporation | Particle distribution method and resulting structure for a layer transfer process |
US6376370B1 (en) * | 2000-01-18 | 2002-04-23 | Micron Technology, Inc. | Process for providing seed layers for using aluminum, copper, gold and silver metallurgy process for providing seed layers for using aluminum, copper, gold and silver metallurgy |
JP4450126B2 (ja) | 2000-01-21 | 2010-04-14 | 日新電機株式会社 | シリコン系結晶薄膜の形成方法 |
JP2001252555A (ja) * | 2000-03-09 | 2001-09-18 | Hitachi Ltd | 薄膜生成システム |
US6417515B1 (en) | 2000-03-17 | 2002-07-09 | International Business Machines Corporation | In-situ ion implant activation and measurement apparatus |
US20010046566A1 (en) * | 2000-03-23 | 2001-11-29 | Chu Paul K. | Apparatus and method for direct current plasma immersion ion implantation |
JP3888860B2 (ja) | 2000-05-24 | 2007-03-07 | シャープ株式会社 | 太陽電池セルの保護方法 |
FR2809867B1 (fr) * | 2000-05-30 | 2003-10-24 | Commissariat Energie Atomique | Substrat fragilise et procede de fabrication d'un tel substrat |
US6495010B2 (en) | 2000-07-10 | 2002-12-17 | Unaxis Usa, Inc. | Differentially-pumped material processing system |
US7228211B1 (en) | 2000-07-25 | 2007-06-05 | Hti Ip, Llc | Telematics device for vehicles with an interface for multiple peripheral devices |
US6604033B1 (en) | 2000-07-25 | 2003-08-05 | Networkcar.Com | Wireless diagnostic system for characterizing a vehicle's exhaust emissions |
US6636790B1 (en) | 2000-07-25 | 2003-10-21 | Reynolds And Reynolds Holdings, Inc. | Wireless diagnostic system and method for monitoring vehicles |
JP2002083981A (ja) * | 2000-09-07 | 2002-03-22 | Shin Etsu Handotai Co Ltd | 太陽電池セルおよびその製造方法 |
US20020090758A1 (en) | 2000-09-19 | 2002-07-11 | Silicon Genesis Corporation | Method and resulting device for manufacturing for double gated transistors |
US6294434B1 (en) * | 2000-09-27 | 2001-09-25 | Vanguard International Semiconductor Corporation | Method of forming a metal silicide layer on a polysilicon gate structure and on a source/drain region of a MOSFET device |
JP2002289514A (ja) * | 2000-12-22 | 2002-10-04 | Nikon Corp | 露光装置及び露光方法 |
KR100366349B1 (ko) * | 2001-01-03 | 2002-12-31 | 삼성에스디아이 주식회사 | 태양 전지 및 그의 제조 방법 |
US6448152B1 (en) | 2001-02-20 | 2002-09-10 | Silicon Genesis Corporation | Method and system for generating a plurality of donor wafers and handle wafers prior to an order being placed by a customer |
US7523159B1 (en) * | 2001-03-14 | 2009-04-21 | Hti, Ip, Llc | Systems, methods and devices for a telematics web services interface feature |
US6611740B2 (en) | 2001-03-14 | 2003-08-26 | Networkcar | Internet-based vehicle-diagnostic system |
US6547939B2 (en) | 2001-03-29 | 2003-04-15 | Super Light Wave Corp. | Adjustable shadow mask for improving uniformity of film deposition using multiple monitoring points along radius of substrate |
US20020144725A1 (en) | 2001-04-10 | 2002-10-10 | Motorola, Inc. | Semiconductor structure suitable for forming a solar cell, device including the structure, and methods of forming the device and structure |
JP3888608B2 (ja) * | 2001-04-25 | 2007-03-07 | 東京エレクトロン株式会社 | 基板両面処理装置 |
US6780759B2 (en) | 2001-05-09 | 2004-08-24 | Silicon Genesis Corporation | Method for multi-frequency bonding |
US20020170591A1 (en) | 2001-05-15 | 2002-11-21 | Pharmaseq, Inc. | Method and apparatus for powering circuitry with on-chip solar cells within a common substrate |
EP1258927B1 (en) | 2001-05-15 | 2005-08-17 | STMicroelectronics S.r.l. | High-gain photodetector of semiconductor material and manufacturing process thereof |
US20030015700A1 (en) | 2001-07-20 | 2003-01-23 | Motorola, Inc. | Suitable semiconductor structure for forming multijunction solar cell and method for forming the same |
US6594579B1 (en) | 2001-08-06 | 2003-07-15 | Networkcar | Internet-based method for determining a vehicle's fuel efficiency |
CN1996552B (zh) | 2001-08-31 | 2012-09-05 | 克罗辛自动化公司 | 晶片机 |
DE10142481A1 (de) | 2001-08-31 | 2003-03-27 | Rudolf Hezel | Solarzelle sowie Verfahren zur Herstellung einer solchen |
US7109517B2 (en) * | 2001-11-16 | 2006-09-19 | Zaidi Saleem H | Method of making an enhanced optical absorption and radiation tolerance in thin-film solar cells and photodetectors |
US7174243B1 (en) * | 2001-12-06 | 2007-02-06 | Hti Ip, Llc | Wireless, internet-based system for transmitting and analyzing GPS data |
US6787693B2 (en) | 2001-12-06 | 2004-09-07 | International Rectifier Corporation | Fast turn on/off photovoltaic generator for photovoltaic relay |
US6613974B2 (en) | 2001-12-21 | 2003-09-02 | Micrel, Incorporated | Tandem Si-Ge solar cell with improved conversion efficiency |
US6518184B1 (en) | 2002-01-18 | 2003-02-11 | Intel Corporation | Enhancement of an interconnect |
US7225047B2 (en) * | 2002-03-19 | 2007-05-29 | Applied Materials, Inc. | Method, system and medium for controlling semiconductor wafer processes using critical dimension measurements |
US6660928B1 (en) | 2002-04-02 | 2003-12-09 | Essential Research, Inc. | Multi-junction photovoltaic cell |
JP2004031648A (ja) * | 2002-06-26 | 2004-01-29 | Toppan Printing Co Ltd | 光閉じ込め層を持つ光電変換素子と光電変換装置およびこの装置を備えた太陽電池 |
US20040025932A1 (en) | 2002-08-12 | 2004-02-12 | John Husher | Variegated, high efficiency solar cell and method for making same |
GB2409340B (en) | 2002-10-04 | 2006-05-10 | Silicon Genesis Corp | Method for treating semiconductor material |
US8187377B2 (en) | 2002-10-04 | 2012-05-29 | Silicon Genesis Corporation | Non-contact etch annealing of strained layers |
US6801028B2 (en) * | 2002-11-14 | 2004-10-05 | Fyre Storm, Inc. | Phase locked looped based digital pulse converter |
JP2004193350A (ja) | 2002-12-11 | 2004-07-08 | Sharp Corp | 太陽電池セルおよびその製造方法 |
JP2004273826A (ja) * | 2003-03-10 | 2004-09-30 | Sharp Corp | 光電変換装置及びその製造方法 |
JP4373115B2 (ja) * | 2003-04-04 | 2009-11-25 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US7339110B1 (en) | 2003-04-10 | 2008-03-04 | Sunpower Corporation | Solar cell and method of manufacture |
US7199039B2 (en) * | 2003-05-19 | 2007-04-03 | Intel Corporation | Interconnect routing over semiconductor for editing through the back side of an integrated circuit |
US20060157733A1 (en) * | 2003-06-13 | 2006-07-20 | Gerald Lucovsky | Complex oxides for use in semiconductor devices and related methods |
US20060166394A1 (en) | 2003-07-07 | 2006-07-27 | Kukulka Jerry R | Solar cell structure with solar cells having reverse-bias protection using an implanted current shunt |
US6949895B2 (en) * | 2003-09-03 | 2005-09-27 | Axcelis Technologies, Inc. | Unipolar electrostatic quadrupole lens and switching methods for charged beam transport |
JP4660642B2 (ja) * | 2003-10-17 | 2011-03-30 | 信越化学工業株式会社 | 太陽電池及びその製造方法 |
US7354815B2 (en) * | 2003-11-18 | 2008-04-08 | Silicon Genesis Corporation | Method for fabricating semiconductor devices using strained silicon bearing material |
US7081186B2 (en) | 2003-11-20 | 2006-07-25 | Sheffield Hallam University | Combined coating process comprising magnetic field-assisted, high power, pulsed cathode sputtering and an unbalanced magnetron |
US20050150597A1 (en) | 2004-01-09 | 2005-07-14 | Silicon Genesis Corporation | Apparatus and method for controlled cleaving |
GB2409928B (en) * | 2004-01-09 | 2007-03-21 | Applied Materials Inc | Improvements relating to ion implantation |
US7390724B2 (en) | 2004-04-12 | 2008-06-24 | Silicon Genesis Corporation | Method and system for lattice space engineering |
US7225065B1 (en) * | 2004-04-26 | 2007-05-29 | Hti Ip, Llc | In-vehicle wiring harness with multiple adaptors for an on-board diagnostic connector |
US20050247668A1 (en) | 2004-05-06 | 2005-11-10 | Silicon Genesis Corporation | Method for smoothing a film of material using a ring structure |
JP2005322780A (ja) * | 2004-05-10 | 2005-11-17 | Toyota Motor Corp | 太陽電池 |
GB0410743D0 (en) | 2004-05-14 | 2004-06-16 | Vivactiss Bvba | Holder for wafers |
US8058156B2 (en) | 2004-07-20 | 2011-11-15 | Applied Materials, Inc. | Plasma immersion ion implantation reactor having multiple ion shower grids |
US7767561B2 (en) | 2004-07-20 | 2010-08-03 | Applied Materials, Inc. | Plasma immersion ion implantation reactor having an ion shower grid |
US8963169B2 (en) | 2004-07-28 | 2015-02-24 | Quantum Semiconductor Llc | CMOS pixels comprising epitaxial layers for light-sensing and light emission |
US7094666B2 (en) | 2004-07-29 | 2006-08-22 | Silicon Genesis Corporation | Method and system for fabricating strained layers for the manufacture of integrated circuits |
US7078317B2 (en) | 2004-08-06 | 2006-07-18 | Silicon Genesis Corporation | Method and system for source switching and in-situ plasma bonding |
GB2417251A (en) | 2004-08-18 | 2006-02-22 | Nanofilm Technologies Int | Removing material from a substrate surface using plasma |
US7250323B2 (en) * | 2004-10-25 | 2007-07-31 | Rochester Institute Of Technology | Methods of making energy conversion devices with a substantially contiguous depletion regions |
US7611322B2 (en) | 2004-11-18 | 2009-11-03 | Intevac, Inc. | Processing thin wafers |
US7399680B2 (en) | 2004-11-24 | 2008-07-15 | Silicon Genesis Corporation | Method and structure for implanting bonded substrates for electrical conductivity |
US7547609B2 (en) | 2004-11-24 | 2009-06-16 | Silicon Genesis Corporation | Method and structure for implanting bonded substrates for electrical conductivity |
US7268431B2 (en) | 2004-12-30 | 2007-09-11 | Advantech Global, Ltd | System for and method of forming via holes by use of selective plasma etching in a continuous inline shadow mask deposition process |
US7022984B1 (en) * | 2005-01-31 | 2006-04-04 | Axcelis Technologies, Inc. | Biased electrostatic deflector |
WO2006093817A2 (en) | 2005-02-28 | 2006-09-08 | Silicon Genesis Corporation | Substrate stiffness method and resulting devices |
US20060234484A1 (en) | 2005-04-14 | 2006-10-19 | International Business Machines Corporation | Method and structure for ion implantation by ion scattering |
US7520292B2 (en) | 2005-05-17 | 2009-04-21 | Brian Weltman | Pressure activated trap primer and water hammer combination |
JP2007022314A (ja) * | 2005-07-15 | 2007-02-01 | Kanzaki Kokyukoki Mfg Co Ltd | 油圧式車軸駆動装置 |
US7674687B2 (en) * | 2005-07-27 | 2010-03-09 | Silicon Genesis Corporation | Method and structure for fabricating multiple tiled regions onto a plate using a controlled cleaving process |
US20070031609A1 (en) | 2005-07-29 | 2007-02-08 | Ajay Kumar | Chemical vapor deposition chamber with dual frequency bias and method for manufacturing a photomask using the same |
US7166520B1 (en) | 2005-08-08 | 2007-01-23 | Silicon Genesis Corporation | Thin handle substrate method and structure for fabricating devices using one or more films provided by a layer transfer process |
US20070032044A1 (en) * | 2005-08-08 | 2007-02-08 | Silicon Genesis Corporation | Method and structure for fabricating devices using one or more films provided by a layer transfer process and etch back |
US20070029043A1 (en) | 2005-08-08 | 2007-02-08 | Silicon Genesis Corporation | Pre-made cleavable substrate method and structure of fabricating devices using one or more films provided by a layer transfer process |
US7317579B2 (en) | 2005-08-11 | 2008-01-08 | Micron Technology, Inc. | Method and apparatus providing graded-index microlenses |
US7427554B2 (en) | 2005-08-12 | 2008-09-23 | Silicon Genesis Corporation | Manufacturing strained silicon substrates using a backing material |
KR100653073B1 (ko) * | 2005-09-28 | 2006-12-01 | 삼성전자주식회사 | 기판처리장치와 기판처리방법 |
US20070081138A1 (en) | 2005-10-11 | 2007-04-12 | Asml Netherlands B.V. | Lithographic projection apparatus, device manufacturing methods and mask for use in a device manufacturing method |
US7524743B2 (en) * | 2005-10-13 | 2009-04-28 | Varian Semiconductor Equipment Associates, Inc. | Conformal doping apparatus and method |
US7479441B2 (en) | 2005-10-14 | 2009-01-20 | Silicon Genesis Corporation | Method and apparatus for flag-less water bonding tool |
US7796849B2 (en) | 2005-10-25 | 2010-09-14 | Georgia Tech Research Corporation | Spatial separation of optical frequency components using photonic crystals |
CN101305454B (zh) | 2005-11-07 | 2010-05-19 | 应用材料股份有限公司 | 形成光致电压接点和连线的方法 |
US20070169806A1 (en) * | 2006-01-20 | 2007-07-26 | Palo Alto Research Center Incorporated | Solar cell production using non-contact patterning and direct-write metallization |
KR101181820B1 (ko) * | 2005-12-29 | 2012-09-11 | 삼성에스디아이 주식회사 | 태양 전지의 제조 방법 |
US7863157B2 (en) | 2006-03-17 | 2011-01-04 | Silicon Genesis Corporation | Method and structure for fabricating solar cells using a layer transfer process |
US7598153B2 (en) | 2006-03-31 | 2009-10-06 | Silicon Genesis Corporation | Method and structure for fabricating bonded substrate structures using thermal processing to remove oxygen species |
JP2009532918A (ja) | 2006-04-05 | 2009-09-10 | シリコン ジェネシス コーポレーション | レイヤトランスファプロセスを使用する太陽電池の製造方法および構造 |
CN101055898A (zh) | 2006-04-11 | 2007-10-17 | 新日光能源科技股份有限公司 | 光电转换装置、光电转换元件及其基板与制造方法 |
US20070277875A1 (en) | 2006-05-31 | 2007-12-06 | Kishor Purushottam Gadkaree | Thin film photovoltaic structure |
US7579654B2 (en) | 2006-05-31 | 2009-08-25 | Corning Incorporated | Semiconductor on insulator structure made using radiation annealing |
US7928317B2 (en) * | 2006-06-05 | 2011-04-19 | Translucent, Inc. | Thin film solar cell |
US8153513B2 (en) | 2006-07-25 | 2012-04-10 | Silicon Genesis Corporation | Method and system for continuous large-area scanning implantation process |
US7701011B2 (en) | 2006-08-15 | 2010-04-20 | Kovio, Inc. | Printed dopant layers |
US7767520B2 (en) * | 2006-08-15 | 2010-08-03 | Kovio, Inc. | Printed dopant layers |
JP4779870B2 (ja) * | 2006-08-18 | 2011-09-28 | 株式会社日立製作所 | イオン注入方法およびその装置 |
US8293619B2 (en) * | 2008-08-28 | 2012-10-23 | Silicon Genesis Corporation | Layer transfer of films utilizing controlled propagation |
US7811900B2 (en) | 2006-09-08 | 2010-10-12 | Silicon Genesis Corporation | Method and structure for fabricating solar cells using a thick layer transfer process |
KR20080023774A (ko) | 2006-09-12 | 2008-03-17 | 동부일렉트로닉스 주식회사 | 씨모스 이미지 센서의 포토 다이오드 |
US20080092944A1 (en) * | 2006-10-16 | 2008-04-24 | Leonid Rubin | Semiconductor structure and process for forming ohmic connections to a semiconductor structure |
US20080092947A1 (en) * | 2006-10-24 | 2008-04-24 | Applied Materials, Inc. | Pulse plating of a low stress film on a solar cell substrate |
JP2008112848A (ja) * | 2006-10-30 | 2008-05-15 | Shin Etsu Chem Co Ltd | 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池 |
US8124499B2 (en) | 2006-11-06 | 2012-02-28 | Silicon Genesis Corporation | Method and structure for thick layer transfer using a linear accelerator |
US20080128641A1 (en) * | 2006-11-08 | 2008-06-05 | Silicon Genesis Corporation | Apparatus and method for introducing particles using a radio frequency quadrupole linear accelerator for semiconductor materials |
US20080121276A1 (en) | 2006-11-29 | 2008-05-29 | Applied Materials, Inc. | Selective electroless deposition for solar cells |
US20080128019A1 (en) * | 2006-12-01 | 2008-06-05 | Applied Materials, Inc. | Method of metallizing a solar cell substrate |
KR100759084B1 (ko) | 2006-12-07 | 2007-09-19 | 실리콘 디스플레이 (주) | 이온 도핑 장치 |
KR100836765B1 (ko) | 2007-01-08 | 2008-06-10 | 삼성전자주식회사 | 이온빔을 사용하는 반도체 장비 |
US20080188011A1 (en) | 2007-01-26 | 2008-08-07 | Silicon Genesis Corporation | Apparatus and method of temperature conrol during cleaving processes of thick film materials |
US7988875B2 (en) | 2007-02-08 | 2011-08-02 | Applied Materials, Inc. | Differential etch rate control of layers deposited by chemical vapor deposition |
US7867409B2 (en) | 2007-03-29 | 2011-01-11 | Tokyo Electron Limited | Control of ion angular distribution function at wafer surface |
US20080275546A1 (en) * | 2007-05-03 | 2008-11-06 | Chameleon Scientific Corp | Inhibitory cell adhesion surfaces |
US20080296261A1 (en) * | 2007-06-01 | 2008-12-04 | Nordson Corporation | Apparatus and methods for improving treatment uniformity in a plasma process |
TWI450401B (zh) | 2007-08-28 | 2014-08-21 | Mosel Vitelic Inc | 太陽能電池及其製造方法 |
US7776727B2 (en) | 2007-08-31 | 2010-08-17 | Applied Materials, Inc. | Methods of emitter formation in solar cells |
US7820460B2 (en) | 2007-09-07 | 2010-10-26 | Varian Semiconductor Equipment Associates, Inc. | Patterned assembly for manufacturing a solar cell and a method thereof |
US7598161B2 (en) | 2007-09-26 | 2009-10-06 | Advanced Micro Devices, Inc. | Method of forming transistor devices with different threshold voltages using halo implant shadowing |
JP4406452B2 (ja) * | 2007-09-27 | 2010-01-27 | 株式会社日立製作所 | ベルト状金型およびそれを用いたナノインプリント装置 |
US20090206275A1 (en) | 2007-10-03 | 2009-08-20 | Silcon Genesis Corporation | Accelerator particle beam apparatus and method for low contaminate processing |
US8003498B2 (en) * | 2007-11-13 | 2011-08-23 | Varian Semiconductor Equipment Associates, Inc. | Particle beam assisted modification of thin film materials |
KR101385750B1 (ko) * | 2007-11-30 | 2014-04-18 | 삼성전자주식회사 | 중성빔을 이용하는 기판 처리 장치 및 방법 |
US20090142875A1 (en) | 2007-11-30 | 2009-06-04 | Applied Materials, Inc. | Method of making an improved selective emitter for silicon solar cells |
US20090152162A1 (en) | 2007-12-13 | 2009-06-18 | Silicon Genesis Corporation | Carrier apparatus and method for shaped sheet materials |
US20090162970A1 (en) * | 2007-12-20 | 2009-06-25 | Yang Michael X | Material modification in solar cell fabrication with ion doping |
US8003954B2 (en) | 2008-01-03 | 2011-08-23 | Varian Semiconductor Equipment Associates, Inc. | Gas delivery system for an ion source |
US8563352B2 (en) | 2008-02-05 | 2013-10-22 | Gtat Corporation | Creation and translation of low-relief texture for a photovoltaic cell |
US8461032B2 (en) | 2008-03-05 | 2013-06-11 | Varian Semiconductor Equipment Associates, Inc. | Use of dopants with different diffusivities for solar cell manufacture |
WO2009111669A2 (en) | 2008-03-05 | 2009-09-11 | Varian Semiconductor Equipment Associates | Maskless doping technique for solar cells |
US20090227095A1 (en) | 2008-03-05 | 2009-09-10 | Nicholas Bateman | Counterdoping for solar cells |
US20090317937A1 (en) | 2008-06-20 | 2009-12-24 | Atul Gupta | Maskless Doping Technique for Solar Cells |
US20090227061A1 (en) | 2008-03-05 | 2009-09-10 | Nicholas Bateman | Establishing a high phosphorus concentration in solar cells |
US7727866B2 (en) | 2008-03-05 | 2010-06-01 | Varian Semiconductor Equipment Associates, Inc. | Use of chained implants in solar cells |
US20090246706A1 (en) * | 2008-04-01 | 2009-10-01 | Applied Materials, Inc. | Patterning resolution enhancement combining interference lithography and self-aligned double patterning techniques |
CN102099923B (zh) | 2008-06-11 | 2016-04-27 | 因特瓦克公司 | 使用注入的太阳能电池制作 |
US20100154870A1 (en) | 2008-06-20 | 2010-06-24 | Nicholas Bateman | Use of Pattern Recognition to Align Patterns in a Downstream Process |
US8354653B2 (en) * | 2008-09-10 | 2013-01-15 | Varian Semiconductor Equipment Associates, Inc. | Techniques for manufacturing solar cells |
US8815634B2 (en) | 2008-10-31 | 2014-08-26 | Varian Semiconductor Equipment Associates, Inc. | Dark currents and reducing defects in image sensors and photovoltaic junctions |
US7816239B2 (en) | 2008-11-20 | 2010-10-19 | Varian Semiconductor Equipment Associates, Inc. | Technique for manufacturing a solar cell |
US7820532B2 (en) * | 2008-12-29 | 2010-10-26 | Honeywell International Inc. | Methods for simultaneously forming doped regions having different conductivity-determining type element profiles |
US8153466B2 (en) | 2009-01-21 | 2012-04-10 | Varian Semiconductor Equipment Associates, Inc. | Mask applied to a workpiece |
US8685846B2 (en) | 2009-01-30 | 2014-04-01 | Varian Semiconductor Equipment Associates, Inc. | Technique for processing a substrate |
JP5380464B2 (ja) | 2009-02-06 | 2014-01-08 | キヤノンアネルバ株式会社 | プラズマ処理装置、プラズマ処理方法、および被処理基板を備える素子の製造方法 |
US20100229928A1 (en) | 2009-03-12 | 2010-09-16 | Twin Creeks Technologies, Inc. | Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element |
JP5472862B2 (ja) | 2009-03-17 | 2014-04-16 | 三菱電機株式会社 | 電力用半導体装置の製造方法 |
US7964431B2 (en) | 2009-03-19 | 2011-06-21 | Twin Creeks Technologies, Inc. | Method to make electrical contact to a bonded face of a photovoltaic cell |
EP2409331A4 (en) | 2009-03-20 | 2017-06-28 | Intevac, Inc. | Advanced high efficiency crystalline solar cell fabrication method |
US8749053B2 (en) * | 2009-06-23 | 2014-06-10 | Intevac, Inc. | Plasma grid implant system for use in solar cell fabrications |
EP2814051A1 (en) | 2010-02-09 | 2014-12-17 | Intevac, Inc. | Shadow mask implantation system |
TWI469368B (zh) | 2010-11-17 | 2015-01-11 | Intevac Inc | 在太陽能電池製造中供固態磊晶成長之直流電離子注入 |
SG10201508582WA (en) | 2011-11-08 | 2015-11-27 | Intevac Inc | Substrate processing system and method |
JP5367129B2 (ja) | 2012-07-05 | 2013-12-11 | キヤノン株式会社 | 撮像装置、制御装置及びそれらの制御方法 |
-
2009
- 2009-06-11 CN CN200980127945.7A patent/CN102099923B/zh not_active Expired - Fee Related
- 2009-06-11 JP JP2011513701A patent/JP2011525301A/ja active Pending
- 2009-06-11 WO PCT/US2009/047090 patent/WO2009152365A1/en active Application Filing
- 2009-06-11 EP EP09763666A patent/EP2319088A1/en not_active Withdrawn
- 2009-06-11 EP EP09763653A patent/EP2319087A1/en not_active Withdrawn
- 2009-06-11 JP JP2011513705A patent/JP2011524639A/ja active Pending
- 2009-06-11 WO PCT/US2009/047094 patent/WO2009152368A1/en active Application Filing
- 2009-06-11 EP EP09763656.7A patent/EP2308060A4/en not_active Withdrawn
- 2009-06-11 JP JP2011513699A patent/JP5520290B2/ja not_active Expired - Fee Related
- 2009-06-11 CN CN2009801279442A patent/CN102099870A/zh active Pending
- 2009-06-11 US US12/482,980 patent/US20090308439A1/en not_active Abandoned
- 2009-06-11 CN CN200980128202.1A patent/CN102150278A/zh active Pending
- 2009-06-11 EP EP09763663A patent/EP2304803A1/en not_active Withdrawn
- 2009-06-11 JP JP2011513706A patent/JP2011524640A/ja active Pending
- 2009-06-11 CN CN2009801282017A patent/CN102150277A/zh active Pending
- 2009-06-11 KR KR1020117000362A patent/KR20110050423A/ko not_active Application Discontinuation
- 2009-06-11 WO PCT/US2009/047102 patent/WO2009152375A1/en active Application Filing
- 2009-06-11 US US12/482,947 patent/US8871619B2/en not_active Ceased
- 2009-06-11 US US12/482,685 patent/US8697553B2/en active Active
- 2009-06-11 KR KR1020117000471A patent/KR20110042052A/ko not_active Application Discontinuation
- 2009-06-11 WO PCT/US2009/047109 patent/WO2009152378A1/en active Application Filing
- 2009-06-11 US US12/483,017 patent/US20090308440A1/en not_active Abandoned
- 2009-06-11 KR KR1020117000605A patent/KR20110042053A/ko not_active Application Discontinuation
- 2009-06-11 KR KR1020117000467A patent/KR20110042051A/ko not_active Application Discontinuation
-
2011
- 2011-11-19 HK HK11112561.1A patent/HK1158366A1/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4179311A (en) * | 1977-01-17 | 1979-12-18 | Mostek Corporation | Method of stabilizing semiconductor device by converting doped poly-Si to polyoxides |
US6552414B1 (en) * | 1996-12-24 | 2003-04-22 | Imec Vzw | Semiconductor device with selectively diffused regions |
US6271566B1 (en) * | 1997-03-25 | 2001-08-07 | Toshiba Corporation | Semiconductor device having a carbon containing insulation layer formed under the source/drain |
CN1198597A (zh) * | 1997-04-28 | 1998-11-11 | 夏普公司 | 太阳电池及其制备方法 |
US6383876B1 (en) * | 1997-05-06 | 2002-05-07 | Lg Semicon Co., Ltd. | MOS device having non-uniform dopant concentration and method for fabricating the same |
US6507689B2 (en) * | 1998-06-19 | 2003-01-14 | Pirelli Cavi E Sistemi S.P.A. | Optical fiber having low non-linearity for WDM transmission |
Also Published As
Publication number | Publication date |
---|---|
KR20110042053A (ko) | 2011-04-22 |
EP2319088A1 (en) | 2011-05-11 |
WO2009152365A1 (en) | 2009-12-17 |
CN102099923A (zh) | 2011-06-15 |
JP2011524639A (ja) | 2011-09-01 |
CN102099870A (zh) | 2011-06-15 |
EP2319087A1 (en) | 2011-05-11 |
JP2011524640A (ja) | 2011-09-01 |
EP2304803A1 (en) | 2011-04-06 |
KR20110042052A (ko) | 2011-04-22 |
KR20110042051A (ko) | 2011-04-22 |
JP2011524638A (ja) | 2011-09-01 |
JP5520290B2 (ja) | 2014-06-11 |
WO2009152375A1 (en) | 2009-12-17 |
US20090309039A1 (en) | 2009-12-17 |
US20090308450A1 (en) | 2009-12-17 |
KR20110050423A (ko) | 2011-05-13 |
US20090308439A1 (en) | 2009-12-17 |
EP2308060A4 (en) | 2013-10-16 |
US8697553B2 (en) | 2014-04-15 |
US8871619B2 (en) | 2014-10-28 |
US20090308440A1 (en) | 2009-12-17 |
WO2009152378A1 (en) | 2009-12-17 |
CN102150277A (zh) | 2011-08-10 |
CN102150278A (zh) | 2011-08-10 |
WO2009152368A1 (en) | 2009-12-17 |
EP2308060A1 (en) | 2011-04-13 |
JP2011525301A (ja) | 2011-09-15 |
HK1158366A1 (zh) | 2012-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102099923B (zh) | 使用注入的太阳能电池制作 | |
KR101721982B1 (ko) | 향상된 높은 효율의 결정 솔라 셀 제작 방법 | |
TW200931678A (en) | A patterned assembly for manufacturing a solar cell and a method thereof | |
TW200947720A (en) | Establishing a high phosphorus concentration in solar cells | |
JP2005310830A (ja) | 太陽電池および太陽電池の製造方法 | |
CN101878519A (zh) | 形成硅太阳能电池的背面点接触结构的方法 | |
KR20120095410A (ko) | 솔라 셀 제조를 위한 자기-정렬된 마스킹 | |
JP2013509005A (ja) | 太陽電池における表面再結合を低減させて光トラッピングを高める方法 | |
KR20170028370A (ko) | 이온 주입을 사용한 태양 전지 이미터 영역 제조 | |
TW201303976A (zh) | 植入工件的方法與太陽能電池 | |
JP7025580B1 (ja) | 選択エミッタ太陽電池およびその製造方法 | |
US20100184250A1 (en) | Self-aligned selective emitter formed by counterdoping | |
KR101768907B1 (ko) | 태양 전지 제조 방법 | |
WO2011119819A2 (en) | Implant alignment through a mask | |
CN105637647B (zh) | 使用自对准注入和封盖制造太阳能电池发射极区 | |
TW201806173A (zh) | 具摻雜多晶矽表面區域的太陽電池及其製造方法 | |
WO2013054396A1 (ja) | 光起電力装置の製造方法および光起電力装置 | |
CN110828601B (zh) | 使用基板级离子注入制造太阳能电池发射极区 | |
KR20110089497A (ko) | 기판에의 불순물 도핑 방법, 이를 이용한 태양 전지의 제조 방법 및 이를 이용하여 제조된 태양 전지 | |
US20180233607A1 (en) | Methods of forming interdigitated back contact solar cells | |
KR100885716B1 (ko) | 실리콘 슬러리를 이용한 태양전지 및 그 제조방법 | |
CN104183668A (zh) | 太阳能电池单元的制造方法 | |
US20140120647A1 (en) | Techniques for manufacturing devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1158366 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1158366 Country of ref document: HK |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160427 Termination date: 20190611 |