CN102096295A - Laser projection system - Google Patents
Laser projection system Download PDFInfo
- Publication number
- CN102096295A CN102096295A CN 200910250433 CN200910250433A CN102096295A CN 102096295 A CN102096295 A CN 102096295A CN 200910250433 CN200910250433 CN 200910250433 CN 200910250433 A CN200910250433 A CN 200910250433A CN 102096295 A CN102096295 A CN 102096295A
- Authority
- CN
- China
- Prior art keywords
- light
- laser
- excited
- wavelength
- projection screen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000126 substance Substances 0.000 claims abstract description 143
- 230000005284 excitation Effects 0.000 claims abstract description 89
- 238000006243 chemical reaction Methods 0.000 claims abstract description 23
- 239000002245 particle Substances 0.000 claims abstract description 10
- 230000003287 optical effect Effects 0.000 claims description 72
- 239000000463 material Substances 0.000 claims description 29
- 238000001228 spectrum Methods 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- 238000010521 absorption reaction Methods 0.000 claims description 18
- 238000003384 imaging method Methods 0.000 claims description 17
- 239000011859 microparticle Substances 0.000 claims description 14
- 239000003086 colorant Substances 0.000 claims description 13
- 238000004020 luminiscence type Methods 0.000 claims description 11
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 5
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 5
- 239000004593 Epoxy Substances 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 4
- 239000000990 laser dye Substances 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 230000032900 absorption of visible light Effects 0.000 claims description 3
- 230000031700 light absorption Effects 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 230000004297 night vision Effects 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 230000003595 spectral effect Effects 0.000 claims 5
- 230000004936 stimulating effect Effects 0.000 claims 4
- 239000000203 mixture Substances 0.000 claims 3
- 241000196324 Embryophyta Species 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 230000011514 reflex Effects 0.000 claims 2
- 238000000926 separation method Methods 0.000 claims 2
- 241000931526 Acer campestre Species 0.000 claims 1
- 241001313855 Bletilla Species 0.000 claims 1
- 239000004713 Cyclic olefin copolymer Substances 0.000 claims 1
- 235000003283 Pachira macrocarpa Nutrition 0.000 claims 1
- 206010034960 Photophobia Diseases 0.000 claims 1
- 241001083492 Trapa Species 0.000 claims 1
- 235000014364 Trapa natans Nutrition 0.000 claims 1
- 230000019771 cognition Effects 0.000 claims 1
- 230000007613 environmental effect Effects 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 238000002356 laser light scattering Methods 0.000 claims 1
- 208000013469 light sensitivity Diseases 0.000 claims 1
- 230000032696 parturition Effects 0.000 claims 1
- 230000008447 perception Effects 0.000 claims 1
- 239000011347 resin Substances 0.000 claims 1
- 229920005989 resin Polymers 0.000 claims 1
- 235000009165 saligot Nutrition 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 290
- 238000010586 diagram Methods 0.000 description 40
- 238000005516 engineering process Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 4
- 230000023004 detection of visible light Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 206010047571 Visual impairment Diseases 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000004438 eyesight Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Transforming Electric Information Into Light Information (AREA)
- Overhead Projectors And Projection Screens (AREA)
- Lasers (AREA)
Abstract
Description
技术领域technical field
本发明是有关一种激光投影系统,尤指一种利用一激光投影器,使其根据单一画面或动态画面的影像讯号以产生激发激光,并投射至一相配合的投影幕上而产生影像,以使该投影幕上可在自然光的环境下以几近透明的效果呈现高辨认度的投影画面,供可看到投射画面并同时看到该投影幕后方的物体。The present invention relates to a laser projection system, especially a laser projector that uses a single image or a dynamic image signal to generate excitation laser light and project it onto a matching projection screen to generate an image. The projection screen can present a highly recognizable projection picture with almost transparent effect under the environment of natural light, so that people can see the projection picture and see the objects behind the projection screen at the same time.
背景技术Background technique
有关激光投影系统的设计已有很多先前技术,其中,包含US6,986,581、US7,090,355、US7,182,467、US7,213,923、US7,452,082等是揭示当作投影幕的薄膜(film)的相关技术;包含US6,843,568以及其引证案(References Cited)及其他公开资料等是揭示激光扫描显示装置(laser scanning display)的相关技术;如US6,329,966是揭示紫外线光束在薄膜上磷光点(UV beam on phosphorusdots on film)的相关技术;如US4,213,153是揭示调变紫外线激光在磷光材以形成影像(modulated UV laser on phosphorus material to form image)的相关技术;如US6,900,916是揭示扫描紫外光线在荧光薄膜上形成影像(scanned UV light togenerate images on fluoresce film)的相关技术。There are many previous technologies related to the design of laser projection systems, including US6,986,581, US7,090,355, US7,182,467, US7,213,923, US7,452,082, etc., which disclose related technologies of films used as projection screens; Including US6,843,568 and its references (References Cited) and other public information are related technologies for disclosing laser scanning display devices (laser scanning display); for example, US6,329,966 discloses UV beam on phosphorescent dots on thin films on film) related technology; such as US4,213,153 discloses the related technology of modulating UV laser on phosphor material to form image (modulated UV laser on phosphorus material to form image); such as US6,900,916 discloses scanning ultraviolet light on fluorescent film Related technologies for forming images (scanned UV light togenerate images on fluoresce film).
如图1所示,一先前技术的激光投影系统100包含一激光投影器10以及一投影幕101。激光投影器10用来根据影像讯号SI,以将影像投影至投影幕101。激光投影器10包含一激光光源模块110与一旋转平面镜模块120。激光光学模块110包含一红色可见光激光光源111、一蓝色可见光激光光源112、一绿色可见光激光光源113、一合光模块115,以及一调变模块114。红色可见光激光光源111、蓝色可见光激光光源112及绿色可见光激光光源113分别用来根据驱动电流IRD、IBD、与IGD,以发出红色可见光、蓝色可见光、绿色可见光的激光光束LR、LB、LG。调变模块114用来根据影像讯号SI,以分别提供红色可见光激光光源111、蓝色可见光激光光源112及绿色可见光激光光源113驱动电流IRD、IBD、与IGD,来分别对激光光束LR、LB、LG进行讯号调变,使其分别达屏幕101上对应的像素色彩所需的光强度。合光模块115用来将激光光束LR、LB、LG汇聚至同一路径、同一方向,以产生调变激光光束LM。旋转平面镜模块120用来将调变激光光束LM反射至投影幕101。如此一来,激光投影器10通过控制旋转平面镜模块120调整偏转角度θ与偏转角度来改变调变激光光束LM反射后的方向,可使调变激光光束LM快速扫描投影幕101上每个画素所对应的位置。投影幕101会散射调变激光光束LM,以显示画面。As shown in FIG. 1 , a prior art
上述激光投影技术有下列几项缺点:第一,为利用散射原理而形成影像,该显像荧幕为不透明,因此限制此成像技术在需要透明显像荧幕的应用,例如将影像投影在驾驶座前档风玻璃的车用抬头显示器;第二、因旋转平面镜模块偏转角度θ与的有限,投影幕与激光投影器之间的距离D必须拉长,才能产生较大的投影画面;第三,当背景光中的可见光照射到该显像荧幕时,亦将由荧幕散射或反射为观察者所接收,而降低成像画面的色彩对比。本发明即针对上述先前技术的缺点而加以有效解决,藉以增进激光投影系统的使用功放及扩展其应用领域。The above-mentioned laser projection technology has the following disadvantages: First, in order to use the principle of scattering to form an image, the display screen is opaque, thus limiting the application of this imaging technology in the need of a transparent display screen, such as projecting images on driving The vehicle head-up display of the windshield in front of the seat; second, due to the deflection angle θ of the rotating plane mirror module and limited, the distance D between the projection screen and the laser projector must be elongated in order to produce a larger projection picture; third, when the visible light in the background light hits the display screen, it will also be scattered by the screen or The reflection is received by the viewer and reduces the color contrast of the imaging picture. The present invention effectively solves the above-mentioned shortcomings of the prior art, so as to improve the power amplifier used in the laser projection system and expand its application field.
发明内容Contents of the invention
本发明的目的是提供一种激光投影系统,其是利用一激光投影器,使该激光投影器可根据单一画面或动态画面的影像讯号来产生激发激光,并投射至一相配合的投影幕上以产生影像画面,其中该投影幕是包含至少一发光层其具备至少一种发光物质其为受到某一波长范围的激发光照射而可被激发产生另一波长范围的被激发光的物质,且各发光物质的粒子间在平行于投影幕平面的横向距离是远小于激光光束的横截面直径,以使该投影幕上可在自然光的环境下以几近透明的效果呈现高辨认度的投影画面,供可看到投射画面并同时看到该投影幕后方的物体,藉以提升激光投影系统使用效率及应用范围。The object of the present invention is to provide a laser projection system, which uses a laser projector, so that the laser projector can generate excitation laser light according to the image signal of a single picture or a dynamic picture, and project it onto a matching projection screen To produce an image frame, wherein the projection screen comprises at least one luminescent layer with at least one luminescent substance, which is a substance that can be excited to generate excited light of another wavelength range when irradiated by excitation light of a certain wavelength range, and The lateral distance between the particles of each luminous substance parallel to the plane of the projection screen is much smaller than the cross-sectional diameter of the laser beam, so that the projection screen can present a highly recognizable projection screen with an almost transparent effect under natural light , allowing the user to see the projected image and see objects behind the projection screen at the same time, so as to improve the efficiency and application range of the laser projection system.
本发明再一目的是提供一种激光投影系统,其进一步可采用不可见光的波长,包含且不限于808nm、850nm、980nm、与1064nm等,或选择对人眼感光度较差的波长,包含且不限于405nm、与780nm等,的激光作为激光光源模块的激光光源,又可选择与被激发光色彩相近的激发光源,包含且不限于以波长约405nm(蓝紫色)、450nm(蓝色)的激光光激发发光层产生蓝色(波长约450nm)的影像,或以780nm(红色)、640nm(红色)的激光光激发发光层产生红色(波长约640nm)的影像,藉以减少因激发光受投影幕反射或散射所生的颜色混杂现象。Another object of the present invention is to provide a laser projection system, which can further use wavelengths of invisible light, including but not limited to 808nm, 850nm, 980nm, and 1064nm, etc., or choose wavelengths that are less sensitive to human eyes, including and Not limited to 405nm, 780nm, etc., as the laser light source of the laser light source module, an excitation light source with a color similar to the excited light can be selected, including but not limited to wavelengths of about 405nm (blue-purple) and 450nm (blue). Laser light excites the luminescent layer to produce a blue (wavelength about 450nm) image, or excites the luminescent layer with 780nm (red) and 640nm (red) laser light to produce a red (wavelength about 640nm) image, so as to reduce the projection caused by the excitation light Color mixing phenomenon caused by reflection or scattering of curtain.
本发明又一目的在于提供一种激光投影系统,其中该激光光源模块进一步包含一第一类激光光源模块与一第二类激光光源模块,而相配合的透明状投影幕是包含一发光层与一散射层,且发光层在散射层的前以面对激光投影器所投射扫描的光束;其中该第一类激光光源模块包含至少一组激光光源可分别发射波长对应并落入该发光层中各种发光物质的激发光波长范围的第一类波长的激光光以分别激发该发光层中各种发光物质,使的分别产生被激发光;其中该第二类激光光源模块包含至少一组激光光源可分别发射第二类波长的激光光;其中该发光层是对第二类激光光源模块所发射的第二类波长的激光光的吸收与散射极低,以使大部分第二类波长的激光光可穿越该发光层而进入散射层,且可吸收大部分第一类激光光源模块所发射第一类波长的激光光;其中该散射层是用以散射第二类波长的激光光及在该发光层中被第一类波长激光光所激发的被激发光。Another object of the present invention is to provide a laser projection system, wherein the laser light source module further includes a first-type laser light source module and a second-type laser light source module, and the matching transparent projection screen includes a light-emitting layer and A scattering layer, and the light-emitting layer is in front of the scattering layer to face the beam projected by the laser projector; wherein the first type of laser light source module includes at least one group of laser light sources that can respectively emit corresponding wavelengths and fall into the light-emitting layer The laser light of the first type of wavelength in the excitation light wavelength range of various luminescent substances is used to respectively excite various luminescent substances in the luminescent layer, so that the excited light is generated respectively; wherein the second type of laser light source module includes at least one set of laser light The light source can respectively emit the laser light of the second type of wavelength; wherein the light-emitting layer has extremely low absorption and scattering of the laser light of the second type of wavelength emitted by the second type of laser light source module, so that most of the second type of wavelength The laser light can pass through the light-emitting layer and enter the scattering layer, and can absorb most of the laser light of the first type of wavelength emitted by the first type of laser light source module; wherein the scattering layer is used to scatter the laser light of the second type of wavelength and Excited light in the light-emitting layer excited by the first type of wavelength laser light.
本发明另一目的是提供一种激光投影系统,其中该投影幕的发光层进一步可与其他各种功能层,包含被激发光吸收层、激发光吸收层、被激发光与散射光吸收层、散射层、激发光反射层、被激发光部分反射层层、被激发光与被散射光部分反射层、聚光层、部分遮光层等,加以配合以组成一投影幕,藉以增进激光投影系统的使用效果及应用领域。Another object of the present invention is to provide a laser projection system, wherein the luminescent layer of the projection screen can further be combined with other various functional layers, including an excited light absorbing layer, an exciting light absorbing layer, an excited light and scattered light absorbing layer, Scattering layer, excitation light reflection layer, excited light partial reflection layer, excited light and scattered light partial reflection layer, light concentrating layer, partial light shielding layer, etc., cooperate to form a projection screen, so as to improve the laser projection system. Use effect and application field.
本发明另一目的是提供一种激光投影系统,其中该激光投影器进一步包含至少一凸面反射镜设在激光投影器中的旋转平面镜模块与投影幕之间,或进一步包含至少一平面反射镜模块设在该凸面反射镜与投影幕之间,以使激光投影器所产生的激光光束在经旋转平面镜模块后可透过该凸面反射镜或平面反射镜模块的反射而再投射于投影幕上,藉以扩大激光光束扫描角度,使在投影幕与激光投影器间的距离不变的情况下,有效增大投影影像的高度与宽度。Another object of the present invention is to provide a laser projection system, wherein the laser projector further includes at least one convex mirror arranged between the rotating flat mirror module and the projection screen in the laser projector, or further includes at least one flat mirror module It is arranged between the convex reflector and the projection screen, so that the laser beam generated by the laser projector can be projected on the projection screen through the reflection of the convex reflector or the plane reflector module after passing through the rotating plane mirror module, In order to expand the scanning angle of the laser beam, the height and width of the projected image can be effectively increased under the condition that the distance between the projection screen and the laser projector remains unchanged.
为答上述目的,本发明提供了以下技术方案:其为一种激光投影系统,包含一投影幕及一激光投影器,该激光投影器是根据单一画面或动态画面的影像讯号而产生激发光,并再投射至一相配合的透明状投影幕上以产生影像,其中:To answer the above object, the present invention provides the following technical solutions: it is a laser projection system, including a projection screen and a laser projector, the laser projector generates excitation light according to the image signal of a single picture or a dynamic picture, and then projected onto a matching transparent projection screen to generate an image, wherein:
所述投影幕,包含至少一发光层其具备至少一种发光物质F1、F2、...、Fn其包含任何受到某一波长范围的激发光照射而可被激发产生另一波长范围的被激发光的物质,且各发光物质的粒子间在平行于投影幕平面的横向距离是远小于激光光束的横截面直径;The projection screen includes at least one luminescent layer, which is equipped with at least one luminescent substance F 1 , F 2 , ..., F n , which includes any luminescent material that can be excited to produce another wavelength range when irradiated by excitation light in a certain wavelength range. The material that is excited by light, and the lateral distance between the particles of each luminescent material parallel to the plane of the projection screen is much smaller than the cross-sectional diameter of the laser beam;
所述激光投影器,包含一激光光源模块、一激光讯号调变模块、一合光模块、一旋转平面镜模块、一旋转平面镜控制模块及一讯号转换模块;The laser projector includes a laser light source module, a laser signal modulation module, a light combination module, a rotating plane mirror module, a rotating plane mirror control module and a signal conversion module;
其中该讯号转换模块接受各式单一画面或动态画面的影像讯号SI,并将其转换为控制激光光源模块的讯号SL及旋转平面镜模块的讯号SM,并负责协调激光讯号调变模块的光讯号与旋转平面镜模块的同步;Among them, the signal conversion module accepts various single-frame or dynamic-frame image signals S I , and converts them into signals S L for controlling the laser light source module and signals S M for the rotating plane mirror module, and is responsible for coordinating the laser signal modulation module Synchronization of optical signal and rotating plane mirror module;
其中该激光光源模块包含至少一组激光光源分别发射波长λ1L、λ2L、...、λnL并对应落入发光层中各种发光物质的激发光波长范围λ1S、λ2S、...、λnS的光束L1S、L2S、...、LnS,以分别激发发光层中各种发光物质,使之产生λ1E、λ2E、...、λnE波长的被激发光;The laser light source module includes at least one group of laser light sources that respectively emit wavelengths λ 1L , λ 2L , ..., λ nL and correspond to the excitation wavelength ranges λ 1S , λ 2S , .. ., λ nS light beams L 1S , L 2S , ..., L nS , to respectively excite various luminescent substances in the light-emitting layer to generate excited light of wavelengths λ 1E , λ 2E , ..., λ nE ;
其中该合光模块是将各激光光束L1S、L2S、...、LnS(LiS)汇聚至同一路径、同一方向,以产生一总体调变激光光束(LM)入射至旋转平面镜模块,并为旋转平面镜模块所反射而形成总体调变扫描激光光束(LS)以投射至投影幕;Wherein the light combination module converges the laser beams L 1S , L 2S , ..., L nS (L iS ) to the same path and direction to generate an overall modulated laser beam (L M ) incident on the rotating plane mirror module, and is reflected by the rotating plane mirror module to form an overall modulated scanning laser beam (L S ) to project onto the projection screen;
其中该旋转平面镜模块模块,用以在一第一平面旋转一角度(θ),同时在一非与第一平面平行的第二平面旋转一角度 Wherein the rotating plane mirror module is used to rotate an angle (θ) on a first plane, and simultaneously rotate an angle on a second plane not parallel to the first plane
其中该旋转平面镜控制模块是用以驱动旋转平面镜模块的旋转,并接受来自讯号转换模块的讯号(SM)后,转换为控制平面镜模块旋转角度的讯号,使旋转平面镜模块的旋转角度受旋转平面镜控制模块的控制而随时间改变,以使总体调变扫描激光光束(LS)逐一扫描投影幕上所有欲使产生被激发光的位置;Wherein the rotating plane mirror control module is used to drive the rotation of the rotating plane mirror module, and after receiving the signal (S M ) from the signal conversion module, it is converted into a signal for controlling the rotation angle of the plane mirror module, so that the rotation angle of the rotating plane mirror module is controlled by the rotating plane mirror The control of the control module is changed over time, so that the overall modulated scanning laser beam ( LS ) scans all the positions on the projection screen where the excited light is to be generated;
其中该激光讯号调变模块是根据由讯号转换模块所提供的单一画面或动态画面的影像讯号(SI),产生对应于各激光光源的驱动电流(Ii),以分别对各个波长的激光光束(LiS)进行光功率调变。Wherein the laser signal modulation module generates the driving current (I i ) corresponding to each laser light source according to the image signal (S I ) of a single picture or a dynamic picture provided by the signal conversion module, so as to respectively control the laser light of each wavelength The light beam (L iS ) undergoes optical power modulation.
附图说明Description of drawings
图1是有关激光投影系统的一先前技术示意图;FIG. 1 is a prior art schematic diagram of a laser projection system;
图2是本发明的激光投影系统200(实施例1)示意图;2 is a schematic diagram of a laser projection system 200 (embodiment 1) of the present invention;
图2A-2C分别是图2中投影幕发光层三种不同结构的纵向示意图;2A-2C are respectively longitudinal schematic diagrams of three different structures of the light-emitting layer of the projection screen in FIG. 2;
图3是本发明的激光投影系统300(实施例2)示意图;3 is a schematic diagram of a laser projection system 300 (embodiment 2) of the present invention;
图3A是图3中投影幕的一基本架构示意图;FIG. 3A is a schematic diagram of a basic structure of the projection screen in FIG. 3;
图4是本发明的激光投影系统400(实施例3)示意图;4 is a schematic diagram of a laser projection system 400 (embodiment 3) of the present invention;
图4A-4E分别是图4中投影幕的发光层的邻近数个画素空间的结构示意图;4A-4E are schematic structural diagrams of several adjacent pixel spaces of the light-emitting layer of the projection screen in FIG. 4;
图5是本发明的激光投影系统500(实施例4)示意图;5 is a schematic diagram of a laser projection system 500 (embodiment 4) of the present invention;
图6是本发明一简化的激光投影系统600(实施例5)示意图;6 is a schematic diagram of a simplified laser projection system 600 (embodiment 5) of the present invention;
图7A-7K分别是本发明(实施例6)中投影幕的第一种至第十一种结构型态示意图;7A-7K are respectively schematic diagrams of the first to eleventh structural types of the projection screen in the present invention (embodiment 6);
图7KA是图7K中遮光层(790)一例图;Fig. 7KA is a diagram of an example of the light-shielding layer (790) in Fig. 7K;
图7KB是图7K中聚光层(791)一例图;Fig. 7KB is a diagram of an example of the light concentrating layer (791) in Fig. 7K;
图7L是本发明实施例中投影幕的第十二种结构型态示意图;FIG. 7L is a schematic diagram of the twelfth structure of the projection screen in the embodiment of the present invention;
图8是本发明一可扩大显示画面的激光投影系统800(实施例7)示意图;FIG. 8 is a schematic diagram of a laser projection system 800 (Embodiment 7) of the present invention that can expand the display screen;
图8A是图8中激光投影系统在平行于x-z平面的横截面上视图;Figure 8A is a cross-sectional view of the laser projection system in Figure 8 parallel to the x-z plane;
图8B是图8中激光投影系统在平行于x-y平面的横截面侧视图;8B is a cross-sectional side view of the laser projection system in FIG. 8 parallel to the x-y plane;
图8C是图8中本发明的激光投影系统(800)在x-z(或y-z)平面上将凸面镜置于不同位置时与所扩张扫描角度的关系图;Fig. 8C is a graph showing the relationship between the laser projection system (800) of the present invention in Fig. 8 when the convex mirror is placed in different positions on the x-z (or y-z) plane and the expanded scanning angle;
图9是说明本发明第二个扩大显示画面激光投影系统900(实施例8)示意图;9 is a schematic diagram illustrating a laser projection system 900 (embodiment 8) of the second enlarged display screen of the present invention;
附图标记说明:200、300、400、500、600、800、900-激光投影系统;201、301、401、501、601、701、702、703、704、705、706、707、708、709、710、711、801、901-投影幕;202、302、402、502、602-激光投影器;210、310、410、410、810、910-激光光源模块;220、320、420、520-激光讯号调变模块;230、330、430、530-合光模块;240、340、440、540、820、920-旋转平面镜模块;250、350、450、550-旋转平面镜控制模块;260、360、460、560-讯号转换模块;270、370、470、570-激光光学模块;231、232、233-基材;235-基板;236、237、238-微颗粒;311-第一类激光光源模块;312-第二类激光光源模块;331-发光层;332-散射层;431、441-画素;432-434、442-444、452-455、462-465-次画素(subpixel);700-投影幕;720、720A-被激发光吸收层;730-发光层;740-激发光吸收层;720B-被激发光与散射光吸收层;750-散射层;760-激发光反射层;770-被激发光部分反射层;780-被激发光与被散射光部分反射层;790-部分遮光层;791-聚光层;792-遮光元件;793-开口;794-聚光镜;795-画素;796-显像层;797-抗紫外线层;80、90-激光投影器;801-投影幕;830、930-凸面反射镜;940-平面镜模块。Description of reference numerals: 200, 300, 400, 500, 600, 800, 900—laser projection system; , 710, 711, 801, 901- projection screen; 202, 302, 402, 502, 602- laser projector; 210, 310, 410, 410, 810, 910- laser light source module; 220, 320, 420, 520- Laser signal modulation module; 230, 330, 430, 530-light combining module; 240, 340, 440, 540, 820, 920-rotating plane mirror module; 250, 350, 450, 550-rotating plane mirror control module; 260, 360 , 460, 560-signal conversion module; 270, 370, 470, 570-laser optical module; 231, 232, 233-substrate; 235-substrate; 236, 237, 238-microparticles; 311-first-class laser light source Module; 312-the second type of laser light source module; 331-luminescent layer; 332-scattering layer; 431, 441-pixel; 432-434, 442-444, 452-455, 462-465-subpixel (subpixel); 700 -Projection screen; 720, 720A-excited light absorbing layer; 730-luminescent layer; 740-exciting light absorbing layer; 720B-excited light and scattered light absorbing layer; 750-scattering layer; 760-exciting light reflecting layer; 770 -partial reflection layer of excited light; 780-partial reflection layer of excited light and scattered light; 790-partial shading layer; 791-light concentrating layer; 792-shading element; 793-opening; 796-imaging layer; 797-anti-ultraviolet layer; 80, 90-laser projector; 801-projection screen; 830, 930-convex mirror; 940-plane mirror module.
具体实施方式Detailed ways
<实施例1><Example 1>
参考图2,其是本发明的实施例1的激光投影系统200示意图;该激光投影系统200包含一投影幕201及一激光投影器202。激光投影器202用来根据单一画面或动态画面的影像讯号SI,以将影像投影至投影幕201。激光投影器202包含一激光光源模块210、一激光讯号调变模块220、一合光模块230、一旋转平面镜模块240、一旋转平面镜控制模块250及一讯号转换模块260。此外,将其中激光光源模块210、激光讯号调变模块220及合光模块230三者共同组成的结构定义为激光光学模块270,以方便下文讨论。Referring to FIG. 2 , it is a schematic diagram of a
该投影幕201中具备一发光层,该发光层具备一种或多种发光物质,以F1、F2、...、Fn表示,n为发光物质的种类数。该发光物质包含任何受到某一波长范围的光照射,而可被激发产生另一波长范围的光的物质,包含且不限定为荧光(Fluorescence)物质、磷光(Phosphorescence)物质、激光染料、或激光晶体等。发光层中各种发光物质分别可被各种不同波长(以λ1S、λ2S、...、λnS表示)的光源激发,并分别被激发出另外各种不同波长(以λ1E、λ2E、...、λnE表示)的光。为使单一激光光束投射在投影幕上每个位置皆能同时激发出所有被激发光的波长,单一激光光束的横截面需可涵盖数量相当多的所有种类的发光物质粒子。因此各种类的发光物质粒子间在平行于投影幕平面的横向距离(transversedistance)应远小于激光光束的横截面直径。此处,λ1S、λ2S、...、λnS及λ1E、λ2E、...、λnE等各波长并不代表为单一数值,而可为一定范围的分布。The
若为追求发光层的被激发效率,并减少激发激光穿越此发光层的光功率,应使发光层吸收绝大部分激发激光的能量。又若要使发光层状似透明,应减少发光层对可见光的散射与吸收,其中的一必要因素应使发光物质的粒子直径小于可见光的最短波长(约360nm)。In order to pursue the excitation efficiency of the light-emitting layer and reduce the optical power of the excitation laser passing through the light-emitting layer, the light-emitting layer should absorb most of the energy of the excitation laser. If the luminescent layer is to be transparent, the scattering and absorption of visible light by the luminescent layer should be reduced. One of the necessary factors is to make the particle diameter of the luminescent material smaller than the shortest wavelength of visible light (about 360nm).
该发光层的纵向(longitudinal)切面可包含但不限定为图2A、图2B或图2C的结构。图2A、图2B与图2C所示,以圆形、三角形与正方形代表三种不同的发光物质,但本发明并不限于三种发光物质。在图2A中,一种基材231,包含且不限于TN(Twisted Nematic,扭曲向列)、STN(Super Twisted Nematic,超级扭曲向列)、PC(多元酯树脂,Polycarbonate resin)、COC(烯烃共聚合物,cyclo-olefin copolymers)、PET(聚对苯二甲酸乙二(醇)酯,polyethyleneterephthalate)、epoxy(环氧树脂)等透明状塑质材料或玻璃,包含着数种发光物质。当在此基材中,各种发光物质以均匀的方式散布在可能为激发光所照射的所有位置时,可易于设定激发光波长的光束(以L1S、L2S、...、LnS表示)的光功率(以P1E、P2E、...、PnE表示)以产生所需的被激发光的单位面积发光能量。The longitudinal section of the light-emitting layer may include but not limited to the structure shown in FIG. 2A , FIG. 2B or FIG. 2C . As shown in FIG. 2A , FIG. 2B and FIG. 2C , circles, triangles and squares represent three different luminescent substances, but the present invention is not limited to three kinds of luminescent substances. In FIG. 2A, a
在图2B中,三种基材232、233、234,包含且不限于TN、STN、PC、COC、PET、epoxy等透明状塑质材料,分别包含一种发光物质。当每一种发光物质在分别的基材中以均匀的方式散布在可能为激发光所照射的所有位置时,可易于设定激发光波长的光束的光功率,以产生所需的被激发光的单位面积发光能量。在此图2B中,每一基材232、233、234仅各包含一层发光物质,实际上并不以此为限。In FIG. 2B , three
在图2C中,一基板235用以承载分别包含各式发光物质的微颗粒236、237与238。微颗粒236、237与238中由不同的基材分别承载不同的发光物质。微颗粒236、237与238在基板235上以均匀的方式散布在可能为激发光所照射的所有位置。In FIG. 2C , a
为使单一激光光束Ls投射在投影幕201上每个位置皆能同时激发出所有被激发光的波长,单一激光光束的横截面需可涵盖数量相当多的所有种类的发光物质粒子。因此微颗粒236、237与238在平行于基板235的横截面,及各微颗粒间在平行于投影幕平面的横向距离(transverse distance)应远小于激光光束的横截面直径。In order to make the single laser beam Ls projected on the
图2C的结构相较于图2A与图2B,可较易于调整各种微颗粒在基板上不同位置的分布密度。而使同样地光能量的光束扫描在投影幕上不同位置时激发发光层产生不同的被激发光能量组合,特别适用于如图5所示的静态影像显示系统。图5的架构与工作原理详述如后。Compared with the structure of FIG. 2A and FIG. 2B , the structure of FIG. 2C can adjust the distribution density of various microparticles at different positions on the substrate more easily. When the beam of the same light energy is scanned at different positions on the projection screen, the luminescent layer is excited to produce different combinations of excited light energy, which is especially suitable for the static image display system shown in FIG. 5 . The architecture and working principle of FIG. 5 are described in detail below.
图2C的制作方式包含且不限于以下所述:各式发光物质首先分别溶解在各别溶液中,此溶液包含且不限为Epoxy(环氧树脂)。包含各别发光物质的各别溶液再分别以包含且不限喷墨、蒸镀等方式形成微颗粒而置于基板235上,最后再将此包含各种微颗粒的基板235固化。The fabrication method of FIG. 2C includes and is not limited to the following: firstly, various luminescent substances are respectively dissolved in respective solutions, and the solutions include and are not limited to Epoxy (epoxy resin). The respective solutions containing the respective luminescent substances are then respectively formed into micro-particles by means including but not limited to inkjet, vapor deposition, etc., and placed on the
讯号转换模块260接受各式单一画面或动态画面的影像讯号SI,并将其转换为控制激光光源模块210的讯号SL及旋转平面镜模块240的讯号SM。讯号转换模块260并负责协调激光讯号调变模块220的光讯号与旋转平面镜模块240的同步。The
激光光源模块210包含一组或多组激光光源,分别可发射波长λ1L、λ2L、...、λnL,对应并落入发光层中各种发光物质的激发光波长范围λ1S、λ2S、...、λnS的光束,以L1S、L2S、...、LnS表示,以分别激发发光层中各种发光物质,使的产生λ1E、λ2E、...、λnE波长的光。The laser
为了使投影幕201上各点所产生λ1E、λ2E、...、λnE波长的单位面积光功率可分别为L1S、L2S、...、LnS的光功率所控制,应避免单一激发光产生大于或等于二种以上的被激发光波长。在选择激光波长与发光层内发光物质时需减少λiS与λjS间分布范围的重迭,其中1≤i,j≤n且λiE≠λjE,且降低λiS照射至任一发光层中的发光物质而产生任何不等于λiE波长的被激发光能量。In order to make the optical power per unit area of λ 1E , λ 2E , ..., λ nE wavelengths generated by each point on the
此外,因波长λiL的激光的光功率受限于该波长激光的制作工艺。若要追求增大某一波长λiE的单位面积发光能量,则包含下列两种方式:其一,可使发光层中m种发光物质分别可为不同波长范围,λ1mS、λ2mS、...、λmmS,的光所激发,而产生同样波长λiE的被激发光。并于激光光源模块210中配置m个激光光源,其波长分别对应各发光物质激发波长范围,其中m≥2。因此,该发光层上各光束投射位置所产生波长λiE的单位面积发光能量即为此m个发光物质受到此m个激光光源激发所生被激发光的总和。其二,因发光物质的激发波长分布范围一般大于该激发激光光源的波长分布范围。因此,可选择激发光波长λiS分布范围较宽,并产生被激发光波长为λiE的发光物质。并于激光光源模块210中配置m2个激光光源,其波长皆位于此发光物质激发波长λiS范围中,其中m2≥2。因此,该发光层上各光束投射位置所产生波长λiE的单位面积发光能量即为此发光物质受到此m2个激光光源激发所生被激发光的总和。In addition, the optical power of the laser with the wavelength λ iL is limited by the manufacturing process of the laser with this wavelength. If the pursuit of increasing the luminous energy per unit area of a certain wavelength λ iE includes the following two methods: first, the m kinds of luminescent substances in the luminescent layer can be made into different wavelength ranges, λ 1mS , λ 2mS , .. ., λ mmS , the light is excited, and the excited light of the same wavelength λ iE is produced. And m laser light sources are arranged in the laser
合光模块230包含且不限定于由各式滤波片(wavelength filter)或菱镜(prism)所组成,将激光光束L1S、L2S、...、LnS汇聚至同一路径、同一方向,以产生总体调变激光光束LM。总体调变激光光束LM入射至旋转平面镜模块240,并为旋转平面镜模块240所反射而形成总体调变扫描激光光束LS以投射至投影幕201。The light combining module 230 includes and is not limited to being composed of various wavelength filters or prisms, which converge the laser beams L 1S , L 2S , ..., L nS to the same path and direction, to generate an overall modulated laser beam L M . The overall modulated laser beam L M is incident on the rotating
旋转平面镜模块240包含且不限为两个直交(Orthogonal)一维多面反射镜(Polygon Mirror)模块、两个直交一维微机电(MEMS)反射镜面、或一个二维微机电(MEMS)反射镜面,可在一第一平面旋转角度θ,同时亦可在一非与第一平面平行的第二平面旋转角度 The rotating
旋转平面镜控制模块250驱动旋转平面镜模块240的旋转,并可接受来自讯号转换模块260的讯号SM后,转换为可控制平面镜模块240旋转角度的讯号。旋转平面镜模块240的旋转角度可受旋转平面镜控制模块250的控制而随时间改变。随着旋转平面镜模块240的旋转角度的改变,总体调变扫描激光光束LS逐一扫描投影幕201上所有欲使产生被激发光的位置。旋转平面镜模块240可为周期性或非周期性旋转。总体调变扫描激光光束LS在扫描投影幕201上的扫描形式包含且不限于栅式扫描(Raster Scanning)、利萨如扫描(LissajousScanning)或向量扫描(Vector Scanning)。总体调变扫描激光光束LS内的波长λ1S、λ2S、...、λnS成分的激光分别激发投影幕201的发光层中的发光物质F1、F2、...、Fn,使之产生波长λ1E、λ2E、...、λnE的光。The rotating plane mirror control module 250 drives the rotating
激光讯号调变模块220用来根据由讯号转换模块260所提供的单一画面或动态画面的影像讯号SI,产生对应于各激光光源的驱动电流,I1、I2、...、In,的大小,以分别对各个波长的激光光束,L1S、L2S、...、LnS,进行光功率调变。The laser
激发光的光功率越高、激发光被扫描经过投影幕上某位置的时间越长、发光物质密度越高,皆可使所投射投影幕的该位置激发出越高光功率的被激发光。投影幕201上某位置的各种波长被激发光的单位面积发光能量,与对应的激发光功率乘上扫描经过该位置的时间的值,依各别发光物质的密度(以D1、D2、...、Dn表示)固定成某种比例关系。The higher the optical power of the excitation light, the longer the time for the excitation light to be scanned through a certain position on the projection screen, and the higher the density of the luminescent substance, all can make the position of the projected projection screen excite the excited light with higher optical power. The luminous energy per unit area of the excited light of various wavelengths at a certain position on the
当欲使投影幕上某一个位置的第i个被激发波长的单位面积发光能量为PiE时,则在总体调变扫描激光光束LS扫描至该位置时,就将对应至该被激发波长的激光光束该LiS的光功率PiS调整,或对扫描经过投影幕上某位置的时间τ调整,使之能激发投影幕中该位置的该发光物质产生PiE的单位面积发光能量。When the luminous energy per unit area of the i-th excited wavelength at a certain position on the projection screen is to be P iE , then when the overall modulated scanning laser beam L S scans to this position, it will correspond to the excited wavelength Adjust the optical power P iS of the L iS of the laser beam, or adjust the time τ of scanning through a certain position on the projection screen, so that it can excite the luminescent substance at this position in the projection screen to generate the luminous energy per unit area of P iE .
激发投影幕中该位置(x,y)的第i个发光物质被光束LiS激发产生PiE(x,y)的单位面积发光能量可表示为:The i-th luminous substance at the position (x, y) in the excitation projection screen is excited by the light beam L iS to generate the luminous energy per unit area of P iE (x, y), which can be expressed as:
其中,(x,y)为该位置的空间座标,为光束LiS扫描在位置(x,y)的光功率,PiS(x,y)为当光束LiS扫描在位置(x,y)时由激光光源模块所发射的光功率,LO代表光束LiS经过合光模块、旋转平面镜模块反射及介于激光光源模块210与投影幕201间所有光学元件所生的光功率损耗参数,一般可视LO与位置ρ无关,τ(x,y)为总体调变扫描激光光束LS扫描经过位置(x,y)的时间,Di(x,y)为位置(x,y)上第i个发光物质的密度,为位置(x,y)上第i种发光物质将激发光波长λiS转换为被激发光波长λiE的单位面积光功率转换效率,受与Di(x,y)的影响。在第i种发光物质的并不受影响的状况下,Ci可简化为 在一式中,τ(x,y)可根据旋转平面镜模块240的旋转模式计算而得,LO与可经量测而得,因此我们可通过激光调便模块220改变PiS(x,y)以追求所欲达成的PiE(x,y)。Among them, (x, y) is the spatial coordinate of the position, is the optical power of beam L iS scanning at position (x, y), P iS (x, y) is the optical power emitted by the laser light source module when the light beam L iS is scanned at the position (x, y), L O represents the light beam L iS is reflected by the light combining module, the rotating plane mirror module and between the laser The optical power loss parameters generated by all the optical components between the
因某些旋转平面镜模块240的旋转方式使得激光Ls在投影幕201的扫描并非等速度。因此,扫描经过投影幕201上位置ρ的时间τ(x,y)并不一致。在投影幕上各位置的发光物质的密度皆为相等时,亦即Di(x,y)=Di,若要使投影幕上任何位置皆达到预设的单位面积发光能量PiE时,则需根据总体调变扫描激光光束LS扫描经过位置(x,y)的时间τ(x,y)来调整PiS(x,y)的值,而非给予一固定值使PiS(x,y)=PiS。The scanning speed of the laser light Ls on the
以Raster Scanning与Lissajous Scanning等激光扫描方式为例,在画面边缘区域位置的激光光束扫描速度较在画面中心区域位置为慢,因此激光光束经过边缘区域某位置的时间较经过中心区域某位置的时间为长。若投影幕上各位置的第i个发光物质的密度皆为相等时,若为追求同样的被激发光波长λiS的单位面积光能量,则需减少扫描至边缘区域位置的波长为λiL的激光光功率。其基本思考原则及计算方式如下,本发明并不以下例为限,凡基本思考原则及计算方式与下例同者,皆属本发明范畴。Taking laser scanning methods such as Raster Scanning and Lissajous Scanning as examples, the scanning speed of the laser beam at the edge of the screen is slower than that at the center of the screen, so the time it takes for the laser beam to pass through a certain position in the edge area is shorter than the time it takes to pass through a certain position in the central area for long. If the density of the i-th luminescent substance at each position on the projection screen is equal, if the light energy per unit area of the same excited light wavelength λ iS is to be pursued, it is necessary to reduce the wavelength of scanning to the edge region by λ iL Laser light power. The basic thinking principles and calculation methods are as follows, and the present invention is not limited to the following examples, and those whose basic thinking principles and calculation methods are the same as the following examples all belong to the scope of the present invention.
设定时间t=0时二维旋转反射镜的旋转角度则得下列关系式:Set the rotation angle of the two-dimensional rotating mirror at time t=0 Then the following relationship is obtained:
θ(t)=θ0*sin(2π/Tθ*t);θ(t)=θ 0 *sin(2π/T θ *t);
其中θ0与分别为该二维旋转反射镜使激光光束沿x轴与y轴旋转的最大旋转角度,Tθ与分别为其旋转周期。为简化计算,令该投影幕为一平面,在(x,y)=(0,0)的点垂直正交于在θ=0,的激光光束,则x=D*tan(θ(t))且y=D*tan(θ(t)),D为二维旋转反射镜与投影幕的最短距离。利用上述关系式,可求得在x轴的扫描速度vx(x)=dx/dt及y轴的扫描速度vy(y)=dy/dt。在(x,y)点的扫描速度即为v(x,y)=(vx 2(x)+vy 2(y))1/2。为使单位面积发光能量在投影幕上皆一致,应使PiS(x,y)正比于在第i种发光物质的 并不受影响的状况下,应设定PiS(x,y)正比于v(x,y)=(vx 2(x)+vy 2(y))1/2。where θ 0 and Respectively, the two-dimensional rotating mirror makes the laser beam rotate along the x-axis and the y-axis maximum rotation angle, T θ and are their rotation periods, respectively. To simplify the calculation, let the projection screen be a plane, the point at (x, y) = (0, 0) is perpendicular to the point at θ = 0, laser beam, then x=D*tan(θ(t)) and y=D*tan(θ(t)), D is the shortest distance between the two-dimensional rotating mirror and the projection screen. Using the above relational formula, the scanning velocity v x (x)=dx/dt on the x-axis and v y (y)=dy/dt on the y-axis can be obtained. The scanning speed at point (x, y) is v(x, y)=(v x 2 (x)+v y 2 (y)) 1/2 . In order to make the luminous energy per unit area consistent on the projection screen, P iS (x, y) should be proportional to of the i-th luminescent substance not subject to In the case of influence, P iS (x, y) should be set to be proportional to v(x, y)=(v x 2 (x)+v y 2 (y)) 1/2 .
若二维反射镜的旋转速度使得总体调变扫描激光光束LS扫描经过投影幕各个位置所需的时间小于观察者的影像截取曝光时间,则在激光光束扫描经过各个位置所激发形成的各个光点将将为观察者一起认知,而形成为一个画面。此观察者的影像截取曝光时间对于人眼而言为人眼视觉暂留时间(约1/16秒),对于照相机或摄影机而言为每个画面的曝光时间。If the rotation speed of the two-dimensional mirror makes the time required for the overall modulated scanning laser beam L S to scan through each position of the projection screen less than the observer's image interception exposure time, then the laser beam scans through each position Excited to form each light The dots will be recognized together by the observer to form a picture. The image capture exposure time of the observer is the duration of vision of the human eye (about 1/16 second) for the human eye, and is the exposure time of each frame for the camera or video camera.
当二维反射镜持续旋转的时间超过观察者的影像截取曝光时间,便可形成数个画面。若二维反射镜旋转的速度足以使得每个画面的更新时间小于观察者的影像截取曝光时间,则此数个画面将为观察者认知为连续的动态画面。When the continuous rotation time of the two-dimensional mirror exceeds the exposure time of the observer's image interception, several frames can be formed. If the rotation speed of the two-dimensional mirror is sufficient to make the update time of each frame shorter than the observer's image capture exposure time, then the several frames will be recognized as continuous dynamic frames by the observer.
此外,当有一个发光物质的缓解过程时间(Relaxing Process Time)大于每个画面的更新时间,则观察者将观察到上个画面所残留的被激发光,而形成残影。因此,在欲形成连续的动态画面的投影系统,应选择缓解过程时间较短的发光物质,如荧光物质、激光染料、激光晶体等。In addition, when the relaxation process time (Relaxing Process Time) of a luminescent substance is greater than the update time of each picture, the observer will observe the remaining excited light from the previous picture, which will form afterimages. Therefore, in a projection system that intends to form a continuous dynamic picture, light-emitting substances with a short mitigation process should be selected, such as fluorescent substances, laser dyes, and laser crystals.
本激光投影系统200的一应用例为一全彩激光投影显像系统。举一个单一原色为α-bit(2α层色阶)的全彩激光投影显像系统为例。波长为λRS、λGS、λBS的激光光束LRS、LGS、LBS分别可激发投影幕发光层中的发光物质FR、FG、FB,使的产生最大单位面积光功率分别为PREM、PGEM、PBEM的红、绿、蓝三色光,此被激发的三原色光波长分别以λRE、λGE、λBE表示。则PREM、PGEM、PBEM的相对比例应符合达成影像画面白平衡的比例。An application example of the
在投影幕某位置欲显示的色彩对应到红、绿、蓝色分别为第nR、nR、nR个色阶时,若不考虑人眼对光功率较小的可见光有较敏锐的感知,应调整激光光束LRS、LGS、LBS扫描经过该位置的光功率PRL、PGL、PBL使得该投影幕的发光层分别产生红、绿、蓝色单位面积光功率为(nR-1)/(2α-1)*PREM、(nG-1)/(2α-1)PGEM、(nB-1)/(2α-1)PBEM。When the color to be displayed at a certain position on the projection screen corresponds to red, green, and blue as the n R , n R , and n R color levels respectively, if it is not considered that the human eye has a sharper perception of visible light with lower optical power , the optical power P RL , P GL , P BL of the laser beam L RS , LG GS , L BS scanning through this position should be adjusted so that the light-emitting layer of the projection screen produces red, green, and blue light power per unit area respectively (n R -1)/(2 α -1)*P REM , (n G -1)/(2 α -1)P GEM , (n B -1)/(2 α -1)P BEM .
若考虑人眼对光功率较小的可见光有较敏锐的感知,而引入伽玛修正因子(Gamma Correction Factor)γ,则应调整激光光束LRS、LGS、LBS扫描经过该位置的光功率PRL、PGL、PBL使得该投影幕的发光层分别产生红、绿、蓝色单位面积光功率为[(nR-1)/(2α-1)]1/γPREM、[(nG-1)/(2α-1)]1/γPGEM、[(nB-1)/(2α-1)]1/γPBEM。Considering that the human eye has a sharper perception of visible light with lower optical power, and the Gamma Correction Factor (Gamma Correction Factor) γ is introduced, the optical power of the laser beams L RS , LG GS , and L BS scanning through this position should be adjusted P RL , P GL , P BL make the light-emitting layer of the projection screen generate red, green, and blue light power per unit area respectively [(n R -1)/(2 α -1)] 1/γ P REM , [ (n G -1)/(2 α -1)] 1/γ P GEM , [(n B -1)/(2 α -1)] 1/γ P BEM .
若要追求投影幕上每位置的对于同样红、绿、蓝色分别为第nR、nR、nR个色阶时皆显示同样的明度(lightness)、色相(hue)与色度(chroma),最大单位面积光功率PREM、PGEM、PBEM的值并不随位置的改变而互异。然而,激光光束LRS、LGS、LBS的最大发光功率PRLM、PGLM、PBLM,则需审慎检视投影幕上各位置的各种发光物质的分布密度与激光光束的扫描速度来调整。其方法已于上文详述。在此仅举下列简例进一步说明激光光功率PRL、PGL、PBL的控制。To pursue the same lightness, hue and chroma for each position on the projection screen when the same red, green and blue are respectively n R , n R , and n R gradations ), the values of the maximum unit area optical power P REM , P GEM , and P BEM do not vary with the position. However, the maximum luminous powers P RLM , PGLM , and P BLM of the laser beams L RS , LG GS , and L BS need to be adjusted by carefully checking the distribution density of various luminescent substances at each position on the projection screen and the scanning speed of the laser beam. . The method has been described in detail above. Here, only the following simple examples are given to further illustrate the control of the laser light powers P RL , P GL , and P BL .
当投影幕上各位置的各种发光物质皆为均匀分布,且此全彩激光投影显像系统采用栅式扫描(Raster Scanning)或利萨如扫描(Lissajous Scanning)激光扫描方式,且忽略红、绿、蓝三种发光物质的光功率转换效率CR、CG、CB受入射光功率的影响,则光束扫描至投影幕该位置(x,y)的各激光光源模块的最大发光功率PRLM(x,y)、PGLM(x,y)、PBLM(x,y)应正比于光束扫描至该位置(x,y)的速度v(x,y),亦即:When all kinds of luminous substances on the projection screen are uniformly distributed, and the full-color laser projection imaging system adopts raster scanning (Raster Scanning) or Lissajous Scanning (Lissajous Scanning) laser scanning method, and ignores red, The optical power conversion efficiencies C R , C G , and C B of the three luminescent substances of green and blue are affected by the incident light power, and the maximum luminous power P RLM of each laser light source module when the beam scans to the position (x, y) of the projection screen (x, y), P GLM (x, y), P BLM (x, y) should be proportional to the speed v(x, y) of the beam scanning to the position (x, y), that is:
PRLM(x,y)=PRLM(0,0)*v(x,y)/v(0,0);PGLM(x,y)=PGLM(0,0)*v(x,y)/v(0,0);P RLM (x, y) = P RLM (0, 0) * v (x, y) / v (0, 0); P GLM (x, y) = P GLM (0, 0) * v (x, y)/v(0,0);
PBLM(x,y)=PBLM(0,0)*v(x,y)/v(0,0)。P BLM (x, y)=P BLM (0,0)*v(x,y)/v(0,0).
因为v(0,0)≥v(x,y),所以PRLM(x,y)≤PRLM(0,0),PGLM(x,y)≤PGLM(0,0),PBLM(x,y)≤PBLM(0,0)。为了使该全彩激光投影显像系统有最明亮的影像,我们应在考量PREM、PGEM、PBEM达白平衡的相互比例之余,考量激光光源的制作工艺与其生命周期等来选择可能最大的PRLM(0,0)、PGLM(0,0)、PBLM(0,0)值。Since v(0, 0) ≥ v(x, y), P RLM (x, y) ≤ P RLM (0, 0), P GLM (x, y) ≤ P GLM (0, 0), P BLM (x,y)≦P BLM (0,0). In order to make the full-color laser projection display system have the brightest image, we should not only consider the mutual ratio of P REM , P GEM , and P BEM to achieve white balance, but also consider the production process of the laser light source and its life cycle to select the possible Maximum P RLM (0,0), P GLM (0,0), P BLM (0,0) values.
若不考虑人眼对光功率较小的可见光有较敏锐的感知,应调整激光光束LRS、LGS、LBS扫描经过(x,y)位置的光功率:If it is not considered that the human eye has a sharper perception of visible light with lower optical power, the optical power of the laser beams L RS , LG GS , and L BS scanning through the (x, y) position should be adjusted:
PRL(x,y)=(nR-1)/(2α-1)*PRLM(x,y)=(nR-1)/(2α-T)*PRLM(0,0)*v(x,y)/v(0,0);P RL (x, y)=(n R -1)/(2 α -1)*P RLM (x, y)=(n R -1)/(2 α -T)*P RLM (0,0 )*v(x,y)/v(0,0);
PGL(x,y)=(nG-1)/(2α-1)*PGLM(x,y)=(nG-1)/(2α-1)PGLM(0,0)*v(x,y)/v(0,0);P GL (x, y)=(n G -1)/(2 α -1)*P GLM (x, y)=(n G -1)/(2 α -1)P GLM (0,0) *v(x,y)/v(0,0);
PBL(x,y)=(nB-1)/(2α-1)*PBLM(x,y)=(nB-1)/(2α-1)*PBLM(0,0)*v(x,y)/v(0,0)。P BL (x, y)=(n B -1)/(2 α -1)*P BLM (x, y)=(n B -1)/(2 α -1)*P BLM (0,0 )*v(x,y)/v(0,0).
若考虑人眼对光功率较小的可见光有较敏锐的感知,而引入伽玛修正因素(Gamma Correction Factor)γ,则应调整激光光束LRS、LGS、LBS扫描经过(x,y)位置的光功率:Considering that the human eye has a sharper perception of visible light with lower optical power, and the gamma correction factor (Gamma Correction Factor) γ is introduced, the laser beams L RS , LG GS , and L BS should be adjusted to scan through (x, y) Optical power at position:
PRL(x,y)=[(nR-1)/(2α-1)]1/γ*PRLM(x,y)=[(nR-1)/(2α-1)]1/γ*PRLM(0,0)*v(x,y)/v(0,0);P RL (x, y) = [(n R -1)/(2 α -1)] 1/γ *P RLM (x, y) = [(n R -1)/(2 α -1)] 1/γ *P RLM (0,0)*v(x,y)/v(0,0);
PGL(x,y)=[(nG-1)/(2α-1)]1/γ*PGLM(x,y)=[(nG-1)/(2α-1)]1/γ*PGLM(0,0)*v(x,y)/v(0,0);P GL (x, y) = [(n G -1)/(2 α -1)] 1/γ *P GLM (x, y) = [(n G -1)/(2 α -1)] 1/γ *P GLM (0,0)*v(x,y)/v(0,0);
PBL(x,y)=[(nB-1)/(2α-1)]1/γ*PBLM(x,y)=[(nB-1)/(2α-1)]1/γ*PBLM(0,0)*v(x,y)/v(0,0)。P BL (x, y) = [(n B -1)/(2 α -1)] 1/γ *P BLM (x, y) = [(n B -1)/(2 α -1)] 1/γ *P BLM (0,0)*v(x,y)/v(0,0).
若二维反射镜的旋转速度使得总体调变激光光束LM扫描经过投影幕所有可能产生影像光点的位置的时间小于人眼视觉暂留时间,则在激光光束扫描经过各个位置所激发形成的各个光点将为人眼认知为一个画面。If the rotation speed of the two-dimensional mirror makes the time for the overall modulated laser beam L M to scan through all possible image spots on the projection screen to be less than the duration of human vision, then the laser beam scanning through each position excited and formed Each point of light will be recognized as a picture by the human eye.
若二维反射镜旋转的速度足以使得每个画面的更新时间小于人眼视觉暂留时间,则此投影系统200便可显示可见的连续动态画面。If the rotation speed of the two-dimensional mirror is sufficient to make the update time of each frame shorter than the persistence time of human eyes, the
若要避免画面残影,则需选择缓解过程时间(Relaxing Process Time)小于每个画面的更新时间,即1/F秒,此F为该动态画面显像系统以Hz为单位的帧速率(Frame Rate),的发光物质。To avoid picture afterimages, you need to select the relaxation process time (Relaxing Process Time) to be less than the update time of each picture, that is, 1/F second, where F is the frame rate (Frame rate) of the dynamic picture display system in Hz. Rate), the luminescent substance.
此外,为增加影像亮度,在投影幕的发光层中亦可加入w种宽频谱发光物质,其中w≥1。宽频谱发光物质可被激发产生波长,以λ1WE、λ2WE、...、λwWE表示,λiWE涵盖不只一个原色光波长的光,例如涵盖绿、蓝二色波长,或涵盖红、绿与蓝三色波长,此处1≤i≤w。并于激光光源模块210中配置w个激光光源,其波长,以λ1WS、λ2WS、...、λwWS表示,分别位于此w种发光物质的激发波长范围中。In addition, in order to increase the brightness of the image, w kinds of broad-spectrum luminescent substances can also be added to the luminescent layer of the projection screen, wherein w≥1. Broad-spectrum luminescent substances can be excited to generate wavelengths, represented by λ 1WE , λ 2WE , ..., λ wWE , λ iWE covers more than one primary color wavelength of light, for example, covers green and blue dichroic wavelengths, or covers red and green and blue trichromatic wavelength, where 1≤i≤w. In addition, w laser light sources are arranged in the laser
为进一步追求此w种宽频谱发光物质所生影像的白平衡,需设计此w种激光的光功率间的相互比例,使被激发出宽频波长,λ1WE、λ2WE、...、λwWE,的光能量的总和符合色彩学上白平衡的要求。In order to further pursue the white balance of the images produced by the w kinds of broad-spectrum luminescent substances, it is necessary to design the mutual ratio between the optical powers of the w kinds of lasers, so that the excited broadband wavelengths, λ 1WE , λ 2WE , ..., λ wWE , the sum of the light energy meets the requirement of white balance in color science.
此外,为追求扩大影像的色域(Color Gamut),在投影幕发光层中亦可加入g种扩大色域发光物质,其中g≥1。扩大色域发光物质可被激发产生波长,以λ1GE、λ2GE、...、λgGE表示。且在CIE色度座标图(Chromaticity Diagram)上,此λ1GE、λ2GE、...、λgGE及λRE、λGE、λBE共(g+3)个波长所形成的面积大于只有λRE、λGE、λBE所形成的面积。并于激光光源模块210中增加配置g个激光光源,其波长分别位于此g种扩大色域发光物质的激发波长范围中。一般的影像讯号SI所包含为红、绿、蓝三原色的影像信息。讯号转换模块260应将SI中转换为红、绿、蓝三原色加上λ1GE、λ2GE、...、λgGE的影像资讯,并用以控制红、绿、蓝三原色的激发激光光束LRS、LGS、LBS与g种激发扩大色域发光物质激光光源的光功率,以真实呈现投影幕上激光光束扫描至的位置的色彩。In addition, in order to expand the color gamut of the image, g kinds of luminescent substances for expanding the color gamut can also be added to the light emitting layer of the projection screen, wherein g≥1. The color gamut-expanded luminescent material can be excited to generate wavelengths, represented by λ 1GE , λ 2GE , . . . , λ gGE . And on the CIE chromaticity diagram (Chromaticity Diagram), the area formed by the total (g+3) wavelengths of λ 1GE , λ 2GE , ..., λ gGE and λ RE , λ GE , λ BE is larger than only The area formed by λ RE , λ GE , λ BE . In addition, g laser light sources are added in the laser
为了降低所需激光光源与扩大色域发光物质种类的数目,在选择λ1GE、λ2GE、...、λgGE时,应衡量激光光源与扩大色域发光物质的制作工艺,追求以最小的g达成相对较大的色彩面积。In order to reduce the number of types of laser light sources and luminescent substances that expand the color gamut, when selecting λ 1GE , λ 2GE , ..., λ gGE , the manufacturing process of the laser light source and luminescent substances that expand the color gamut should be considered, and the minimum g to achieve a relatively large color area.
由于激发光仍不免被投影幕所反射或散射,此反射或散射光的波长分布将与激发光的波长分布相同。若激发光对人眼有较佳的感光度,则观察者同时在该像素接收到激发光与被激发光,因而产生颜色的混杂,有损该影像的色彩对比度。为避免上述情况发生,较好的方式是采用不可见光的波长,包含且不限于808nm、850nm、980nm、与1064nm等,或选择对人眼感光度较差的波长,包含且不限于405nm、与780nm等,的激光作为激光光源模块210的激光光源。Since the exciting light is inevitably reflected or scattered by the projection screen, the wavelength distribution of the reflected or scattered light will be the same as that of the exciting light. If the excitation light has a better sensitivity to human eyes, the observer receives the excitation light and the excited light at the pixel at the same time, resulting in color mixing and degrading the color contrast of the image. In order to avoid the above situation, a better way is to use wavelengths of invisible light, including but not limited to 808nm, 850nm, 980nm, and 1064nm, etc., or choose wavelengths that are less sensitive to human eyes, including but not limited to 405nm, and 780nm and other lasers are used as the laser light source of the laser
若仍不免使用可见光为激发光源时,则选择与被激发光色彩相近的激发光源。包含且不限于以波长约405nm(蓝紫色)、450nm(蓝色)的激光光激发发光层产生蓝色(波长约450nm)的影像,以780nm(红色)、640nm(红色)的激光光激发发光层产生红色(波长约640nm)的影像。因激发光源与被激发光有相近色彩,可减少因激发光受投影幕反射或散射所生的颜色混杂现象。If it is still unavoidable to use visible light as the excitation light source, select an excitation light source with a color similar to that of the excited light. Including but not limited to excitation of the luminescent layer by laser light with a wavelength of about 405nm (blue-purple) and 450nm (blue) to produce a blue (wavelength of about 450nm) image, and excitation with laser light of 780nm (red) and 640nm (red) to emit light The layer produces a red (wavelength about 640nm) image. Because the excitation light source and the excited light have similar colors, the phenomenon of color mixing caused by the reflection or scattering of the excitation light by the projection screen can be reduced.
激光投影系统200的另一个简化应用例为使用一405nm半导体激光为激光光源210,另使用一可二维旋转的微机电反射镜,或二可一维旋转的微机电反射镜组合形成旋转平面镜模块240,该投影幕201包含一发光层,该发光层中包含一种可被405nm波长激发产生红色、蓝色或绿色可见光的发光物质。该投影幕201且为透明。若将此投影幕贴合于交通工具的驾驶座前的挡风玻璃上,以不影响驾驶视线为原则。将激光投影器202安装于该交通工具内,且将激光光束投射在投影幕201上。讯号转换模块260以有线或无线的方式接收来自,包含且不限于电脑、手机、GPS、夜视摄影机、可见光摄影机等影像源元件的影像讯号SI,并在投影幕201上显现各式资讯,包含且不限于车速、里程、油耗、地图、警告、方向指示、手机来电号码等。Another simplified application example of the
<实施例2><Example 2>
参考图3,其是本发明实施例2的激光投影系统300示意图;激光投影系统300包含一投影幕301及一激光投影器302。激光投影器302用来根据单一画面或动态画面的影像讯号SI,以将影像投影至投影幕301。激光投影器302包含一激光光源模块310、一激光讯号调变模块320、一合光模块330、一旋转平面镜模块340、一旋转平面镜控制模块350、与一讯号转换模块360。此外,并定义激光光学模块370,其包含激光光源模块310、激光讯号调变模块320与合光模块330,以方便下文讨论。Referring to FIG. 3 , it is a schematic diagram of a
其中,激光投影器302所设的激光讯号调变模块320、合光模块330、旋转平面镜模块340、旋转平面镜控制模块350与讯号转换模块360的结构以及工作原理分别与激光投影器202所设的激光讯号调变模块220、合光模块230、旋转平面镜模块240、旋转平面镜控制模块250与讯号转换模块260类似,故不再赘述。Among them, the structure and working principle of the laser signal modulation module 320, the light combination module 330, the rotating
本实施例2与前述实施例1之间的主要不同点乃在于激光投影器302中的激光光源模块310包含一第一类激光光源模块311与一第二类激光光源模块312以及投影幕301包含一发光层331与一散射层332;也就是本实施例2的第一类激光光源模块311与发光层331是相当于实施例1的激光光源模块210与投影幕201的发光层,而本实施例2是另增设一第二类激光光源模块312与一散射层332。因此,本实施例2或以下其他后实施例中凡是能引用与实施例1或任何前实施例相同的工作原理以达成与实施例1或前实施例相同或类似的作用功效者,如第一类激光光源模块311与发光层331是相同于实施例1中相对应的激光光源模块210与投影幕201的发光层的作用功效,均可参照实施例1,故而在本实施例2或其他后实施例中不再赘述。The main difference between this embodiment 2 and the foregoing
激光光源模块310包含一第一类激光光源模块311与一第二类激光光源模块312。该第一类激光光源模块311包含一组或多组激光光源,分别可发射波长λ11L、λ21L、...、λn1L,对应并落入发光层中各种发光物质的激发光波长范围λ1S、λ2S、...、λnS的光束,以L11S、L21S、...、Ln1S表示,以分别激发发光层中各种发光物质,使之产生λ1E、λ2E、...、λnE波长的光。The laser
第二类激光光源模块312包含一组或多组激光光源,分别可发射波长λ12L、λ22L、...、λn2L的光束,以L12S、L22S、...、Ln2S表示。The second type of laser light source module 312 includes one or more sets of laser light sources, which can respectively emit light beams with wavelengths λ 12L , λ 22L , . . . , λ n2L , denoted by L 12S , L 22S , .
投影幕301的一基本架构如图3A所示,具备一发光层331与一散射层332。发光层331在散射层332之前,面对激光投影器302所投射扫描的光束Ls,D1为发光层331外朝向入射光源的介质。A basic structure of the projection screen 301 is shown in FIG. 3A , which includes a
该散射层332可破坏入射激光的单一方向性,而产生与入射激光光波长相同的多方性散射光。The
该发光层331包含一种或数种发光物质分别可被各种不同波长(以λ1S、λ2S、...、λnS表示)的光源激发,并分别被激发出另外各种不同波长(以λ1E、λ2E、...、λnE表示)的光。此发光层331与其中发光物质的基本结构、基本工作原理以及基本特性,分别与实施例1的激光投影系统200中投影幕201所具备的发光层与发光物质相同,故不再赘述。The
发光层331对第二类激光光源模块312所发射的第二类波长的激光光的吸收与散射极低。因此,绝大部分第二类波长的激光光可穿越发光层331而进入散射层332。The light-emitting
为追求发光层331的被激发效率,且应使发光层331吸收绝大部分第一类激光光源模块311所发射第一类波长的激光。因此,散射层332主要用于散射第二类波长的激光及在发光层331中被第一类波长激光所激发的被激发光。In order to pursue the excitation efficiency of the
介质D1与发光层331的介面可予以抗反射处理,包含且不限于插入一层抗反射层,以减少两类调变激光光束的波长的光,及发光层331被激发的光在此介面的反射。因此,可增加第一类调变激光光束进入发光层331的比例,可增加第二类调变激光光束进入散色层332的比例,可增加由发光层331产生的被激发光进入D1的比例,也可增加由散射层所散射的光进入D1的比例。因而,当观察者位于投影幕的D1侧,可观察得较高的被激发光与被散射光的影像亮度。The interface between the medium D1 and the light-emitting
该发光层331与散射层332的介面可针对第二类调变激光光束的波长予以抗反射处理,以增加第二类调变激光光束进入散射层332与由散射层332所散射的光进入介质D1的比例。因而,当观察者位于投影幕的D1侧,可观察得较高的被散射光的影像亮度。The interface between the
该发光层331与散射层332的介面可针第一类调变激光光束的波长予以高反射处理,以反射第一类调变激光光通过发光层331后的残余能量,使的回到发光层331以增加被激发光的光功率。因而,当观察者位于投影幕的D1侧,可观察得较高的被激发光的影像亮度。The interface between the light-emitting
激光讯号调变模块320用来根据由讯号转换模块360所提供的单一画面或动态画面的影像讯号SI,产生对应于各激光的驱动电流,I11、I21、...、In1及I12、I22、...、In2,的大小,以分别对各个波长的激光光束,L11S、L21S、...、Ln1S及L12S、L22S、...、Ln2S,进行光功率调变。The laser signal modulation module 320 is used to generate the driving current corresponding to each laser according to the image signal S I of a single picture or a dynamic picture provided by the
如前文所述,越高光功率的第一类激光光功率、第一类激光光扫描经过投影幕上某位置的时间越长、越高的发光物质密度,皆可使所投射投影幕的该位置激发出越高光功率的被激发光。投影幕上某位置的各种波长被激发光的单位面积发光能量,与对应的第一类激光光功率乘上扫描经过该位置的时间的值,依分别发光物质的密度,固定成某种比例关系。As mentioned above, the higher the optical power of the first type of laser light, the longer the time for the first type of laser light to scan through a certain position on the projection screen, and the higher the density of luminous substances, all can make the position of the projected projection screen Excited light with higher optical power is excited. The luminous energy per unit area of the excited light of various wavelengths at a certain position on the projection screen, and the value of the corresponding first-class laser light power multiplied by the time of scanning through the position, are fixed in a certain proportion according to the density of the luminous substances respectively. relation.
同样地,越高光功率的第二类激光光功率、第二类激光光扫描经过投影幕上某位置的时间越长、越高的散射效率,皆可使所投射投影幕的该位置散射出越高光功率的被散射光。投影幕上某位置的各种波长散射光的单位面积发光能量,与对应的第二类激光光功率乘上扫描经过该位置的时间的值,依该散射层的散射效率,固定成某种比例关系。Similarly, the higher the optical power of the second type of laser light, the longer the time for the second type of laser light to scan through a certain position on the projection screen, and the higher the scattering efficiency, all can make the position of the projected projection screen scatter more light. Scattered light of high optical power. The luminous energy per unit area of scattered light of various wavelengths at a certain position on the projection screen, and the value of the corresponding second-type laser light power multiplied by the time of scanning through the position, are fixed to a certain ratio according to the scattering efficiency of the scattering layer relation.
随着调变激光光束LS内此两类光波长激光,即由第一类激光光源模块311及第二类激光光源模块312所发射的不同光波长激光,在此投影幕301上的扫描,影像可因此由被散射的第二类波长的激光光与发光层中被第一类波长激光所激发的被激发光所组成。As the two types of light wavelength lasers in the modulated laser beam LS , that is, the laser light of different wavelengths emitted by the first type of laser
在激光投影系统300的一个应用例为一全彩激光投影显像系统。举一个单一原色为α-bit(2α层色阶)的全彩激光投影显像系统为例。An application example of the
为追求扩大影像的色域,则包含下列两种可同时使用的方式:其一,在投影幕的发光层331中亦可加入g种扩大色域发光物质,并于第一类激光光源模块311中增加配置g个激光光源,其波长分别位于此g种扩大色域发光物质的激发波长范围中,其作用功效可参考实施例1;其二,在第二类激光光源模块312中增加配置h个激光光源,分别可产生λ1HE、λ2HE、...、λhHE的波长,其中h≥1;且在CIE色度座标图上,此λ1HE、λ2HE、...、λhHE及λRE、λGE、λBE共(h+3)个波长所形成的面积大于只有λRE、λGE、λBE所形成的面积。因一般的影像讯号SI所包含为红、绿、蓝三原色的影像资讯。讯号转换模块360应将SI中转换为λRE、λGE、λBE加上λ1GE、λ2GE、...、λgGE及λ1HE、λ2HE、...、λhHE的影像资讯,并用以控制激光光束LRS、LGS、LBS与此g种第一类激光光源模块311及此h种第二类激光光源模块312的激光光功率,以真实呈现投影幕上激光光束扫描至的位置的色彩。In order to expand the color gamut of the image, it includes the following two methods that can be used at the same time: first, g kinds of luminescent substances that expand the color gamut can also be added to the
又为了降低所需激光光源与扩大色域发光物质种类的数目,在选择λ1GE、λ2GE、...、λgGE及λ1HE、λ2HE、...、λhHE时,应衡量激光光源与扩大色域发光物质的制作工艺,追求以最小的(g+h)达成相对较大的色彩面积。In order to reduce the number of required laser light sources and expand the color gamut of luminescent substances, when selecting λ 1GE , λ 2GE , ..., λ gGE and λ 1HE , λ 2HE , ..., λ hHE , the laser light source should be weighed With the production process of luminous substances that expand the color gamut, the pursuit is to achieve a relatively large color area with the smallest (g+h).
在此全彩激光投影显像系统中,除了λ1WS、λ2WS、...、λwWS必须由第一类激光光源模块产生的激光所激发外,投影幕上所生的λRE、λGE、λB及λ1GE、λ2GE、...、λgGE及λ1HE、λ2HE、...、λhHE共(3+g+h)种波长(此处g,h≥0)的光能量,可分别为第一类激光光源模块产生的激光光所激发,或为第二类激光光源模块产生的激光光散射而生。发光层中亦须包含一种或数种发光物质,分别可被第一类激光光源模块的激光光源所激发而产生此(3+g+h)种波长中的某些波长的光。而第二类激光光源模块则包含此(3+g+h)种波长中其他波长的光。In this full-color laser projection imaging system, except that λ 1WS , λ 2WS , ..., λ wWS must be excited by the laser light generated by the first type of laser light source module, the λ RE , λ GE generated on the projection screen , λ B and λ 1GE , λ 2GE , ..., λ gGE and λ 1HE , λ 2HE , ..., λ hHE (3+g+h) kinds of light wavelengths (where g, h≥0) The energy can be excited by the laser light generated by the first type of laser light source module, or generated by the scattering of laser light generated by the second type of laser light source module. The luminescent layer must also contain one or more luminescent substances, which can be respectively excited by the laser light source of the first-type laser light source module to generate light of certain wavelengths among the (3+g+h) wavelengths. The second type of laser light source module includes light of other wavelengths in the (3+g+h) wavelengths.
为避免颜色的混杂,应采用不可见光的波长,包含且不限于808nm、850nm、980nm、与1064nm等,或选择对人眼感光度较差的波长,包含且不限于405nm、与780nm等,的激光作为第一类激光光源模块311的激光光源。若仍不免使用可见光为激发光源时,则选择与被激发光色彩相近的激发光源。包含且不限于以波长约405nm(蓝紫色)、450nm(蓝色)的激光光激发发光层产生蓝色(波长约450nm)的影像,以780nm(红色)、640nm(红色)的激光光激发发光层产生红色(波长约640nm)的影像。因激发光源与被激发光有相近色彩,可减少因激发光受投影幕反射或散射所生的颜色混杂现象。In order to avoid color mixing, wavelengths of invisible light should be used, including but not limited to 808nm, 850nm, 980nm, and 1064nm, or wavelengths that are less sensitive to human eyes, including but not limited to 405nm, 780nm, etc. The laser is used as the laser light source of the first type of laser
受限于绿光半导体激光的技术尚未成熟,一般需利用二次谐波生成(SecondHarmonic Generation)的方法将1064nm波长的激光光转换为绿光(532nm)激光光。因此,高调变频宽高功率的绿光激光模块不但体积较大,制作成本高、且控制相当复杂。在激光投影系统300的全彩激光投影显像系统中,其中一个应用例为使用蓝色与红色激光作为第一类激光光源模块311的激光光源,而使用405nm或980nm的激光激发发光层中的一种发光物质,因此可在投影幕上形成全彩的动态影像。Due to the immature technology of green semiconductor lasers, it is generally necessary to use the second harmonic generation (Second Harmonic Generation) method to convert laser light with a wavelength of 1064nm into green light (532nm) laser light. Therefore, the green laser module with high profile, variable frequency, wide width and high power is not only bulky, but also has high production cost and complicated control. In the full-color laser projection imaging system of the
<实施例3><Example 3>
参考图4,其是本发明的实施例3的激光投影系统400示意图;激光投影系统400包含一投影幕401及一激光投影器402。激光投影器402用来根据单一画面或动态画面的影像讯号SI,以将影像投影至投影幕401。激光投影器402包含一激光光源模块410、一激光讯号调变模块420、一旋转平面镜模块440、一旋转平面镜控制模块450、与一讯号转换模块460。此外,并定义激光光学模块470,其包含激光光源模块410与激光讯号调变模块420,以方便下文讨论。Referring to FIG. 4 , it is a schematic diagram of a
其中,旋转平面镜模块440、旋转平面镜控制模块450、与讯号转换模块460的结构以及工作原理分别与旋转平面镜模块240、旋转平面镜控制模块250、与讯号转换模块260类似,故不再赘述。Wherein, the structure and working principle of the rotating
投影幕401可被区隔为数个画素431对应到欲显示的荧幕解析度,以SVGA(超级视频图像阵列)的影像品质而言,即为800x600=480,000个画素。投影幕401的发光层的邻近数个画素的结构可包含且不限定为图4A与图4B所示的结构。The
在图4A中,单一个画素431中包含红、蓝、绿三种次画素(subpixel),分别以432、433、434表示。在图4B中单一个画素441中包含红、蓝、绿三种次画素,分别以442、443、444表示。每种次画素的面积不一定相等。邻近画素间的次画素排列可相同如图4A或相异如图4B。每种次画素分布有各别的发光材料。此三种发光物质包含且不限于荧光物质,并可分别被波长范围λRS、λGS、λBS的光束激发产生红、蓝、绿三色,波长为λRE、λGE、λBE的光。此三种发光物质的基本结构、基本工作原理以及基本特性,与本发明的实施例1激光投影系统200中的发光物质同,故不再赘述。In FIG. 4A , a
在激光光源模块410中包含一组激光光源,可发射波长λL,同时落入发光层中三种发光物质的激发光波长范围内的光束,以LL表示。The laser
为了对各次画素所生的被激发光能量有精准的控制,应使每个次画素的最小长度,应大于激光光束LL的截面直径,并使各种次画素间有一定间距,以避免激光光束同时照射到两种以上的次画素。In order to precisely control the excited light energy generated by each sub-pixel, the minimum length of each sub-pixel should be greater than the cross-sectional diameter of the laser beam L L , and there should be a certain distance between various sub-pixels to avoid The laser beam is irradiated to more than two kinds of sub-pixels at the same time.
此外,对激光光束的扫描路径与投影幕401上次画素的排列作对位,以避免激光光同时照射到两种以上的次画素。In addition, the scanning path of the laser beam is aligned with the arrangement of the sub-pixels on the
激光讯号调变模块420用来根据由讯号转换模块460所提供的单一画面或动态画面的影像讯号SI,产生激光光源的驱动电流I1的大小,以对激光光束LL进行光功率PL调变。当LS扫描至某画素的某一次画素时,激光讯号调变模块420提供的驱动电流I1可使光功率PL对该次画素激发使的产生该色的光功率。透过红、蓝、绿三色次画素被激发光能量的不同组合,该画素可呈现不同的明度、色相与色度;至于不同的明度、色相与色度的作用原理及控制方法可参考实施例1。The laser
此外,为增加影像亮度,亦可加入白色的次画素于投影幕中。白色的次画素包含的发光物质可被激光光束LS激发而生可涵盖红、绿与蓝三色波长的宽频谱波长λWE。加入白色的次画素的发光模结构包含且不限为图4C、4D。在图4C中451为单一个画素,其中包含红、蓝、绿、白四种次画素,分别以452、453、454、455表示。在图4D中461为单一个画素,其中包含红、蓝、绿、白四种次画素,分别以462、463、464、465表示。每种次画素的面积不一定相等。邻近画素间的次画素排列可相同,如图4C,或相异,如图4D。In addition, in order to increase the brightness of the image, white sub-pixels can also be added to the projection screen. The luminescent substance contained in the white sub-pixel can be excited by the laser beam L S to generate a wide-spectrum wavelength λ WE covering red, green and blue wavelengths. The structure of the light-emitting module adding white sub-pixels includes and is not limited to those shown in FIGS. 4C and 4D . In FIG. 4C , 451 is a single pixel, which includes four sub-pixels of red, blue, green, and white, respectively denoted by 452, 453, 454, and 455. In FIG. 4D , 461 is a single pixel, which includes four sub-pixels of red, blue, green, and white, respectively denoted by 462, 463, 464, and 465. The area of each sub-pixel is not necessarily equal. The arrangement of sub-pixels between adjacent pixels can be the same, as shown in FIG. 4C, or different, as shown in FIG. 4D.
此外,为追求扩大影像的色域,则可增加g种扩大色域的次画素于投影幕中,其中g≥1。扩大色域次画素包含的发光物质可被激光光束LS激发而生波长,以λ1GE、λ2GE、...、λg1GE表示。且在CIE色度座标图上,此λ1GE、λ2GE、...、λgGE及λRE、λGE、λBE共(g+3)个波长所形成的面积大于只有λRE、λGE、λBE所形成的面积。扩大色域的次画素与红、蓝、绿、白四种次画素可共同安排至同一画素中,其发光模结构包含且不限为图4E。In addition, in order to expand the color gamut of the image, g types of sub-pixels that expand the color gamut can be added to the projection screen, where g≥1. The luminescent substances contained in the expanded color gamut sub-pixels can be excited by the laser beam L S to generate wavelengths, represented by λ 1GE , λ 2GE , . . . , λ g1GE . And on the CIE chromaticity coordinate diagram, the area formed by the total (g+3) wavelengths of λ 1GE , λ 2GE , ..., λ gGE and λ RE , λ GE , λ BE is larger than only λ RE , λ The area formed by GE and λ BE . The sub-pixel with expanded color gamut and the four sub-pixels of red, blue, green, and white can be arranged together in the same pixel, and the light emitting module structure includes but is not limited to that shown in FIG. 4E.
为避免颜色的混杂,应采用不可见光的波长,包含且不限于808nm、850nm、980nm、与1064nm等,或选择对人眼感光度较差的波长,包含且不限于405nm、与780nm等,的激光作为激光光源模块410的激光光源。In order to avoid color mixing, wavelengths of invisible light should be used, including but not limited to 808nm, 850nm, 980nm, and 1064nm, or wavelengths that are less sensitive to human eyes, including but not limited to 405nm, 780nm, etc. The laser serves as the laser light source of the laser
<实施例4><Example 4>
请参考图5,其是说明本发明实施例4的激光投影系统500示意图;此激光投影系统500包含一投影幕501及一激光投影器502。激光投影器502将激光光束投影至投影幕501。激光投影器502包含一激光光源模块510、一激光光源控制模块520、一旋转平面镜模块540、一旋转平面镜控制模块550与一讯号协调模块。此外,并定义激光光学模块570,其包含激光光源模块510与激光讯号调变模块520,以方便下文讨论。Please refer to FIG. 5 , which is a schematic diagram illustrating a
其中,旋转平面镜模块540与旋转平面镜控制模块550的结构以及工作原理分别与旋转平面镜模块240与旋转平面镜控制模块250类似,故不再赘述。Wherein, the structures and working principles of the rotating
投影幕501中具备一发光层,该发光层包含一种或数种发光物质,F1、F2、...、Fn,皆可被激光光源模块510发射的激光光波长λL所激发,并分别被激发出另外各种不同波长(以λ1E、λ2E、...、λnE表示)的光。此发光层与其中发光物质的基本结构、基本工作原理以及基本特性,分别与本发明实施例1的激光投影系统200中的发光层与发光物质相同,故不再赘述。The projection screen 501 is provided with a luminescent layer, the luminescent layer contains one or several luminescent substances , F 1 , F 2 , . , and are respectively excited to emit light of different wavelengths (expressed by λ 1E , λ 2E , ..., λ nE ). The basic structure, basic working principle, and basic characteristics of the luminescent layer and the luminescent substance are the same as those of the luminescent layer and the luminescent substance in the
若欲使投影幕某位置产生较高单位面积光能量的波长λiE的光,则使该位置有较高分布密度的发光物质Fi。If it is desired to make a certain position of the projection screen generate light of a wavelength λ iE with a higher light energy per unit area, then the position has a higher distribution density of luminescent substances F i .
激光光源模块510包含一组激光光源,可发射可激发所有发光物质的的波长λL,其光束以LL表示。The laser
因为投影幕某位置发射波长λiE的单位面积光能量同时为激发光波长λL的单位面积光能量与发光物质Fi的密度所决定。在光束LL扫描于投影幕上各位置皆提供同样的单位面积光能量时,影像画面即由发光物质Fi于该位置的密度所决定。制作发光层时,决定各种发光物质Fi在投影幕上各位置的分布密度,即可决定所欲形成的静态影像。Because the light energy per unit area of the emission wavelength λ iE at a certain position of the projection screen is determined by the light energy per unit area of the excitation light wavelength λ L and the density of the luminescent substance F i at the same time. When the light beam L L scans each position on the projection screen to provide the same light energy per unit area, the image frame is determined by the density of the luminescent substance F i at the position. When making the luminescent layer, the static image to be formed can be determined by determining the distribution density of various luminescent substances F i at each position on the projection screen.
欲使发光物质Fi在投影幕上各位置有同样密度,皆可产生波长λiE的同样单位面积光能量,则需使激光光束扫描于投影幕上各位置皆提供同样的单位面积激发光能量。因此,应使激光光束扫描至(x,y)位置的光功率PL(x,y)正比于该位置的扫描速度v(x,y)。此时,讯号协调模块560即可用以协调激光光源的光功率与二维旋转镜面的旋转角度的同步。In order to make the luminescent substance F i have the same density at each position on the projection screen, and can produce the same light energy per unit area of wavelength λ iE , it is necessary to scan the laser beam to provide the same excitation light energy per unit area at each position on the projection screen . Therefore, the optical power PL (x, y) of the laser beam scanning to the position (x, y) should be proportional to the scanning speed v(x, y) of this position. At this time, the
若使光束LL在扫描过程中皆有同样的光功率,则可简化激光光源的光功率与二维旋转镜面的旋转角度的同步控制。在此状况下,若要追求投影幕上各位置皆可产生波长λiE的同样单位面积光能量,则需使该发光物质Fi在投影幕上各位置的密度分布正比于激光光束扫描至(x,y)位置的扫描速度v(x,y)。If the light beam L L has the same optical power during the scanning process, the synchronous control of the optical power of the laser light source and the rotation angle of the two-dimensional rotating mirror can be simplified. In this situation, if one wants to pursue the same light energy per unit area of wavelength λ iE at each position on the projection screen, it is necessary to make the density distribution of the luminescent substance F i at each position on the projection screen proportional to the laser beam scanning to ( Scanning velocity v(x,y) at position x,y).
<实施例5><Example 5>
请参考图6,其是本发明一简化的激光投影系统600示意图;此投影系统600包含一投影幕601及一投影光源602。投影光源602将光投影至投影幕601。投影幕601的结构与工作原理与实施例4的投影幕501同,在此不予赘述。投影光源602可为一宽频光源或窄频光源,其发射的波长可同时激发投影幕601中的所有发光物质,使之分别产生波长λ1E、λ2E、...、λnE。透过决定发光物质,F1、F2、...、Fn,在投影幕上不同位置的分布密度即可决定欲呈现的静态影像画面。Please refer to FIG. 6 , which is a schematic diagram of a simplified
图6的一具体实施例为选用灯管或灯泡为光源,此灯管包含可激发投影幕中的发光物质而产生红、绿、蓝、白、或扩大色域的颜色。投影幕的各式发光物质的分布密度由所欲显示的静态影像而定。将光源的光束均匀的投射在投影幕上即可形成该静态影像。A specific embodiment in FIG. 6 is to use a lamp tube or a light bulb as the light source. The lamp tube contains luminescent substances that can excite the projection screen to produce red, green, blue, white, or colors that expand the color gamut. The distribution density of various luminous substances on the projection screen is determined by the static image to be displayed. The static image can be formed by uniformly projecting the light beam of the light source on the projection screen.
<实施例6><Example 6>
本实施例是针对本发明中投影幕的各种结构型态分别说明。参考图7A,其是本发明第一种投影幕700示意图;该投影幕700包含一被激发光吸收层720及一发光层730。发光层730包含且不限于图2A、图2B、图2C、图4A、图4B、图4C、图4D、图4E所示的发光层架构。其工作原理已于上文详述,在此不予赘述。This embodiment is an illustration of various structural types of the projection screen in the present invention. Referring to FIG. 7A , it is a schematic diagram of the
被激发光吸收层720吸收由发光层730发射的被激发光,以减少进入介质D1侧的被激发光。因此,观察者或光接收器仅可于D2侧看到显示影像或侦测得发光层被激发的光,而于D1侧并无法看到显示影像或侦测得发光层被激发的光。The excited
该被激发光吸收层720亦可设计使对可见光的吸收极高,因此投影幕即呈完全不透明的黑色。此投影幕适合作为背投影显示系统的用,以避免人眼观察到显示系统内部的电路。The excited
此外,若使被激发光吸收层720对投射光束LS的激发波长有较低的吸收与散射,投射光束LS1可由D1侧入射该投影幕。In addition, if the excited
由D1侧或D2侧入射该投影幕700的投射光束LS1或LS2包含一种或多种波长的激发光,以分别激发发光层中的各种发光物质,而使投影幕产生影像。The projection light beam L S1 or L S2 incident on the
介质D1与被激发光吸收层720的介面,及被激发光吸收层720与发光层730的介面可予抗反射处理,包含且不限于插入一层抗反射层,以减少投射光束LS2在此二介面的反射,而增加此投影幕的发光效能。The interface between the medium D1 and the excited
发光层730与介质D2的介面,及被激发光吸收层720与发光层730的介面可予抗反射处理,包含且不限于插入一层抗反射层,以减少属被激发光频谱的光在此二介面的反射。如此,由介质D2侧入射的环境背景光LA2内同属被激发光频谱的光甚少被反射回D2侧,而将穿越发光层730而为被激发光吸收层720所吸收。此外,由介质D1侧入射的环境背景光LA1内同属被激发光频谱的光亦将由被激发光吸收层720所吸收。因此可使投影幕700所显示的影像较不受环境背景光LA1与LA2的影响。The interface between the
图7A的一具体实施例为选择被激发光为包含红、绿、蓝、白、或扩大色域的颜色的可见光。A specific embodiment of FIG. 7A selects the excited light to be visible light including red, green, blue, white, or a color with an expanded color gamut.
再参考图7B,其是本发明的第二种投影幕701示意图;投影幕701包含一被激发光吸收层720A,一发光层730及一激发光吸收层740。Referring again to FIG. 7B , it is a schematic diagram of a second projection screen 701 of the present invention; the projection screen 701 includes an excited
激发光吸收层740可吸收投射光束LS中用以激发发光层的波长的光。激发光吸收层740对被激发光有较少的吸收与散射,因此可让发光层730产生的被激发光无碍地传播至D2侧,而为观察者所接收。The excitation light absorbing layer 740 can absorb the light of the wavelength used to excite the light emitting layer in the projected light beam LS . The excitation light absorbing layer 740 has less absorption and scattering of the excited light, so the excited light generated by the
相较于第7A图,图7B增加的激发光吸收层740虽然限制仅可由D1侧投射光束LS1至该投影幕701,却也确保投射光束LS1的光功率不会透过发光层730而进入D2侧,为观察者所接收。Compared with FIG. 7A, although the excitation light absorption layer 740 added in FIG. 7B limits the projection of the light beam L S1 to the projection screen 701 only from the D1 side, it also ensures that the optical power of the projected light beam L S1 will not pass through the
此外,环境背景光LA2中亦可能蕴含可激发发光层730使之发光的波长。激发光吸收层740可确保环境背景光LA2并不会使发光层730产生任何影像,因而完全排除投影幕显示的影像受环境背景光LA2的影响。In addition, the ambient background light L A2 may also contain a wavelength that can excite the
图7B的一具体实施例为选择被激发光为包含红、绿、蓝、白、或扩大色域的颜色的可见光。A specific embodiment of FIG. 7B selects the excited light to be visible light including red, green, blue, white, or a color with an expanded color gamut.
再参考图7C,其是本发明的第三种投影幕702示意图;该投影幕702包含一被激发光与散射光吸收层720B,一发光层730及一散射层750。散射层750可破坏入射激光的单一方向性,而产生与入射激光光波长相同的多方性散射光。被激发光与散射光吸收层720B除了可吸收被激发光频谱的光,亦可吸收被散射频谱的光。Referring again to FIG. 7C , it is a schematic diagram of a
相较于图7A,图7C除了以被激发光与散射光吸收层720B取代图7A的被激发光吸收层720A之外,亦增加一散射层750于被激发光吸收层720与发光层730之间。虽然因此限制仅可由D2侧投射投射光束LS2至该投影幕,却使投影幕702适用于投影系统300的应用。Compared with FIG. 7A, in addition to replacing the excited
图7C的一具体实施例为选择被激发光与被散射光为包含红、绿、蓝、白、或扩大色域的颜色的可见光。A specific embodiment of FIG. 7C is to select the excited light and the scattered light to be visible light including red, green, blue, white, or colors with an expanded color gamut.
再参考图7D,其是本发明的第四种投影幕703示意图;该投影幕703包含一发光层730及一激发光反射层760。Referring again to FIG. 7D , it is a schematic diagram of a
因激光光束LS1的光能量可能并未被发光层730所吸收,激发光反射层760反射投射光束LS1通过发光层730后的残余能量,使其返回发光层730并再激发其中的发光物质,藉此可提高投影幕703的发光效率,并避免投射光束LS1穿越投影幕进入D2侧,而为观察者所接收。激发光反射层760对被激发光的吸收与散射极低,因此被激发光可无碍进入D2侧。Because the light energy of the laser beam L S1 may not be absorbed by the light-emitting
该发光层730与激发光反射层760的介面经处理,包含但不限于选择相近的发光层与激发光反射层的光学指数,或插入一层针对被激发光的抗反射层,以减少发光层被激发的光在此介面的反射。发光层与介质D1的介面,及激发光反射层760与介质D2的介面可予抗反射处理,包含且不限于插入一层抗反射层,以减少发光层被激发的光在此二介面的反射。因此,发光层730被激发的光可并不会被局限于投影幕703之内。因此,观察者或光接收器不论处于此投影幕703的任一侧,皆可看到显示影像或侦测得发光层被激发的光。该发光层与激光反射层亦可设计使对可见光的吸收与散射极低,因此人眼视此二层为透明状,而投影幕即呈透明状。The interface between the
图7D的一具体实施例为选择被激发光为包含红、绿、蓝、白、或扩大色域的颜色的可见光。A specific embodiment of FIG. 7D is to select the excited light to be visible light including red, green, blue, white, or a color with an expanded color gamut.
再参考图7E,其是本发明的第五种投影幕704示意图;投影幕704包含一发光层730,一激发光反射层760及一散射层750。Referring again to FIG. 7E , it is a schematic diagram of a
相较于图7D,图7E增加一激发光反射层760于发光层730与散射层750之间,以增加发光层730因而使投影幕704适用于投影系统300的应用。Compared with FIG. 7D , FIG. 7E adds an excitation light
图7E的一具体实施例为选择被激发光与被散射光为包含红、绿、蓝、白、或扩大色域的颜色的可见光。A specific embodiment of FIG. 7E is to select the excited light and the scattered light to be visible light including red, green, blue, white, or colors with an expanded color gamut.
再参考图7F,其是本发明的第六种投影幕705示意图;投影幕705包含一被激发光吸收层720A,一发光层730,一激发光反射层760及一散射层750。Referring again to FIG. 7F , it is a schematic diagram of the
相较于图7C,图7F增加一激发光反射层760于发光层730与散射层750间,因而可增加发光层730的发光效率,并确保投射光束LS1的光功率不会进入D2侧而为观察者所接收。Compared with Fig. 7C, Fig. 7F adds an excitation light
图7F的一具体实施例为选择被激发光与被散射光为包含红、绿、蓝、白、或扩大色域的颜色的可见光。A specific embodiment of FIG. 7F is to select the excited light and the scattered light to be visible light including red, green, blue, white, or a color with an expanded color gamut.
再参考图7G,其是本发明的第七种投影幕706示意图;投影幕706包含一被激发光吸收层720A,一散射层750,一激发光反射层760及一发光层730。Referring again to FIG. 7G , it is a schematic diagram of the seventh projection screen 706 of the present invention; the projection screen 706 includes an excited
相较于图7C,图7G增加一激发光反射层760于发光层730与散射层750间,因而可增加发光层730的发光效率。Compared with FIG. 7C , an excitation light
图7G的一具体实施例为选择被激发光与被散射光为包含红、绿、蓝、白、或扩大色域的颜色的可见光。A specific embodiment of FIG. 7G is to select the excited light and the scattered light to be visible light including red, green, blue, white, or colors with an expanded color gamut.
再参考图7H,其是本发明的第八种投影幕707示意图;投影幕707包含一被激发光部分反射层770及一发光层730。被激发光部分反射层770可使不论由哪一面入射的被激发光以一比例穿透(例如20%),而其部分反射(例如80%),并对激发光有有相当高的穿透比例。Referring again to FIG. 7H , it is a schematic diagram of an
若由D1侧或D2侧入射的投射光束LS1或LS1皆可激发发光层730而产生被激发光。此被激发光可为D2侧的观察者O2接收而形成投影影像。由于此被激发光亦可部分穿透部分反射层770至D1侧,所以观察者O2亦可接收被激发光形成的投影影像。If the projected light beam L S1 or L S1 incident from the D 1 side or the D 2 side can both excite the
观察者O1所观察到的影像除了投影影像外,亦包含穿越投影幕而为观察者O1所接收的D2中物体的影像(包含观察者O2)与经由投影幕反射而为观察者O1所接收的D1中物体的影像(包含观察者O1)。同样的,观察者O2所观察到的影像除了投影影像外,亦包含穿越投影幕而为观察者O2所接收的D1中物体的影像(包含观察者O1)与经由投影幕反射而为观察者O2所接收的D2中物体的影像(包含观察者O2)。In addition to the projected image, the image observed by the observer O 1 also includes the image of the object in D 2 (including the observer O 2 ) received by the observer O 1 through the projection screen and reflected by the observer O 2 through the projection screen. The image of the object in D 1 received by O 1 (including observer O 1 ). Similarly, in addition to the projected image, the image observed by the observer O 2 also includes the image of the object in D 1 received by the observer O 2 through the projection screen (including the observer O 1 ) and the image reflected by the projection screen. is the image of the object in D 2 received by the observer O 2 (including the observer O 2 ).
当背景光LA1(其包含由D1侧直射投影幕的光源与照射到介质D1中其他物体(包含观察者O1)再散射或反射至投影幕的光)中的被激发光频谱光功率远小于背景光LA2(其包含由D2侧直射投影幕的光源与照射到介质D2中其他物体(包含观察者O2)再散射或反射至投影幕的光)中的被激发光频谱光功率时,观察者O2所观察到的在被激发光频谱中的由投影幕反射而为观察者O2所接收的D2中物体的光功率可远大于含穿越投影幕而为观察者O2所接收的D1中物体的光功率。在此状况下,观察者O2仅能清楚地观察到在被激发光频谱中由投影幕反射而为观察者O2所接收的D2中物体的影像与投影影像,而不能清楚地观察到穿越投影幕而为观察者O2所接收的D1中物体的影像。对于观察者O1而言,观察者O1则能在观察到的在被激发光频谱中的由穿越投影幕而为观察者O1所接收的D2中物体的影像,及投影影像。如此一来,不但投影影像可为观察者O1与观察者O2同时接收,又能保护观察者O1的隐私。When the background light L A1 (which includes the light source directly irradiating the projection screen from the D 1 side and the light irradiated by other objects in the medium D 1 (including the observer O 1 ) and then scattered or reflected to the projection screen) the excited light spectrum light The power is much smaller than the excited light in the background light L A2 (which includes the light source directly irradiating the projection screen from the D2 side and the light that is irradiated to other objects in the medium D2 (including the observer O2 ) and then scattered or reflected to the projection screen) When the light power of the spectrum is observed by the observer O2 , the light power of the object in D2 that is reflected by the projection screen and received by the observer O2 in the spectrum of the excited light observed by the observer O2 can be much greater than that obtained by passing through the projection screen. Or the optical power of the object in D1 received by O2 . In this situation, the observer O2 can only clearly observe the images and projected images of objects in D2 that are reflected by the projection screen in the spectrum of the excited light and received by the observer O2 , but cannot clearly observe The image of the object in D 1 received by observer O 2 through the projection screen. For the observer O1 , the observer O1 can observe the image of the object in D2 received by the observer O1 through the projection screen in the spectrum of the excited light, and project the image. In this way, not only the projected image can be received by the observer O1 and the observer O2 at the same time, but also the privacy of the observer O1 can be protected.
反之,若背景光LA1(其包含由D1侧直射投影幕的光源与照射到介质D1中其他物体(包含观察者O1)再散射或反射至投影幕的光)中的被激发光频谱光功率远大于背景光LA2,包含由D2侧直射投影幕的光源与照射到介质D2中其他物体(包含观察者O2)再散射或反射至投影幕的光,则不但投影影像可为观察者O1与观察者O2同时接收,又能保护观察者O2的隐私。Conversely, if the background light L A1 (which includes the light source directly irradiating the projection screen from the D1 side and the light irradiated by other objects in the medium D1 (including the observer O1 ) and then scattered or reflected to the projection screen) the excited light Spectrum light power is much greater than the background light L A2 , including the light source directly irradiating the projection screen from the D 2 side and the light that irradiates other objects in the medium D 2 (including the observer O 2 ) and then scattered or reflected to the projection screen, not only the projected image It can be received by observer O1 and observer O2 at the same time, and the privacy of observer O2 can be protected.
图7H的一具体实施例为选择被激发光为包含红、绿、蓝、白、或扩大色域的颜色的可见光。如此,投影幕707适合应用于包含且不限于交通工具或建物的投影广告系统。A specific embodiment of FIG. 7H selects the excited light to be visible light including red, green, blue, white, or a color with an expanded color gamut. In this way, the
再参考图7I,其是本发明的第九种投影幕708示意图;投影幕708包含一被激发光与被散射光部分反射层780,一发光层730及一散射层750。此被激发光与被散射光部分反射层780除了可部分反射被激发光频谱的光,亦可部分反射被散射频谱的光。Referring again to FIG. 7I , it is a schematic diagram of the
相较于图7H,图7I除了被激发光部分反射层770改换为被激发光与被散射光部分反射层780之外,亦增加一散射层750于发光层730与D2间。虽然因此限制仅可由D2侧投射光束LS2至该投影幕,却使投影幕708适用于投影系统300的应用。Compared with FIG. 7H , in FIG. 7I , in addition to replacing the excited light
因为被散射光的光频谱等于扫描投射于散射层750的激光光频谱,所以投射光束LS1中属散射频谱的光能量亦将部分为被激发光与被散射光部分反射层780所反射。为此,在决定投射光束LS1中属散射频谱的光功率以在投影幕形成某单位面积散射光能量时,需将此激光光部分反射的因素考量在内,而加大投射光束LS1中属散射频谱的激光光功率。Because the light spectrum of the scattered light is equal to scanning the laser light spectrum projected on the
图7I的一具体实施例为选择被激发光与被散射光为包含红、绿、蓝、白、或扩大色域的颜色的可见光。A specific embodiment of FIG. 7I is to select the excited light and the scattered light to be visible light including red, green, blue, white, or colors with an expanded color gamut.
再参考图7J,其是本发明的第十种投影幕709示意图;投影幕709包含一被激发光与被散射光部分反射层780,一散射层750及一发光层730。Referring again to FIG. 7J , it is a schematic diagram of a
相较于图7I,图7J的散射层750置于发光层730与D2间,且调变激光光束LS2由D2侧入射。因此,调变激光光束LS2由入射散射层750前不会为被激发光与被散射光部分反射层780所反射,可避免如第7I图中投射光束LS1中属散射频谱的激光光功率入射至散射层的效率降低问题。Compared with FIG. 7I , the
图7J的一具体实施例为选择被激发光与被散射光为包含红、绿、蓝、白、或扩大色域的颜色的可见光。An embodiment of FIG. 7J is to select the excited light and the scattered light to be visible light including red, green, blue, white, or a color with an expanded color gamut.
再参考图7K,其是本发明的第十一种投影幕710示意图;投影幕710包含一聚光层791,一部分遮光层790,一发光层730及一散射层750。部分遮光层790包含许多遮光元件792与许多开口793。聚光层791包含许多聚光镜794。投影幕710适用于投影系统300的应用。Referring again to FIG. 7K , it is a schematic diagram of an
参考图7KA,其为遮光层790一例图,遮光元件792为黑色部分,开口793为其中白色圆形。投影幕上一个画素795的区域包含一个或数个开口793。对应至同一画素的该群开口的正中心且应与该画素的正中心对齐。在图7KA中所示的画素795包含九个开口,实际上不以此为限。遮光元792涵盖遮光层790绝大部分的面积。开口793分布于遮光层790上。开口793可使入射至该位置的光穿越,其横截面可为包含且不限为圆形或正方形。遮光元792透过反射或吸收方式将入射至遮光元792的光完全遮断。遮光元792面向发光层侧的表面并可完全吸收被激发光与被散射光。Referring to FIG. 7KA, it is an example diagram of the light-
若要使单一激光光束投射投影幕上每个位置皆能有部分光穿透,以提升激光光束投射的使用效率,则需使开口793的最大间距应小于激光光束的横截面直径。If a single laser beam is projected on each position on the projection screen to have partial light penetration to improve the efficiency of laser beam projection, the maximum distance between the
图7KB为聚光层791的一例图;聚光镜794为其中白色圆形。聚光镜794涵盖聚光层791绝大部分的面积,以便收集入射光束大部分的光。每个聚光镜794之中心位置与分别开口793之中心位置对齐。聚光镜794可使投射至其上的光聚焦,并因此通过开口793,而不为遮光元792所遮断。聚光层791的材质对属激发光与散射光波长的光有较小的吸收与散射。因此,可使投射光束LS1中属激发光与散射光波长的光功率无碍地通过开口793。FIG. 7KB is an example diagram of the light-
聚光层791与遮光层790并可合而为一体。在此状况下,开口793由聚光层791的材质所填满。如此一来,可减少在开口区聚光层791与遮光层790间的介面,而增加光束入射至发光层730与散射层740的效率。The
投射光束通过开口793的光进入发光层730后,其中属激发光波长的光将使发光层产生被激发光。发光层所生的被激发光与投射光束中不属激发光波长的光一同进入散射层740,并被散射。由于被散射光为多方性发射,对应至单一开口793的被激发光与被散射光在该投影幕D2侧的表面可形成面积远较开口大的光点。适当设计聚光镜的曲率、遮光层790的厚度、发光层的厚度、散射层的厚度、与开口的分布可使对应至分别画素的光点群共同尽可能填满该画素。如此一来,观察者O2将观察到一个为各光点所充满的影像。After the projected light beam passes through the
此外,另可使遮光元792面向发光层侧的表面可完全吸收被激发光与被散射光。如此一来,环境光LA2中包含被激发光与被散射光频谱的光将有相当部分为遮光元792所吸收。因此,可减少环境光LA2对投影影像的干扰,而使该投影影像有较高的色彩对比度。In addition, the surface of the light-shielding
图7K的一具体实施例为选择被激发光与被散射光为包含红、绿、蓝、白、或扩大色域的颜色的可见光。A specific embodiment of FIG. 7K is to select the excited light and the scattered light to be visible light including red, green, blue, white, or colors with an expanded color gamut.
再参考图7L,其是本发明的第十二种投影幕711示意图;投影幕711包含一显像层796及位于显像层的一侧或两侧的抗紫外线层797。显像层796被投射光束投射后可形成影像,其包含本发明所述的所有投影幕。抗紫外线层797可透过反射或吸收方式避免紫外线范围波长的光进入显像层796,并对使显像层796形成影像的激发光与散色光波长的光有较小的吸收与散射,而使投射光束中属激发光与散色光波长的光能无碍的进入显像层796。因为显像层796可能包含发光层730、散射层750、被激发光吸收层720A、激发光吸收层740、被激发光与散射光吸收层720B、激发光反射层760、被激发光部分反射层770、被激发光与被散射光部分反射层780、各式抗反射层等各式功能层,上述各式功能层的基材可能具备各式不同化学物质以达到发光、散射、选择性波长吸收、选择性波长反射等功能。这些化学物质与各式功能层的基材本身成分的光学特性一般而言在紫外光线的照射下可能逐渐变质,而使显像层796的使用寿命缩短。将抗紫外线层797置于显像层796的一侧可将该侧入射环境光中的紫外线光谱的光能量阻断于显像层796之外,而达成稳定显像层796特性与延长其使用寿命的目的。Referring again to FIG. 7L , it is a schematic diagram of a twelfth projection screen 711 of the present invention; the projection screen 711 includes a display layer 796 and
<实施例7><Example 7>
参考图8,其是本发明的第一种可扩大显示画面的激光投影系统800示意图。该激光投影系统800包含一激光投影器80及一投影幕801。激光投影器80包含一激光光学模块810、一旋转平面镜模块820及一凸面反射镜830。Referring to FIG. 8 , it is a schematic diagram of the first
旋转平面镜模块820的结构以及工作原理与旋转平面镜模块240相同,在此不予赘述。The structure and working principle of the rotating
投影幕801包含一般可投影的表面,即一般投影荧幕,包含且不限本发明前述的投影幕101,投影幕201、投影幕301、投影幕501、投影幕700、投影幕701、投影幕702投影幕703、投影幕704、投影幕705、投影幕706、投影幕707、投影幕708、投影幕709、投影幕710、投影幕711。The
激光光学模块810投射一激光光束于旋转平面镜模块820上,其结构可包含且不限于本发明前述如图1的激光光学模块110,图2的激光光学模块270,图3的激光光学模块370,图4的激光光学模块470,与图5的激光光学模块570。The laser
激光光学模块810所发射的调变激光光束LM经旋转平面镜模块820反射至凸面反射镜830上。举例而言,当平面镜模块820使激光光束在x-z平面的旋转角度为θURX,且使激光光束在y-z平面的旋转角度为θURY时,激光光束LM会被旋转平面镜模块820反射至凸面反射镜830上的端点NUR1,接着再被凸面反射镜830分别反射至投影幕801的最右上角落端点NUR2。同理,当平面镜模块820使激光光束在x轴的旋转角度分别为θULX、θBRX、θBLX,且使激光光束在y轴的旋转角度分别为θULY、θBRY、θBLY时,激光光束LM会分别被旋转平面镜模块820反射至凸面反射镜330上的端点NUL1、NBR1、NBL1,接着再分别被凸面反射镜830反射至投影幕301的最左上角落端点NUL2、最右下角落端点NBR2、最左下角落端点NBL2。The modulated laser beam L M emitted by the
透过凸面反射镜830的反射可扩大激光光束扫描角度,并在投影幕801与激光投影器80之间的距离D不变的情况下,增大投影影像的高度与宽度。参考图8及图8A,图8A是为本发明的激光投影系统800的在平行于x-z平面的横截面上视图;旋转平面镜模块820在x-z平面上可使激光光束旋转的角度为θ。由于入射角θIL等于反射角θRL,且入射角θIR等于反射角θRR,此激光光束的扫描角度经凸面反射镜830反射后,由θ增大为(θ+Δθ),其中Δθ为凸面反射镜830曲面NL1NR1上通过NL1点的法线与通过NR1点的法线的夹角。因此,在投影幕801与激光投影器80之间的距离D不变的情况下,可使投影影像宽度W变大。同理参照图8B,其是本发明的激光投影系统800的在平行于x-y平面的横截面侧视图;经凸面反射镜830反射后在y-z平面上可使激光光束扫描的角度由增大为其中为凸面反射镜830曲面NU1NB1上通过NU1点的法线与通过NB1点的法线的夹角。因此,在投影幕801与激光投影器80之间的距离D不变的情况下,可使投影影像高度H变大。The reflection of the
将凸面反射镜830置于欲投影画面之中心线附近,可增加凸面反射镜830表面的曲率,并使该表面曲率对称于镜面中心,以减少凸面反射镜830的体积,有利于减轻该凸面反射镜830的制作成本。请参考图8C,其是x-z(或y-z)平面上将凸面反射镜置于不同位置时与所扩张扫描角度的关系图;A、B、C为可放置凸面反射镜830的三个不同位置,D、E、F对应于欲投影画面的最左点(或最上点)、中心点、与最右点(或最下点)。∠ADF、∠BEF、∠CFD、∠DAC、∠EBC、∠FCA俱为直角。当激光光束入射位于A点的凸面反射镜830,在此平面所扫描的最大角度为θA,其画面中心光束路径为AE。当激光光束入射位于B点的凸面反射镜830,在此平面所扫描的最大角度为θB,其画面中心光束路径为BE。当激光光束入射位于C点的凸面反射镜830,在此平面所扫描的最大角度为θC,其画面中心光束路径为CE。当入射凸面反射镜830前有扫描角度θ0的激光光束分别入射位于A、B、C点的凸面反射镜830,在此平面上所扫描的最大角度分别为θA、θB、θC,其画面中心光束路径分别为AE、BE、CE。由图可知θA=θC=tan-1(H/L),θB=2*tan-1(H/2/L)。因2*tan-1(H/2/L)>tan-1(H/L),所以θB>θA=θC。经位于A、B、C点的凸面反射镜830反射后,所增加的扫描角度分别为ΔθA=(θA-θ0)、ΔθB=(θB-θ0)、ΔθC=(θC-θ0),且ΔθB>ΔθA=ΔθC。因为所增加的扫描角度对应至该凸面反射镜830曲面法线的最大夹角,故知位于B点的凸面反射镜830有较大的表面曲率变化,对应至体积较小的凸面反射镜830。此外,由图8C可知∠DAE>∠EAF,∠DBE=∠EBF,∠DCE<∠ECF,故知位于B点的凸面反射镜830的表面曲率变化对称于其反射中轴线BE,而位于A点与C点的凸面反射镜830的表面曲率变化并不对称于其分别反射中轴线AE与CE。因此,将凸面反射镜830置于欲投影画面之中心线附近,可增加凸面反射镜830表面的曲率,并使该表面曲率对称于其镜面中心,以减少凸面反射镜830的体积,有利于减轻该凸面反射镜830的制作成本。Placing the
<实施例8><
参考图9,其是本发明的第二种可扩大显示画面的激光投影系统900示意图;由于平面反射镜可改变激光光束的行进方向,且并不改变激光光束的扫描角度,因此,通过凸面反射镜830与平面反射镜,亦可大幅缩减激光投影器与投影幕之间的距离,并达成扩大显示画面的目的。参考图9,可扩大显示画面的激光投影系统900包含一激光投影器90及一投影幕901。激光投影器90包含一激光光学模块910、一旋转平面镜模块920、一凸面反射镜930及一平面镜模块940。激光光学模块910、旋转平面镜模块920与凸面反射镜930的结构及工作原理与激光光学模块810、旋转平面镜模块820及凸面反射镜830类似,故不再赘述。平面镜模块940将凸面反射镜930所反射的调变激光光束LM再反射至投影幕901。Referring to FIG. 9 , it is a schematic diagram of a second
在激光光束扫描角度不变的情况下,旋转平面镜模块920与投影幕901之间越长的光束行进路径,能对应到越宽与越高的投影影像。由图9可知,虽然平面镜模块940并无法增加激光光束扫描角度,然而却可使光束行进路径转折,在投影幕与激光投影器之间的z轴距离D不变的情况下,可增加旋转平面镜模块920与投影幕901之间越长的光束行进路径,而增加投影影像的高度H与宽度W。Under the condition that the scanning angle of the laser beam remains unchanged, the longer the beam traveling path between the rotating
本发明虽仅以图8与图9说明凸面反射镜与平面反射镜在激光扫描投影系统中扩大扫描角度的原理。惟,本发明的范围不依此为限。任何激光扫描投影系统运用一个或多个凸面反射镜或平面反射镜来扩大扫描角度的设计皆在本发明范围内。Although the present invention only uses FIG. 8 and FIG. 9 to illustrate the principle of expanding the scanning angle of the convex mirror and the flat mirror in the laser scanning projection system. However, the scope of the present invention is not limited thereto. Any design of a laser scanning projection system that utilizes one or more convex mirrors or flat mirrors to extend the scan angle is within the scope of the present invention.
以上所示仅为本发明的优选实施例,对本发明而言仅是说明性的,而非限制性的。在本领域具通常知识者理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效变更,但都将落入本发明的保护范围内。The above are only preferred embodiments of the present invention, and are only illustrative, not restrictive, of the present invention. Those skilled in the art understand that many changes, modifications, and even equivalent changes can be made within the spirit and scope defined by the claims of the present invention, but all will fall within the protection scope of the present invention.
Claims (99)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910250433 CN102096295B (en) | 2009-12-09 | 2009-12-09 | laser projection system |
DE212009000221U DE212009000221U1 (en) | 2008-12-10 | 2009-12-10 | Laser Projection System |
PCT/CN2009/001414 WO2010066110A1 (en) | 2008-12-10 | 2009-12-10 | Laser projection system |
US13/157,001 US8587451B2 (en) | 2008-12-10 | 2011-06-09 | Laser projection system |
JP2011006069U JP3172678U (en) | 2008-12-10 | 2011-10-17 | Laser projector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910250433 CN102096295B (en) | 2009-12-09 | 2009-12-09 | laser projection system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102096295A true CN102096295A (en) | 2011-06-15 |
CN102096295B CN102096295B (en) | 2013-05-22 |
Family
ID=44129439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910250433 Expired - Fee Related CN102096295B (en) | 2008-12-10 | 2009-12-09 | laser projection system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102096295B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102722065A (en) * | 2012-04-28 | 2012-10-10 | 西北工业大学 | Projection display method based on Lissajou figure scanning mode |
CN103116219A (en) * | 2011-11-16 | 2013-05-22 | 宏瞻科技股份有限公司 | Scanning projection device with detection function and detection method thereof |
CN104656233A (en) * | 2013-11-25 | 2015-05-27 | 深圳市亿思达科技集团有限公司 | Curved-surface reflection type ultra-short focal projection lens |
CN105824176A (en) * | 2016-03-02 | 2016-08-03 | 上海理鑫光学科技有限公司 | Curved surface reflecting type ultra-short focal projection lens based on mems |
CN108983542A (en) * | 2018-08-15 | 2018-12-11 | 青岛海信激光显示股份有限公司 | Reflective projection screen, transmissive projection screen and optical projection system |
CN108983543A (en) * | 2018-08-15 | 2018-12-11 | 青岛海信激光显示股份有限公司 | Reflective projection screen, transmissive projection screen and optical projection system |
CN113900328A (en) * | 2021-11-03 | 2022-01-07 | 福州大学 | Device and method for long-distance projection through scattering medium based on spatial light modulation device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2739081C2 (en) * | 1977-08-30 | 1983-05-26 | Max Planck Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen | Display method for the visual representation of information |
CN1311272C (en) * | 2002-09-14 | 2007-04-18 | 邱新萍 | Projecting color display |
JP2004354763A (en) * | 2003-05-29 | 2004-12-16 | Seiko Epson Corp | Screen, image display device and rear projector |
JP2006091463A (en) * | 2004-09-24 | 2006-04-06 | Sony Corp | Display device and display system |
CN201311540Y (en) * | 2008-12-10 | 2009-09-16 | 宏瞻科技股份有限公司 | Laser projection display device |
-
2009
- 2009-12-09 CN CN 200910250433 patent/CN102096295B/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103116219A (en) * | 2011-11-16 | 2013-05-22 | 宏瞻科技股份有限公司 | Scanning projection device with detection function and detection method thereof |
CN102722065A (en) * | 2012-04-28 | 2012-10-10 | 西北工业大学 | Projection display method based on Lissajou figure scanning mode |
CN104656233A (en) * | 2013-11-25 | 2015-05-27 | 深圳市亿思达科技集团有限公司 | Curved-surface reflection type ultra-short focal projection lens |
CN105824176A (en) * | 2016-03-02 | 2016-08-03 | 上海理鑫光学科技有限公司 | Curved surface reflecting type ultra-short focal projection lens based on mems |
CN108983542A (en) * | 2018-08-15 | 2018-12-11 | 青岛海信激光显示股份有限公司 | Reflective projection screen, transmissive projection screen and optical projection system |
CN108983543A (en) * | 2018-08-15 | 2018-12-11 | 青岛海信激光显示股份有限公司 | Reflective projection screen, transmissive projection screen and optical projection system |
CN108983543B (en) * | 2018-08-15 | 2021-05-28 | 青岛海信激光显示股份有限公司 | Reflective projection screen, transmissive projection screen and projection system |
CN113900328A (en) * | 2021-11-03 | 2022-01-07 | 福州大学 | Device and method for long-distance projection through scattering medium based on spatial light modulation device |
Also Published As
Publication number | Publication date |
---|---|
CN102096295B (en) | 2013-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8587451B2 (en) | Laser projection system | |
CN102096295B (en) | laser projection system | |
KR101329493B1 (en) | Multilayered fluorescent screens for scanning beam display systems | |
US8000005B2 (en) | Multilayered fluorescent screens for scanning beam display systems | |
US20080018558A1 (en) | Electronic display with photoluminescent wavelength conversion | |
US8371697B2 (en) | Method for image projection, image projection apparatus and image projection screen | |
CN105093795A (en) | Double-color laser light source | |
CN102193296A (en) | Illumination device and projector | |
KR20220006646A (en) | Head-up display systems, active luminous image circles, head-up displays and automobiles | |
US10921696B2 (en) | Illumination system and projection apparatus | |
US10281811B2 (en) | Light source module for adjusting blue beam and projection apparatus using the same | |
US10127890B2 (en) | Display device with better contrast | |
US9001406B2 (en) | Reflective display utilizing luminescence | |
TW201033723A (en) | Laser projection system | |
CN107065420B (en) | A kind of optical projection system | |
CN103034031A (en) | Projection display | |
JP2017183720A (en) | Power generation device and power generation system | |
JP2007316484A (en) | Transmission type display device and camera | |
CN105116485A (en) | Light guide, laser source and laser display system | |
CN119805816A (en) | Display screen, projection light machine, head-up display device and vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130522 Termination date: 20161209 |