TW201033723A - Laser projection system - Google Patents
Laser projection system Download PDFInfo
- Publication number
- TW201033723A TW201033723A TW98141082A TW98141082A TW201033723A TW 201033723 A TW201033723 A TW 201033723A TW 98141082 A TW98141082 A TW 98141082A TW 98141082 A TW98141082 A TW 98141082A TW 201033723 A TW201033723 A TW 201033723A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- laser
- layer
- wavelength
- projection screen
- Prior art date
Links
- 230000005284 excitation Effects 0.000 claims abstract description 138
- 239000000463 material Substances 0.000 claims abstract description 73
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims description 78
- 239000000126 substance Substances 0.000 claims description 75
- 238000001228 spectrum Methods 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 20
- 238000010586 diagram Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 15
- 238000010521 absorption reaction Methods 0.000 claims description 12
- 239000003086 colorant Substances 0.000 claims description 11
- 230000003667 anti-reflective effect Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000004020 luminiscence type Methods 0.000 claims description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 5
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 4
- 235000005811 Viola adunca Nutrition 0.000 claims description 4
- 240000009038 Viola odorata Species 0.000 claims description 4
- 235000013487 Viola odorata Nutrition 0.000 claims description 4
- 235000002254 Viola papilionacea Nutrition 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 239000000990 laser dye Substances 0.000 claims description 4
- -1 polyethylene terephthalate Polymers 0.000 claims description 4
- 230000032900 absorption of visible light Effects 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 2
- 230000035515 penetration Effects 0.000 claims description 2
- 229920001225 polyester resin Polymers 0.000 claims description 2
- 239000004645 polyester resin Substances 0.000 claims description 2
- 230000003068 static effect Effects 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 claims 1
- 239000010419 fine particle Substances 0.000 claims 1
- 230000031700 light absorption Effects 0.000 claims 1
- 230000011514 reflex Effects 0.000 claims 1
- 238000007740 vapor deposition Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 274
- 238000003384 imaging method Methods 0.000 description 14
- 239000011859 microparticle Substances 0.000 description 9
- 238000005286 illumination Methods 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 210000001747 pupil Anatomy 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- CUJMXIQZWPZMNQ-XYYGWQPLSA-N 13,14-dihydro-15-oxo-prostaglandin E2 Chemical compound CCCCCC(=O)CC[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O CUJMXIQZWPZMNQ-XYYGWQPLSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004713 Cyclic olefin copolymer Substances 0.000 description 1
- 241001518384 Ichthyococcus ovatus Species 0.000 description 1
- 102220531101 Left-right determination factor 1_L92S_mutation Human genes 0.000 description 1
- 101150036708 NUR1 gene Proteins 0.000 description 1
- 244000131316 Panax pseudoginseng Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 238000002356 laser light scattering Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004297 night vision Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Transforming Electric Information Into Light Information (AREA)
- Overhead Projectors And Projection Screens (AREA)
Abstract
Description
201033723 雷射訊k調變模組220 合光模組230 旋轉平面鏡模組240 旋轉平面鏡控制模組250 訊號轉換模組260 雷射光學模組270 五、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 六、 發明說明: • 【發明所屬之技術領域】 本發明係有關一種雷射投影系統’尤指一種利用一雷射投, 器,使其根據單一畫面或動態畫面之影像訊號以產生激發雷= 光,並彳又射至一相配合之投影幕上而產生影像,以使該投影幕上 可在自然光的環境下以幾近透明的效果呈現高辨認度之投影畫 面’供可看到投射畫面並同時看到該投影幕後方之物體。 【先前技術】 有關雷射投影系統之設計已有很多先前技術,其中,包含 LJS6,986,581、US7,090,355、US7,182,467、US7,213,923、 ❹ US7,452,082專係揭示當作投影幕之薄膜(g〗m)的相關技術;包 含DS6,843,568以及其引證案(Referencescited)及其他公開資料 (other publication )等係揭示雷射掃描顯示裝置(丨aser scanning display)的相關技術;如US6,329,966係揭示紫外線光束在薄膜上 磷光點(UV beam on phosphorus dots on film)的相關技術;如 US4,213,153係揭示調變紫外線雷射在磷光材以形成影像 (modulated UV laser on phosphorus material to form image)的相關 技術;如US6,900,916係揭示掃描紫外光線在螢光薄膜上形成影像 (scanned UV light to generate images on fluoresce film )的相關技 術。 201033723 ❹ 如圖1所示’ 一先前技術之雷射投影系統100包含一雷射投 影器10以及一投影幕101。雷射投影器10用來根據影像訊號Si, 以將影像投影至投影幕101。雷射投影器10包含一雷射光源模組 110與一旋轉平面鏡模組120。雷射光學模組110包含一紅色可見 光雷射光源111、一藍色可見光雷射光源112、一綠色可見光雷射 光源111、一合光模組115,以及一調變模組114。紅色可見光雷 射光源111、藍色可見光雷射光源112及綠色可見光雷射光源113 分別用來根據驅動電流IRD、IBD、與iGD,以發出紅色可見光、藍 色可見光、綠色可見光的雷射光束Lr、LB、LG。調變模組114用 來根據影像讯號S】,以分別提供紅色可見光雷射光源111、藍色可 見光雷射光源112及綠色可見光雷射光源113驅動電流Ird、Ibd、 與Igi^ ’來分別對雷射光束lr、LB、LG進行訊號調變,使其各別 達^幕ιοί上對應之像素色彩所需之光強度。合光模組115用來 = iiiLR、LB、L(^聚至同—路徑、同—方向,以產生調變 ΐΪί ί t °旋轉平面鏡模⑯120时將調變雷射光束“反射 组絲一來’雷射投影器10藉由控制旋轉平面鏡模 德之角度θ與偏轉角度9來改變調變雷射光束1^反射 ^對“位Ϊ 快糊^繼彡幕1G1上每個晝素 鲁 又影幕1〇1會散射調變雷射光束Lm,以顯示書面。 而形缺點:第一’為利用散射原理 投影鏡模組鋪角度…之有限, 影畫面;第三,|1旦f,距離0必須拉長,才能產生較大之投 由螢幕散射或反的可見光照射到該顯像®幕時’亦將 比。本發明接收’而降低成像畫面之色彩對 進雷射投影糸絲夕Γ先則技術之缺點而加以有效解決,藉以增 祝芝使用功放及應用領域。 【發明内容】 3,52 201033723 本發明之目的係提供一種雷射投影系統,其係利用一雷射投 影器’使該雷射投影器可根據單一畫面或動態畫面之影像訊號來 產生激發雷射光,並投射至一相配合之投影幕上以產生影像畫 面,^中該投影幕係包含至少-發光層其具備至少一種發光物質 其為受到某一波長範圍之激發光照射而可被激發產生另一波長範 圍之^激發光之物質,且各發光物質之粒子間在平行於投影幕平 面之橫向距離係遠小於雷射光束之橫截面直徑,俾使該投影幕上 可在自然光的環境下以幾近透明的效果呈現高辨認度之投影畫 面,供可看到投射畫面並同時看到該投影幕後方之物體,藉以提 昇雷射投影系統使用效率及應用範圍。 • 本發明再一目的係提供一種雷射投影系統,其進一步可採用 =可見光之波長’包含且不限於808nm、850nm、98〇肺、與1〇64nm 等,或巧擇對人眼感光度較差之波長,包含且不限K4〇5mn、與 780nm等,之雷射作為雷射光源模組之雷射光源,又木選擇與被 激發光色彩相近之激發光源,包含且不限於以波長約4〇5nm(藍紫 色)、450mn(藍色)之雷射光激發發光層產生藍色(波長約45〇nm)之 影像,或以780nm(紅色)、640nm(紅色)之雷射光激發發光層產生 ,色(波長、約640_之影像’藉以減少因激發光受投影幕反射或 射所生之顏色混雜現象。 參 +本發明又一目的在於提供一種雷射投影系統,其中該雷射光 ,模組進-步包含-第—類雷射光源模組與—第二類雷射光源模 組,而相配合之透明狀投影幕係包含一發光層與一散射層,且發 光層在散射層之前以面對雷射投影器所投射掃描之光束;其中該 第-類雷射統模吨含至彡、—組雷射光源可各職射波長對應 並落八該發光層中各種發光物質之激發光波長範圍之第一類波^ 該發綠中各種發光物質’使之各別產生被 e X光,/、中§/第一類雷射光源模組包含至少一組射 :身Ιίί類ί長之雷射光;其中該發光層係對第二類雷射光源 弟二類波長之雷射光之吸收與散射極低,以使大部 刀弟--類波長之雷射光可穿越該發光層而進人散射層,且可吸收 4.52 201033723 大部分第一類雷射光源模組所發射第一類波長之雷射光;其中該 散射層係用以散射第二類波長之雷射光及在該發光層_被第一類 波長雷射光所激發之被激發光。 本發明另一目的係提供一種雷射投影系統,其中該投影幕之 發光層進一步可與其他各種功能層,包含被激發光吸收層、激發 光吸收層、被激發光與散射光吸收層、散射層、激發光反射層、 被激發光部分反射層層、被激發光與被散射光部分反射層、聚光 層、部分遮光層等,加以配合以組成一投影幕,藉以增進雷射投 影系統之使用效果及應用領域。201033723 Laser k modulation module 220 Convergence module 230 Rotary plane mirror module 240 Rotary plane mirror control module 250 Signal conversion module 260 Laser optical module 270 V. If there is a chemical formula in this case, please reveal the best display Chemical formula of the invention: (None) VI. Description of the invention: • Technical field to which the invention pertains The invention relates to a laser projection system, in particular to a laser projection device, which is based on a single picture or a dynamic picture. The image signal is generated to generate an excitation light=light, and the image is generated by shooting onto a matching projection screen, so that the projection screen can display a high-resolution projection in a natural light environment with a nearly transparent effect. The picture 'for viewing the projected picture and simultaneously seeing the object behind the projection screen. [Prior Art] There have been many prior art techniques relating to the design of laser projection systems, including LJS 6,986,581, US 7,090,355, US 7,182,467, US 7,213,923, and US 7,452,082. g) m) related technology; including DS6, 843, 568 and its reference (Referencescited) and other public information (other publication), etc. reveals related technologies of laser scanning display device (;aser scanning display); such as US 6,329,966 A technique for revealing a UV beam on a phosphor dots on a film; for example, US Pat. No. 4,213,153 discloses a modulated UV laser on phosphorus material to form image. Related Art; for example, US 6,900,916 discloses a related technique for scanning ultraviolet light to generate images on fluoresce film. 201033723 ❹ As shown in FIG. 1 'A prior art laser projection system 100 includes a laser projector 10 and a projection screen 101. The laser projector 10 is used to project an image onto the projection screen 101 based on the image signal Si. The laser projector 10 includes a laser light source module 110 and a rotating plane mirror module 120. The laser optical module 110 includes a red visible light laser source 111, a blue visible light laser source 112, a green visible laser light source 111, a light combining module 115, and a modulation module 114. The red visible light laser source 111, the blue visible laser light source 112, and the green visible laser light source 113 are respectively used to emit red, visible, and visible laser beams Lr according to the driving currents IRD, IBD, and iGD. , LB, LG. The modulation module 114 is configured to provide the red visible laser light source 111, the blue visible laser light source 112, and the green visible laser light source 113 for driving the currents Ird, Ibd, and Igi^' respectively according to the image signal S]. The signal beams of the laser beams lr, LB, and LG are modulated to each other to achieve the light intensity required for the corresponding pixel color on the screen. The illuminating module 115 is used to = iiiLR, LB, L (^ converge to the same path, the same direction, to generate the modulation ΐΪ ί ° ° when rotating the plane mirror 16120 will be modulated laser beam "reflection group silk 'The laser projector 10 changes the angle of the modulated laser beam by controlling the angle θ of the rotating plane mirror and the deflection angle 9 to reflect the position of the 雷 糊 糊 对 彡 彡 彡 彡 彡 1 1 1 1 1 1 1 1 1 1 Curtain 1〇1 will scatter the modulated laser beam Lm to display the written. The shape defect: the first 'is limited by the projection principle of the projection mirror module using the scattering principle, the shadow picture; the third, |1 den f, the distance 0 must be stretched to produce a larger projection by the screen scattering or reverse visible light when it is illuminated to the imaging screen. 'The invention will receive' and reduce the color of the image to the laser projection. The disadvantages of the prior art are effectively solved, so as to increase the use of power amplifiers and application fields. [Abstract] 3,52 201033723 The object of the present invention is to provide a laser projection system which utilizes a laser projector The laser projector can be based on a single picture or a dynamic picture The image signal generates excitation laser light and is projected onto a matching projection screen to generate an image frame. The projection screen comprises at least a light-emitting layer having at least one luminescent material which is excited by a certain wavelength range. Irradiating and exciting to generate a substance of another wavelength range of excitation light, and the lateral distance between the particles of each luminescent substance parallel to the plane of the projection screen is much smaller than the cross-sectional diameter of the laser beam, so that the projection screen is The high-resolution projection image can be presented in a natural light environment with a nearly transparent effect, so that the projected image can be seen and the object behind the projection screen can be seen at the same time, thereby improving the efficiency and application range of the laser projection system. A further object of the present invention is to provide a laser projection system, which can further adopt: = wavelength of visible light 'includes and is not limited to 808 nm, 850 nm, 98 〇 lung, and 1 〇 64 nm, etc., or the sensitivity of the human eye is poor. The wavelength, including and not limited to K4〇5mn, and 780nm, the laser is used as the laser source of the laser light source module, and the wood selection is similar to the color of the excited light. The excitation light source includes, but is not limited to, an image of blue (wavelength about 45 〇 nm) generated by laser light having a wavelength of about 4 〇 5 nm (blue-violet) and 450 mn (blue), or 780 nm (red), 640 nm. The (red) laser light excites the luminescent layer to generate, and the color (wavelength, image of about 640_) reduces the color mixing phenomenon caused by the reflection or reflection of the excitation light by the projection screen. Another goal of the present invention is to provide a mine. Projection system, wherein the laser light, the module further comprises a -type laser light source module and a second type of laser light source module, and the transparent projection screen system comprises a light emitting layer and a a scattering layer, and the illuminating layer faces the beam scanned by the laser projector before the scattering layer; wherein the first type of laser system ton contains 彡, the group of laser sources can correspond to each of the occupational wavelengths 8. The first type of wavelength of the excitation light wavelength range of the various luminescent substances in the luminescent layer ^ the various luminescent substances in the green ray are caused to generate e X light, /, § / the first type of laser light source module Including at least one set of shots: body ί ί ί long laser light; The light layer absorbs and scatters the laser light of the second type of laser light source to the second type, so that most of the laser light of the wavelength-like wavelength can pass through the light-emitting layer and enter the scattering layer. Absorbing 4.52 201033723 Most of the first type of laser source module emits a first type of wavelength of laser light; wherein the scattering layer is used to scatter a second type of wavelength of laser light and in the luminescent layer _ by the first type of wavelength ray The excited light excited by the light. Another object of the present invention is to provide a laser projection system, wherein the light-emitting layer of the projection screen is further compatible with various other functional layers, including an excited light absorbing layer, an excitation light absorbing layer, an excited light and a scattered light absorbing layer, and scattering. a layer, an excitation light reflecting layer, a partially reflected layer of the excited light, a partially reflected light layer, a light collecting layer, a partial light shielding layer, and the like, are combined to form a projection screen, thereby enhancing the laser projection system Use effects and application areas.
本發明另一目的係提供一種雷射投影系統,其中該雷射投影 器進一步包含至少一凸面反射鏡設在雷射投影器中之旋轉平面鏡 模組與投影幕之間,或進一步包含至少一平面反射鏡模組設在該 凸面反射鏡與投影幕之間,以使雷射投影器所產生之雷射光束在 經旋轉平面鏡模組後可透過該凸面反射鏡或平面反射鏡模組之反 射而再投射於投影幕上,藉以擴大雷射光束掃描角度,使在投影 幕與μ射投影盗間之距離不變之情況下,有效增大投影影像之高 度與寬度。 【實施方式】 <實施例1 > 參考圖2 ’其係本發明之實施例丨之雷射投影祕示音 圖。該雷射投影系統200包含一投影幕2〇1及一雷射投影器2〇1。 f射投影g 202¾來根據單—晝面或動態畫面之 將影像投影至投縣201。雷射投影器搬枝 ^模乂 2H)、-雷射訊號調變模組22〇、一合光且23〇、田一 面鏡控制模組25G及一訊號轉換模組260。此 外,並疋射光學模組270包含一雷射 訊號調變模組220及-合光模組23〇,以方便下 。宙射 光物;;^^^光層,該發光層具“或多種發 '2 n表不,n為發光物質之種類數。該發光 201033723 物〆包含任何受到某一波長範圍之光照射,而可被激發產生另一 波長範圍之光之物質,包含且不限定為螢光(Flu〇rescence)物質、 磷光(Phosphorescence)物質、雷射染料、或雷射晶體等。發光声中 各種發光物質各別可被各種不同波長,以λΐ3、λ2δ、…、λη8表^, 的光源激發’並各別被激發出另外各種不同波長,以λΐΕ、λ2Ε、…、 ληΕ表示,之光。為使單一雷射光束投射在投影幕上每個位置皆能 同時激發出所有被激發光之波長,單一雷射光束之橫截面需可涵 蓋數量相當多之所有種類之發光物質粒子。因此各種類之發光物 貝粒子間在平行於投影幕平面之橫向距離(distance )應 遠小於雷射光束之橫截面直徑。此處λΐ8、λ2δ.....ληδ及λ1Ε、一 © λ2Ε.....等各波長並不代表為單一數值,而可為一定範圍之分 佈。 若為追求發光層之被激發效率,並減少激發雷射光穿越此發 光層之光功率,應使發光層吸收絕大部分激發雷射光之能量。又 若要使發光層狀似透明,應減少發光層對可見光之散射與吸收, 其中之一必要因素應使發光物質之粒子直徑小於可見光之最短波 長(約 360nm)。 該發光層之縱向(longitudinal)切面可包含且不限定為圖2A、 圖2B或圖2C之結構。圖2A、圖2B與圖2C所示,以圓形、三 φ 角形、與正方形代表三種不同之發光物質,然本發明並不限於三 種發光物質。在圖2A中’一種基材231,包含且不限於xn、STN、 PC (多元酯樹脂,p〇iycarb〇nateresin)、c〇c (烯烴共聚合物, cyclo-〇lefln copolymers)、pET (聚對苯二曱酸乙二(醇)酯, polyethylene terephthalate)、epoxy (環氧樹脂)等透明狀塑質材料 或玻璃,包含著數種發光物質。當在此基材中,各種發光物質以 均勻之方式散佈在可能為激發光所照射的所有位置時,可易於設 疋激發光波長之光束,以L1S、lss、…、LnS表示,之光功率,以 P,E ' ?2E.....PnE表示,以產生所需之被激發光之單位面積發光 能量。 、 在圖2B中,三種基材231、232、233,包含且不限於TN、 201033723 STN、PC、COC、PET、epoxy等透明狀塑質材料,各別包含一種 發光物質。當每一種發光物質在各別之基材中以均勻之方式散佈 在可能為激發光所照射的所有位置時,可易於設定激發光波長之 光束之光功率,以產生所需之被激發光之單位面積發光能量。在 此圖2B中,每一基材23卜232、233僅各包含一層發光物質,實 際上並不以此為限。 在圖2C中,一基板235用以承載各別包含各式發光物質之微 顆粒236、237與238。微顆粒236、237與238十由不同之基材各 別承載不同之發光物質。微顆粒236、237與238在基板235上以 均勻之方式散佈在可能為激發光所照射的所有位置。 • 為使單一雷射光束Ls投射在投影幕201上每個位置皆能同時 激發出所有被激發光之波長,單一雷射光束之橫截面需可涵蓋數 量相當多之所有種類之發光物質粒子。因此微顆粒236、237與238 在平行於基板235之橫截面,及各微顆粒間在平行於投影幕平面 之橫向距離(transverse distance)應遠小於雷射光束之橫截面直徑。 圖2C之架構相較於圖2A與圖2B,可較易於調整各種微顆粒 在基板上不同位置之分佈密度。而使同樣地光能量之光束掃描在 投影幕上不同位置時激發發光層產生不同之被激發光能量組合, 特別適用於如圖5所示之靜態影像顯示系統。圖5之架構盥工作 •原理詳述如後。 〃 圖2C之製作方式包含且不限於以下所述:各式發光物質首先 各別溶解在各別溶液令,此溶液包含且不限為Ep〇xy(環氧樹脂)。 包含各別發光物質之各別溶液再各別以包含且不限噴墨、蒸鑛等 方式形成微顆粒而置於基板235上,最後再將此包含各種微顆粒 之基板235固化。 訊號轉換模組260接受各式單一畫面或動態畫面之影像訊號 &,並將其轉換為控制雷射光源模組210之訊號SL及旋轉平面鏡 模組240之訊號SM。訊號轉換模組260並負責協調雷射訊號調變 模組220之光訊號與旋轉平面鏡模組240之同步。 雷射光源模組210包含一組或多組雷射光源,各別可發射波 201033723 長入比、.....,對應並落入發光層中各種發光物質之激發光 波長範圍,λ丨s、λ2δ、…、ληδ,之光束,以L丨s、L2S、…、LnS表 示’以各別激發發光層中各種發光物質,使之產生λΐΕ、λ2Ε..... ληΕ波長之光。 為了使ί又影幕201上各點所產生λ1Ε、λ2Ε、…、ληΕ波長之軍 位面積光功率可各別為L1S、L2S、…、LnS之光功率所控制,應避 免單一激發光產生大於或等於二種以上之被激發光波長。在選擇 雷射波長與發光層内發光物質時需減少與間分佈範圍之重 疊,其中ljjSn且λ·ιΕ#λ)Ε ’且降低λβ照射至任一發光層中之發光 物質而產生任何不等於λίΕ波長之被激發光能量。 ❹ > 此外’因波長λι之雷射光之光功率受限於該波長雷射之製作 工藝u右要追求增大某一波長χΙΕ之單位面積發光能量’則包含下 列兩種方式:其一,可使發光層中m種發光物質各別可為不同波 長範圍,、人城、…、XmmS ’之光所激發,而產生同樣波長‘ 之被激發光。並於雷射光源模組21〇中配置m個雷射光源,其^ 長各別對應各發光物質激發波長範圍,其中咬2。因此,該發'光 層上各光束投射位置所產生波長之單位面積發光能量即為此m 個發光物質受到此111個雷射光源激發所生被激發光之總和。其 一[因發光物質之激發波長分佈範圍一般大於該激發雷射光源之 φ 波長分佈範圍。因此,可選擇激發光波長λίδ分佈範圍較寬,並產 生被激發光波長為λίΕ之發光物質。並於雷射光源模組21〇中配置 叱個雷射光源,其波長皆位於此發光物質激發波長‘範圍中,其 中m22。因此,該發光層上各光束投射位置所產生波長之單位 面積發光能量即為此發光物質受到此m2個雷射光源激發所生被激 發光之總和。 合光模組230包含且不限定於由各式濾波片(wavelength仙的 或菱鏡(prism)所組成,將雷射光束l1s、l2S.....LnS匯聚至同一 路徑、同一方向,以產生總體調變雷射光束1^。總體調變雷射光 束‘入射至旋轉平面鏡模組24〇,並為旋轉平面鏡模組24〇所反 射而形成總體調變掃描雷射光束Ls以投射至投影幕2〇1。 S/52 201033723 旋轉平面鏡模組240包含且不限為兩個直交(〇rth〇g〇nal) 一 維多面反射鏡(PolygonMirror)模組、兩個直交一維微機電 (MEMS)反射鏡面、或一個二維微機電(mem 可在一第一平面旋轉角度㊀,同時亦可在一非與第一平面射平&面之第 一平面旋轉角度φ。Another object of the present invention is to provide a laser projection system, wherein the laser projector further comprises at least one convex mirror disposed between the rotating plane mirror module and the projection screen in the laser projector, or further comprising at least one plane The mirror module is disposed between the convex mirror and the projection screen, so that the laser beam generated by the laser projector can be reflected by the convex mirror or the planar mirror module after being rotated by the plane mirror module. Then, it is projected on the projection screen to expand the scanning angle of the laser beam, so that the height and width of the projected image are effectively increased when the distance between the projection screen and the projection projection is constant. [Embodiment] <Embodiment 1> Referring to Fig. 2', a laser projection secret sound map of an embodiment of the present invention is shown. The laser projection system 200 includes a projection screen 2〇1 and a laser projector 2〇1. The projection projection g 2023⁄4 is used to project the image to the county 201 according to the single-face or dynamic picture. The laser projector module 2H), the laser signal modulation module 22〇, the combined light and 23〇, the Tianyi mirror control module 25G and a signal conversion module 260. In addition, the radiation optical module 270 includes a laser signal modulation module 220 and a light combining module 23A for convenience. The illuminating layer; the ^^^ light layer, the luminescent layer has "or multiple types of 'n", n is the number of luminescent substances. The illuminating 201033723 〆 contains any light that is exposed to a certain wavelength range, and A substance that can be excited to generate light of another wavelength range, including, but not limited to, a fluorescent material, a phosphorescent substance, a laser dye, or a laser crystal, etc. It may be excited by a light source of various wavelengths, λΐ3, λ2δ, ..., λη8, and each of them is excited by a different wavelength, represented by λΐΕ, λ2Ε, ..., ληΕ, for a single Ray. Each position of the beam projected on the projection screen can simultaneously excite the wavelength of all the excited light. The cross section of a single laser beam needs to cover a considerable number of all kinds of luminescent material particles. The distance between the particles parallel to the plane of the projection screen should be much smaller than the cross-sectional diameter of the laser beam. Here, λΐ8, λ2δ.....ληδ and λ1Ε, one ©λ2Ε..... Not The representative is a single value, but can be a certain range of distribution. If the excitation efficiency of the luminescent layer is pursued and the optical power of the excitation laser light passing through the luminescent layer is reduced, the luminescent layer should absorb most of the energy of the excited laser light. If the luminescent layer is to be transparent, the scattering and absorption of visible light by the luminescent layer should be reduced. One of the necessary factors should be such that the luminescent material has a particle diameter smaller than the shortest wavelength of visible light (about 360 nm). The longitudinal direction of the luminescent layer (longitudinal The cut surface may include and is not limited to the structure of Fig. 2A, Fig. 2B or Fig. 2C. As shown in Fig. 2A, Fig. 2B and Fig. 2C, the luminescent material is represented by a circle, a triple φ angle, and a square, but the invention It is not limited to three luminescent materials. In Figure 2A, a substrate 231 includes, without limitation, xn, STN, PC (polyester resin, p〇iycarb〇nateresin), c〇c (olefin copolymer, cyclo-〇). Lefln copolymers), pET (polyethylene terephthalate, polyethylene terephthalate), epoxy (epoxy resin) and other transparent plastic materials or glass, containing several luminescent substances. In the substrate, when various luminescent materials are dispersed in a uniform manner at all positions which may be irradiated by the excitation light, the light beam of the wavelength of the excitation light can be easily set, and the optical power is represented by L1S, lss, ..., LnS, P, E ' 2E.....PnE represents the luminescence energy per unit area of the desired excited light. In FIG. 2B, the three substrates 231, 232, 233 include, but are not limited to, TN, 201033723 STN, PC, COC, PET, epoxy and other transparent plastic materials, each containing a luminescent substance. When each of the luminescent materials is dispersed in a uniform manner in all the positions of the respective substrates which may be irradiated by the excitation light, the optical power of the beam of the excitation light wavelength can be easily set to generate the desired excited light. Luminous energy per unit area. In this FIG. 2B, each of the substrates 23, 232, and 233 includes only one layer of luminescent material, which is not limited thereto. In Fig. 2C, a substrate 235 is used to carry microparticles 236, 237 and 238, each containing a plurality of luminescent materials. The microparticles 236, 237 and 238 are each loaded with different luminescent materials by different substrates. The microparticles 236, 237 and 238 are spread over the substrate 235 in a uniform manner at all locations that may be illuminated by the excitation light. • In order for a single laser beam Ls to be projected onto the projection screen 201 at each position to simultaneously excite all of the wavelengths of the excited light, the cross section of a single laser beam needs to cover a significant number of all types of luminescent material particles. Thus, the microparticles 236, 237 and 238 are parallel to the cross-section of the substrate 235, and the transverse distance between the micro-particles parallel to the plane of the projection screen should be much smaller than the cross-sectional diameter of the laser beam. The structure of Fig. 2C is easier to adjust the distribution density of various microparticles at different locations on the substrate than in Figs. 2A and 2B. When the beam of the same light energy is scanned at different positions on the projection screen, the luminescent layer is excited to generate different combinations of excited light energy, and is particularly suitable for the static image display system shown in FIG. Figure 5 Architecture 盥 Work • The principle is detailed as follows. The production method of Fig. 2C includes, but is not limited to, the following: each of the luminescent materials is first dissolved in a separate solution, and the solution includes and is not limited to Ep〇xy (epoxy resin). The respective solutions containing the respective luminescent materials are each formed on the substrate 235 by forming microparticles including, and not limited to, ink jet, steaming, etc., and finally the substrate 235 containing various microparticles is cured. The signal conversion module 260 receives the image signals & of a single picture or a dynamic picture and converts them into a signal SL for controlling the laser light source module 210 and a signal SM for rotating the mirror module 240. The signal conversion module 260 is responsible for coordinating the synchronization of the optical signal of the laser signal modulation module 220 with the rotating plane mirror module 240. The laser light source module 210 comprises one or more sets of laser light sources, each of which can transmit a wave length of 201033723, a ratio of ...., corresponding to and fall into the excitation light wavelength range of various luminescent substances in the luminescent layer, λ丨The light beams of s, λ2δ, ..., ληδ, expressed by L丨s, L2S, ..., LnS, respectively, emit various light-emitting substances in the light-emitting layer to generate light of λ ΐΕ, λ 2 Ε λη Ε wavelength. In order to make the optical power of the λ1Ε, λ2Ε, ..., ληΕ wavelengths generated by the points on the screen 201 can be controlled by the optical power of L1S, L2S, ..., LnS, the single excitation light should be avoided. Or equal to two or more wavelengths of the excited light. In selecting the laser wavelength and the luminescent substance in the luminescent layer, it is necessary to reduce the overlap with the range of the distribution, wherein ljjSn and λ·ιΕ#λ) Ε 'and reduce the λβ irradiation to the luminescent substance in any of the luminescent layers to produce any unequal λίΕ The wavelength of the excited light energy. ❹ > In addition, the power of the laser light due to the wavelength λι is limited by the manufacturing process of the laser of the wavelength, and the right to increase the luminous energy per unit area of a certain wavelength ' includes the following two methods: The m kinds of luminescent substances in the luminescent layer can be excited by light of different wavelength ranges, and the light of the human city, ..., XmmS ', and generate the same wavelength 'excited light. And in the laser light source module 21〇, m laser light sources are arranged, wherein each length corresponds to an excitation wavelength range of each luminescent substance, wherein the bite is 2. Therefore, the luminous energy per unit area of the wavelength generated by the projection positions of the respective light beams on the optical layer is the sum of the excited light generated by the 111 laser light sources for the m luminescent materials. One [the excitation wavelength distribution range of the luminescent material is generally larger than the φ wavelength distribution range of the excitation laser source. Therefore, it is possible to select a wide range of excitation light wavelength λίδ and to generate a luminescent material having a wavelength of λ Ε. And a laser light source is disposed in the laser light source module 21A, and the wavelengths thereof are all in the range of the excitation wavelength of the luminescent material, wherein m22. Therefore, the luminous energy per unit area of the wavelength generated by the projection positions of the respective light beams on the light-emitting layer is the sum of the excitation light generated by the m2 laser light sources for the luminescent material. The light combining module 230 includes, but is not limited to, a plurality of filters (wavelength or prism), and the laser beams l1s, l2S.....LnS are aggregated to the same path and in the same direction. Generating a general modulated laser beam 1^. The overall modulated laser beam is incident on the rotating plane mirror module 24〇 and reflected by the rotating plane mirror module 24〇 to form an overall modulated scanning laser beam Ls for projection to projection Curtain 2〇1. S/52 201033723 The rotating mirror module 240 includes and is not limited to two orthogonal (〇rth〇g〇nal) one-dimensional polygon mirrors (PolygonMirror) modules, two orthogonal one-dimensional microelectromechanics (MEMS) The mirror surface, or a two-dimensional microelectromechanical device (mem may be rotated by one angle in a first plane, and may also be rotated by an angle φ in a first plane that is not flattened with the first plane.
,旋轉平面鏡控制模組250驅動旋轉平面鏡模組24〇之旋轉, 並Ζ接受來自爾轉換模組26。之訊號,轉換為可控制平面 ,杈組240旋轉角度之訊號。旋轉平面鏡模組24〇之旋轉角度可 文巧轉平面鏡控制模組250之控制而隨時間改變。隨著旋轉平面 ,模組240之旋轉角度之改變,總體調變掃描雷射光束Ls逐一掃 描投影幕201上所有欲使產生被激發光之位置。旋轉平面鏡模組 =0可為周期性或非周期性旋轉。總體調變掃描雷射光束“在掃 搖才又影幕201上之掃描形式包含且不限於柵式掃描( ^canning)、利薩如掃描(LlssajousSc細ing)或向量掃描(v_r banning)。總體調變掃描雷射光束Ls内之波長^^、、…、^ 成分之雷射光分別激發投影幕2〇1之發光層中 η 6、.,.、匕,使之產生波長以^、^、…、買 ⑽宙射讯號調變模組220用來根據由訊號轉換模組26〇所提供 ,早—畫面或動態晝面之影像訊號Si,產生對應於各雷射光源之 ,動,流’ L、12、…、之大小’以分別對各個波長之雷射光 果,Lls、l2S、…、LnS,進行光功率調變。 激發光之光功率越高、激發光被掃描經過投影幕上某位置之 越長、發光物質密度越高,皆可使所投射投影幕之該位置激 Ϊΐ越高光辨之被激發光。投影幕2G1上某位置之各種波長被 光之單位面積發光能量,與對應的激發光功率乘上掃描經過 〇位置之時間之值,依各別發光物質之密度,以D丨、込、·. 表不’固定成某種比例關係。The rotating mirror control module 250 drives the rotation of the rotating mirror module 24 and receives the converter module 26. The signal is converted into a controllable plane, and the group 240 rotates the angle of the signal. The rotation angle of the rotating plane mirror module 24 can be changed with time by the control of the plane mirror control module 250. With the rotation plane, the rotation angle of the module 240 changes, and the overall modulation scanning laser beam Ls scans all the positions on the projection screen 201 to generate the excited light one by one. The rotating mirror module =0 can be rotated periodically or non-periodically. The overall modulated scanning laser beam "scans on the screen 201 after scanning and includes and is not limited to gate scanning ( ^canning), Lissajous Sc ing or vector scanning (v_r banning). The laser light of the wavelengths ^^, ..., ^ in the modulated scanning laser beam Ls respectively excites η 6 , . , . , 匕 in the light-emitting layer of the projection screen 2〇1 to generate a wavelength of ^, ^, ..., buy (10) the eccentricity signal modulation module 220 is used to generate the image signal corresponding to each laser light source according to the image signal Si provided by the signal conversion module 26 早, the early-picture or the dynamic surface. The size of 'L, 12, ..., ' is used to adjust the optical power of each wavelength of the laser, Lls, l2S, ..., LnS. The higher the power of the excitation light, the more the excitation light is scanned through the projection screen. The longer a certain position and the higher the density of the luminescent material, the higher the position of the projected projection screen is, the higher the intensity of the excited light is. The various wavelengths at a certain position on the projection screen 2G1 are illuminated by the unit area of the light, and The corresponding excitation light power is multiplied by the time of scanning through the 〇 position The value depends on the density of the individual luminescent substances, and is not fixed in a certain proportional relationship by D丨, 込, .
Dr 呔古ΪΪ使投影幕上某一個位置之第丨個被激發波長之單位面積 ^ 一施置為PiE時,則在總體調變掃描雷射光束Ls掃描至該位置 時,就將對應至雜激發波長之雷射光束該Lis之光抖以周1 201033723 或對掃描經過投影幕上某位置之時間τ調整,使之能激發投影幕中 該位置之該發光物質產生之單位面積發光能量。 激發投影幕中該位置(X,y)之第i個發光物質被光束Lis激發產 生piE(x,y)之單位面積發光能量可表示為:When Dr. 呔古ΪΪ makes the unit area of the first excited wavelength of a certain position on the projection screen into a PiE, when the overall modulated scanning laser beam Ls is scanned to the position, it will correspond to the miscellaneous Excitation wavelength of the laser beam The illumination of the Lis is adjusted by the period 1 201033723 or the time τ of scanning through a position on the projection screen to enable it to excite the luminous energy per unit area produced by the luminescent material at the position in the projection screen. Exciting the i-th luminescent substance at the position (X, y) in the projection screen to be excited by the beam Lis to generate pyE(x, y) per unit area luminescence energy can be expressed as:
PiE(x,y) = Pis(x,y) * T(x,y) * c,(^is(x,y) » Dj(x,y)) 參 其中’ (x,y)為該位置之空間座標,pis(x,y)為光束Lis掃描在位置(x,y) 之光功率,As(x,y)=Pis(x,y) * L〇,pis(x,y)為當光束Lis掃描在位置 (,y)時由雷射光源模組所發射之光功率,L〇代表光束Lis經過合光 核組、旋轉平面鏡模組反射及介於雷射光源模組210與投影幕201 間所有光學元件所生之光功率損耗參數,一般可視L〇與p無關, τ(Χ,Υ)為總體調變掃描雷射光束Ls掃描經過位置(x,y)之時間, Di(x,y)為位置(x,y)上第i個發光物質之密度,Q(Pis(x,y),Di(x,y)) 為位置(^y)上第i種發光物質將激發光波長轉換為被激發光波 長λίΕ之單位面積光功率轉換效率’ Ci(PiS(x,y),Di(x,y))受Pis(x,y) 與Di(x,y)之影響。在第i種發光物質之Q(巧s(xy),Di(xy))並不受 Pis(x,y)影響之狀況下,Q可簡化為QWs(x,y),Di(x,y)) = ^(Di(x’y))。在 piE(x,y) = pis(x,y) * T(x,y) * Ci(Pis(x,力,地,⑼一式 中,T(x,y)可根據旋轉平面鏡模組24〇之旋轉模式計算而得,l〇與 ci(Pis(x,y),Dj(x,y))可經量測而得,因此我們可透過雷射調便模组 220改變pis(x,y)以追求所欲達成之PiE(x,y)。 、、、’ 因某些旋轉平面鏡模、组240之旋轉方式使得雷射Ls在投影 2〇1之掃描並非等速度。因此,掃描經過投影幕2〇1上位置 ,x,y)並不—致。在投影幕上各位置之發光㈣之密度皆為相等PiE(x,y) = Pis(x,y) * T(x,y) * c,(^is(x,y) » Dj(x,y)) where '(x,y) is the position The space coordinate, pis(x,y) is the optical power of the beam Lis scanned at position (x,y), As(x,y)=Pis(x,y) * L〇,pis(x,y) is The light beam Lis scans the optical power emitted by the laser light source module at the position (, y), and L 〇 represents the light beam Lis passing through the combined light core group, the rotating plane mirror module, and the laser light source module 210 and the projection screen. The optical power loss parameters of all optical components between 201 are generally independent of L〇 and p. τ(Χ,Υ) is the time when the overall modulated scanning laser beam Ls scans through the position (x, y), Di(x) , y) is the density of the i-th luminescent substance at the position (x, y), Q(Pis(x, y), Di(x, y)) is the position (^y), the ith luminescent substance will emit light The conversion of the wavelength to the optical power conversion efficiency of the wavelength of the excited light λίΕ ' Ci(Pi, (x, y), Di(x, y)) is affected by Pis(x, y) and Di(x, y). In the case where the Q of the i-th luminescent substance (the s(xy), Di(xy)) is not affected by Pis(x, y), Q can be simplified to QWs(x, y), Di(x, y )) = ^(Di(x'y)). In piE(x,y) = pis(x,y) * T(x,y) * Ci(Pis(x, force, ground, (9), T(x, y) can be based on the rotating plane mirror module 24〇 The rotation mode is calculated, l〇 and ci (Pis(x, y), Dj(x, y)) can be measured, so we can change the pis (x, y through the laser modulation module 220) In order to achieve the desired PiE (x, y). , , , ' Because of the rotation of some rotating plane mirrors, group 240, the scanning of laser Ls at projection 2〇1 is not equal speed. Therefore, the scanning is projected The position on the screen 2〇1, x, y) is not true. The density of the illumination (4) at each position on the projection screen is equal.
Di(=,y)= Di,若要使投影幕上任何位置皆達到預設^單位 面積發光此1?旧時,則需根據總體調變掃描雷射光束 過位置(x,y)之時間T(x,y)來調整Pis(x,y)之值,而非 =Di(=,y)= Di, if you want to make any position on the projection screen reach the preset ^ unit area, this time is 1; when you are old, you need to scan the laser beam over position (x, y) according to the overall modulation. T(x,y) to adjust the value of Pis(x,y) instead of =
PisU,y)=Pis。 q 心值便 以 Raster Scanning 與 Lissajous Scanning 等雷射掃描方 a 面邊緣區域位置之雷射光束掃描速度較在晝面中:區域 位置為悛,因此雷射絲經過邊緣區域某位置之時間較 / 10.-52 '工4 丫心 201033723 區域某位置之時間為長。若投影幕上各位置之第i個發光物質之密 $皆為相等時,若為追求同樣之被激發光波長λίδ之單位面積光能 f ’則需減少掃描至邊緣區域位置之波長為5^之雷射光功率。其 基本思考原則及計算方式如下,本發明並不以下例為限,凡基本 思考原則及計算方式與下例同者,皆屬本發明範疇。 設定時間t=0時二維旋轉反射鏡之旋轉角度θ⑼ 得下列關係式: θ(ί)= θ〇*8ίη(2π/Τθ* t); φ(ί)= φ〇*8ίη(2π/Τφ* t); 其中θ〇與φ〇各別為該二維旋轉反射鏡使雷射光束沿χ轴與丫轴旋 〇 轉之最大旋轉角度,τθ與 '各別為其旋轉周期。為簡化計算,令 該投影幕為一平面,在(X,y)=(0,0)之點垂直正交於在θ=〇,屮=〇之 雷射光束,則x=D*tan(0(t))且y=D*tan(e⑴),D為二維旋轉反射鏡 與投影幕之最短距離。利用上述關係式,可求得在χ軸之掃描速 度Vx(X)=dx/dt及y軸之掃描速度⑽户办他。在(x,y)點之掃描速 度即為v(X,y)Kvx2(x) + Vy2(y)严。為使單位面積發光能量在投影幕 上皆一致,應使pis(x,y)正比於v(x,y)/Ci(Pis(x,y),Di)。在第i種發 光物質iCiO^sky),Di(x,y))並不受Pis(x,y)影響之狀況下,應設 定 PiS(X,y)正比於 V(x,y)=(vx2(x) + Vy2(y))W。 若二維反射鏡之旋轉速度使得總體調變掃描雷射光束Ls掃描 經過投影幕各個位置所需之時間小於觀察者之影像截取曝光時 間’則在雷射光束掃描經過各個位置所激發形成之各個光點將將 為=察者一起認知,而形成為一個晝面。此觀察者之影像截取曝 光時間對於人眼而言為人眼視覺暫留時間(約1/16秒),對於照相 機或攝影機而言為每個晝面之曝光時間。 虽一維反射鏡持續旋轉之時間超過觀察者之影像截取曝光時 間,便可形成數個晝面◦若二維反射鏡旋轉之速度足以使得每個 畫面之更新時間小於觀察者之影像截取曝光時間,則此數個畫面 將為觀祭者認知為連續之動態畫面。 此外,當有一個發光物質之緩解過程時間(RelaxingProcess I ! '52 201033723 rime)大於每個畫面之更新時間,則觀察者將觀察到上個畫面所 殘留之被激發光,而形成殘影。因此’在欲形成連續之動態畫面 之投影系統’應選擇緩解過程時間較短之發光物質,如螢光物質、 雷射染料、雷射晶體等。 ' 參 本雷射,影系統200之一應用例為一全彩雷射投影顯像系 ,。舉-個單-原色為α-bit (2<χ層色階)之全彩雷射郷顯像系統 ^例。波長為xRS、xGS、λΒ5之雷射光束Lrs、Lgs、Lbs*別可激 發投影幕發缝中之發光物質Fr、Fg、Fb,使之產生最大單位面 積光功率各別為P酬、PGEM、p_之紅、綠、藍三色光此被激 原色光波長分別以λΚΕ、λ〇Ε、λΒΕ表示。則P_、Pgem、p_ 相對比例應符合達成影像晝面白平衡之比例。 在投影幕某位置欲顯示之色彩對應到紅、綠、藍色各別為第 ]L:、nk、,個色階時’若不考慮人眼對光神較小之可見光有較 =之感知’應赃雷就束lrs、LGS、LBS掃描經過該位置之光 ^率PRL、PGL、PBL使得該投影幕之發光層各別產生紅、綠、藍色 積光功率為 、(η〇_1)/(2Μ)ρ_、(nB_lv V *”Pbem 0 書 伪考慮人輯光神較小之可見光有較賴之感知,而引入 D 正因素(GammaCorrectionFactor) γ,則應調整雷射光束 掃描經過該位置之光功♦ H ~使得該投 幕之餐光層各別產生紅、綠、藍色單位面積光功率為 ^^1)/(2^1)] y?Km , [(nG-l)/(2a-l)]^pGEM . ]1/γPisU, y) = Pis. q The heart value is the laser beam scanning speed of the edge area of the laser scanning side such as Raster Scanning and Lissajous Scanning. The scanning speed of the laser beam is in the 昼 surface: the position of the laser is 悛, so the time of the laser passing through a certain position in the edge area is / 10.-52 '工4 丫心201033723 The time in a certain location in the area is long. If the density of the i-th illuminating material at each position on the projection screen is equal, if the light energy f' per unit area of the wavelength of the same excited light λίδ is sought, the wavelength of the scanning to the edge region needs to be reduced to 5^. Laser power. The basic principles of thinking and the calculation methods are as follows. The present invention is not limited to the following examples, and the basic thinking principles and calculation methods are the same as the following examples. When the time t=0, the rotation angle θ(9) of the two-dimensional rotating mirror is obtained as follows: θ(ί)= θ〇*8ίη(2π/Τθ* t); φ(ί)= φ〇*8ίη(2π/Τφ * t); where θ 〇 and φ 〇 are respectively the maximum rotation angle of the two-dimensional rotating mirror to rotate the laser beam along the χ axis and the 丫 axis, and τ θ and 'each are their rotation periods. To simplify the calculation, the projection screen is a plane, perpendicular to the laser beam at θ = 〇, 屮 = 在 at the point of (X, y) = (0, 0), then x = D * tan ( 0(t)) and y=D*tan(e(1)), where D is the shortest distance between the two-dimensional rotating mirror and the projection screen. Using the above relationship, the scan speed Vx(X) = dx/dt on the x-axis and the scan speed (10) on the y-axis can be obtained. The scanning speed at the (x, y) point is v(X, y) Kvx2(x) + Vy2(y). In order to make the luminous energy per unit area consistent on the projection screen, pis(x, y) should be proportional to v(x, y)/Ci(Pis(x, y), Di). In the case where the i-th luminescent substance iCiO^sky), Di(x, y)) is not affected by Pis(x, y), PiS(X, y) should be set proportional to V(x, y) = ( Vx2(x) + Vy2(y))W. If the rotation speed of the two-dimensional mirror is such that the time required for the entire modulated scanning laser beam Ls to scan through each position of the projection screen is smaller than the image capturing exposure time of the observer, then each of the laser beam scanning is excited by each position. The light spot will be recognized by the inspector and formed into a face. The observer's image capture exposure time is the human eye vision pause time (about 1/16 second) for the human eye and the exposure time for each face for the camera or camera. Although the one-dimensional mirror continuously rotates for more than the observer's image capture exposure time, several pupil planes can be formed. If the two-dimensional mirror rotates at a speed sufficient for each image to be updated less than the observer's image capture exposure time. , then these several pictures will be recognized as continuous dynamic pictures for the spectators. In addition, when the mitigation process time (RelaxingProcess I! '52 201033723 rime) of one luminescent substance is greater than the update time of each picture, the observer will observe the excited light remaining in the previous picture to form an afterimage. Therefore, a projection system that wants to form a continuous dynamic picture should be selected to mitigate luminescent substances having a short process time, such as a fluorescent substance, a laser dye, a laser crystal, and the like. 'Parameter laser, one application of the shadow system 200 is a full color laser projection imaging system. Let's take a single-primary color alpha-bit (2<χ layer scale) full color laser imaging system. The laser beams Lrs, Lgs, and Lbs* with wavelengths of xRS, xGS, and λΒ5 can excite the luminescent materials Fr, Fg, and Fb in the projection of the projection screen, so that the maximum unit area of optical power is P, PGEM, The red, green, and blue lights of p_ are represented by λΚΕ, λ〇Ε, and λΒΕ, respectively. Then the relative proportions of P_, Pgem, and p_ should be consistent with the ratio of the white balance of the image. The color to be displayed at a certain position of the projection screen corresponds to red, green, and blue, respectively, when the number is L], nk, and gradation. 'If you don’t consider the human eye’s perception of the smaller visible light of the god of light, 'Ying Lei will bundle the lrs, LGS, LBS to scan the light passing through the position. PRL, PGL, PBL make the light-emitting layers of the projection screen produce red, green and blue integrated light power, (η〇_1 )/(2Μ)ρ_,(nB_lv V *"Pbem 0 The book pseudo-consideration of the smaller visible light of the light god has a higher perception, and the introduction of the D positive factor (GammaCorrectionFactor) γ, the laser beam should be adjusted to scan through The light function of the position ♦ H ~ makes the light intensity of the red, green and blue unit area of the light layer of the curtain of the curtain be ^^1)/(2^1)] y?Km , [(nG-l) /(2a-l)]^pGEM . ]1/γ
1 βεμ。 J 若要追求投影幕上每位置之對於同樣紅、綠、藍色各別為 、%個色階時皆顯示同樣之明度(lightness)、色 ,最大單位面積光解ρ_、p圆、PBEM )不、隨 =之改,互異。細,雷射光束lrs、lgs、lbs之最大發二 12 52 物質Ϊ乂 ί上,則ί審慎檢視郷幕上各位置之各種發光 詳I ”佈治度與雷射光束的掃描速度來調整。其方法已於上文 Ά。在此僅舉下列簡例進一步說明雷射光功率ρ队、^^ 201033723 之控制。 溪才又衫幕上各位置之各種發光物質皆為均勻分佈,且此八 雷射投影顯像系統採用柵式掃描(Raster Scanning )戈利薩如& (Ussajotis Scanning)雷射掃描方式,且忽略紅、綠二藍三 : 物貝之光功率轉換效率cR、cG、cB受入射光功率之影響,則光束 掃描至投影幕該位置(X,y)之各雷射光源模組之最大發光功率 PRLM(x’y)、PGLM(x,y)、Pblm (x,y)應正比於光束掃描至該位置(xy) 之速度V(x,y) ’亦即: ’ PRLM(X,y)=PRLM(〇,〇)*V(x,y)/v(〇,〇); PGLM(x,y)=PGLM(〇,〇)*V(x,y)/v(0,〇); ❹ PBLM(x,y)=PBLM(〇,〇) *v(x,y)/v(〇,〇)。 因為 V(0,0)匕V(X,y),所以 PRLj^x’yKPj^^O’O),pGLM(x,y)s PgLM(〇,〇) ’ PBLM(X,y)$PBLM(〇,〇)。為了使該全彩雷射投影顯像系統 有最明亮之影像’我們應在考量Prem、PGEM、PBEM達白平衡之相 互比例之餘,考量雷射光源之製作工藝與其生命周期等來選擇可 能最大之 PRLM(0,0)、PGLM(0,0)、pBLM(o,o)值。 若不考慮人眼對光功率較小之可見光有較敏銳之感知,應調 整雷射光束LRS、LGS、LBS掃描經過(x,y)位置之光功率: PRL(x,y )= (nR-l)/(2a-l)* PRLM(x,y)= (nR-l)/(2a-l)* _ PRLM(〇,〇)*v(x,y)/v(0,0); P〇L(x,y )= (nc-1 )/(2a-1 )*PGLM(x,y) -(nG-l )/(2a-l)PGLM(0,0)*v(x,y)/v(0,0); (nB~iy(2a-l)*PBLM(x»y)~ (nB~l)/(2a-l)* PbLm(〇7〇) *v(x,yVV(0,0>。 若考慮人眼對光功率較小之可見光有較敏銳之感知,而引入 伽瑪修正因素(Gamma Correction Factor) γ,則應調整雷射光束 Lrs、Lgs、Lbs掃描經過(x,y)位置之光功率: iJRL.(x,y)- [(nR-1 )/(2α-1)] ι/γ*ΡβίΜ(χ,Υ)=[(ηκ-1 )/(2α-1)]ι/γ* PRLM(0,0)*v(x,y)/v(0,0); PGL(x,yH(nG-l)/ (2α-1) ]1/Y*PGLM(X,y)=[(nG-l)/ (2α-1) ]1/γ* 201033723 PGLM(〇,〇)*v(x,y)/v(0,〇); PBL(x,y)=[(nB-l)/ (2α-1) ],/Y*PBLM(x,y)=[(nB-l)/ (2α-1) ]1^* PBLM(〇 〇) *v(x,y)/v(0,0)。 ’ 若二維反射鏡之旋轉速度使得總體調變雷射光束Lm掃描經 過投影幕所有可能產生影像光點之位置之時間小於人眼視覺暫留 時間,則在雷射光束掃描經過各個位置所激發形成之各個光點將 為人眼認知為一個畫面。 若一維反射鏡旋轉之速度足以使得每個晝面之更新時間小於 人眼視覺暫留時間,則此投影系統200便可顯示可見之連續動態 晝面。 參 若要避免晝面殘影’則需選擇緩解過程時間(Relaxing Process1 βεμ. J. To achieve the same red, green, and blue color for each position on the projection screen, the same brightness (lightness, color, maximum unit area photolysis ρ_, p circle, PBEM) No, change with =, different. Fine, laser beam lrs, lgs, lbs maximum hair 2 12 52 substances Ϊ乂 ί, then ί carefully examine the various positions on the curtain of the various details of the illumination and the scanning speed of the laser beam to adjust. The method has been described above. Here, the following simple examples are used to further illustrate the control of the laser light power ρ team, ^^ 201033723. The various luminescent materials in the positions on the screen of the brook and the shirt are evenly distributed, and the eight ray Projection imaging system uses Raster Scanning (Ussajotis Scanning) laser scanning method, and ignores red, green and blue three: The optical power conversion efficiency of objects is cR, cG, cB According to the influence of the optical power, the maximum luminous power PRLM(x'y), PGLM(x,y), Pblm(x,y) of each laser light source module scanned to the position (X,y) of the projection screen should be It is proportional to the velocity V(x,y) of the beam scanned to this position (xy)', ie: 'PRLM(X,y)=PRLM(〇,〇)*V(x,y)/v(〇,〇) ; PGLM(x,y)=PGLM(〇,〇)*V(x,y)/v(0,〇); ❹ PBLM(x,y)=PBLM(〇,〇) *v(x,y) /v(〇,〇). Because V(0,0)匕V(X,y), PRLj^x'yKPj^^O 'O), pGLM(x,y)s PgLM(〇,〇) ' PBLM(X,y)$PBLM(〇,〇). In order to make the full-color laser projection system have the brightest image 'we In consideration of the mutual ratio of Prem, PGEM, and PBEM white balance, consider the manufacturing process of the laser source and its life cycle to select the largest possible PRLM (0,0), PGLM(0,0), pBLM(o). , o) value. If the human eye is not sensitive to the visible light with low optical power, the optical power of the laser beam LRS, LGS, and LBS scanned at the (x, y) position should be adjusted: PRL(x, y )= (nR-l)/(2a-l)* PRLM(x,y)= (nR-l)/(2a-l)* _ PRLM(〇,〇)*v(x,y)/v( 0,0); P〇L(x,y )= (nc-1 )/(2a-1 )*PGLM(x,y) -(nG-l )/(2a-l)PGLM(0,0) *v(x,y)/v(0,0); (nB~iy(2a-l)*PBLM(x»y)~ (nB~l)/(2a-l)* PbLm(〇7〇) *v(x,yVV(0,0>. If the human eye is more sensitive to the visible light with less optical power, and the gamma correction factor γ is introduced, the laser beam Lrs should be adjusted, Lgs, Lbs scan the optical power passing through the (x, y) position: iJRL.(x,y)- [(nR-1 )/(2α-1)] ι/γ*ΡβίΜ(χ,Υ)=[(ηκ -1 )/(2α-1)]ι/ γ* PRLM(0,0)*v(x,y)/v(0,0); PGL(x,yH(nG-l)/ (2α-1) ]1/Y*PGLM(X,y) =[(nG-l)/ (2α-1) ]1/γ* 201033723 PGLM(〇,〇)*v(x,y)/v(0,〇); PBL(x,y)=[(nB -l)/ (2α-1) ], /Y*PBLM(x,y)=[(nB-l)/ (2α-1) ]1^* PBLM(〇〇) *v(x,y)/ v(0,0). 'If the rotational speed of the two-dimensional mirror causes the total modulated laser beam Lm to scan through the projection screen for all the positions where the image spot is likely to be generated, the time is shorter than the human eye visual persistence time, and then the laser beam is scanned through various positions. The various spots formed will be recognized by the human eye as a picture. If the one-dimensional mirror is rotated at a speed sufficient to cause the update time of each face to be less than the human eye pause time, the projection system 200 can display a visible continuous dynamic face. In order to avoid the residual image, you need to choose the mitigation process time (Relaxing Process)
Time)小於每個畫面之更新時間,即ι/p秒,此ρ·為該動態晝面 顯像系統以Hz為單位之Frame Rate,之發光物質。 此外,為增加影像免度,在投影幕之發光層中亦可加入w種 寬頻譜發光物質’其中w^l。寬頻譜發光物質可被激發產生波長, 以XlWE、hv/E、…、XW\VE表示,XiWE涵蓋不只一個原色光波長之 光,例如涵蓋綠、藍二色波長’或涵蓋紅、綠與藍三色波長,此 處匕匕w。並於雷射光源模組210中配置w個雷射光源,其波長, 以Xiws、hws、…、Xwws表示’各別位於此W種發光物質之激發 波長範圍中。 x ® 為進一步追求此w種寬頻譜發光物質所生影像之白平衡,需 設計此W種雷射之光功率間之相互比例,使被激發出寬頻波長, λ)\νΕ、hwE、…、XWWE ’之光能量之總和符合色彩學上白平衡之要 求。 此外,為追求擴大影像之色域(Color Gamut) ’在投影幕發光 層中亦可加入g種擴大色域發光物質,其中它卜擴大色域發光物 質可被激發產生波長’以XlGE、λ2(3Ε、…、XgGE表示。且在CIE色 度座標圖(Chromaticity Diagram)上’此λ]Χ}Ε、λ2(3£、…、XgGE 及λκ£、 λ〇Ε、λΒΕ共(g+3)個波長所形成之面積大於只有λΚΕ、λαΕ、λΒΕ所形 成之面積。並於雷射光源模組210中增加配置g個雷射光源,其 14 52 201033723 波長各別位於此g種擴大色域發光物質之激發波長範圍中。一般 之影像訊號s丨所包含為紅、綠、藍三原色之影像資訊。訊號轉換 模組260應將s丨中轉換為紅、綠、藍三原色加上λ丨GE、λ2(3Ε、... '、 ZgGE之影像資訊,並用以控制紅、綠、藍三原色之激發雷射光束 lrs、lgs、lbs與g種激發擴大色域發光物質雷射光源之光功率, 以真實呈現投影幕上雷射光束掃描至之位置之色彩。 為了降低所需雷射光源與擴大色域發光物質種類之數目,在 選擇λΙ(3Ε、λΜΕ、…、xgGE時’應衡量雷射光源與擴大色域發光物 質之製作工藝’追求以最小之g達成相對較大之色彩面積。 由於激發光仍不免被投影幕所反射或散射,此反射或散射光 〇 之波長分佈將與激發光之波長分佈相同。若激發光對人眼有較佳 之感光度,則觀察者同時在該像素接收到激發光與被激發光,因 而產生顏色之混雜,有損該影像之色彩對比度。為避免上述情況 發生’較好的方式是採用不可見光之波長,包含且不限於808nm、 850麵、980 nm、與l〇64nm等,或選擇對人眼感光度較差之波長, 包含且不限於405nm、與780nm等,之雷射作為雷射光源模組21〇 之雷射光源。 若仍不免使用可見光為激發光源時,則選擇與被激發光色彩 相近之激發光源。包含且不限於以波長約4〇5nm(藍紫色)、 φ 450nm(藍色)之雷射光激發發光層產生藍色(波長約450nm)之影 像’以780nm(紅色)、640nm(紅色)之雷射光激發發光層產生紅色 (波長約640mn)之影像。因激發光源與被激發光有相近色彩,可減 少因激發光受投影幕反射或散射所生之顏色混雜現象。 雷射投影系統200之另一個簡化應用例為使用一 4〇5nm半導 體雷射光為雷射光源210,另使用一可二維旋轉之微機電反射鏡, 或二可一維旋轉之微機電反射鏡組合形成旋轉平面鏡模組240,該 投影幕201包含一發光層,該發光層中包含一種可被4〇5nm波長 激發產生紅色、藍色或綠色可見光之發光物質。該投影幕201且 為透明。若將此投影幕貼合於交通工具之駕駛座前之擋風玻璃 上’以不影響駕駛視線為原則。將雷射投影器2〇2安裝於該交通 201033723 工具内,且將雷射光束投射在投影幕201上。訊號轉換模組26〇 以有線或無線之方式接收來自,包含且不限於電腦、手機、GPS、 夜視攝影機、可見光攝影機等影像源元件之影像訊號&,並在投 影幕201上顯現各式資訊,包含且不限於車速、里程、油耗、地 圖、警告、方向指示、手機來電號碼等。 <實施例2 > 麥考圖3,其係本發明實施例2之雷射投影系統3⑻示意圖。 雷射投影糸統300包^^一投影幕301及一雷射投影器302。雷射投 影益302用來;^艮據單一畫面或動態畫面之影像訊號&,以將影像 ® f影至投影幕301 。雷射投影器302包含一雷射光源模組31〇、一 雷射訊號§周變模組320、一合光模組330、一旋轉平面鏡模組340、 -旋轉平面鏡控制模組350、與一訊號轉換模組36〇。此外,並定 義雷射光學模組370包含雷射光源模組31〇、雷射訊號調變模組 320與合光模組330,以方便下文討論。 其中’运射才又影器302所没之雷射訊號調變模組32〇、合光模 砠330、紅轉平面鏡模組340、旋轉平面鏡控制模組350、與訊號 轉換模組360之結構以及工作原理分別與雷射投影器M2所設之 雷射訊號調變模組220、合光模組230、旋轉平面鏡模組24〇、旋 轉平面鏡控制模組250、與訊號轉換模組260類似,故不再贅述。 ® 本實施例2與前述實施例1之間的主要不同點乃在於雷射投 影為:>02中之雷射光源模組310包令第一類雷射光源模組311 與一第二類雷射光源模組312以及投影幕301包含一發光層331 與一散射層332,也就是本實施例2之第一類雷射光源模組311 與發光層331係相當於實施例1之雷射光源模組21〇與投影幕2〇1 之發光層,而本實施例2係另增設一第二類雷射光源模組312與 一散射層332。因此,本實施例2或以下其他後實施例中凡是能引 用與實施例1或任何前實施例相同之工作原理以達成與實施例】 或鈾貫此例相同或類似之作用功效者,如第一類雷射光源模組3 jj 與發光層331係相同於實施例1中相對應之雷射光源模組'21〇與 201033723 可參照實施例1,故而在本實 ㈣ΐΐΐί模組31G包含—第—類雷射光源模組311與一第二 1'Γ+ΐ光源模組312。該第—類雷縣源模組311包含—組或多电 ΐΐίί、L各別可發射波長^、‘、...、W對應並落入ί光 層=各種發光物質之激發光波長範圍,λΐδ、^、…、ληδ,之光束, j lls、L2is、…、Lnis表示,以各別激發發光層中各種發光物質, 使之產生λ丨Ε、λΖΕ、…、ληΕ波長之光。 第一類雷射光源模組312包含一組或多組雷射光源,各別可 發射波長λ12ί、λ22ί、...、λη2ί之光束,以 Li2s、L92S、…、Ln2s^ ⑩ 示。 投影幕301之一基本架構如圖3A所示,具備一發光層331 與一散射層332。發光層331在散射層332之前,面對雷射投影器 302所投射掃描之光束Ls,Di為發光層331外朝向入射光源之 質0 該散射層332可破壞入射雷射光之單一方向性,而產生與入 射雷射光波長相同之多方性散射光。 該發光層331包含一種或數種發光物質各別可被各種不同波 長,以λΙδ、λ25.....λβ表示,的光源激發,並各別被激發出另 外各種不同波長,以λ,Ε、λ2Ε、…、ληΕ表示,之光。此發光層331 與其中發光物質之基本結構、基本工作原理以及基本特性,各別 與實施例1之雷射投影系統200中投影幕201所具備之發光層與 發光物質相同,故不再贅述。 發光層331係對第二類雷射光源模組312所發射之第二類波 長之雷射光之吸收與散射極低。因此,絕大部分第二類波長之雷 射光可穿越發光層331而進入散射層332。 為追求發光層331之被激發效率,且應使發光層331吸收絕 大部分第一類雷射光源模組311所發射第一類波長之雷射光。因 此,散射層332主要用於散射第二類波長之雷射光及在發光層331 中被第一類波長雷射光所激發之被激發光。 17· 52 201033723 介質與發光層331之介面可予以抗反射處理,包含且不限 於插入一層抗反射層,以減少兩類調變雷射光束之波長之光,及 發光層331被激發之光在此介面之反射。因此,可增加第一類調 變雷射光束進入發光層331之比例,可增加第二類調變雷射光束 進入散色層332之比例,可增加由發光層331產生之被激發光進 入D|之比例,也可增加由散射層所散射之光進入以之比例。因 而,當觀察者位於投影幕之〇,側,可觀察得較高之被激發光鱼被 散射光之影像亮度。 該發光層331與散射層332之介面可針對第二類調變雷射光 束之波長予以抗反射處理,以增加第二類調變雷射光束進入散射 ❹層f2與由散射層332所散射之光進入介質q之比例。因而,當 觀祭,位於投幕之D,側’可觀察得較高之被散射光之影像亮度。 遠發光層331與散射層332之介面可針第一類調變雷射光束 之波長予以高反射處理,以反射第一類調變雷射光通過發光層331 後之殘餘能量’使之回到發光層331以增加被激發光之光 m觀察者位概影幕之,可觀察得較高之被激發光之 景4傻呑磨。 +單雷320用來根據由訊號轉換模組綱所提供 或動態晝面之影像訊ESl,產生對應於各雷射之 5 '^1.....及 112、122.....U,> 4· ....... Φ 包抓’ 111、121、…、ln丨及1丨2、Ϊ22、…、In2,之大小 個波長之雷射光束,Lm、L21s、...、LnIS及l12S、l 進行光功率調變Time) is less than the update time of each picture, ie ι/p seconds, which is the luminescent material of the dynamic facet imaging system in Hz. In addition, in order to increase the image exemption, w kinds of wide-spectrum luminescent substances 'where w^l can also be added to the luminescent layer of the projection screen. Wide-spectrum luminescent substances can be excited to produce wavelengths, expressed as XlWE, hv/E, ..., XW\VE. XiWE covers more than one primary light wavelength, for example covering green and blue wavelengths ' or covering red, green and blue Three-color wavelength, here 匕匕w. And a plurality of laser light sources are disposed in the laser light source module 210, and the wavelengths thereof are represented by Xiws, hws, ..., Xwws, respectively, in the excitation wavelength range of the W luminescent materials. x ® In order to further pursue the white balance of the images produced by the w broad-spectrum luminescent materials, it is necessary to design the mutual ratio of the optical powers of the W kinds of lasers so that the broadband wavelengths are excited, λ)\νΕ, hwE, ..., The sum of the light energy of XWWE 's meets the requirements of white balance in color. In addition, in order to pursue the expansion of the color gamut of the image (Color Gamut), in the projection screen illuminating layer can also add g kinds of extended gamut luminescent substances, wherein it expands the gamut luminescent substance can be excited to generate wavelength 'XlGE, λ2 ( 3Ε,...,XgGE, and on the CIE Chromaticity Diagram, 'this λ}Χ}Ε, λ2 (3£,..., XgGE and λκ£, λ〇Ε, λΒΕ (g+3) The area formed by the wavelengths is larger than the area formed by only λΚΕ, λαΕ, λΒΕ, and g laser light sources are added to the laser light source module 210, and the wavelengths of the 14 52 201033723 are respectively located in the extended color gamut. In the excitation wavelength range of the substance, the general image signal s丨 contains the image information of the three primary colors of red, green and blue. The signal conversion module 260 should convert the s丨 into the red, green and blue primary colors plus λ丨GE, Λ2 (3Ε,... ', ZgGE image information, and used to control the red, green, and blue primary colors of the excitation laser beam lrs, lgs, lbs, and g to stimulate the optical power of the extended color gamut luminescent material, Really present the position where the laser beam on the projection screen is scanned In order to reduce the number of laser light sources and the number of types of gamut luminescent substances required, the choice of λ Ι (3Ε, λΜΕ, ..., xgGE) should be measured by the laser light source and the process of expanding the color gamut luminescent material. The g achieves a relatively large color area. Since the excitation light is still reflected or scattered by the projection screen, the wavelength distribution of the reflected or scattered pupil will be the same as the wavelength distribution of the excitation light. If the excitation light is better for the human eye. Sensitivity, the observer receives the excitation light and the excited light at the same time, thus producing a mixture of colors, which detracts from the color contrast of the image. To avoid the above situation, the better way is to use the wavelength of invisible light. Including and not limited to 808 nm, 850 faces, 980 nm, and l〇64 nm, or selecting a wavelength that is less sensitive to human eyes, including, but not limited to, 405 nm, 780 nm, etc., the laser is used as a laser light source module 21〇 Laser source. If it is still inevitable to use visible light as the excitation source, select the excitation source that is similar to the color of the excited light. It is not limited to a wavelength of about 4〇5nm (blue Color), φ 450 nm (blue) laser light excites the luminescent layer to produce a blue (wavelength of about 450 nm) image. 'Laser light with 780 nm (red) and 640 nm (red) excites the luminescent layer to produce red (wavelength about 640 nm). Image. Because the excitation light source and the excited light have similar colors, the color mixing phenomenon caused by the reflection or scattering of the excitation light by the projection screen can be reduced. Another simplified application example of the laser projection system 200 is to use a 4 〇 5 nm semiconductor ray. The light is a laser light source 210, and a two-dimensional rotating microelectromechanical mirror or a two-dimensional rotating microelectromechanical mirror is combined to form a rotating plane mirror module 240. The projection screen 201 includes a light emitting layer. The layer contains a luminescent material that is excited by a wavelength of 4 〇 5 nm to produce red, blue or green visible light. The projection screen 201 is also transparent. If the projection screen is attached to the windshield in front of the driver's seat of the vehicle, the principle of not affecting the driving sight is adopted. The laser projector 2〇2 is mounted in the traffic 201033723 tool and the laser beam is projected onto the projection screen 201. The signal conversion module 26 receives the video signals & from, and not limited to, image source components such as a computer, a mobile phone, a GPS, a night vision camera, a visible light camera, etc., in a wired or wireless manner, and displays various types on the projection screen 201. Information, including and not limited to speed, mileage, fuel consumption, maps, warnings, directions, mobile phone numbers, etc. <Embodiment 2> McCormick 3 is a schematic view of a laser projection system 3 (8) according to Embodiment 2 of the present invention. The laser projection system 300 includes a projection screen 301 and a laser projector 302. The laser projection image is used to capture the image signal & according to a single picture or a dynamic picture to image y to the projection screen 301. The laser projector 302 includes a laser light source module 31, a laser signal § cycle module 320, a light module 330, a rotating plane mirror module 340, a rotating plane mirror control module 350, and a signal conversion Module 36〇. In addition, the laser optical module 370 is defined to include a laser source module 31, a laser signal modulation module 320 and a light combining module 330 for facilitating the discussion below. The structure of the laser signal modulation module 32〇, the combined light module 330, the red-turn plane mirror module 340, the rotating plane mirror control module 350, and the signal conversion module 360 that are not included in the camera 302 And the working principle is similar to the laser signal modulation module 220, the light combining module 230, the rotating plane mirror module 24〇, the rotating plane mirror control module 250, and the signal conversion module 260 provided by the laser projector M2, respectively. Therefore, it will not be repeated. The main difference between the second embodiment and the foregoing embodiment 1 is that the laser light source module 310 of the laser projection is: the first type of laser light source module 311 and the second type. The laser light source module 312 and the projection screen 301 comprise a light-emitting layer 331 and a scattering layer 332, that is, the first type of laser light source module 311 and the light-emitting layer 331 of the second embodiment are equivalent to the laser of the first embodiment. The light source module 21 is connected to the light-emitting layer of the projection screen 2〇1, and the second embodiment is further provided with a second type of laser light source module 312 and a scattering layer 332. Therefore, in the second embodiment or the following other embodiments, the same working principle as that of the embodiment 1 or any of the preceding embodiments can be cited to achieve the same or similar functions as the embodiment or the uranium. The laser light source module 3 jj and the light-emitting layer 331 are the same as the corresponding laser light source modules '21〇 and 201033723 in the first embodiment. Referring to the first embodiment, the present invention (4) includes a module 31G. a laser light source module 311 and a second 1' Γ + ΐ light source module 312. The first-class Leixian source module 311 includes -group or multi-electrode ΐΐίί, L can emit wavelengths ^, ', ..., W corresponding to and fall into the ί optical layer = excitation light wavelength range of various luminescent substances, The light beams of λ ΐ δ, ^, ..., ληδ, j lls, L2is, ..., Lnis indicate that the respective luminescent substances in the luminescent layer are excited to generate light of λ 丨Ε, λ ΖΕ, ..., λη Ε wavelength. The first type of laser light source module 312 comprises one or more sets of laser light sources, each of which can emit light beams of wavelengths λ12ί, λ22ί, . . . , λη2ί, which are represented by Li2s, L92S, ..., Ln2s^10. As shown in FIG. 3A, one of the basic structures of the projection screen 301 is provided with a light-emitting layer 331 and a scattering layer 332. The light-emitting layer 331 faces the light beam Ls projected by the laser projector 302 before the scattering layer 332, and Di is the mass of the light-emitting layer 331 toward the incident light source. The scattering layer 332 can destroy the single directivity of the incident laser light. A multi-scattered light of the same wavelength as the incident laser light is generated. The luminescent layer 331 comprises one or several luminescent substances which can be excited by different light sources, represented by λ Ι δ, λ25..... λβ, and each of which is excited by a different wavelength, λ, Ε λ2Ε,...,ληΕ denotes the light. The light-emitting layer 331 and the basic structure, basic operation principle and basic characteristics of the light-emitting substance are the same as those of the light-emitting layer of the projection screen 201 in the laser projection system 200 of the first embodiment, and therefore will not be described again. The luminescent layer 331 has a very low absorption and scattering of the second type of laser light emitted by the second type of laser source module 312. Therefore, most of the laser light of the second type of wavelength can pass through the light-emitting layer 331 and enter the scattering layer 332. In order to pursue the excitation efficiency of the light-emitting layer 331, the light-emitting layer 331 should absorb the laser light of the first type of wavelength emitted by most of the first-type laser light source modules 311. Therefore, the scattering layer 332 is mainly used to scatter the laser light of the second type of wavelength and the excited light excited by the first type of wavelength laser light in the light-emitting layer 331. 17· 52 201033723 The interface between the medium and the light-emitting layer 331 may be subjected to anti-reflection treatment, including, but not limited to, inserting an anti-reflection layer to reduce the wavelength of the two types of modulated laser beams, and the light emitted by the light-emitting layer 331 is The reflection of this interface. Therefore, the proportion of the first type of modulated laser beam entering the light-emitting layer 331 can be increased, and the proportion of the second-type modulated laser beam entering the color-scattering layer 332 can be increased, and the excited light generated by the light-emitting layer 331 can be increased into the D. The ratio of | can also increase the proportion of light scattered by the scattering layer. Therefore, when the observer is located on the side of the projection screen, the brightness of the image of the scattered light of the excited light fish can be observed. The interface between the luminescent layer 331 and the scattering layer 332 can be anti-reflectively processed for the wavelength of the second type of modulated laser beam to increase the scattering of the second type of modulated laser beam into the scattering layer f2 and by the scattering layer 332. The proportion of light entering the medium q. Thus, when the observation, at the D, the side of the projection, the higher the brightness of the image of the scattered light can be observed. The interface between the far illuminating layer 331 and the scattering layer 332 can be highly reflectively processed by the wavelength of the first type of modulated laser beam to reflect the residual energy of the first type of modulated laser light passing through the luminescent layer 331 to return it to the illuminating The layer 331 is used to increase the intensity of the light to be excited by the viewer's position, and the higher view of the excited light can be observed. +Single 320 is used to generate 5 '^1..... and 112, 122.....U corresponding to each laser according to the image signal ES1 provided by the signal conversion module or dynamically. , > 4· ....... Φ Capture '111, 121, ..., ln丨 and 1丨2, Ϊ22,..., In2, the laser beam of the same wavelength, Lm, L21s, .. , LnIS and l12S, l for optical power modulation
22S 以分別對各 Lr22S to separate Lr
-n2S 雷射 如前文所述’越高細率之第—類雷 光掃描經過投影幕上某位置之時間越長、 f 皆可使所投射投影幕之雜置激發: 影幕上某位置之各種波長被激發光之單位面積發 光物質之密度成某種比例關係位置之時間之值,依各別發 同樣地,越高光功率之第二類雷射去 ^ 描經過投影幕上S位置之時間越長、越^弟二類雷射光掃 =I之散射效率,皆可使所 201033723 投射投影幕之該位置散射出越高光功率之被散射光。投影幕上某 位置之各種波長散射光之單位面積發光能量,與對應的第二類^ 射光功率乘上掃描經過該位置之時間之值,依該散射層之散射效 率,固定成某種比例關係。 隨著調變雷射光束Ls内此兩類光波長雷射光,即由第一類雷 射光源模組311及第二類雷射光源模組312所發射之不同光波長 雷射光,在此又影幕301上的掃描’影像可因此由被散射之第二 類波長之雷射光與發光層中被第一類波長雷射光所激發之被激發 光所组成。 在雷射投影系統300之一個應用例為一全彩雷射投影顯像系 ^ 統。舉一個單一原色為α—bit(2a層色階)之全彩雷射投影顯像系統 為例。 為追求擴大影像之色域’則包含下列兩種可同時使用之方 式所其,在投影幕之發光層Ml中亦可加入g種擴大色域發光 物質,並於第一類雷射光源模組311中增加配置g個雷射光源, 其波長各別位於此g種擴大色域發光物質之激發波長範圍中,其 作用功效可參考實施例丨;其二,在第二類雷射光源模組312中增 办口配置h個雷射光源,各別可產生λ1ΗΕ、λ2ΗΕ、…、人赃之波長, ,、中hd ;且在CIE色度座標圖上,此λΐΗΕ、λ2ΗΕ、…、λ[ιΗΕ及;^、 ❹ GE、XBE^(h+3)個波長所形成之面積大於只有人吐、人证、人扯所形 成,面積。因一般之影像訊號&所包含為紅、綠、藍三原色之影 1 象資訊》訊號轉換模組360應將Si中轉換 ^GE ^ 、、征及入·、入脏、…、xhHE之影像資訊,並用以控制 二Ϊ光束Lrs、Lgs、Lbs與此g種第一類雷射光源模組311及此h =弟二類雷射光源模組312之雷射光功率,以真實呈現投影幕上 缉射光束掃描至之位置之色彩。 又為了降低所需雷射光源與擴大色域發光物質種類之數目, 在選摆λ 1 ,., 2GE 、人gGE 及λ!ΗΕ、λ2ΗΕ、…、XhHE 時,應衡量雷 ,,源與擴大色域發光物質之製作工藝,追求以最小之(g+h)達成 相對較大之色彩面積。 19-52 201033723 在此全彩雷射投影顯像系統中,除了X1WS、X2WS、...、\wWS 必須由第一類雷射光源模組產生之雷射光所激發外,投影幕上所 生之λΚΕ、λ<3Ε、λΒ 及λκϊΕ、λ2〇Ε、…、XgGE 及λ丨ΗΕ、λ2ΗΕ、·..、 共(3+g+h)種波長’此處g ’此0,之光能量,可各別為第一類雷射 光源模組產生之雷射光所激發,或為第二類雷射光源模組產生之 雷射光散射而生。發光層中亦須包含一種或數種發光物質,各別 可被第一類雷射光源模組之雷射光源所激發而產生此(3+g+h)種波 長中之某些波長之光。而第二類雷射光源模組則包含此(3+g+h)種 波長中其他波長之光。 為避免顏色之混雜’應採用不可見光之波長,包含且不限於 鲁 808lim、850nm、980 nm、與1064nm等,或選擇對人眼感光度較 差之波長,包含且不限於405nm、與780nm等,之雷射作為第一 頌雷射光源Μ組311之雷射光源。若仍不免使用可見光為;^發光 源時,則選擇與被激發光色彩相近之激發光源。包含且不限於以 波長約405nm(藍紫色)、450nm(藍色)之雷射光激發發光層產生藍 色(波長約450nm)之影像,以780nm(紅色)、640nm(紅色)之雷射 光激發發光層產生紅色(波長約640nm)之影像。因激發光源與被激 發光有相近色彩,可減少因激發光受投影幕反射或散射所生之顏 色混雜現象。 / φ 受限於綠光半導體雷射之技術尚未成熟’一般需利用SecondThe -n2S laser is as described above. 'The higher the fineness', the longer the type of lightning scanning passes through a position on the projection screen, the more f can cause the miscellaneous projection of the projected projection screen: various positions on the screen The value of the time at which the density of the luminescent material per unit area of the wavelength of the excited light is at a certain proportional relationship, and the second time that the higher the power of the optical power is removed, the more the time passes through the S position on the projection screen. The scattering efficiency of the second type of laser scanning = I can make the position of the 201033723 projection projection screen scatter the higher the scattered power of the optical power. The radiance energy per unit area of the scattered light of various wavelengths at a position on the projection screen is multiplied by the corresponding second-type optical power by the value of the time of scanning through the position, and is fixed to a certain proportional relationship according to the scattering efficiency of the scattering layer. . As the two types of optical wavelengths of the laser beam Ls are modulated, that is, the laser light of different wavelengths emitted by the first type of laser light source module 311 and the second type of laser light source module 312, The scanned 'image' on the screen 301 can thus consist of the scattered laser light of the second type of wavelength and the excited light excited by the first type of wavelength laser light in the luminescent layer. One application example of the laser projection system 300 is a full color laser projection projection system. Take a full-color laser projection projection system with a single primary color of α-bit (2a layer scale) as an example. In order to pursue the expansion of the color gamut of the image, the following two methods can be used simultaneously. In the light-emitting layer M1 of the projection screen, g-type gamut illuminating substances can also be added, and in the first type of laser light source module. In 311, g laser light sources are added, and the wavelengths thereof are respectively located in the excitation wavelength range of the g-type extended color gamut luminescent materials, and the function thereof can be referred to the embodiment 丨; second, in the second type of laser light source module In the 312, the laser port is configured with h laser light sources, which respectively generate λ1ΗΕ, λ2ΗΕ, ..., the wavelength of the human ,, , and hd; and on the CIE chromaticity coordinate map, the λΐΗΕ, λ2ΗΕ, ..., λ[ ιΗΕ和;^, ❹ GE, XBE^(h+3) wavelengths form an area larger than the area formed by only human spit, person card, and person. Because the general image signal & contains the red, green, and blue primary colors, the image conversion module 360 should convert the Si into ^GE ^, the entanglement, into the dirty, ..., xhHE image Information, and used to control the laser light power of the two beams Lrs, Lgs, Lbs and the first type of laser light source module 311 and the h = brother class II laser source module 312, to present the projection screen The color of the position where the beam is scanned. In order to reduce the number of laser light sources and the number of types of gamut luminescent substances required, in the selection of λ 1 , ., 2GE, human gGE and λ!ΗΕ, λ2ΗΕ, ..., XhHE, the lightning, source and expansion should be measured. The production process of the gamut luminescent material pursues a relatively large color area with a minimum (g+h). 19-52 201033723 In this full-color laser projection imaging system, except for X1WS, X2WS, ..., \wWS, which must be excited by the laser light generated by the first type of laser source module, the projection screen is produced. λ ΚΕ, λ < 3 Ε, λ Β and λ κ ϊΕ, λ 2 〇Ε, ..., XgGE and λ 丨ΗΕ, λ 2 ΗΕ, ·.., a total of (3 + g + h) wavelengths 'here g ' this 0, the light energy , can be excited by the laser light generated by the first type of laser light source module, or by the laser light scattering generated by the second type of laser light source module. The luminescent layer must also include one or more luminescent materials, each of which can be excited by a laser source of the first type of laser source module to produce light of some of the (3+g+h) wavelengths. . The second type of laser light source module contains light of other wavelengths of this (3+g+h) wavelength. In order to avoid color mixing, the wavelength of invisible light should be used, including but not limited to Lu 808lim, 850nm, 980 nm, and 1064 nm, or wavelengths with poor sensitivity to human eyes, including but not limited to 405 nm, 780 nm, etc. The laser is used as the laser source of the first laser light source group 311. If it is still inevitable to use visible light; ^ When the light source is used, select the excitation light source that is close to the color of the excited light. Including, but not limited to, excitation of a light-emitting layer with a wavelength of about 405 nm (blue-violet) and 450 nm (blue) to produce a blue (wavelength of about 450 nm) image, and excitation of light with 780 nm (red) and 640 nm (red) laser light. The layer produces an image of red (wavelength about 640 nm). Since the excitation light source and the illuminating light have similar colors, the color mixing caused by the reflection or scattering of the excitation light by the projection screen can be reduced. / φ Technology limited to green semiconductor lasers is not yet mature' General use of Second
Harmonic Generation之方法將i〇64nm波長之雷射光轉換為綠光 (532iim)雷射光。因此,高調變頻寬高功率之綠光雷射模組不但體 積較大,製作成本高、且控制相當複雜。在雷射投影系統3〇〇之 全彩雷射投影顯像系統中,其中一個應用例為使用藍色與紅色雷 射作為第一類雷射光源模組311之雷射光源,而使用405nm或 980nm之雷射激發發光層中之一種發光物質,因此可在投影幕上 形成全彩之動態影像。 〈實施例3 > 參考圖4 ’其係本發明之實施例3之雷射投影系統4〇〇示意 201033723 跡it投影系統權包含—投影幕4G1及—雷射投影11 402。雷 用ί根據單—晝面或動態畫面之影像訊號8丨,以I 象n影幕401。雷射投影器402包含一雷射光源模組 =、一雷射訊號調變模組420、一旋轉平面鏡模组物、一旋 平面鏡控制模組450、與一訊號轉換模組46〇。此外,並定義 光學模組470包含雷射光源模組41〇與雷射訊號調變犯 方便下文討論。 Λ 其中,旋轉平面鏡模組440、旋轉平面鏡控制模組45〇、盎m 號轉換模組460之結構以及工作原理分別與旋轉平面麵組、 240、旋轉平面鏡控制模組25〇、與訊號轉換模組26〇The Harmonic Generation method converts laser light of i〇64nm wavelength into green light (532iim) laser light. Therefore, the high-intensity variable-width wide-power green-light laser module not only has a large volume, but also has high production cost and complicated control. In the full-color laser projection projection system of the laser projection system, one of the application examples is to use blue and red laser as the laser light source of the first type of laser light source module 311, and use 405 nm or The 980 nm laser excites one of the luminescent materials in the luminescent layer, so that a full-color dynamic image can be formed on the projection screen. <Embodiment 3> Referring to FIG. 4' is a laser projection system 4 of the embodiment 3 of the present invention. The 201033723 trace projection system includes - a projection screen 4G1 and a laser projection 11 402. Lei uses ί according to the single-face or dynamic picture image signal 8丨, to I like n screen 401. The laser projector 402 includes a laser light source module, a laser signal modulation module 420, a rotating plane mirror module, a rotary plane mirror control module 450, and a signal conversion module 46. In addition, the definition of the optical module 470 including the laser source module 41 and the laser signal modulation is facilitated below. The structure and working principle of the rotating plane mirror module 440, the rotating plane mirror control module 45〇, and the Anm number conversion module 460 are respectively combined with the rotating plane surface group, 240, the rotating plane mirror control module 25〇, and the signal conversion module. Group 26〇
再贅述。 个 投影幕401可被區隔為數個畫素431對應到欲顯示之螢幕 析度,以SVGA之影像品質而言,即為8〇〇χ6〇〇=48〇,〇〇〇個苎 ,影幕401之發朗之鄰聽健素之結構可包含且不限定旦為圖 4A與圖4B所示之結構。 間 在圖4A中,單一個晝素431中包含紅、藍、綠三種次晝 (subpkel),各別以432、433、434表示。在圖4B中單一個'畫素 441中包含紅、藍、綠二種次晝素,各別以442、443、444表示^ 每種次畫素之面積不一定相等。鄰近晝素間之次晝素排列可^同° 如圖4A或相異如® 4B。每種次畫素分佈;^別之發光材料。此 二種發光物質包含且不限於螢光物質,並可各別被波長範圍人妨、 入沾、λΒ5;之光束激發產生紅、藍、綠三色,波長為人扯、λ 之光。此二種發光物質之基本結構、基本工作原理以及基本特性^ 與本發明之實施例1雷射投影系統200中之發光物質同,故不 贅述。 -在雷射光源模組410中包含一組雷射光源,可發射波長、, 同時落入發光層中三種發光物質之激發光波長範圍内之光束,Let me repeat. The projection screen 401 can be divided into a plurality of pixels 431 corresponding to the screen resolution to be displayed, and in the image quality of SVGA, it is 8〇〇χ6〇〇=48〇, one 苎, the screen The structure of the adjacent element of the 401 may include and does not limit the structure shown in FIGS. 4A and 4B. In Fig. 4A, a single halogen 431 contains red, blue, and green subpkels, each represented by 432, 433, and 434. In Fig. 4B, a single 'pixel 441 contains red, blue, and green sub-tendin, each of which is represented by 442, 443, and 444. ^ The area of each sub-pixel is not necessarily equal. The arrangement of the secondary elements between the adjacent elements can be as shown in Fig. 4A or as different as the 4B. Each sub-pixel distribution; ^ other luminescent materials. The two luminescent materials include, but are not limited to, fluorescent substances, and can be excited by the wavelength range, and the light beams are excited to generate red, blue, and green colors, and the wavelengths are light of human pull and λ. The basic structure, basic working principle and basic characteristics of the two luminescent materials are the same as those of the luminescent material in the laser projection system 200 of the first embodiment of the present invention, and therefore will not be described again. - a laser light source module 410 is included in the laser light source module 410, which emits a light beam having a wavelength, and falling into the wavelength range of the excitation light of the three luminescent materials in the luminescent layer.
Ll表示。 為了對各-人晝素所生之被激發光能量有精準之控制,應使 個次晝素之最小紐’應大於雷射絲u讀面紐,並 2 j 不里 201033723 次晝素間有一定間距,以避免雷射光束同時照射到兩種以上 晝素。 久 此外’對雷射光束之掃描路徑與投影幕401上次晝素之排列 作對位,以避免雷射光同時照射到兩種以上之次畫素。Ll said. In order to have precise control over the energy of the excited light generated by each human genus, the minimum ' of the secondary '素 should be greater than the laser reading u, and 2 j not 201033723 A certain distance to avoid exposure of the laser beam to more than two kinds of halogens at the same time. For a long time, the scanning path of the laser beam is aligned with the last arrangement of the projection screen 401 to prevent the laser light from simultaneously irradiating two or more sub-pixels.
雷射訊號調變模組420用來根據由訊號轉換模組46〇所提供 之單一晝面或動態晝面之影像訊號Si,產生雷射光源之驅動電& h之大小,以對雷射光束Ll進行光功率PL調變。當Ls掃描至^ 畫素之某一次晝素時,雷射訊號調變模組420提供之驅動電流^ 可使光功率PL對該次畫素激發使之產生該色之光功率。透過^ ^ 藍、綠三色次畫素被激發光能量之不同組合,該晝素可呈現不同 之明度、色相與彩度;至於不同之明度、色相與彩度之作用原^ 及控制方法可參考實施例1。 ’、 此外’為增加影像亮度’亦可加入白色之次晝素於投影幕中。 白色之次晝素包含之發光物質可被雷射光束。激發而生函蓋 紅、綠與备二色波長之寬頻譜波長人WE。加入白色之次書素之發光 模結構包含且不限為圖4C、4D 〇在圖4C中451為單二個書素, 其中包含紅、藍、綠、白四種次畫素,各別以452、453、4ϋ55 表不’在圖4D中461為單一個晝素,其中包含紅、藍、綠、白四 種次畫素,各別以462、463、464、465表示。每種次晝素'之面積 不一定相等。鄰近畫素間之次晝素排列可相同,如圖4D,或相異, 如圖4C。 此外,為追求擴大影像之色域,則可增加§種擴大色域之欠 畫素於投縣中,财划。敝色域次畫纽含之發光物質可被 發而生波長,以、—、...、λ_表示。且在 at色度座標圖上,此λ咖、入观、…、入卿及入旺、λαΕ、λΒΕ共㈣) =長所形成之面積大於只有λιΙΕ、λ(3Ε、λΒΕ卿成之面積。擴大 色域之次畫素與紅、藍、綠、白四種次畫素可制安排至同一畫 素中’其發光模結構包含且不限為圖4Ε。 一 為避免顏色之混雜,應採料可絲之波長,包含限於 刪咖、850聰、_nm、與1064nm等,或選擇對人眼感^較 201033723 差之波長,包含且不限於405nm、與78〇11111等,之雷射作為雷射 光源模組410之雷射光源。 <實施例4 > 一立請參考圖5,其係說明本發明實施例4之雷射投影系統5〇〇 不意圖。此雷射投影系統5〇〇包含一投影幕5〇1及一雷射投影器 M)2。雷射投影器502將雷射光束投影至投影幕5〇1。雷射投影器 M)2包含一雷射光源模組51〇、一雷射光源控制模組52〇、一旋轉 平面鏡模組540、一旋轉平面鏡控制模組55〇與一訊號協調模組。The laser signal modulation module 420 is configured to generate the driving power & h of the laser light source according to the image signal Si of the single surface or the dynamic surface provided by the signal conversion module 46A. The light beam L1 is modulated by the optical power PL. When Ls scans to a certain pixel of the pixel, the driving current provided by the laser signal modulation module 420 can cause the optical power PL to excite the secondary pixel to generate the optical power of the color. Through the different combinations of excitation light energy of ^^blue and green three-color pixels, the element can exhibit different brightness, hue and chroma; as for the different brightness, hue and chroma, the control method can be used. Refer to Example 1. In addition, in order to increase the brightness of the image, white can also be added to the projection screen. The luminescent material contained in the white sputum can be a laser beam. The excitation and the cover cover the wide spectrum wavelengths of the red, green and the two-color wavelengths. The light-emitting mode structure of the white sub-study includes and is not limited to FIG. 4C and FIG. 4D. In FIG. 4C, 451 is a single two-character, which includes four sub-pixels of red, blue, green and white, each of which is 452, 453, 4ϋ55 Table ′ 461 is a single element in Figure 4D, which contains four sub-pixels of red, blue, green and white, respectively represented by 462, 463, 464, 465. The area of each sub-salm is not necessarily equal. The order of the sub-pixels between adjacent pixels can be the same, as shown in Figure 4D, or different, as shown in Figure 4C. In addition, in order to expand the color gamut of the image, it is possible to increase the circumstance of the expanded color gamut in the county, and the fiscal plan. The luminescent substance contained in the 敝 color sub-picture can be generated by the wavelength, which is represented by -, ..., λ_. And on the at-chromaticity coordinate map, the area formed by this λ coffee, entrance view, ..., into the Qing and into the Wang, λαΕ, λΒΕ (4)) = long is larger than the area of only λιΙΕ, λ (3Ε, λΒΕ卿成. The sub-pixels of gamut and the four sub-pixels of red, blue, green and white can be arranged into the same pixel. The structure of the illuminating mode is included and is not limited to Figure 4. One is to avoid mixing of colors. The wavelength of the wire can be limited to the wavelength of the coffee, 850, _nm, and 1064nm, or the wavelength that is different from 201033723, including and not limited to 405nm, and 78〇11111, etc. The laser light source of the light source module 410. Embodiment 4 > Please refer to FIG. 5 for explaining the laser projection system 5 of the fourth embodiment of the present invention. This laser projection system 5〇〇 A projection screen 5〇1 and a laser projector M)2 are included. The laser projector 502 projects the laser beam onto the projection screen 5〇1. The laser projector M)2 comprises a laser light source module 51, a laser light source control module 52, a rotating plane mirror module 540, a rotating plane mirror control module 55 and a signal coordination module.
此外,並定義雷射光學模組57〇包含雷射光源模組51〇與雷射訊 號調變模組520 ’以方便下文討論。 其中’旋轉平面鏡模組540與旋轉平面鏡控制模組550之結 構以及工作原理分別與、旋轉平面鏡模組24〇與旋轉平面鏡控制 模組250類似,故不再贅述。 #投影幕501中具備一發光層,該發光層包含一種或數種發光 物質,F!、F2、…、Fn,皆可被雷射光源模組5〗〇發射之雷射光波 長入[所激發,並各別被激發出另外各種不同波長,以、…、 八ηΕ表不,之光。此發光層與其中發光物質之基本結構、基本工作 原理以及基本特性,各別與本發明實施例丨之雷射投影系統2〇〇 中之發光層與發光物質相同,故不再贅述。 若欲使投影幕某位置產生較高單位面積光能量之波長λ丨E之 光,則使該位置有較高分佈密度之發光物質Fi。 1In addition, a laser optical module 57A is defined and includes a laser source module 51A and a laser signal modulation module 520' for ease of discussion below. The structure and working principle of the rotating plane mirror module 540 and the rotating plane mirror control module 550 are similar to those of the rotating plane mirror module 24 and the rotating plane mirror control module 250, and therefore will not be described again. The projection screen 501 has a light-emitting layer, and the light-emitting layer comprises one or several kinds of light-emitting substances, and F!, F2, ..., Fn can be excited by the laser light source emitted by the laser light source module 5 And each is stimulated by a variety of different wavelengths, to ..., eight η Ε 不, the light. The luminescent layer and the basic structure, basic working principle and basic characteristics of the luminescent material therein are the same as those of the luminescent material in the laser projection system 2 本 of the embodiment of the present invention, and therefore will not be described again. If a certain position of the projection screen is to generate light of a wavelength λ 丨 E of a higher unit area of light energy, the luminescent substance Fi having a higher distribution density is made at the position. 1
雷射光源模.组510包含一組雷射光源,可發射可激發所有發 光物質之之波長,其光束以ll表示。 X 因為投f幕某位置發射波長λίΕ之單位面積光能量同時為激發 光波長之單位面積光能量與發光物質朽之密度所決定。在光^ U掃描於投影幕上各位置皆提供同樣之單位面積光能量時,膏像 畫面即由發光物質朽於該位置之密度所決定。製作發弁了 201033723 欲使發光㈣Fi械縣上各位置有_ 同樣單位面積光能量,則需使雷射光束掃ί於投ΐϋί 描絲量。因此,應使雷“束掃 轉鏡面之旋轉角度之同步。 力羊/、一、准凝 若使光束1^在掃描過程尹皆有同樣之光功 $源^功率與二維旋轉鏡面之旋㈣度之同制丨。了^^ :====置之密度分佈: 〈實施例5 > 圖。=祕 _ 示意 ,β ... ^ , 05奴〜幂601及一投影光源602。投影井 H F F j座生波長λ1Ε、λ2Ε.....ληΕ。透過決定發光 參 欲呈現議i影像畫^幕上不_之分佈_可決定 選用燈科燈泡為光源,此燈管包含 生紅、綠、藍、白、或擴大色域 Ιίί之μ發光物質之分佈密度由所欲顯示的靜態影 像。疋’:源之光束均勻的投射在投影幕上即可形成該靜態影 貫施例6> 本^施例係針對本發明中投影幕之各種結構型態分別說明。 务」圖7Α,其係本發明第一種投影幕7〇〇示意圖。該投影幕 24〇: 201033723 700包含一被激發光吸收層720及一發光層730。發光層730包含 且不限於圖2A、圖2B、圖2C、圖4A、圖4B、圖4C、圖4D、 圖4E所示之發光層架構。其工作原理已於上文詳述,在此不予贅 述0 被激發光吸收層720吸收由發光層730發射之被激發光,以 減少進入介質Di側之被激發光。因此,觀察者或光接收器僅可於 〇2側看到顯示影像或偵測得發光層被激發之光,而於Dl側並無法 看到顯示影像或偵測得發光層被激發之光。The laser source mode set 510 includes a set of laser sources that emit wavelengths that excite all of the luminescent material, the beams of which are indicated by ll. X Because the light energy per unit area of the wavelength λίΕ is emitted at a certain position of the screen, it is determined by the light energy per unit area of the wavelength of the excitation light and the density of the luminescent material. When the same unit area light energy is supplied at each position on the projection screen, the paste image is determined by the density of the luminescent substance at the position. Making a hairpin 201033723 In order to make the light (4) each position on the Fi Machinery County have the same unit area light energy, you need to make the laser beam sweep the amount of silk. Therefore, the lightning should be synchronized with the rotation angle of the mirror. The force of the sheep/, one, the quasi-condensation, if the beam 1 ^ in the scanning process, the same optical work, the source and the two-dimensional rotating mirror (4) Degree of the same system. ^^ :==== Set the density distribution: <Example 5 > Figure. = Secret_ Illustrated, β ... ^, 05 slave ~ power 601 and a projection light source 602. The projection well HFF j has a wavelength λ1 Ε, λ2 Ε..... ληΕ. By determining the illuminating ginseng, it is determined that the distribution of the image is not _, and the lamp can be selected as the light source. , green, blue, white, or extended color gamma Ι ί ί ί μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ The present embodiment is described separately for the various structural types of the projection screen of the present invention. Fig. 7 is a schematic view of the first projection screen of the present invention. The projection screen 24〇: 201033723 700 includes an excited light absorbing layer 720 and a light emitting layer 730. The light-emitting layer 730 includes, but is not limited to, the light-emitting layer structure shown in FIGS. 2A, 2B, 2C, 4A, 4B, 4C, 4D, and 4E. The principle of operation has been described in detail above, and the excitation light absorbing layer 720 absorbs the excited light emitted from the light-emitting layer 730 to reduce the excited light entering the medium Di side. Therefore, the observer or the light receiver can only see the image displayed on the side of the 〇2 side or detect the light emitted by the luminescent layer, and the image displayed on the D1 side cannot be seen or the light emitted by the luminescent layer is detected.
該被激發光吸收層720亦可設計使對可見光之吸收極高,因 此投影幕即呈完全不透明之黑色。此投影幕適合作為背投影顯示 吊統之用’以避免人眼觀察到顯示系統内部之電路。 ▲此外’若使被激發光吸收層720對投射光東Ls之激發波長有 較低的吸收與散射,投射光束Lsi可由Di侧入射該投影幕。 —由f i側或Da侧入射該投影幕7〇〇之投射光束Lsi或包含 —種或多種波長之激發光,以各別激發發光層中之各種發光物 質,而使投影幕產生影像。 介質D〗與被激發光吸收層72〇之介面,及被激發光吸收層72〇 與發光層730之介面可予抗反射處理,包含且不限於插人一層抗 又射層以減少技射光束Lss在此二介面之反射,而增加此投影幕 之發光效能。 Μ $光層730與介質之介面,及被激發光吸收層720與發光 g ^ , ί介面可予抗反射處理,包含且不限於插入一層抗反射層, ^光頻譜之光在此二介面之反射。如此,由介質D2 ί之環i兄月景光内同屬被激發光頻譜之光甚少被反射回 :二if穿越發光層730而為被激發光吸收層720所吸收。此 亦將由之^境背景‘内同屬被激發光頻譜之光 β^ ^先及收層720所吸收。因此可使投影幕700所顯示 〜^不受環境背景光LA1與La2之影響。 修IΛ之—具體實施例為選擇被激發光為包含紅、綠、藍、白、 或擴大色域之顏色之可見光。 ^ 201033723 再參考圖7B ’其係本發明之第二種投影幕701示意圖。投影 幕701包含一被激發光吸收層720A,一發光層730及一激發光吸 收層740。 激發光吸收層740可吸收投射光束Ls中用以激發發光層之波 長之光。激發光吸收層740對被激發光有較少之吸收與散射,因 此可讓發光層730產生之被激發光無礙地傳播至〇2侧,而為觀察 者所接收。 相較於第7A圖’圖7B增加之激發光吸收層740雖然限制僅 可由側投射光束LS1至該投影幕701,卻也確保投射光束LS1 之光功率不會透過發光層730而進入D2側,為觀察者所接收。 ❹ 此外’環境背景光La中亦可能蘊含可激發發光層730使之發 光之波長。激發光吸收層740可確保環境背景光lA2並不會使發光 層730產生任何影像,因而完全排除投影幕顯示之影像受環境背 景光LA2之影響。 圖7B之一具體實施例為選擇被激發光為包含紅、綠、藍、白、 或擴大色域之顏色之可見光。 再參考圖7C ’其係本發明之第三種投影幕7〇2示意圖。該投 影幕702包含一被激發光與散射光吸收層720B,一發光層730及 一散射層750。散射層750可破壞入射雷射光之單一方向性,而產 生與入射雷射光波長相同之多方性散射光。被激發光與散射光吸 收層720B除了可吸收被激發光頻譜之光,亦可吸收被散射頻譜之 光。 相較於圖7A,圖7C除了以被激發光與散射光吸收層72〇β 取代圖7Α之被激發光吸收層720Α之外,亦增加一散射層750於 被激發光吸收層720與發光層730之間。雖然因此限制僅可由〇2 惻投射投射光束Ls2至該投影幕,卻使投影幕702適用於投影系統 300之應用。 圖7C之一具體實施例為選擇被激發光與被散射光為包含 乡工、綠、藍、白、或擴大色域之顏色之可見光。 再參考圖71) ’其係本發明之第四種投影幕7〇3示意圖。該投 201033723 影幕703包含一發光層730及一激發光反射層760。 因雷射光束LS1之光能量可能並未被發光層73〇所吸收,激發 光反射層760反射投射光束LS1通過發光層730後之殘餘能量,使 其返回發光層730並再激發其中之發光物質,藉此可提高投影幕 7〇ί 發光效率’並避免投射光束Lsi穿越投影幕進入D2側,而 為觀察者所接收。激發光反射層760對被激發光之吸收與散射極 低,因此被激發光可無礙進入D2側。 ”The excited light absorbing layer 720 can also be designed to have a very high absorption of visible light, so that the projection screen is completely opaque black. This projection screen is suitable for use as a rear projection display system to prevent human eyes from observing the circuitry inside the display system. ▲ In addition, if the excitation light absorbing layer 720 has a low absorption and scattering of the excitation wavelength of the projection light East Ls, the projection light beam Lsi can be incident on the projection screen from the Di side. - the projection beam Lsi of the projection screen 7 or the excitation light of one or more wavelengths is incident from the side of the f i or the side of the Da to respectively excite the various luminescent substances in the luminescent layer to cause the projection screen to generate an image. The interface between the medium D and the surface of the excited light absorbing layer 72, and the interface between the light absorbing layer 72 〇 and the luminescent layer 730 can be anti-reflective treatment, including, but not limited to, inserting a layer of anti-reflective layer to reduce the technical beam. The reflection of Lss in the two interfaces increases the luminous efficacy of the projection screen. Μ The interface between the optical layer 730 and the medium, and the surface of the excited light absorbing layer 720 and the illuminating g ^ , ί can be anti-reflective, including, but not limited to, inserting an anti-reflective layer, and the light of the optical spectrum is in the two interfaces. reflection. Thus, the light of the spectrum of the excitation light of the same genus in the ring of the medium D2 ί is rarely reflected back: the second traverses the luminescent layer 730 and is absorbed by the excitation light absorbing layer 720. This will also be absorbed by the light source spectrum of the genus of the same genus. Therefore, the display screen 700 can be made to be unaffected by the ambient backlights LA1 and La2. A specific embodiment is to select the visible light to be visible light containing red, green, blue, white, or an enlarged color gamut. ^ 201033723 Referring again to FIG. 7B', a schematic diagram of a second projection screen 701 of the present invention is shown. The projection screen 701 includes an activated light absorbing layer 720A, a light emitting layer 730 and an excitation light absorbing layer 740. The excitation light absorbing layer 740 can absorb light in the projection light beam Ls for exciting the wavelength of the light-emitting layer. The excitation light absorbing layer 740 has less absorption and scattering of the excited light, so that the excited light generated by the luminescent layer 730 can be transmitted to the 〇2 side without being obstructed, and is received by the observer. The excitation light absorbing layer 740, which is increased by the projection light beam LS1 from the side only to the projection screen 701, can be ensured that the optical power of the projection light beam LS1 does not pass through the light-emitting layer 730 and enters the D2 side. Received by the observer. ❹ In addition, the ambient light La may also contain wavelengths that can illuminate the luminescent layer 730 to emit light. The excitation light absorbing layer 740 ensures that the ambient backlight 1A2 does not cause any image of the luminescent layer 730, thereby completely eliminating the image displayed by the projection screen from being affected by the ambient background light LA2. One embodiment of Figure 7B is the selection of visible light that is red, green, blue, white, or a color that expands the color gamut. Referring again to Figure 7C', a third projection screen 7〇2 of the present invention is shown. The projection screen 702 includes an excited light and scattered light absorbing layer 720B, a light emitting layer 730 and a scattering layer 750. The scattering layer 750 can destroy the single directivity of the incident laser light to produce a multi-sense scattered light of the same wavelength as the incident laser light. The excited light and scattered light absorbing layer 720B can absorb the light of the scattered spectrum in addition to the light of the spectrum of the excited light. Compared with FIG. 7A, FIG. 7C adds a scattering layer 750 to the excited light absorbing layer 720 and the luminescent layer in addition to the excited light absorbing layer 720 by replacing the light absorbing layer 72 〇 图 of FIG. Between 730. Although it is thus limited to project the projected beam Ls2 from the 〇2 至 to the projection screen, the projection screen 702 is adapted for use in the projection system 300. One embodiment of Figure 7C is the selection of visible light and scattered light as visible light comprising a color of the rural, green, blue, white, or enlarged color gamut. Referring again to Figure 71), it is a schematic view of a fourth projection screen 7〇3 of the present invention. The projection 201033723 includes a light emitting layer 730 and an excitation light reflecting layer 760. Since the light energy of the laser beam LS1 may not be absorbed by the light-emitting layer 73, the excitation light reflecting layer 760 reflects the residual energy of the projected light beam LS1 through the light-emitting layer 730, returns it to the light-emitting layer 730, and re-energizes the light-emitting substance therein. Thereby, the projection screen 7〇ί luminous efficiency can be improved and the projection beam Lsi can be prevented from entering the D2 side through the projection screen and received by the observer. The excitation light reflecting layer 760 has an extremely low absorption and scattering of the excited light, so that the excited light can be prevented from entering the D2 side. ”
該發光層730與激發光反射層760之介面經處理,包含且不 限於選擇相近之發光層與激發光反射層之光學指數,或插入一層 針對被激發光之抗反射層,以減少發光層被激發之光在此介面之 反射。發光層與介質D,之介面,及激發光反射層76〇與介質认 之介面可予抗反射處理,包含且不限於插入一層抗反射層,以減 少發光層被激發之光在此二介面之反射。因此,發光層73〇被激 發,光可並不會被局限於投影幕703之内。因此,觀察者或光接 ^器不論處賊投影幕7〇3之任一側,皆可看到顯示影像或價測 得發光層被激發之光。該發光層與雷射反射層亦可設計使對可見 光之吸收與散射極低’ ϋ此人眼視此二層為咖狀,而投影幕即 圖7D之一具體實施例為選擇被激發光為包含紅、綠、藍、白、 或擴大色域之顏色之可見光。 “再參考@ 7Ε ’其係本發明之第五種投影幕7〇4示意圖。投影 幕704包含一發光層73〇,一激發光反射層76〇及一散射層乃〇。 相較於ϋ 7D ’圖7Ε增加-激發光反射層76〇於發光層73〇 與散,層750之間,以增加發光層73〇因而使投影幕7〇4適用於 投影糸統300之應用。 圖7Ε之-具體實施例為選擇被激發光與被散射光為包含 紅、綠、藍、白、或擴大色域之顏色之可見光。 -7F ’其係本發明之第六種投影幕705示意圖。投影 ί 3—被激發光吸收層72G ’ —發光層73G,—激發光反射 層760及一散射層750。 201033723 相較於圖7C ’圖7F增加一激發光反射層760於發光層730 與散射層750間’因而可增加發光層730之發光效率,並確保投 射光束LS|之光功率不會進入d2側而為觀察者所接收。 圖7F之一具體實施例為選擇被激發光與被散射光為包含紅、 綠、藍、白、或擴大色域之顏色之可見光。 ^再參考圖7G’其係本發明之第七種投影幕7〇6示意圖。投影 幕706包含一被激發光吸收層72〇,一散射層75〇,一激發光反射 層760及一發光層730。 相較於圖7C ’圖7G增加一激發光反射層76〇於發光層73〇 與散射層750間,因而可增加發光層73〇之發光效率。The interface between the luminescent layer 730 and the excitation light reflecting layer 760 is processed, including, but not limited to, selecting an optical index of a similar luminescent layer and an excitation light reflecting layer, or inserting an anti-reflective layer for the excited light to reduce the luminescent layer being The reflection of the excited light at this interface. The luminescent layer and the medium D, the interface, and the excitation light reflecting layer 76 〇 and the medium identifiable interface may be anti-reflective treatment, including, but not limited to, inserting an anti-reflective layer to reduce the illuminating layer being excited by the light in the two interfaces. reflection. Therefore, the light-emitting layer 73 is excited, and the light is not limited to the inside of the projection screen 703. Therefore, the observer or the optical connector can see the light that is emitted by the display image or the measured luminescent layer regardless of either side of the thief projection screen 7〇3. The illuminating layer and the laser reflecting layer can also be designed to make the absorption and scattering of visible light extremely low. ϋ The human eye sees the two layers as a coffee, and the projection screen, that is, one of the embodiments of FIG. 7D, selects the excited light as Visible light containing red, green, blue, white, or magnified gamut colors. Referring again to @7Ε, it is a schematic diagram of a fifth projection screen of the present invention. The projection screen 704 includes a light-emitting layer 73A, an excitation light reflecting layer 76 and a scattering layer. Figure 7 is an increase-excitation-light-reflecting layer 76 between the light-emitting layer 73 and the layer 750 to increase the light-emitting layer 73, thereby making the projection screen 7〇4 suitable for use in the projection system 300. Figure 7 A specific embodiment is to select the visible light and the scattered light as visible light including red, green, blue, white, or an enlarged color gamut. -7F ' is a schematic diagram of the sixth projection screen 705 of the present invention. Projection ί 3 - an excitation light absorbing layer 72G' - an illuminating layer 73G, an excitation light reflecting layer 760 and a scattering layer 750. 201033723 An excitation light reflecting layer 760 is added between the luminescent layer 730 and the scattering layer 750 as compared with FIG. 7C'. Thus, the luminous efficiency of the luminescent layer 730 can be increased, and the optical power of the projection beam LS| can be prevented from entering the d2 side for reception by the observer. One embodiment of Fig. 7F is to select the excited light and the scattered light to be included. Red, green, blue, white, or the color of the extended color gamut Referring again to FIG. 7G, which is a schematic diagram of a seventh projection screen 7〇6 of the present invention, the projection screen 706 includes an excitation light absorbing layer 72〇, a scattering layer 75〇, an excitation light reflecting layer 760 and a The light-emitting layer 730. Compared with FIG. 7C and FIG. 7G, an excitation light-reflecting layer 76 is interposed between the light-emitting layer 73A and the scattering layer 750, so that the light-emitting efficiency of the light-emitting layer 73 can be increased.
圖7G之一具體實施例為選擇被激發光與被散射光為包含 紅、綠、藍、白、或擴大色域之顏色之可見光。 一再參考圖7H,其係本發明之第八種投影幕707示意圖。投影 幕707包含一被激發光部分反射層77〇及一發光層73〇。被激發光 部为反射層770可使不論由哪一面入射之被激發光以一比例穿透 (例如20%) ’而其部分反射(例如8〇%),並對激發光有有相當高之 穿透比例。 右由D!侧或E>2側入射之投射光束Lsi或[以皆可激發發光層 730而產生被激發光。此被激發光可為a侧之觀察者&接收而形 成投影影像。由於此被激發光亦可部分穿透部分反射層77〇至辽 側,所以觀察者〇2亦可接收被激發光形成之投影影像。 1 ΐϊΐΐ同樣的曾’觀察者〇2所觀察到的影像除了投影影像外,亦 f景i幕而她察者〇2所接收之Di中物體之影像(包含觀 不者m經由投影幕反射而為觀察者a所接收之込中物: 察者0,峨察到的影像除了投影影像外,亦包含穿越投影 察者所接收之D2中物體之影像(包含絲者〇2)與經 =衫减_域察者。丨所純之Di中物歉影像(包含 f體之影 像(包含觀察者〇2) ^景光LA,,包含由D|射投影幕之光源無 中其他物體(包含觀察者0。再散射或反射至投影幕之光,二 201033723 被激發光頻譜光功率遠小於背景光Lm ’包含由D2側直射投影幕 之光源與照射到介質D2中其他物體(包含觀察者〇2)再散射或反射 至投影幕之光,中之被激發光頻譜光功率時,觀察者〇2所觀察到 的在被激發光頻譜中之由投影幕反射而為觀察者〇2所接收之D2 中物體之光功率可遠大於含穿越投影幕而為觀察者〇2所接收之 中物體之光功率。在此狀況下,觀察者仏僅能清楚地觀察到在 被激發光頻譜·中由投影幕反射而為觀察者所接收之ψ物體 之影像與投影影像,而不能清楚地觀察到穿越投影幕而為觀察者 〇2所接收之Di中物體之影像。對於觀察者〇1而言,觀察者〇1 則能在觀察到的在被激發光頻譜中之由穿越投影幕而為觀察者〇ι ❹ 所接收之〇2中物體之影像,及投影影像。如此一來,不但投影影 像可為觀察者(^與觀察者〇2同時接收,又能保護觀察者〇丨之隱 私。 反之,若背景光LA1,包含由D!侧直射投影幕之光源與照射 到介質A中其他物體(包含觀察者〇〇再散射或反射至投影幕之 光,中之被激發光頻譜光功率遠大於背景光La2,包含由]32侧直 射投影幕之光源與照射到介質D2中其他物體(包含觀察者〇2)再散 射或反射至投影幕之光,則不但投影影像可為觀察者〇1與觀察者 〇2同時接收,又能保護觀察者〇2之隱私。 ^ 圖7H之具體實細》例為選擇被激發光為包含紅、綠、藍、白、 或擴大色域之顏色之可見光。如此,投影幕7〇7適合應用於包含 且不限於交通工具或建物之投影廣告系統。 一再參考圖71,其係本發明之第九種投影幕708示意圖。投影 幕708包含—被激發光與被散射光部分反射層780,一發光層730 及一散射層750。此被激發光與被散射光部分反射層780除了可部 分反射被激發光頻譜之光’亦可部分反射被散射頻譜之光。 相較於圖7H,圖71除了被激發光部分反射層770改換為被激 發光與被散射光部分反射層780之外,亦增加一散射層750於發 光層730與D2間。雖然因此限制僅可由〇2側投射光束LS2至該投 影幕’卻使投影幕708適用於投影系統300之應用。 29^52 201033723 因為被散射光之光頻譜等於掃描投射於散射層750之雷射光 頻譜,所以投射光束LS1中屬散射頻譜之光能量亦將部分為被激發 光與被散射光部分反射層780所反射。為此,在決定投射光束Lsi 申屬散射頻譜之光功率以在投影幕形成某單位面積散射光能量 時’需將此雷射光部分反射之因素考量在内,而加大投射光束LS1 中屬散射頻譜之雷射光功率。 圖71之一具體實施例為選擇被激發光與被散射光為包含紅、 綠、藍、白、或擴大色域之顏色之可見光。 再參考圖7J,其係本發明之第十種投影幕7〇9示意圖。投影 幕709包含一被激發光與被散射光部分反射層78〇,一散射層75〇One embodiment of Figure 7G is the selection of visible light and scattered light as visible light comprising red, green, blue, white, or an enlarged color gamut. Referring again to Figure 7H, there is shown a schematic view of an eighth projection screen 707 of the present invention. The projection screen 707 includes an excited light partially reflective layer 77 and a light emitting layer 73A. The portion to be excited is the reflective layer 770, so that the incident light incident on which side is penetrated by a ratio (for example, 20%) and partially reflected (for example, 8%), and has a relatively high excitation light. Penetration ratio. The projecting light beam Lsi incident on the right side of the D! side or the E>2 side or [they can excite the light-emitting layer 730 to generate excited light. This excited light can be received by the observer & a received image. Since the excited light can also partially penetrate the partial reflection layer 77 to the Liao side, the observer 〇2 can also receive the projected image formed by the excitation light. 1 ΐϊΐΐ The same image that was observed by the observer 〇 2, in addition to the projected image, is also the image of the object in the Di received by the viewer (2 (including the viewer m reflected through the projection screen) For the object received by the observer a: the observer 0, the observed image, in addition to the projected image, also contains the image of the object in the D2 received by the projection observer (including the silk 〇 2) and the shirt减 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0. Re-scattering or reflecting to the projection screen light, II 201033723 The intensity of the optical spectrum of the excited light is much smaller than the background light Lm 'contains the light source directly from the D2 side projection screen and the other objects in the medium D2 (including the observer 〇 2 When re-scattering or reflecting to the light of the projection screen, the optical power of the spectrum of the excited light is observed by the observer 〇2, which is reflected by the projection screen in the spectrum of the excited light and received by the observer 〇2. The optical power of the medium object can be much larger than that received by the observer 〇2 The optical power of the object. Under this condition, the observer can only clearly observe the image and projected image of the object received by the projection screen in the spectrum of the excited light, which is reflected by the observer, but cannot be clear. Observing the image of the object in Di received by the observer 穿越2 through the projection screen. For the observer 〇1, the observer 〇1 can pass through the projection screen in the observed spectrum of the excited light. For the observer, 观察ι ❹ receives the image of the object in 〇 2, and projects the image. In this way, not only the projected image can be received by the observer (^ and the observer 〇2, but also protects the observer. Conversely, if the background light LA1 contains the light source that is directly projected by the D! side and the other object that is irradiated onto the medium A (including the observer's light that is scattered or reflected to the projection screen, the spectrum of the excited light spectrum The power is much larger than the background light La2, including the light source from the direct projection screen of the 32 side and the other objects (including the observer 〇2) that are irradiated onto the medium D2 to scatter or reflect the light to the projection screen, so that the projected image can be an observer. 〇1 and view The 〇2 is received at the same time, and the privacy of the observer 〇2 can be protected. ^ The specific detail of Fig. 7H is an example of selecting visible light to be visible light containing red, green, blue, white, or magnified color gamut. The projection screen 7〇7 is suitable for use in a projection advertising system including, but not limited to, a vehicle or a building. Referring again to Fig. 71, it is a schematic diagram of a ninth projection screen 708 of the present invention. The projection screen 708 includes - the excited light and the The scattered light partially reflects the layer 780, a light-emitting layer 730, and a scattering layer 750. The partially-excited light and the partially-reflected light-reflecting layer 780 can partially reflect the light of the scattered spectrum. In contrast to FIG. 7H, FIG. 71 adds a scattering layer 750 between the light-emitting layers 730 and D2 in addition to being replaced by the excitation light partial reflection layer 770 into the excited light and the scattered light partial reflection layer 780. Although it is thus limited to project the light beam LS2 from the 〇2 side to the projection screen, the projection screen 708 is suitable for use in the projection system 300. 29^52 201033723 Since the spectrum of the scattered light is equal to the spectrum of the laser beam projected by the scattering layer 750, the light energy of the scattering spectrum in the projected beam LS1 will also be partially the reflected light and the partially reflected layer 780 of the scattered light. reflection. For this reason, in determining the optical power of the projected beam Lsi to scatter the spectrum of the light to form a certain unit area of scattered light energy when the projection screen is formed, the factor of reflection of the portion of the laser light is required to be considered, and the scattering of the projection beam LS1 is increased. The laser power of the spectrum. One embodiment of Fig. 71 is to select the visible light and the scattered light as visible light comprising red, green, blue, white, or an enlarged color gamut. Referring again to FIG. 7J, it is a schematic diagram of a tenth projection screen 7〇9 of the present invention. The projection screen 709 comprises an excited light and a partially reflected layer 78, a scattering layer 75
及一發光層730。 相較於圖71,圖7J之散射層750置於發光層730與D2間, 且調變雷射光束Lsz由D2側入射。因此,調變雷射光束Ls2由入 射散射層750前不會為被激發光與被散射光部分反射層78〇所反 射,可避免如第Ή圖中投射光束Lsi中屬散射頻譜之雷射光功率 入射至散射層之效率降低問題。 綠 ,7J之一具體實施例為選擇被激發光與被散射光為包含紅、 藍、白、或擴大色域之顏色之可見光。 ,再參考圖7K,其係本發明之第_{_一種投影幕71〇示意圖。投 影幕710包含一聚光層79〗,一部分遮光層79〇,一發光層73〇及 一散射層750。部分遮光層79〇包含許多遮光元件792與許多開口 793。聚光層W包含許多聚光鏡794。投影幕則適用於投 統300之應用。 癸考圖7KA ’其為遮光層79〇 一例圖,遮光元792為黑色部 為其中白色圓形。投影幕上一個畫素795之區域包 =口 793。對應至同一晝素之該群開口之正中心且應 對齊。在® 7ΚΑ中所示之晝素795包含五個開 而參貝Γΐ nr 70=為限。遮光元792涵蓋遮光層790絕大部分之 f it伟於遮光層790上。開σ 793可使入射至該位 置、*(,其彳讀面可為包含且不限為圓形或正方形。遮光元 30/52 201033723 792透過反射或吸收方式將入射至遮光元792之光完全遮斷。遮光 元792面向發光層侧之表面並可完全吸收被激發光與被散射光。 若要使單一雷射光朿投射投影幕上每個位置皆能有部分光穿 透’以提升雷射光束投射之使用效率,則需使開口 793之最大間 距應小於雷射光束之橫截面直徑。 ❿ 圖7KB為聚光層791之一例圖。聚光鏡794為其中白色圓形。 聚光鏡794涵蓋聚光層791絕大部分之面積,以便收集入射光束 大部分之光。各別聚光鏡794之中心位置與各別開口 793之中心 位置對齊。聚光鏡794可使投射至其上之光聚焦,並因此通過開 口 793,而不為遮光元792所遮斷。聚光層791之材質對屬激發光 與散射光波長之光有較小的吸收與散射。因此,可使投射光束1^1 中屬激發光與散射光波長之光功率無礙地通過開口 793。 聚光層791與遮光層790並可合而為一體。在此狀況下,開 口 793由聚光層791之材質所填滿。如此一來,可減少在開口區 聚光膚791與遮光層790間之介面,而增加光束入射至發光 與散射層740之效率。 域3 投射光束通過開口 793之光進入發光層73〇後,其中屬 光波長之光將使發光層產生被激發光。發觸 ^ 投射光東中不屬激發光波長之光一同進入散㈣爾,並^、。 由於被散射光為多方性發夸t,對應至單一開口 793之被激 =射光在該投影幕&侧之表面可形成面積遠較開口大之义光點、。 設光鏡之曲率、遮光層79G之厚度、發光層之厚度:散 ΐ 開Z之分佈可使對應至各別晝素之光點群共同ί ===素。如此—來,觀察者〇2將觀察到—個為各光點所 此外,另可使遮光元792面向發光層侧之表面可^八 激發光與絲狀。如H魏紅Μ 射光頻譜之光將有相當部分為遮光元792所吸因_^皮f $境光馳絲狀僧,錢额錄財^ = 201033723 圖7K之一具體實施例為選擇被激發光與被散射光為包含 紅、綠、藍、白、或擴大色域之顏色之可見光。And a light emitting layer 730. Compared to FIG. 71, the scattering layer 750 of FIG. 7J is placed between the light-emitting layers 730 and D2, and the modulated laser beam Lsz is incident from the D2 side. Therefore, the modulated laser beam Ls2 is not reflected by the excited light and the partially reflected light layer 78 〇 before being incident on the scattering layer 750, and the laser light power of the scattering spectrum of the projected beam Lsi in the first diagram can be avoided. The efficiency of incidence to the scattering layer is reduced. One of the specific embodiments of green, 7J is to select the visible light and the scattered light as visible light containing red, blue, white, or an enlarged color gamut. Referring again to FIG. 7K, it is a schematic diagram of a projection screen 71 of the present invention. The projection screen 710 includes a light collecting layer 79, a portion of the light shielding layer 79, a light emitting layer 73, and a scattering layer 750. A portion of the light shielding layer 79 includes a plurality of light blocking members 792 and a plurality of openings 793. The concentrating layer W includes a plurality of concentrating mirrors 794. The projection screen is suitable for applications in the System 300. Referring to Fig. 7KA', which is a light-shielding layer 79, an example is shown, and the light-shielding element 792 is a black portion in which a white circle is formed. The area of a pixel 795 on the projection screen is 793. Corresponding to the center of the group of openings of the same pixel and should be aligned. The halogen 795 shown in ® 7ΚΑ contains five open and the 参 Γΐ r nr 70= is limited. The light-shielding element 792 covers most of the light-shielding layer 790. The opening σ 793 can be incident to the position, * (, the reading surface thereof can be included and is not limited to a circle or a square. The shading element 30/52 201033723 792 completely reflects the light incident to the shading element 792 by reflection or absorption. The light-shielding element 792 faces the surface of the light-emitting layer side and can completely absorb the excited light and the scattered light. To enable a single laser light to project a portion of the light on each of the projected projection screens to enhance the laser For the efficiency of beam projection, the maximum spacing of the opening 793 should be smaller than the cross-sectional diameter of the laser beam. ❿ Figure 7KB is an example of the concentrating layer 791. The concentrating mirror 794 is a white circle. The concentrating mirror 794 covers the concentrating layer. The majority of the area is 791 to collect most of the incident beam. The center of each of the concentrating mirrors 794 is aligned with the center of the respective opening 793. The concentrating mirror 794 can focus the light projected thereon and thus pass through the opening 793. It is not blocked by the light-shielding element 792. The material of the light-concentrating layer 791 has a small absorption and scattering of the light of the wavelength of the excitation light and the scattered light. Therefore, the excitation light and the dispersion of the projection beam 1^1 can be made. The optical power of the optical wavelength passes through the opening 793 without any interference. The concentrating layer 791 and the light shielding layer 790 can be integrated into one body. In this case, the opening 793 is filled with the material of the concentrating layer 791. The interface between the concentrating skin 791 and the light shielding layer 790 in the open area is reduced, and the efficiency of the light beam incident on the illuminating and scattering layer 740 is increased. Field 3 The light that passes through the opening 793 enters the luminescent layer 73, which belongs to the wavelength of light. The light will cause the luminescent layer to generate the excited light. The illuminating light is the light that does not belong to the wavelength of the excitation light, and enters the scatter (four) er, and ^, because the scattered light is multi-party, it corresponds to a single opening 793. Excited = the light on the surface of the projection screen & side can form a light spot with a much larger area than the opening. The curvature of the light mirror, the thickness of the light shielding layer 79G, and the thickness of the light emitting layer: the distribution of the scattered Z The light spot group corresponding to each pixel can be made common ί === prime. In this way, the observer 〇 2 will observe that each of the light spots is in addition, and the light shielding element 792 can face the light emitting layer side. The surface can be excited by eight light and filament. For example, H Weihong 射There will be a considerable part of the light-shielding element 792. _^皮f$境光驰丝状僧,钱额录财^ = 201033723 One embodiment of Figure 7K is to select the excited light and the scattered light to contain red, Green, blue, white, or visible light that expands the color gamut.
再參考圖7L,其係本發明之第十二種投影幕711示意圖。投 影幕711包含一顯像層796及顯像層之一侧或兩侧為一抗紫外線 層797。顯像層796被投射光束投射後可形成影像,其包含本發明 所述之所有投影幕。抗紫外線層797可透過反射或吸收方式避免 紫外線範圍波長之光進入顯像層796,並對使顯像層796形成影像 之激發光與散色光波長之光有較小的吸收與散射,而使投射光束 中屬激發光與散色光波長之光能無礙的進入顯像層796。因為顯像 層796可能包含發光層730、散射層750、被激發光吸收層720Α、 ❹ 激發光吸收層740、被激發光與散射光吸收層72〇Β、激發光反射 層760、被激發光部分反射層770、被激發光與被散射光部分反射 層780、各式抗反射層等各式功能層,上述各式功能層之基材可能 具備各式不同化學物質以達到發光、散射、選擇性波長吸收、選 擇性波長反射等功能。這些化學物質與各式功能層之基材本身成 分之光學特性一般而言在紫外光線之照射下可能逐漸變質,而使 顯像層796之使用壽命縮短。將抗紫外線層797置於顯像層796 之一側可將該側入射環境光中之紫外線光譜之光能量阻斷於顯像 層7%之外,而達成穩定顯像層7%特性與延長其使用壽命之目 <實施例7> 參考圖8’其係本發明之第—種可擴大顯示畫面之雷射投 不意圖。該雷射投影系統800包含一雷射投影器8〇及一 1 ^幕801。雷射投影器8〇包含一雷射光學模組8ι〇、一旋轉 鏡模組820及一凸面反射鏡83〇。 ,4〇 820 240相同,在此不予贅述。 技办幕801包含一般可投影之表面,即一般投 八 32:52 且不限本發明前述之投影幕1G卜投影幕2(Π、投影幕30】、投^ 201033723 幕5〇卜投影幕700、投影幕7〇卜投影幕702投影幕703、投影 幕704、投影幕705、投影幕706、投影幕707、投影幕708、投影 幕709、投影幕71〇、投影幕71卜 雷射光學模組810投射一雷射光束於旋轉平面鏡模組82〇 上,其結構可包含且不限於本發明前述如圖丨之雷射光學模組 110,圖2之雷射光學模組270,圖3之雷射光學模組370,圖4 之雷射光學模組470,與圖5之雷射光學模組570。 雷射光學模組810所發射之調變雷射光束Lm經旋轉平面鏡模 組820反射至凸面反射鏡83〇上。舉例而言,當平面鏡模組82〇 使雷射光束在x-z平面之旋轉角度為0urx,且使雷射光束在y_z平 ❹ 面之旋轉角度為0ury時,雷射光束LM會被旋轉平面鏡模组820 反射至凸面反射鏡830上之端點NUR1,接著再被凸面反射鏡83〇 π別反射至投影幕801之最右上角落端點nUR2。同理,當平面鏡 模組820使雷射光束在X軸之旋轉角度各別為、θ題、㊀隠, 且使雷射光束在y軸之旋轉角度各別為θυΐΎ、0bry、0bly時,雷射 光束LM會各別被旋轉平面鏡模組82〇反射至凸面反射鏡33〇上之 端點NULI、NBRi、NBLI,接著再各別被凸面反射鏡83〇反射至投 影幕30〗之最左上角落端點nUL2、最右下角落端點Nbr2、最左下 角落端點Nb1j2。 透過凸面反射鏡830之反射可擴大雷射光束掃描角度,並在 才又衫幕801與雷射投影器80之間的距離D不變之情況下,增大投 影影像之高度與寬度。參考圖8及圖8A ’圖8A係為本發明S之雷 射投影系統800之在平行於χ-ζ平面之橫截面上視圖。旋轉平面鏡 模組820在X-z平面上可使雷射光束旋轉的角度為θ。由於入射角 等於反射角0RL ’且入射角0IR等於反射角0RR,此雷射光束之 掃描角度經凸面反射鏡830反射後,由0增大為(Θ+ΔΘ),其中Δθ 為凸面反射鏡830曲面NL1 NR1上通過NL1點之法線與通過nr1點 之法線之夾角。因此,在投影幕801與雷射投影器8〇之間的距離 1)不變之情況下’可使投影影像寬度W變大。同理參照圖8B,其 ί吊本發明之雷射投影系統800之在平行於x_y平面之橫戴面側視 201033723 圖。經凸面反射鏡830反射後在y-Z平面上可使雷射光束掃描的角 度由φ增大為(φ+Δφ),其中Δφ為凸面反射鏡830曲面 通過1^|點之法線與通過nbi點之法線之夾角。因此,在投影幕 801與雷射投影器80之間的距離D不變之情況下,可使投影影像 高度Η變大。 將凸面反射鏡830置於欲投影晝面之中心線附近,可增加凸 面反射鏡830表面之曲率,並使該表面曲率對稱於鏡面中心,以 減少凸面反射鏡830之體積,有利於減輕該凸面反射鏡830之製 作成本。請參考圖8C ’其係χ_ζ(或y-z)平面上將凸面反射鏡置於 不同位置時與所擴張掃描角度之關係圖。A、B、C為可放置凸面 ❹ 反射鏡830之三個不同位置,D、E、F對應於欲投影畫面之最左 點(或最上點)、中心點、與最右點(或最下點)。ZADF、ZBEF、 ZCTD、ZDAC、ZEBC、ZFCA倶為直角。當雷射光束入射位 於A點之凸面反射鏡830,在此平面所掃描之最大角度*eA,其 畫面尹心光束路徑為AE。當雷射光束入射位於B點之凸面反射鏡 830 ’在此平面所掃描之最大角度為%,其晝面中心光束路徑為 BE。當雷射光束入射位於c點之凸面反射鏡83〇,在此平面所掃 描之最大角度為0C,其晝面中心光束路徑為CE。當入射凸面反射 鏡830前有掃描角度之雷射光束各別入射位於a、b、C點之凸 ❹ 面反射鏡830 ’在此平面上所掃描之最大角度各別為Θα、Θβ、θ(:, 其畫面中心光束路徑各別為八£、丑£、€五。由圖可知0八=^(:= tan、H/L),eB=2*tan_1(H/2/L) 〇 因 IhanlHO/Lptar^Ol/L),所以 Θβ>Θα=Θ(:。經位於A、B、C點之凸面反射鏡830反射後,所增 加之掃描角度各別為δθα=( θα - θ0)、δθβ=( θβ - θ〇)、αθ«:=( ec - θ〇), 且ΔΘΒ>ΔΘΑ=Δθί:。因為所增加之掃描角度對應至該凸面反射鏡 830曲面法線之最大夾角’故知位於Β點之凸面反射鏡830有較 大之表面曲率變化,對應至體積較小之凸面反射鏡83〇。此外,由 圖 8C 可知 zDAE>ZEAF ’ ZDBE=ZEBF ’ z:DCE<ZECF,故 知位於B點之凸面反射鏡830之表面曲率變化對稱於其反射中抽 線BE,而位於a點與c點之凸面反射鏡830之表面曲率變化並 34->2 201033723 不對稱於其各別反射中軸線AE與CE。因此,將凸面反射鏡830 置於欲投影畫面之中心線附近,可增加凸面反射鏡83〇表面之曲 率’並使該表面曲率對稱於其鏡面中心,以減少凸面反射鏡83〇 之體積’有利於減輕該凸面反射鏡830之製作成本。 <實施例8> 參考圖9 ’其係本發明之第二種可擴大顯示晝面之雷射投影系 統900示意圖。由於平面反射鏡可改變雷射光束之行進方向,且 並不改變雷射光束之掃描角度,因此,藉由凸面反射鏡83〇與平 面反射鏡i亦可大幅縮減雷射投影器與投影幕之間之距離,並達 成擴大顯示晝面之目的。參考圖9’可擴大顯示畫面之雷射投影系 統900包含一雷射投影器9〇及一投影幕9〇1。雷射投影器9〇包含 一雷射光學模組910、一旋轉平面鏡模組920、一凸面反射鏡930 及一平面鏡模組940。雷射光學模組91〇、旋轉平面鏡模組92〇與 凸面反射鏡930之結構及工作原理與雷射光學模組81〇、旋轉平面 鏡模組820及凸面反射鏡830類似,故不再贅述。平面鏡模組94〇 將凸面反射鏡930所反射之調變雷射光束£^再反射至投影幕9〇1。Referring again to FIG. 7L, it is a schematic diagram of a twelfth projection screen 711 of the present invention. The projection screen 711 includes a developing layer 796 and one or both sides of the developing layer is an ultraviolet resistant layer 797. The imaging layer 796 is projected by the projected beam to form an image comprising all of the projection screens described herein. The anti-ultraviolet layer 797 can prevent the light of the ultraviolet range wavelength from entering the developing layer 796 by reflection or absorption, and has less absorption and scattering of the excitation light and the scattered light wavelength of the image forming layer 796. The light of the projected beam that is both the excitation light and the wavelength of the scattered light enters the imaging layer 796 without hindrance. Since the imaging layer 796 may include the light emitting layer 730, the scattering layer 750, the excited light absorbing layer 720, the 激发 excitation light absorbing layer 740, the excited light and the scattered light absorbing layer 72, the excitation light reflecting layer 760, and the excited light. The partial reflection layer 770, the excitation light and the scattered light partial reflection layer 780, and various types of functional layers, and the various functional layers may have various chemical substances to achieve luminescence, scattering, and selection. Functionality of wavelength absorption, selective wavelength reflection, etc. The optical properties of these chemicals and the substrate itself of the various functional layers may generally deteriorate under ultraviolet light, and the life of the imaging layer 796 is shortened. Placing the anti-ultraviolet layer 797 on one side of the imaging layer 796 can block the light energy of the ultraviolet spectrum in the incident ambient light from being outside the imaging layer by 7%, and achieve the 7% characteristic and extension of the stable imaging layer. The purpose of the service life <Embodiment 7> Referring to Fig. 8', it is a first embodiment of the present invention that expands the display screen without a laser projection. The laser projection system 800 includes a laser projector 8A and a CAM 801. The laser projector 8A includes a laser optical module 8ι, a rotating mirror module 820, and a convex mirror 83A. 4 is the same as 820 240 and will not be repeated here. The technical screen 801 includes a generally projectable surface, that is, generally casts eight 32:52 and is not limited to the aforementioned projection screen 1G projection screen 2 of the present invention (Π, projection screen 30), cast ^201033723 screen 5 〇 投影 projection screen 700 Projection screen 7 投影 projection screen 702 projection screen 703, projection screen 704, projection screen 705, projection screen 706, projection screen 707, projection screen 708, projection screen 709, projection screen 71 〇, projection screen 71 laser optical mode The group 810 projects a laser beam onto the rotating mirror module 82, and the structure thereof may include, but is not limited to, the laser optical module 110 of the present invention, the laser optical module 270 of FIG. 2, and FIG. The laser optical module 370, the laser optical module 470 of FIG. 4, and the laser optical module 570 of FIG. 5. The modulated laser beam Lm emitted by the laser optical module 810 is reflected by the rotating plane mirror module 820. To the convex mirror 83. For example, when the plane mirror module 82 causes the laser beam to rotate at an angle of 0 urx in the xz plane and the laser beam has a rotation angle of 0 ury on the y_z plane, the laser The light beam LM is reflected by the rotating mirror module 820 to the end point NUR1 on the convex mirror 830, Then, it is reflected by the convex mirror 83〇π to the upper right corner end nUR2 of the projection screen 801. Similarly, when the plane mirror module 820 makes the rotation angle of the laser beam on the X axis, θ, a And when the rotation angles of the laser beams on the y-axis are respectively θυΐΎ, 0bry, 0bly, the laser beams LM are respectively reflected by the rotating plane mirror module 82〇 to the end points NULI, NBRi on the convex mirror 33〇. The NBLI is then respectively reflected by the convex mirror 83〇 to the leftmost upper end point nUL2 of the projection screen 30, the lower right corner end point Nbr2, and the lower left corner end point Nb1j2. The reflection through the convex mirror 830 can be The laser beam scanning angle is enlarged, and the height and width of the projected image are increased without changing the distance D between the screen 801 and the laser projector 80. Referring to Fig. 8 and Fig. 8A, Fig. 8A A cross-sectional view of the laser projection system 800 of the present invention parallel to the χ-ζ plane. The rotary plane mirror module 820 can rotate the laser beam at an angle of θ on the Xz plane. Since the angle of incidence is equal to the angle of reflection 0RL 'and the incident angle 0IR is equal to the reflection angle 0RR, this mine After the scanning angle of the beam is reflected by the convex mirror 830, it is increased from 0 to (Θ+ΔΘ), where Δθ is the angle between the normal line passing through the NL1 point on the curved surface NL1 NR1 of the convex mirror 830 and the normal passing through the nr1 point. Therefore, in the case where the distance 1) between the projection screen 801 and the laser projector 8 is not changed, the projected image width W can be made large. Referring to Fig. 8B, a perspective view of the horizontal projection of the laser projection system 800 of the present invention parallel to the x_y plane is shown in 201033723. After being reflected by the convex mirror 830, the angle of scanning the laser beam can be increased from φ to (φ+Δφ) in the yZ plane, where Δφ is the normal of the surface of the convex mirror 830 passing through the 1^| point and passing through the nbi point. The angle between the normals. Therefore, in the case where the distance D between the projection screen 801 and the laser projector 80 does not change, the projected image height can be made larger. Positioning the convex mirror 830 near the center line of the plane to be projected increases the curvature of the surface of the convex mirror 830 and makes the curvature of the surface symmetrical to the center of the mirror to reduce the volume of the convex mirror 830, which is advantageous for reducing the convex surface. The manufacturing cost of the mirror 830. Please refer to Fig. 8C' for the relationship between the convex scanning mirror and the expanded scanning angle when the convex mirror is placed at different positions on the χ_ζ (or y-z) plane. A, B, and C are three different positions where the convex ❹ mirror 830 can be placed, and D, E, and F correspond to the leftmost point (or uppermost point), the center point, and the rightmost point (or the lowermost point) of the image to be projected. point). ZADF, ZBEF, ZCTD, ZDAC, ZEBC, ZFCA倶 are right angles. When the laser beam is incident on the convex mirror 830 at point A, the maximum angle *eA scanned on this plane is the AE beam path. When the laser beam incident on the convex mirror 830' at point B is scanned at a maximum angle of %, the center beam path of the pupil is BE. When the laser beam is incident on the convex mirror 83A at point c, the maximum angle scanned in this plane is 0C, and the center beam path of the pupil plane is CE. When the incident convex mirror 830 has a scanning angle, the laser beam is incident on the convex mirrors 830 at points a, b, and C. The maximum angles scanned on the plane are Θα, Θβ, θ ( :, the center of the beam path of the picture is eight £, ugly, € five. From the figure, we can see that 0 8 = ^ (: = tan, H / L), eB = 2 * tan_1 (H / 2 / L) IhanlHO/Lptar^Ol/L), so Θβ>Θα=Θ(:. After being reflected by the convex mirror 830 located at points A, B, and C, the added scanning angles are each δθα=( θα - θ0), Δθβ=( θβ - θ〇), αθ«:=( ec - θ〇), and ΔΘΒ>ΔΘΑ=Δθί: because the increased scanning angle corresponds to the maximum angle of the surface normal of the convex mirror 830 The convex mirror 830 of the defect has a large surface curvature change corresponding to the convex mirror 83 having a small volume. Further, as shown in Fig. 8C, zDAE>ZEAF 'ZDBE=ZEBF ' z:DCE<ZECF, so that it is located at B The surface curvature change of the convex mirror 830 of the point is symmetrical to the reflection line BE in the reflection, and the curvature of the surface of the convex mirror 830 located at the point a and the point c is changed. And 34->2 201033723 is asymmetrical to its respective reflection central axes AE and CE. Therefore, placing the convex mirror 830 near the center line of the projected image can increase the curvature of the convex surface of the convex mirror 83' Having the curvature of the surface symmetrical to the center of the mirror surface to reduce the volume of the convex mirror 83 is advantageous to reduce the manufacturing cost of the convex mirror 830. <Embodiment 8> Referring to Figure 9 A schematic diagram of a laser projection system 900 that can display a facet can be enlarged. Since the plane mirror can change the direction of travel of the laser beam without changing the scanning angle of the laser beam, the convex mirror 83 and the plane mirror are used. i can also greatly reduce the distance between the laser projector and the projection screen, and achieve the purpose of expanding the display surface. The laser projection system 900 with the enlarged display screen of Fig. 9 includes a laser projector 9 and a The projection screen 9〇1. The laser projector 9〇 includes a laser optical module 910, a rotating plane mirror module 920, a convex mirror 930 and a plane mirror module 940. The laser optical module 91〇, the rotation plane The structure and working principle of the mirror module 92 〇 and the convex mirror 930 are similar to those of the laser optical module 81 旋转, the rotating plane mirror module 820 and the convex mirror 830, and therefore will not be described again. The plane mirror module 94 〇 convex mirror The modulated laser beam reflected by 930 is then reflected to the projection screen 9〇1.
在雷射光束掃描角度不變之情況下,旋轉平面鏡模組92〇與 投影幕9〇1之闕長的絲行麟彳i,_應龍寬與越高的投 影影像。由圖9可知,雖然平面鏡模組940並無法增加雷射光束 掃描角度’然_卩可使絲行進職轉折,在投影幕與雷射投影 器之間^ ζ軸距離D不變之情況下,可增加旋轉平面鏡模組92〇 與投,幕撕之間越長的光束行進路徑,而增加投影影像之高度 υΐίΐ 月雖圖8細9說明凸面反射鏡與平面反射鏡在雷 射知掐杈衫牙、統中擴大掃描角度之原理。惟,本發明之範 此為限。任何雷射掃描投影系統個或多個凸面反射鏡或平 面反射鏡來擴大掃描角度之設計皆在本發明範圍内。 35 '52 門以H僅^發優選實施例’對本發明而言僅是說明 W ’叫非_性的。在本領域具通常智識者理解,在本發明專 201033723 ,要求所限定的精神和範圍内可對其進行許多改變,修改,甚至 等效變更,但都將落入本發明的保護範圍内。 【圖式簡單說明】 圖1係有關雷射投影系統之一先前技術示意圖。 圖2係本發明之雷射投影系統2〇〇 (實施例〇示意圖。 圖2A:2C分別係圖2中投影幕發光層三種不同結構之縱向示意圖。 圖3係本發明之雷射投影系統3〇〇 (實施例2)示意圖。 圖3A係圖3中投影幕之一基本架構示意圖。 圖4係本發明之雷射投影系統400 (實施例3 )示意圖。 ® 4A-4B分別係圖4中投影幕之發光層之鄰近數個畫素空間之結 ® 構示意圖。 一 圖5係本發明之雷射投影系統(實施例4 )示意圖。 圖6係本發明一簡化之雷射投影系統6〇〇 (實施例5 )示意圖。 圖7A-7K分別係本發明(實施例6)中投影幕之第一種至第十一 種結構型態示意圖。 圖7KA係圖7K中遮光層(790) —例圖。 圖7KB係圖7K中聚光層(791) —例圖。 圖7L係本發明實施例中投影幕之第十二種結構型態示意圖。 圖8係本發明一可擴大顯示晝面之雷射投影系統800 (實施例7) φ 示意圖° 圖8A係圖8中雷射投影系統在平行於χ_ζ平面之橫截面上視圖。 圖8Β係圖8中雷射投影系統在平行於x_y平面之橫截面侧視圖。 圖8C係圖8中本發明之雷射投影系統(8〇〇)在χ_ζ(或y_z)平面 上將凸面鏡置於不同位置時與所擴張掃描角度之關係圖。 圖9係說明本發明第二個擴大顯示晝面雷射投影系統9〇〇(實施例 8)示意圖。 【主要兀件符號說明】 雷射投影系統 200、300、400、500、600、800、900 投影幕 201、301、401、501、601、701、702、703、704、705、 201033723 706、707、708、709、710、7U、8(H、901 雷射投影器 202、302、402、502、602 雷射光源模組 210、310、410、410、810、910 雷射訊號調變模組220、320、420、520 合光模組 230、330、430、530 旋轉平面鏡模組 240、340、440、540、820、920 旋轉平面鏡控制模組250、350、450、550 訊號轉換模組260、360、460、560 雷射光學模組270、370、470、570 基材23卜232、233 φ 基板235 微顆粒 236、237、238 第一類雷射光源模組311 第二類雷射光源模組312 發光層331 散射層332 畫素 431、441 次畫素(subpixel) 432-434、442-444、452-455、462-465 投影幕700 被激發光吸收層720、720A ❹發光層730 激發光吸收層740In the case where the scanning angle of the laser beam is constant, the length of the rotating plane mirror module 92 〇 and the projection screen 9 〇 1 is the width and height of the projected image. It can be seen from FIG. 9 that although the plane mirror module 940 cannot increase the scanning angle of the laser beam, the angle of the wire can be turned, and the distance between the projection screen and the laser projector is constant. It can increase the longer the beam travel path between the rotating plane mirror module 92 and the projection, and increase the height of the projected image. ΐ ΐ 图 图 图 图 图 图 图 图 图 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明The principle of expanding the scanning angle in the teeth and the system. However, the scope of the invention is limited. It is within the scope of the invention to design one or more convex or planar mirrors for any laser scanning projection system to increase the scanning angle. 35 '52 Gates are only used to exemplify the preferred embodiment. For the purposes of the present invention, only W </ RTI> is non-sexual. It will be appreciated by those skilled in the art that many changes, modifications, and equivalents may be made without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a prior art schematic diagram of one of the laser projection systems. 2 is a schematic view of a laser projection system of the present invention (FIG. 2A: 2C is a longitudinal schematic view of three different structures of the projection screen illumination layer of FIG. 2. FIG. 3 is a laser projection system 3 of the present invention. Figure 3A is a schematic diagram of one of the basic structures of the projection screen of Figure 3. Figure 4 is a schematic diagram of the laser projection system 400 (Embodiment 3) of the present invention. ® 4A-4B are respectively shown in Figure 4. A schematic diagram of a junction of a plurality of pixel spaces adjacent to a light-emitting layer of a projection screen. Figure 5 is a schematic view of a laser projection system (Embodiment 4) of the present invention. Figure 6 is a simplified laser projection system of the present invention. Figure 7A-7K is a schematic view showing the first to eleventh structural forms of the projection screen in the present invention (Embodiment 6). Figure 7KA is a light shielding layer (790) in Figure 7K. Fig. 7KB is a schematic diagram of a concentrating layer (791) in Fig. 7K. Fig. 7L is a schematic view showing a twelfth structural type of a projection screen in the embodiment of the present invention. Fig. 8 is an enlarged display of the present invention. Laser projection system 800 (Embodiment 7) φ Schematic FIG. 8A is a laser projection system in FIG. Figure 8 is a cross-sectional side view of the laser projection system in parallel with the x_y plane. Figure 8C is a perspective view of the laser projection system (8〇〇) of the present invention in Figure 8 (or y_z) The relationship between the convex mirror and the expanded scanning angle when the convex mirror is placed at different positions. Fig. 9 is a view showing the second enlarged display laser projection system 9 (Embodiment 8) of the present invention. Main element symbol description] laser projection system 200, 300, 400, 500, 600, 800, 900 projection screens 201, 301, 401, 501, 601, 701, 702, 703, 704, 705, 201033723 706, 707, 708, 709, 710, 7U, 8 (H, 901 laser projectors 202, 302, 402, 502, 602 laser light source modules 210, 310, 410, 410, 810, 910 laser signal modulation module 220 320, 420, 520 light combining module 230, 330, 430, 530 rotating plane mirror module 240, 340, 440, 540, 820, 920 rotating plane mirror control module 250, 350, 450, 550 signal conversion module 260, 360, 460, 560 laser optical module 270, 370, 470, 570 substrate 23 232, 233 φ substrate 235 microparticles 2 36, 237, 238 first type laser light source module 311 second type laser light source module 312 light emitting layer 331 scattering layer 332 pixels 431, 441 subpixels 432-434, 442-444, 452- 455, 462-465 projection screen 700 is excited by light absorbing layer 720, 720A ❹ luminescent layer 730 excitation light absorbing layer 740
被激發光與散射光吸收層720B 散射層750 激發光反射層760 被激發光部分反射層770 被激發光與被散射光部分反射層780 部分遮光層790 聚光層791 遮光元件792 201033723 開口 793 聚光鏡794 晝素795 顯像層796 抗紫外線層797 雷射投影器80、90 投影幕801 凸面反射鏡830、930 平面鏡模組940Excited light and scattered light absorbing layer 720B Scattering layer 750 Excitation light reflecting layer 760 Excited light Partially reflective layer 770 Excited light and scattered light Partially reflective layer 780 Partial light shielding layer 790 Concentrating layer 791 Light blocking element 792 201033723 Opening 793 Condenser 794 昼 795 imaging layer 796 anti-ultraviolet layer 797 laser projector 80, 90 projection screen 801 convex mirror 830, 930 plane mirror module 940
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98141082A TW201033723A (en) | 2008-12-02 | 2009-12-01 | Laser projection system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97146832 | 2008-12-02 | ||
TW98141082A TW201033723A (en) | 2008-12-02 | 2009-12-01 | Laser projection system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201033723A true TW201033723A (en) | 2010-09-16 |
TWI454829B TWI454829B (en) | 2014-10-01 |
Family
ID=44855265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98141082A TW201033723A (en) | 2008-12-02 | 2009-12-01 | Laser projection system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201033723A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8879156B2 (en) | 2011-01-20 | 2014-11-04 | Wistron Corporation | Display system, head-up display, and kit for head-up displaying |
TWI472805B (en) * | 2013-07-15 | 2015-02-11 | Delta Electronics Inc | Autostereoscopic Display Device and Projecting Method using the same |
TWI485429B (en) * | 2013-08-16 | 2015-05-21 | Forward Electronics Co Ltd | Free-space dynamic diffractive projection apparatus |
TWI509343B (en) * | 2012-10-17 | 2015-11-21 | Ind Tech Res Inst | Lissajous dual-axial scan element and scan frequency generation method thereof |
US9563055B2 (en) | 2014-04-02 | 2017-02-07 | Industrial Technology Research Institute | Lissajous dual-axial scan component and scan frequency generation method thereof |
TWI581639B (en) * | 2012-05-15 | 2017-05-01 | 羅伯特博斯奇股份有限公司 | Lasermodul mit duochromatischer laserdiode fuer einen tragbaren bildprojektor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7102700B1 (en) * | 2000-09-02 | 2006-09-05 | Magic Lantern Llc | Laser projection system |
TW541834B (en) * | 2001-11-16 | 2003-07-11 | Ind Tech Res Inst | Laser projector |
US7070282B2 (en) * | 2003-06-25 | 2006-07-04 | Nikon Corporation | Projection type display apparatus |
EP1934652B1 (en) * | 2005-10-04 | 2012-02-22 | Philips Intellectual Property & Standards GmbH | A laser projection system based on a luminescent screen |
TW200904201A (en) * | 2007-07-06 | 2009-01-16 | Guo-Ren Chen | Miniature laser projector |
-
2009
- 2009-12-01 TW TW98141082A patent/TW201033723A/en not_active IP Right Cessation
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8879156B2 (en) | 2011-01-20 | 2014-11-04 | Wistron Corporation | Display system, head-up display, and kit for head-up displaying |
TWI581639B (en) * | 2012-05-15 | 2017-05-01 | 羅伯特博斯奇股份有限公司 | Lasermodul mit duochromatischer laserdiode fuer einen tragbaren bildprojektor |
TWI509343B (en) * | 2012-10-17 | 2015-11-21 | Ind Tech Res Inst | Lissajous dual-axial scan element and scan frequency generation method thereof |
TWI472805B (en) * | 2013-07-15 | 2015-02-11 | Delta Electronics Inc | Autostereoscopic Display Device and Projecting Method using the same |
US9454013B2 (en) | 2013-07-15 | 2016-09-27 | Delta Electronics, Inc. | Autostereoscopic display device and projecting method using the same |
TWI485429B (en) * | 2013-08-16 | 2015-05-21 | Forward Electronics Co Ltd | Free-space dynamic diffractive projection apparatus |
US9563055B2 (en) | 2014-04-02 | 2017-02-07 | Industrial Technology Research Institute | Lissajous dual-axial scan component and scan frequency generation method thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI454829B (en) | 2014-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010066110A1 (en) | Laser projection system | |
KR101329493B1 (en) | Multilayered fluorescent screens for scanning beam display systems | |
US8000005B2 (en) | Multilayered fluorescent screens for scanning beam display systems | |
JP6403216B2 (en) | Suppression of crosstalk in directional backlight | |
US20080018558A1 (en) | Electronic display with photoluminescent wavelength conversion | |
US7048385B2 (en) | Projection display systems utilizing color scrolling and light emitting diodes | |
US8469519B2 (en) | Projection apparatus providing reduced speckle artifacts | |
US8371697B2 (en) | Method for image projection, image projection apparatus and image projection screen | |
CN107015429B (en) | Multilayer screen for scanned beam display system | |
TW201215168A (en) | Projection display surface providing speckle reduction | |
TW201033723A (en) | Laser projection system | |
US8830577B2 (en) | Rollable display screen | |
CN102096295B (en) | laser projection system | |
TW200424735A (en) | Ambient light tolerant image projection method and system | |
TW200401160A (en) | Projection screen | |
CN108303839B (en) | A kind of laser projection lighting source and its optical projection system | |
US9366950B2 (en) | Method and projector for projecting an image onto a projection surface | |
JP2012220668A (en) | Transmission type screen and rear projection type display device | |
CN104898272B (en) | Rollable display screen splicing | |
US20150077713A1 (en) | Method and projector for projecting a 3d image onto a projection surface | |
US9291887B2 (en) | Rollable display screen quilt | |
WO2021106823A1 (en) | Display device and apparatus | |
CN116594250A (en) | Light source device and projection apparatus | |
JP2006215103A (en) | Stereoscopic image display panel and manufacturing method therefor and stereoscopic image display apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |