[go: up one dir, main page]

CN102075487B - Coding and modulation method, demodulation and decoding method and system based on multi-dimensional constellation mapping - Google Patents

Coding and modulation method, demodulation and decoding method and system based on multi-dimensional constellation mapping Download PDF

Info

Publication number
CN102075487B
CN102075487B CN 200910237769 CN200910237769A CN102075487B CN 102075487 B CN102075487 B CN 102075487B CN 200910237769 CN200910237769 CN 200910237769 CN 200910237769 A CN200910237769 A CN 200910237769A CN 102075487 B CN102075487 B CN 102075487B
Authority
CN
China
Prior art keywords
dimensional
constellation
constellation mapping
real number
perform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 200910237769
Other languages
Chinese (zh)
Other versions
CN102075487A (en
Inventor
杨知行
谢求亮
杨昉
彭克武
宋健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN 200910237769 priority Critical patent/CN102075487B/en
Publication of CN102075487A publication Critical patent/CN102075487A/en
Application granted granted Critical
Publication of CN102075487B publication Critical patent/CN102075487B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

The invention relates to a multidimensional constellation mapping based coding and modulating method, demodulating and decoding method and system. The coding and modulating method comprises the following steps of: carrying out channel coding and bit interleaving on input information bits to obtain coded interleaved bits; carrying out K-dimensional pulse amplitude modulated constellation mapping on the coded and interleaved bits to obtain a constellation mapping symbol of a K-dimensional real-number vector, wherein K is a positive integer; carrying out constellation rotation on the constellation mapping symbol to obtain a multidimensional rotated constellation mapping symbol of the K-dimensional real-number vector; and carrying out dimension conversion and general real-number interleaving on the multidimensional rotated constellation mapping symbol to obtain a coded and modulated symbol, and outputting the coded and modulated symbol. The method and system in the invention can ensure that the performances of a coding and modulating system and a corresponding demodulating and decoding system approach the channel capacity at medium and low frequency spectrum efficiency under the AWGN (Added White Gaussian Noise) and fading channel conditions and meanwhile, the throughput of the system is taken into consideration.

Description

基于多维星座映射的编码调制方法、解调解码方法及系统Coding and modulation method, demodulation and decoding method and system based on multi-dimensional constellation mapping

技术领域 technical field

本发明涉及数字信息传输领域,尤其涉及一种基于多维星座映射的编码调制方法、解调解码方法及系统。  The invention relates to the field of digital information transmission, in particular to a coding and modulation method, demodulation and decoding method and system based on multidimensional constellation mapping. the

背景技术 Background technique

数字通信系统,特别是无线通信系统的根本任务是利用有限带宽提供数字信息的高速、高效的无误传输。为了适应数字信息在常见模拟信道下的传输需求,信道编码技术通常需要与数字调制技术结合。编码调制技术是实现无线通信系统根本任务的有效方法和重要手段。信道编码与调制的结合构成编码调制系统,它是数字通信系统发射端的子系统,也是其核心模块之一,对应的编码调制技术也是数字通信系统的核心技术。与编码调制系统相对应,解调和信道解码的结合构成数字通信系统接收端的解调解码系统,对应的解调解码技术也是数字通信系统的核心技术。  The fundamental task of digital communication systems, especially wireless communication systems, is to provide high-speed, efficient and error-free transmission of digital information using limited bandwidth. In order to meet the transmission requirements of digital information on common analog channels, channel coding technology usually needs to be combined with digital modulation technology. Coding and modulation technology is an effective method and an important means to realize the fundamental task of the wireless communication system. The combination of channel coding and modulation constitutes a coded modulation system, which is a subsystem of the digital communication system transmitter and one of its core modules, and the corresponding coded modulation technology is also the core technology of the digital communication system. Corresponding to the coding and modulation system, the combination of demodulation and channel decoding constitutes the demodulation and decoding system at the receiving end of the digital communication system, and the corresponding demodulation and decoding technology is also the core technology of the digital communication system. the

一般来说,信道编码是针对无记忆信道设计和优化的,为了适应接收端的信道解码,提高编码调制系统的分集阶数(Diversity Order),最常见的手段是采用交织技术使得输入解调器和解码器的信息体现出近似无记忆特性。  Generally speaking, channel coding is designed and optimized for memoryless channels. In order to adapt to channel decoding at the receiving end and improve the diversity order of the coded modulation system, the most common method is to use interleaving technology to make the input demodulator and The information from the decoder exhibits an approximately memoryless property. the

所谓调制,表示对输入数据或信号进行变换处理,以得到适于信道传输的信号,包括各种模拟调制和数字调制技术。对典型的数字通信系统,数字调制技术主要包括星座映射技术以及后续处理技术,如多载波调制技术和成型滤波技术。所谓星座映射,就是将携带数字信息的有限域“比特”序列映射成适于传输的“符号”序列。每个符号的取值空间可以是一维实数空间、二维实数空间(即复数空间或复数平面)、或更高维的实数空间(例如多天线MIMO系统信号传输对应的 空间)。星座映射包含两个要素,即星座图和星座点映射方式。星座图代表星座映射输出符号的所有取值组成的集合,其中,星座图的每个点对应输出符号的一种取值。星座点映射方式代表输入比特(组)到星座点的特定映射关系,或者星座点到比特(组)的特定映射关系,通常每个星座点与一个比特或多个比特组成的比特组一一对应。目前最为常见以及实用的复数空间的星座图主要有QAM(QuadratureAmplitude Modulation,正交幅度调制)、PSK(Phase Shift Keying,相移键控)、和APSK(Amplitude-Phase Shift Keying,幅度相移键控)调制技术;实数空间的星座图主要为PAM(Pulse AmplitudeModulation,脉冲幅度调制)。在接收端的解码解调系统中,对应星座映射的是星座解映射,简称解映射。通常,星座解映射依据星座图和星座点映射方式,结合信道状态信息得到对应接收符号的一个或多个比特的比特软信息。  The so-called modulation means transforming input data or signals to obtain signals suitable for channel transmission, including various analog modulation and digital modulation techniques. For a typical digital communication system, the digital modulation technology mainly includes constellation mapping technology and subsequent processing technology, such as multi-carrier modulation technology and shaping filtering technology. The so-called constellation mapping is to map the finite field "bit" sequence carrying digital information into a "symbol" sequence suitable for transmission. The value space of each symbol can be a one-dimensional real number space, a two-dimensional real number space (that is, a complex number space or a complex number plane), or a higher-dimensional real number space (such as a space corresponding to signal transmission of a multi-antenna MIMO system). Constellation mapping includes two elements, namely constellation diagram and constellation point mapping method. The constellation diagram represents a set of all values of the output symbols of the constellation map, wherein each point of the constellation diagram corresponds to a value of the output symbol. The constellation point mapping method represents the specific mapping relationship between the input bit (group) and the constellation point, or the specific mapping relationship between the constellation point and the bit (group). Usually, each constellation point corresponds to a bit or a bit group composed of multiple bits. . At present, the most common and practical complex space constellation diagrams mainly include QAM (Quadrature Amplitude Modulation, Quadrature Amplitude Modulation), PSK (Phase Shift Keying, Phase Shift Keying), and APSK (Amplitude-Phase Shift Keying, amplitude phase shift keying) ) modulation technology; the constellation diagram of real number space is mainly PAM (Pulse Amplitude Modulation, pulse amplitude modulation). In the decoding and demodulation system at the receiving end, what corresponds to constellation mapping is constellation demapping, referred to as demapping. Usually, the constellation demapping is based on a constellation diagram and a constellation point mapping manner, combined with channel state information to obtain bit soft information of one or more bits corresponding to a received symbol. the

衡量编码调制技术的一个根本指标是:给定频谱效率和差错控制目标的条件下,所需信噪比门限距离信息论界的差距。频谱效率通常以星座图M维实数空间的每一维能传输的有效信息比特表示,例如,对于不加信道编码的传统64QAM系统,其频谱效率为3比特/符号/维度,其中,每星座符号由两维实数组成,可携带6比特信息。差错控制目标通常以比特错误率或者码字错误率(又称误块率)表示。信息论界通常以达到无误传输所需的最低信噪比表示。根据信息论基本知识,对于给定的编码调制系统以及给定的信道条件,信息论界(假设以信噪比表示)是频谱效率的单调递增函数,由频谱效率唯一确定。  A fundamental index to measure coding and modulation technology is: under the condition of given spectrum efficiency and error control target, the distance between the required signal-to-noise ratio threshold and the information theory circle. The spectral efficiency is usually represented by the effective information bits that can be transmitted in each dimension of the M-dimensional real number space of the constellation diagram. For example, for a traditional 64QAM system without channel coding, its spectral efficiency is 3 bits/symbol/dimension, where each constellation symbol It consists of two-dimensional real numbers and can carry 6 bits of information. The error control target is usually represented by bit error rate or code word error rate (also known as block error rate). The information theory community is usually expressed in terms of the minimum signal-to-noise ratio required to achieve error-free transmission. According to the basic knowledge of information theory, for a given coded modulation system and given channel conditions, the information theory boundary (assumed to be expressed in signal-to-noise ratio) is a monotonically increasing function of spectral efficiency, which is uniquely determined by spectral efficiency. the

编码调制技术的基础理论是香农信息论,主要是点对点的单用户信息论,其核心思想是:从互信息最大化的角度来看,在加性白高斯噪声(Additive White Gaussian Noise,AWGN)信道下,当发射功率受限时,只有当编码调制系统的输出满足白高斯分布时,才能达到信道容量。同时信息论中信道编码定理指出,只要传信率小于信道容量, 则必然存在无误传输的编码调制系统。然而基础理论只解决编码调制的存在性问题,如何构造一个逼近极限的切实可行的编码调制系统是数十年来通信领域一直努力追求的目标。  The basic theory of coding and modulation technology is Shannon information theory, which is mainly point-to-point single-user information theory. When the transmission power is limited, the channel capacity can only be achieved when the output of the coded modulation system satisfies the white Gaussian distribution. At the same time, the channel coding theorem in information theory points out that as long as the transmission rate is smaller than the channel capacity, there must be a coded modulation system for error-free transmission. However, the basic theory only solves the existence of coding and modulation. How to construct a feasible coding and modulation system approaching the limit has been the goal that the field of communication has been striving for for decades. the

对典型的功率和带宽均受限制的恶劣传输信道,如宽带无线移动通信和地面数字广播系统的传输信道,编码调制技术是传输可靠性和系统频谱效率的重要保证,因此,最新的宽带无线移动通信和地面数字广播系统采用的作为工业界标准的编码调制技术代表了当前实际应用的编码调制技术的最高水平。欧洲第二代地面数字电视广播标准(DVB-T2)采用了低密度奇偶校验(Low Density Parity Check,LDPC)编码技术、比特交织技术、和高阶QAM调制技术(包括星座旋转技术和IQ交织技术);欧洲第二代卫星数字电视广播标准(DVB-S2)采用了比特交织技术、LDPC编码技术、和高阶APSK调制技术;3GPP组织的LTE V8.1提案采用了Turbo编码技术、比特交织技术、和高阶QAM调制技术。  For typical poor transmission channels with limited power and bandwidth, such as transmission channels of broadband wireless mobile communication and terrestrial digital broadcasting systems, coded modulation technology is an important guarantee for transmission reliability and system spectral efficiency. Therefore, the latest broadband wireless mobile The coding and modulation technology adopted by the communication and terrestrial digital broadcasting system as an industry standard represents the highest level of the coding and modulation technology currently used in practice. The second-generation terrestrial digital television broadcasting standard in Europe (DVB-T2) adopts low density parity check (Low Density Parity Check, LDPC) coding technology, bit interleaving technology, and high-order QAM modulation technology (including constellation rotation technology and IQ interleaving technology) technology); the European second-generation satellite digital TV broadcasting standard (DVB-S2) adopts bit interleaving technology, LDPC coding technology, and high-order APSK modulation technology; the LTE V8.1 proposal organized by 3GPP adopts Turbo coding technology, bit interleaving technology technology, and high-order QAM modulation technology. the

在学术界,经过几十年的发展,编码调制技术取得了长足发展,最为典型的当数G.Ungerboeck提出网格编码调制(Trellis CodedModulation,TCM),参见文献G.Ungerboeck.“Channel coding withmultilevel phase signals.”IEEE Trans.Inform.Theory,no.28,pp55-67,1982.),以及E.Zehavi提出的比特交织编码调制(Bit-InterleavedCoded Modulation,BICM),参见文献E.Zehavi,“8PSK trellis codes fora Rayleigh channel,”IEEE Trans.Commun.,vol.40,no.5,pp.873-884,May 1992。TCM通过最大化欧氏距离,使得其在AWGN信道下性能表现优异,但是在衰落信道下并不理想;而BICM则刚好相反,其在AWGN信道下较TCM有所损失,但在衰落信道下有不俗的表现。接收端迭代解映射和解码的BICM系统,即BICM-ID系统(BICM withIterative Demapping and Decoding,简称BICM-ID)由Xiaodong Li等人和Ten Brink等人独立提出,参见文献X.Li and J.A.Ritcey, “Bit-interleaved coded modulation with iterative decoding using softfeedback,”Electronics Letters,vol.34,no.10,pp.942-943,May 1998.和S.T.Brink,J.Speidel,and R.-H.Yan,“Iterative demapping and decodingfor multilevel modulation,”in Globecom’98,1998,pp.579-584.BICM-ID系统通过将解码输出的信息反馈回来作为解映射的先验信息,增大了欧氏距离,从而在AWGN信道下获得了与TCM同样好的误码性能。但是,传统BICM-ID有一个较高的误码平台,这是因为即使所有反馈的比特信息都是无误的,系统的误码率依然由外码的特性(对于线性码,主要取决于码本中最小非零码重及其个数)和解映射时的Harmonic欧氏距离决定,而传统码字的最小码距较小且其对应的个数非常多。  In academia, after decades of development, coded modulation technology has made great progress. The most typical one is Trellis Coded Modulation (TCM) proposed by G.Ungerboeck. See the literature G.Ungerboeck."Channel coding with multilevel phase signals." IEEE Trans.Inform.Theory, no.28, pp55-67, 1982.), and Bit-Interleaved Coded Modulation (BICM) proposed by E.Zehavi, see E.Zehavi, "8PSK trellis codes for a Rayleigh channel," IEEE Trans. Commun., vol.40, no.5, pp.873-884, May 1992. By maximizing the Euclidean distance, TCM has excellent performance in AWGN channels, but it is not ideal in fading channels; BICM is just the opposite, it has a loss compared with TCM in AWGN channels, but has Not bad performance. The BICM system for iterative demapping and decoding at the receiving end, that is, the BICM-ID system (BICM with Iterative Demapping and Decoding, BICM-ID for short) was independently proposed by Xiaodong Li et al. and Ten Brink et al., see literature X.Li and J.A.Ritcey, "Bit-interleaved coded modulation with iterative decoding using softfeedback," Electronics Letters, vol.34, no.10, pp.942-943, May 1998. and S.T.Brink, J.Speidel, and R.-H.Yan, " Iterative demapping and decoding for multilevel modulation," in Globecom'98, 1998, pp.579-584. The BICM-ID system increases the Euclidean distance by feeding back the decoded output information as the prior information for demapping, thus in Under the AWGN channel, the bit error performance is as good as that of TCM. However, the traditional BICM-ID has a high error platform, because even if all the feedback bit information is correct, the bit error rate of the system is still determined by the characteristics of the outer code (for linear codes, it mainly depends on the codebook The minimum non-zero code weight and its number) and the Harmonic Euclidean distance during demapping are determined, while the minimum code distance of the traditional codeword is small and its corresponding number is very large. the

然而,通常来说BICM-ID系统需要采用高阶星座映射以更好地通过迭代解映射传递信息,因此BICM-ID系统通常便于提供较高的频谱效率。为了使得BICM-ID系统满足低频谱效率的需求,一种方法是在BICM-ID系统中采用低码率的外码(比如采用1/4码率的码字),另一种方法就是采用多维星座图。同时,传统的BICM-ID系统的鲁棒性不够,即不能适用于多种信道传输条件,比如在AWGN信道下性能优秀的BICM-ID系统在衰落信道下表现不佳。信号空间分集(Signal Space Diversity,SSD)技术最先由J.Boutros提出(参见J.Boutros and E.Biterbo,“Signal space diversity:a power-andbandwidth-efficient diversity technique for the Rayleigh fading channel,”IEEE Trans.Inform.Theory,vol.44,no.4,pp.1453-1467,July 1998.),结合适当的星座图旋转可以有效对抗衰落,但其中最优旋转矩阵一直是个公开的难题。SSD技术的基本操作为:将经过星座旋转后信号的每一维坐标进行交织,然后重新组合成所需维数的信号后送给后端模块。通过坐标交织(Coordinate Interleaving),SSD使得衰落信道下原本属于同一个符号中的各维度经历了独立衰落,结合星座图旋转可以有效提高分集阶数。  However, generally speaking, the BICM-ID system needs to adopt high-order constellation mapping to better transfer information through iterative demapping, so the BICM-ID system is usually convenient to provide higher spectral efficiency. In order to make the BICM-ID system meet the requirements of low spectral efficiency, one method is to use a low code rate outer code (such as a 1/4 code word) in the BICM-ID system, and another method is to use multi-dimensional Constellation. At the same time, the robustness of the traditional BICM-ID system is not enough, that is, it cannot be applied to a variety of channel transmission conditions. For example, the BICM-ID system with excellent performance in the AWGN channel does not perform well in the fading channel. Signal Space Diversity (SSD) technology was first proposed by J.Boutros (see J.Boutros and E.Biterbo, "Signal space diversity: a power-andbandwidth-efficient diversity technique for the Rayleigh fading channel," IEEE Trans .Inform.Theory, vol.44, no.4, pp.1453-1467, July 1998.), combined with appropriate constellation diagram rotation can effectively combat fading, but the optimal rotation matrix has always been an open problem. The basic operation of SSD technology is to interleave the coordinates of each dimension of the signal after the constellation rotation, and then recombine the signal with the required dimension and send it to the back-end module. Through coordinate interleaving (Coordinate Interleaving), SSD makes each dimension in the same symbol under the fading channel experience independent fading, and the combination of constellation diagram rotation can effectively improve the diversity order. the

发明内容 Contents of the invention

本发明的目的是提供一种基于多维星座映射的编码调制方法、解调解码方法及系统,该方法及系统可在AWGN和衰落信道条件下,使得编码调制系统的及其对应的解调解码系统的性能在中低频谱效率下均逼近信道容量,同时兼顾系统的吞吐能力,可克服现有技术的不足。  The purpose of the present invention is to provide a coding and modulation method, demodulation and decoding method and system based on multi-dimensional constellation mapping. The method and system can make the coding and modulation system and its corresponding demodulation and decoding system under AWGN and fading channel conditions The performance of the method is close to the channel capacity under medium and low spectral efficiencies, while taking into account the throughput of the system, which can overcome the shortcomings of the existing technology. the

为实现上述目的,本发明采用如下技术方案。  In order to achieve the above object, the present invention adopts the following technical solutions. the

本发明提供的一种基于多维星座映射的编码调制及解调解码方法,其中编码调制方法包括步骤:  A kind of code modulation and demodulation decoding method based on multi-dimensional constellation mapping provided by the present invention, wherein the code modulation method comprises steps:

S1.对输入信息比特进行信道编码及比特交织,得到编码交织比特;  S1. Perform channel coding and bit interleaving on the input information bits to obtain coded interleaved bits;

S2.对所述编码交织比特进行已旋转的K维脉冲幅度调制星座映射,或进行K维脉冲幅度调制星座映射及星座旋转,得到多维已旋转星座映射符号,其中,K为正整数;  S2. Performing rotated K-dimensional pulse amplitude modulation constellation mapping on the coded interleaving bits, or performing K-dimensional pulse amplitude modulation constellation mapping and constellation rotation, to obtain multi-dimensional rotated constellation mapping symbols, wherein K is a positive integer;

S3.对所述多维已旋转星座映射符号进行维数转换及通用实数交织,得到编码调制符号并输出;  S3. Perform dimension conversion and general real number interleaving on the multi-dimensional rotated constellation mapping symbols to obtain coded modulation symbols and output them;

其中解调解码方法包括步骤:  Wherein the demodulation decoding method comprises steps:

S4.利用外部输入的信道状态信息的相位信息,对接收信号进行相位校正;  S4. Use the phase information of the externally input channel state information to perform phase correction on the received signal;

S5.对所述相位校正后的信号进行维数转换和通用实数解交织,得到解交织信号,对外部输入的信道状态信息的幅度信息也进行通用实数解交织;  S5. Perform dimension conversion and general real number deinterleaving on the phase-corrected signal to obtain a deinterleaved signal, and also perform general real number deinterleaving on the amplitude information of the externally input channel state information;

S6.若为第一次解映射,则直接对所述解交织信号进行多维已旋转星座的解映射,得到解映射后软信息,否则,利用上一次信道解码输出的外信息作为先验信息,进行多维已旋转星座的解映射,得到解映射后软信息;  S6. If it is the first demapping, directly perform demapping of the multi-dimensional rotated constellation on the deinterleaved signal to obtain soft information after demapping, otherwise, use the external information output by the last channel decoding as prior information, Perform demapping of the multi-dimensional rotated constellation to obtain soft information after demapping;

S7.对所述解映射后软信息进行解交织及信道解码;  S7. Perform deinterleaving and channel decoding on the demapped soft information;

S8.若达到设定迭代次数或信道解码校验成功,则输出信道解码结果,否则,对信道解码结果进行再交织,得到信道解码输出的外信息,并返回步骤S6。  S8. If the set number of iterations is reached or the channel decoding verification is successful, output the channel decoding result; otherwise, re-interleave the channel decoding result to obtain the external information output by the channel decoding, and return to step S6. the

其中,步骤S2进一步包括:  Wherein, step S2 further includes:

S2.1对K维脉冲幅度调制星座点进行星座旋转,得到已旋转的K维脉冲幅度调制星座点;  S2.1 Carry out constellation rotation on the K-dimensional pulse amplitude modulation constellation point to obtain the rotated K-dimensional pulse amplitude modulation constellation point;

S2.2对所述编码交织比特进行已旋转的K维脉冲幅度调制星座映射,得到K维实数向量的多维已旋转星座映射符号;  S2.2 Carry out the rotated K-dimensional pulse amplitude modulation constellation mapping on the coded interleaved bits, and obtain the multi-dimensional rotated constellation mapping symbols of the K-dimensional real number vector;

或包括:  or include:

S2.1对所述编码交织比特进行K维脉冲幅度调制星座映射,得到K维实数向量的星座映射符号;  S2.1 performs K-dimensional pulse amplitude modulation constellation mapping on the coded interleaving bits to obtain constellation mapping symbols of K-dimensional real number vectors;

S2.2对所述星座映射符号进行星座旋转,得到K维实数向量的多维已旋转星座映射符号。  S2.2 Perform constellation rotation on the constellation mapping symbols to obtain multi-dimensional rotated constellation mapping symbols of K-dimensional real number vectors. the

其中,步骤S2中:当K=1时,所述星座映射为脉冲幅度调制星座映射;当K=2时,所述星座映射为正交幅度调制星座映射;当K=3时,所述星座映射为三维脉冲幅度调制星座映射;当K=4时,所述星座映射为四维脉冲幅度调制星座映射。  Wherein, in step S2: when K=1, the constellation mapping is pulse amplitude modulation constellation mapping; when K=2, the constellation mapping is quadrature amplitude modulation constellation mapping; when K=3, the constellation The mapping is a three-dimensional pulse amplitude modulation constellation mapping; when K=4, the constellation mapping is a four-dimensional pulse amplitude modulation constellation mapping. the

其中,步骤S2.2中,所述星座旋转的方法为使用满秩矩阵对所述K维实数向量进行矩阵变换。  Wherein, in step S2.2, the constellation rotation method is to use a full-rank matrix to perform matrix transformation on the K-dimensional real number vector. the

其中,所述满秩矩阵为正交矩阵。  Wherein, the full-rank matrix is an orthogonal matrix. the

K=2时,所述正交矩阵为 R = a b - b a , 其中, a = 1 / 1 + λ 2 , b = λ / 1 + λ 2 , λ为实数;  When K=2, the orthogonal matrix is R = a b - b a , in, a = 1 / 1 + λ 2 , b = λ / 1 + λ 2 , λ is a real number;

K=3时,所述正交矩阵为 R = a b c b c a - c - a - b , 其中,a=(1+λ)/(1+λ+λ2),b=(λ+λ2)/(1+λ+λ2),c=-λ/(1+λ+λ2),λ为实数;  When K=3, the orthogonal matrix is R = a b c b c a - c - a - b , Among them, a=(1+λ)/(1+λ+λ 2 ), b=(λ+λ 2 )/(1+λ+λ 2 ), c=-λ/(1+λ+λ 2 ) , λ is a real number;

K=4时,所述正交矩阵为 R = M 1 - M 2 M 2 M 1 , 其中, M 1 = a b - b a , M 2 = c d - d c , a = 1 1 + γ 2 · 1 1 + λ 2 , b = 1 1 + γ 2 · λ 1 + λ 2 , c = γ 1 + γ 2 · 1 1 + λ 2 , d = γ 1 + γ 2 · λ 1 + λ 2 , λ、γ均为实数。  When K=4, the orthogonal matrix is R = m 1 - m 2 m 2 m 1 , in, m 1 = a b - b a , m 2 = c d - d c , and a = 1 1 + γ 2 &Center Dot; 1 1 + λ 2 , b = 1 1 + γ 2 &Center Dot; λ 1 + λ 2 , c = γ 1 + γ 2 · 1 1 + λ 2 , d = γ 1 + γ 2 · λ 1 + λ 2 , Both λ and γ are real numbers.

其中,步骤S3进一步包括:  Wherein, step S3 further includes:

S31.对所述多维已旋转星座映射符号进行维数转换,得到第一一维实数符号;  S31. Perform dimension conversion on the multi-dimensional rotated constellation mapping symbol to obtain a first one-dimensional real number symbol;

S32.对所述第一一维实数符号进行通用实数交织,得到第二一维实数符号;  S32. Perform universal real number interleaving on the first one-dimensional real number symbol to obtain a second one-dimensional real number symbol;

S33.对所述第二一维实数符号进行维数转换,得到编码调制符号,并输出。  S33. Perform dimension conversion on the second one-dimensional real number symbols to obtain coded modulation symbols, and output them. the

其中,步骤S3中,所述维数转换将输入的Kin维实数向量转换为Kout维实数向量,其方法为,将Nin个Kin维实数向量每一维上所有的共NinKin个实数符号重新组成Nout个Kout维实数向量,其中,NinKin=NoutKout,Kin和Kout为正整数。  Wherein , in step S3, the dimension conversion converts the input K in- dimensional real number vector into a K out- dimensional real number vector. in real number symbols recompose N out K out dimensional real number vectors, where N in K in =N out K out , K in and K out are positive integers.

本发明还提供一种基于多维星座映射的编码调制及解调解码系统,其中编码调制系统包括:  The present invention also provides a coding modulation and demodulation decoding system based on multi-dimensional constellation mapping, wherein the coding modulation system includes:

编码交织模块,用于对输入信息比特进行信道编码及比特交织,得到编码交织比特;  Encoding and interleaving module, used to perform channel encoding and bit interleaving on input information bits to obtain encoded and interleaved bits;

星座映射模块,用于对所述编码交织比特进行已旋转的K维脉冲幅度调制星座映射,或进行K维脉冲幅度调制星座映射及星座旋转,得到多维已旋转星座映射符号,其中,K为正整数;  The constellation mapping module is used to perform rotated K-dimensional pulse amplitude modulation constellation mapping on the coded interleaved bits, or perform K-dimensional pulse amplitude modulation constellation mapping and constellation rotation to obtain multi-dimensional rotated constellation mapping symbols, wherein K is positive integer;

维数转换及交织模块,用于对所述多维已旋转星座映射符号进行维数转换及通用实数交织,得到编码调制符号并输出;  A dimension conversion and interleaving module, used to perform dimension conversion and general real number interleaving on the multi-dimensional rotated constellation mapping symbols to obtain coded modulation symbols and output them;

其中解调解码系统包括:  The demodulation and decoding system includes:

相位校正模块,用于利用外部输入的信道状态信息的相位信息,对接收信号进行相位校正;  The phase correction module is used to use the phase information of the externally input channel state information to perform phase correction on the received signal;

维数逆转换及解交织模块,用于对所述相位校正后的信号进行维 数转换和通用实数解交织,得到解交织信号,对外部输入的信道状态信息的幅度信息也进行通用实数解交织;  Dimensional inverse conversion and deinterleaving module, used to perform dimensional conversion and general real number deinterleaving on the phase corrected signal to obtain deinterleaved signals, and also perform general real number deinterleaving to the amplitude information of the externally input channel state information ;

解映射模块,若为第一次解映射,则直接对所述解交织信号进行多维已旋转星座解映射,得到解映射后软信息,否则,利用上一次信道解码输出的外信息作为先验信息,进行多维已旋转星座的解映射,得到解映射后软信息;  The demapping module, if it is the first demapping, directly performs multi-dimensional rotated constellation demapping on the deinterleaved signal to obtain soft information after demapping, otherwise, uses the extrinsic information output by the last channel decoding as prior information , carry out the demapping of the multi-dimensional rotated constellation, and obtain the soft information after demapping;

解交织解码模块,用于对所述解映射后软信息进行解交织及信道解码,得到信道解码结果;  Deinterleaving and decoding module, used to perform deinterleaving and channel decoding on the demapped soft information to obtain channel decoding results;

控制模块,若达到设定迭代次数或信道解码校验成功,则输出信道解码结果,否则,将信道解码输出的外信息进行再交织,作为先验信息,反馈给解映射模块。  The control module outputs the channel decoding result if the set number of iterations is reached or the channel decoding verification is successful; otherwise, the external information output by the channel decoding is re-interleaved as prior information and fed back to the demapping module. the

本发明的方法及系统通过使用多维脉冲幅度调制星座图的星座旋转技术并结合维数转换的通用实数交织技术,极大地提高了衰落信道下的分集阶数;结合接收端解调解码方法,使得BICM-ID系统在中低频谱效率时、多种信道条件下逼近信道容量。  The method and system of the present invention greatly improve the diversity order under fading channels by using the constellation rotation technology of the multi-dimensional pulse amplitude modulation constellation diagram combined with the general real number interleaving technology of dimension conversion; combined with the demodulation and decoding method at the receiving end, it makes The BICM-ID system approaches the channel capacity under various channel conditions when the spectral efficiency is low or medium. the

附图说明Description of drawings

图1为依照本发明一种实施方式的基于多维星座映射的编码调制方法流程图;  Fig. 1 is a flow chart of a coding and modulation method based on multidimensional constellation mapping according to an embodiment of the present invention;

图2为依照本发明一种实施方式的基于多维星座映射的解调解码方法流程图;  Fig. 2 is a flow chart of a demodulation and decoding method based on multi-dimensional constellation mapping according to an embodiment of the present invention;

图3为依照本发明一种实施方式的3D-2PAM编码调制的星座图;  Fig. 3 is the constellation diagram according to the 3D-2PAM coding modulation of an embodiment of the present invention;

图4为依照本发明一种实施方式的3D-2PAM编码调制系统在独立Rayleigh衰落信道下和不同λ取值下的互信息;  Fig. 4 is the mutual information under the independent Rayleigh fading channel and different λ values of the 3D-2PAM coded modulation system according to an embodiment of the present invention;

图5为依照本发明一种实施方式的基于最优变换矩阵的编码调制系统在独立Rayleigh衰落信道下的互信息;  Fig. 5 is the mutual information under independent Rayleigh fading channel of the coding modulation system based on optimal transformation matrix according to an embodiment of the present invention;

图6为实施例1的采用多维星座图的BICM-ID发射端编码调制系统框图;  Fig. 6 is the block diagram of the BICM-ID transmitting end coded modulation system adopting the multi-dimensional constellation diagram of embodiment 1;

图7为实施例1的采用多维星座图的BICM-ID接收端解调解码系统框图;  Fig. 7 is the block diagram of the demodulation and decoding system of the BICM-ID receiving end adopting the multi-dimensional constellation diagram of embodiment 1;

图8(a)-图8(b)为实施例2中采用级联信道编码的BICM-ID系统发射端的编码调制方框图;  Figure 8(a)-Figure 8(b) is a block diagram of encoding and modulation at the transmitting end of the BICM-ID system using cascaded channel encoding in Embodiment 2;

图9为依照本发明一种实施方式的基于最优变换矩阵的编码调制系统的误码性能;  Fig. 9 is the bit error performance of the coding and modulation system based on the optimal transformation matrix according to an embodiment of the present invention;

图10(a)-图10(b)实施例3中采用级联信道编码的BICM-ID系统发射端的编码调制方框图。  Fig. 10(a) - Fig. 10(b) is a block diagram of coding and modulation at the transmitting end of the BICM-ID system using concatenated channel coding in Embodiment 3. the

具体实施方式Detailed ways

本发明提出的基于多维星座映射的编码调制方法、解调解码方法及系统,结合附图和实施例说明如下。  The encoding and modulation method, demodulation and decoding method and system based on multi-dimensional constellation mapping proposed by the present invention are described as follows in conjunction with the accompanying drawings and embodiments. the

如图1所示,依照本发明一种实施方式的基于多维星座映射的编码调制方法包括步骤:  As shown in Figure 1, a coding and modulation method based on multidimensional constellation mapping according to an embodiment of the present invention includes steps:

S1.对输入信息比特进行信道编码及比特交织,得到编码交织比特;  S1. Perform channel coding and bit interleaving on the input information bits to obtain coded interleaved bits;

其中,信道编码方法包括奇偶校验编码、CRC编码、BCH分组编码、RS分组编码、卷积码、凿孔卷积码、Turbo编码、LDPC编码、串行级联信道编码、并行级联信道编码、或以上各种编码方式的组合。  Among them, the channel coding methods include parity check coding, CRC coding, BCH block coding, RS block coding, convolutional code, punctured convolutional code, Turbo coding, LDPC coding, serial concatenated channel coding, parallel concatenated channel coding , or a combination of the above encoding methods. the

S2.对编码交织比特进行已旋转的K维脉冲幅度调制星座映射,或进行K维脉冲幅度调制星座映射及星座旋转,得到多维已旋转星座映射符号,其中,K为正整数;  S2. Carry out rotated K-dimensional pulse amplitude modulation constellation mapping on coded interleaving bits, or perform K-dimensional pulse amplitude modulation constellation mapping and constellation rotation to obtain multi-dimensional rotated constellation mapping symbols, wherein K is a positive integer;

其中,步骤S2进一步包括:  Wherein, step S2 further includes:

S2.1对K维脉冲幅度调制星座点进行星座旋转,得到已旋转的K维脉冲幅度调制星座点;  S2.1 Carry out constellation rotation on the K-dimensional pulse amplitude modulation constellation point to obtain the rotated K-dimensional pulse amplitude modulation constellation point;

S2.2对编码交织比特进行已旋转的K维脉冲幅度调制星座映射,得到K维实数向量的多维已旋转星座映射符号;  S2.2 Carry out the rotated K-dimensional pulse amplitude modulation constellation mapping on the encoded interleaved bits, and obtain the multi-dimensional rotated constellation mapping symbol of the K-dimensional real number vector;

或包括:  or include:

S2.1对编码交织比特进行K维脉冲幅度调制星座映射,得到K维实数向量的星座映射符号;  S2.1 Carry out K-dimensional pulse amplitude modulation constellation mapping on coded interleaving bits, and obtain the constellation mapping symbols of K-dimensional real number vectors;

S2.2对星座映射符号进行星座旋转,得到K维实数向量的多维已旋转星座映射符号。  S2.2 Perform constellation rotation on the constellation mapping symbols to obtain multi-dimensional rotated constellation mapping symbols of K-dimensional real number vectors. the

多维脉冲幅度调制星座映射(记为KD-PAM,其中K表示维数)是一种将比特或比特组规则映射到多维实数空间点的星座映射,其每一维均为传统的脉冲幅度调制星座映射(即PAM)。当维数K=1时,KD-PAM即为传统PAM;当K=2时,KD-PAM即为传统QAM;当K=3时,记每一维含有n个星座点的3D-PAM星座图为3D-nPAM;以下叙述中星座图集合的大小(即星座点数)用字母M表示,通常M=nK。一种简单有效的多维星座图构建方式是:直接扩展一维星座图至K维(K>1),即可得到K维脉冲幅度调制星座图(简称为KD-PAM),其中K=2时即可得到K维脉冲幅度调制星座图(2D-PAM),即QAM星座图。结合SSD技术,一维星座图扩展得到的多维星座图通常进行星座图旋转(等效为星座点旋转,简称星座旋转),可提高BICM-ID系统在衰落信道下的性能。  Multidimensional pulse amplitude modulation constellation mapping (denoted as KD-PAM, where K represents the dimension) is a constellation mapping that regularly maps bits or groups of bits to multidimensional real number space points, each of which is a traditional pulse amplitude modulation constellation mapping (i.e. PAM). When the dimension K=1, KD-PAM is traditional PAM; when K=2, KD-PAM is traditional QAM; when K=3, record the 3D-PAM constellation with n constellation points in each dimension The figure is 3D-nPAM; the size of the constellation diagram set (ie, the number of constellation points) in the following description is represented by the letter M, usually M=n K . A simple and effective way to construct a multi-dimensional constellation diagram is: directly expand the one-dimensional constellation diagram to K-dimensional (K>1), and then obtain a K-dimensional pulse amplitude modulation constellation diagram (KD-PAM for short), where K=2 The K-dimensional pulse amplitude modulation constellation diagram (2D-PAM), that is, the QAM constellation diagram, can be obtained. Combined with SSD technology, the multi-dimensional constellation obtained by extending the one-dimensional constellation is usually rotated by constellation rotation (equivalent to constellation point rotation, referred to as constellation rotation), which can improve the performance of the BICM-ID system in fading channels.

用于星座映射的比特组包含的比特数m由星座点数M决定,对于等概率星座映射,m=log2(M)。对M=2的特例,得到m=1,即比特组只包含一个比特。K维实数空间的每个星座点是K个实数组成的K维实数向量(即K维实数符号),以x=[x1 x2…xK]表示,其中xi(1≤i≤K)为实数。  The number m of bits included in the bit group used for constellation mapping is determined by the number of constellation points M, and for equal-probability constellation mapping, m=log 2 (M). For the special case of M=2, m=1 is obtained, that is, the bit group contains only one bit. Each constellation point in the K-dimensional real number space is a K-dimensional real number vector (that is, a K-dimensional real number symbol) composed of K real numbers, represented by x=[x 1 x 2 …x K ], where x i (1≤i≤K ) is a real number.

S3.对步骤S2得到的星座映射符号进行星座旋转,得到K维实数向量的多维已旋转星座映射符号;  S3. Perform constellation rotation on the constellation mapping symbols obtained in step S2 to obtain multi-dimensional rotated constellation mapping symbols of K-dimensional real number vectors;

星座旋转的方法为使用变换矩阵(即星座旋转矩阵)R对K维实数向量α进行矩阵变换,得到新的K维实数向量β,即  The method of constellation rotation is to use the transformation matrix (that is, the constellation rotation matrix) R to perform matrix transformation on the K-dimensional real number vector α to obtain a new K-dimensional real number vector β, namely

β=αR, 

Figure DEST_PATH_GDA00002362765600071
β=αR,
Figure DEST_PATH_GDA00002362765600071

其中α=[α1 α2…αk]是星座旋转前的K维实数向量,β=[β1 β2…βk]是星座旋转后的K维实数向量。经过星座旋转后向量的每一维,即βi,均由星座旋转前向量α的K维分量经线性组合得到,因此星座旋转可以有效地提高整个系统的分集阶数。变换矩阵R是满秩矩阵,并且为了保证星座旋转前后符号的平均能量及空间结构特性的一致,变换矩阵R优选正交矩阵,例如可以选择K维实数空间中一组正交基的K个正交向量作为变换矩阵R的K行或K列。不进行星座旋转是星座旋转的一个特例,此时,变换矩阵为单位矩阵。  Where α=[α 1 α 2 …α k ] is the K-dimensional real number vector before constellation rotation, and β=[β 1 β 2 …β k ] is the K-dimensional real number vector after constellation rotation. Each dimension of the vector after constellation rotation, ie β i , is obtained by linear combination of the K-dimensional components of vector α before constellation rotation, so constellation rotation can effectively improve the diversity order of the entire system. The transformation matrix R is a full-rank matrix, and in order to ensure the consistency of the average energy and spatial structure characteristics of the symbols before and after constellation rotation, the transformation matrix R is preferably an orthogonal matrix. The intersection vector serves as K rows or K columns of the transformation matrix R. Not performing constellation rotation is a special case of constellation rotation, and at this time, the transformation matrix is the identity matrix.

当K=2时,正交矩阵优选为 R = a b - b a When K=2, the orthogonal matrix is preferably R = a b - b a

其中, a = 1 / 1 + λ 2 , b = λ / 1 + λ 2 , λ为实数;  in, a = 1 / 1 + λ 2 , b = λ / 1 + λ 2 , λ is a real number;

当K=3时,正交矩阵优选为 R = a b c b c a - c - a - b When K=3, the orthogonal matrix is preferably R = a b c b c a - c - a - b

其中,a=(1+λ)/(1+λ+λ2),b=(λ+λ2)/(1+λ+λ2),c=-λ/(1+λ+λ2),λ为实数;  Among them, a=(1+λ)/(1+λ+λ 2 ), b=(λ+λ 2 )/(1+λ+λ 2 ), c=-λ/(1+λ+λ 2 ) , λ is a real number;

当K=4时,正交矩阵优选为 R = M 1 - M 2 M 2 M 1 When K=4, the orthogonal matrix is preferably R = m 1 - m 2 m 2 m 1

其中, M 1 = a b - b a , M 2 = c d - d c , a = 1 1 + γ 2 · 1 1 + λ 2 , b = 1 1 + γ 2 · λ 1 + λ 2 , c = γ 1 + γ 2 · 1 1 + λ 2 , d = γ 1 + γ 2 · λ 1 + λ 2 , λ、γ均为实数。  in, m 1 = a b - b a , m 2 = c d - d c , and a = 1 1 + γ 2 · 1 1 + λ 2 , b = 1 1 + γ 2 · λ 1 + λ 2 , c = γ 1 + γ 2 · 1 1 + λ 2 , d = γ 1 + γ 2 &Center Dot; λ 1 + λ 2 , Both λ and γ are real numbers.

S3.对步骤S2得到的多维已旋转星座映射符号进行维数转换及通用实数交织,得到编码调制符号并输出。  S3. Perform dimension conversion and general real number interleaving on the multi-dimensional rotated constellation mapping symbols obtained in step S2 to obtain coded modulation symbols and output them. the

维数转换将输入的Kin维实数向量转换为Kout维实数向量,其方法为,将Nin个Kin维实数向量每一维上所有的共NinKin个实数符号重新组成Nout个Kout维实数向量,其中,NinKin=NoutKout,Kin和Kout为正整数。  Dimension conversion transforms the input K in- dimensional real number vector into a K out- dimensional real number vector. The method is to recompose all N in K in real number symbols on each dimension of the N in K in- dimensional real number vectors into N out A K out dimensional real number vector, where N in K in =N out K out , K in and K out are positive integers.

定义频谱效率r为平均每个符号每个维度传输的信息比特数,单位为“比特每符号每维度(bits/sym/dim)”。对码率为rate的信道编码和M点的K维等概率星座映射,频谱效率为  Define the spectral efficiency r as the average number of information bits transmitted per symbol per dimension, and the unit is "bits per symbol per dimension (bits/sym/dim)". For channel coding with code rate rate and K-dimensional equal-probability constellation mapping of M points, the spectral efficiency is

r=rate*m/K (bits/sym/dim)  r=rate*m/K (bits/sym/dim)

实际通常每次传输一个复数信号,即二维实数信号,因此每个维度频谱效率为r意味着每次传输所携带的信息比特数为2r,即2r bits/channel use,通常对应着编码调制系统频谱效率为2r bits/s/Hz。针对不同的频谱效率需求,通常选择M=2m个星座点,其中m为正整数。  In practice, a complex signal is usually transmitted each time, that is, a two-dimensional real signal. Therefore, the spectral efficiency of each dimension is r, which means that the number of information bits carried by each transmission is 2r, that is, 2r bits/channel use, which usually corresponds to the coded modulation system. The spectral efficiency is 2r bits/s/Hz. For different spectrum efficiency requirements, M=2 m constellation points are usually selected, where m is a positive integer.

其中,步骤S1可进一步包括:  Wherein, step S1 may further include:

S11.对输入信息比特进行第一分量码编码或第一分量码组编码,得到第一编码比特;  S11. Perform first component code encoding or first component code group encoding on the input information bits to obtain the first encoded bits;

S12.对输入信息比特进行比特交织,再进行第二分量码或第二分量码组编码,得到第二编码比特;  S12. Perform bit interleaving on the input information bits, and then encode the second component code or the second component code group to obtain the second coded bits;

S13.合并第一编码比特及第二编码比特,得到编码交织比特。  S13. Combine the first coded bits and the second coded bits to obtain coded interleaved bits. the

步骤S1还可进一步包括:  Step S1 can further include:

S11’.对输入信息比特进行第一分量码或第一分量码组编码,得到第一编码比特;  S11'. Encoding the first component code or the first component code group on the input information bits to obtain the first coded bits;

S12’.对第一编码比特进行比特交织,得到交织比特;  S12'. Perform bit interleaving on the first coded bits to obtain interleaved bits;

S13’.对交织比特进行第二分量码或第二分量码组编码,得到编码交织比特。  S13'. Encoding the interleaved bits with a second component code or a second component code group to obtain coded interleaved bits. the

此外,步骤S3进一步包括:  In addition, step S3 further includes:

S31.对多维已旋转星座映射符号进行维数转换,得到第一一维实数符号;  S31. Perform dimension conversion on the multi-dimensional rotated constellation mapping symbol to obtain the first one-dimensional real number symbol;

S32.对第一一维实数符号进行通用实数交织,得到第二一维实数符号;  S32. Perform universal real number interleaving on the first one-dimensional real number symbol to obtain the second one-dimensional real number symbol;

S32.对第二一维实数符号进行维数转换,得到编码调制符号并 输出。  S32. Perform dimension conversion on the second one-dimensional real number symbol to obtain and output the coded modulation symbol. the

如图2所示,依照本发明一种实施方式的基于多维星座映射的编码调制方法对应的解调解码方法包括步骤:  As shown in Figure 2, the demodulation and decoding method corresponding to the coding and modulation method based on multi-dimensional constellation mapping according to an embodiment of the present invention includes steps:

S4.利用外部输入的信道状态信息的相位信息,对接收信号进行相位校正;  S4. Use the phase information of the externally input channel state information to perform phase correction on the received signal;

S5.对所述相位校正后的信号进行维数转换和通用实数解交织,得到解交织信号,外部输入的信道状态信息的幅度信息后也进行通用实数解交织,以便于后续的星座解映射;  S5. Perform dimension conversion and general real number deinterleaving on the phase-corrected signal to obtain a deinterleaved signal, and perform general real number deinterleaving after the amplitude information of the externally input channel state information, so as to facilitate subsequent constellation demapping;

S6.若为第一次解映射,则直接对解交织信号进行多维已旋转星座解映射,得到解映射后软信息,否则,利用上一次信道解码输出的外信息作为先验信息,进行多维已旋转星座的解映射,得到解映射后软信息;  S6. If it is the first demapping, directly perform multi-dimensional rotated constellation demapping on the deinterleaved signal to obtain soft information after demapping; otherwise, use the external information output by the last channel decoding as prior information to perform multidimensional demapping Demapping of rotating constellations to obtain soft information after demapping;

S7.对解映射后软信息进行解交织及信道解码;  S7. Deinterleave and channel decode the soft information after demapping;

S8.若达到设定迭代次数或信道解码校验成功,则输出信道解码结果,否则,对信道解码结果进行再交织,得到信道解码输出的外信息,并返回步骤S6。  S8. If the set number of iterations is reached or the channel decoding verification is successful, output the channel decoding result; otherwise, re-interleave the channel decoding result to obtain the external information output by the channel decoding, and return to step S6. the

本发明还提供了一种对应上述编码调制方法的基于多维星座映射的编码调制系统,该系统包括:编码交织模块,用于对输入信息比特进行信道编码及比特交织,得到编码交织比特;星座映射模块,用于对所述编码交织比特进行已旋转的K维脉冲幅度调制星座映射,或进行K维脉冲幅度调制星座映射及星座旋转,得到多维已旋转星座映射符号,其中,K为正整数;维数转换及交织模块,用于对所述多维已旋转星座映射符号进行维数转换及通用实数交织,得到编码调制符号并输出。  The present invention also provides a coding and modulation system based on multi-dimensional constellation mapping corresponding to the above coding and modulation method. The system includes: a coding and interleaving module, which is used to perform channel coding and bit interleaving on input information bits to obtain coding and interleaving bits; constellation mapping A module for performing rotated K-dimensional pulse amplitude modulation constellation mapping on the coded interleaving bits, or performing K-dimensional pulse amplitude modulation constellation mapping and constellation rotation to obtain multi-dimensional rotated constellation mapping symbols, wherein K is a positive integer; The dimension conversion and interleaving module is used to perform dimension conversion and general real number interleaving on the multi-dimensional rotated constellation mapping symbols to obtain coded modulation symbols and output them. the

其中,星座映射模块还可进一步包括:星座旋转单元,用于对K维脉冲幅度调制星座点进行星座旋转,得到已旋转的K维脉冲幅度调制星座点;星座映射单元,用于对编码比特进行已旋转的K维脉冲幅 度调制星座映射,得到K维实数向量的多维已旋转星座映射符号;  Wherein, the constellation mapping module may further include: a constellation rotation unit for performing constellation rotation on the K-dimensional pulse amplitude modulation constellation points to obtain the rotated K-dimensional pulse amplitude modulation constellation points; a constellation mapping unit for performing constellation rotation on the coded bits The rotated K-dimensional pulse amplitude modulation constellation map obtains the multidimensional rotated constellation map symbol of the K-dimensional real number vector;

或包括:星座映射单元,用于对编码比特进行K维脉冲幅度调制星座映射,得到K维实数向量的星座映射符号;星座旋转单元,用于对星座映射符号进行星座旋转,得到K维实数向量的多维已旋转星座映射符号。  Or include: a constellation mapping unit, which is used to perform K-dimensional pulse amplitude modulation constellation mapping on coded bits, to obtain constellation mapping symbols of K-dimensional real number vectors; a constellation rotation unit, used to perform constellation rotation on constellation mapping symbols, to obtain K-dimensional real number vectors multidimensional rotated constellation map symbol. the

维数转换及交织模块可进一步包括:第一维数转换单元,用于对星座旋转符号进行维数转换,得到第一一维实数符号;通用实数交织单元,用于对第一一维实数符号进行通用实数交织,得到第二一维实数符号,显然,其输入输出均为一维实数符号;第二维数转换单元,用于对所述第二一维实数符号进行维数转换,得到编码调制符号,并输出。其中,维数转换将输入的Kin维实数符号转换为输出的Kout维实数符号,Kin和Kout均为正整数,取值由外部控制信号确定。  The dimension conversion and interleaving module may further include: a first dimension conversion unit for performing dimension conversion on the constellation rotation symbols to obtain a first one-dimensional real number symbol; a general real number interleaving unit for converting the first one-dimensional real number symbol Perform universal real number interleaving to obtain a second one-dimensional real number symbol. Obviously, its input and output are both one-dimensional real number symbols; the second dimension conversion unit is used to perform dimension conversion on the second one-dimensional real number symbol to obtain a coded Modulation symbol, and output. Among them, the dimension conversion converts the input K in- dimensional real number symbol into the output K out- dimensional real number symbol, both K in and K out are positive integers, and their values are determined by external control signals.

本发明还提供了一种与上述解调解码方法对应的基于多维星座映射的解调解码系统,该系统包括:相位校正模块,用于利用外部输入的信道状态信息的相位信息,对接收信号进行相位校正;维数逆转换及解交织模块,用于对相位校正后的信号进行维数转换和通用实数解交织,得到解交织信号,对外部输入的信道状态信息的幅度信息也进行通用实数解交织;解映射模块,若为第一次解映射,则直接对所述解交织信号进行多维已旋转星座解映射,得到解映射后软信息,否则,利用上一次信道解码输出的外信息作为先验信息,进行多维已旋转星座解映射,得到解映射后软信息;解交织解码模块,用于对解映射后软信息进行解交织及信道解码,得到信道解码结果;控制模块,若达到设定迭代次数或信道解码结果正确,则输出信道解码结果,否则,将信道解码输出的外信息进行再交织,作为先验信息,反馈给解映射模块。  The present invention also provides a demodulation and decoding system based on multi-dimensional constellation mapping corresponding to the above-mentioned demodulation and decoding method. Phase correction; dimension inverse conversion and deinterleaving module, used to perform dimension conversion and general real number deinterleaving on the phase corrected signal to obtain the deinterleaved signal, and also perform general real number solution to the amplitude information of the externally input channel state information Interleaving; the demapping module, if it is the first demapping, directly performs multi-dimensional rotated constellation demapping on the deinterleaved signal to obtain the soft information after demapping; otherwise, use the external information output by the last channel decoding as the first Demapping the multi-dimensional rotated constellation to obtain the demapped soft information; the deinterleaving and decoding module is used to deinterleave and channel decode the demapped soft information to obtain the channel decoding result; the control module, if it reaches the set If the number of iterations or the channel decoding result is correct, the channel decoding result is output; otherwise, the external information output by the channel decoding is re-interleaved, and fed back to the demapping module as prior information. the

另外,在本发明中,采用最大互信息准则选取最优变换矩阵:假设信号经过平坦性衰落,经过维数变换和通用实数交织后,接收端解 调解码系统中解映射模块的输入信号星座信号可以模型化为Y=H·X+N,其中X表示多维已旋转星座映射的信号输出,H表示该星座符号各维的信道增益,N表示多维噪声,·表示逐元素相乘,Y为收到的多维信号。在已旋转多维星座图限制条件下,以及接收端已知CSI(Channel State Information,信道状态信息)的情况下,互信息可以计算为:  In addition, in the present invention, the maximum mutual information criterion is used to select the optimal transformation matrix: assuming that the signal undergoes flat fading, after dimension transformation and general real number interleaving, the receiving end demodulates the input signal constellation signal of the demapping module in the decoding system It can be modeled as Y=H X+N, where X represents the signal output of the multi-dimensional rotated constellation map, H represents the channel gain of each dimension of the constellation symbol, N represents multi-dimensional noise, represents element-wise multiplication, and Y represents the received multidimensional signal. Under the constraints of the rotated multi-dimensional constellation diagram, and the receiver knows the CSI (Channel State Information, channel state information), the mutual information can be calculated as:

II (( Xx ;; YY || Hh )) == loglog 22 || χχ || -- EE. xx ,, ythe y ,, hh [[ loglog 22 ΣΣ xx ~~ ∈∈ χχ pp (( ythe y || xx ~~ ,, hh )) pp (( ythe y || xx ,, hh )) ]] -- -- -- (( 11 ))

其中,χ表示已旋转的星座点集合,|χ|表示星座点集合的大小,例如3D-2PAM星座图含有8个点,如附图3所示,那么3D-2PAM星座点集合大小为8。对相同的星座映射,不同的星座旋转矩阵得到不同的χ,从而影响上式所示的互信息。本发明选择最优变换矩阵的准则为使得上述互信息达到最大。  Wherein, χ represents the rotated constellation point set, |χ| represents the size of the constellation point set, for example, the 3D-2PAM constellation diagram contains 8 points, as shown in Figure 3, then the size of the 3D-2PAM constellation point set is 8. For the same constellation mapping, different constellation rotation matrices get different χ, thus affecting the mutual information shown in the above formula. The criterion for selecting the optimal transformation matrix in the present invention is to maximize the above mutual information. the

对于二维星座图,本发明中的正交变换矩阵具有如下形式:  For a two-dimensional constellation diagram, the orthogonal transformation matrix in the present invention has the following form:

RR == aa bb -- bb aa

其中, a = 1 / 1 + λ 2 , b = λ / 1 + λ 2 , λ为实数。对于2D-PAM信号、常用码率(码率≤3/4)、以及独立Rayleigh信道,λ=±1为最优解。  in, a = 1 / 1 + λ 2 , b = λ / 1 + λ 2 , λ is a real number. For 2D-PAM signals, common code rates (code rate ≤ 3/4), and independent Rayleigh channels, λ=±1 is the optimal solution.

对于三维星座图,本发明中的正交变换矩阵可以表示为:  For the three-dimensional constellation diagram, the orthogonal transformation matrix in the present invention can be expressed as:

RR == aa bb cc bb cc aa -- cc -- aa -- bb

其中,a=(1+λ)/(1+λ+λ2),b=(λ+λ2)/(1+λ+λ2),c=-λ/(1+λ+λ2),λ为实数。不同的λ对应不同的变换矩阵R,对于不同的信道条件或者不同的编码码率,最优变换矩阵(以R*表示)不同。在本发明中考虑对于独立Rayleigh衰落信道,只考虑常用码率(码率≤3/4),尤其关注1/2码率。对于3D-2PAM,由于它含有8个不同星座点,因此在未编 码系统中每个星座符号可以携带3bit信息,采用1/2码率时,可携带的有用信息比特为1.5比特每符号,等效于0.5比特每维度。因此,设定信噪比(Signal to Noise Ratio,SNR)为1.5dB,那么对于3D-2PAM以及独立Rayleigh衰落信道下,使得(1)式所示互信息大约为1.5比特每符号。在星座图、衰落信道以及信噪比给定的情况下,(1)式所示的互信息即为λ的函数,可写为I(λ)。根据3D-2PAM星座图的对称性,以及各维衰落所呈现的对称性,不难得到I(1/λ)=I(λ),且I(-1-λ)=I(λ)。不同λ值条件下的I(λ)值如图3所示,从图中不难看出,λ=1或者λ=-0.5在图中所示的λ取值范围内为局部最优解。而根据上述性质,可以判断λ=1、-0.5或-2均为全局最优解。上述最优解对于其他三维正交星座图,比如3D-4PAM、3D-8PAM等均为优选解。同样的方法也可以应用于别的场景,比如其他星座图、其他信道以及其他码率。  Among them, a=(1+λ)/(1+λ+λ 2 ), b=(λ+λ 2 )/(1+λ+λ 2 ), c=-λ/(1+λ+λ 2 ) , λ is a real number. Different λ corresponds to different transformation matrices R, and for different channel conditions or different coding rates, the optimal transformation matrix (expressed as R * ) is different. In the present invention, it is considered that for independent Rayleigh fading channels, only common code rates (code rate ≤ 3/4) are considered, and 1/2 code rate is especially concerned. For 3D-2PAM, since it contains 8 different constellation points, each constellation symbol can carry 3 bits of information in the uncoded system. When using 1/2 code rate, the useful information bits that can be carried are 1.5 bits per symbol, etc. Effective at 0.5 bits per dimension. Therefore, if the Signal to Noise Ratio (SNR) is set to 1.5dB, then for 3D-2PAM and an independent Rayleigh fading channel, the mutual information shown in (1) is about 1.5 bits per symbol. In the case of a given constellation diagram, fading channel, and signal-to-noise ratio, the mutual information shown in (1) is a function of λ, which can be written as I(λ). According to the symmetry of the 3D-2PAM constellation diagram and the symmetry of fading in each dimension, it is not difficult to obtain I(1/λ)=I(λ), and I(-1-λ)=I(λ). The I(λ) values under different λ values are shown in Figure 3. It is not difficult to see from the figure that λ=1 or λ=-0.5 is the local optimal solution within the range of λ shown in the figure. According to the above properties, it can be judged that λ=1, -0.5 or -2 are all global optimal solutions. The above optimal solution is an optimal solution for other three-dimensional orthogonal constellation diagrams, such as 3D-4PAM, 3D-8PAM, etc. The same method can also be applied to other scenarios, such as other constellation diagrams, other channels, and other code rates.

对于四维星座图,本发明中的正交变换矩阵具有如下形式:  For the four-dimensional constellation diagram, the orthogonal transformation matrix in the present invention has the following form:

RR == Mm 11 -- Mm 22 Mm 22 Mm 11

其中, M 1 = a b - b a , M 2 = c d - d c , a = 1 1 + γ 2 · 1 1 + λ 2 , b = 1 1 + γ 2 · λ 1 + λ 2 , c = γ 1 + γ 2 · 1 1 + λ 2 , d = γ 1 + γ 2 · λ 1 + λ 2 , λ、γ均为实数。  in, m 1 = a b - b a , m 2 = c d - d c , and a = 1 1 + γ 2 &Center Dot; 1 1 + λ 2 , b = 1 1 + γ 2 &Center Dot; λ 1 + λ 2 , c = γ 1 + γ 2 &Center Dot; 1 1 + λ 2 , d = γ 1 + γ 2 &Center Dot; λ 1 + λ 2 , Both λ and γ are real numbers.

显然,对于给定的信道条件、给定的信噪比和给定的未旋转四维星座图,(1)式所示的互信息可以写为γ和λ的函数I(γ,λ)。对于4D-nPAM星座图,同样可得到如下性质:I(γ,λ)=I(λ,γ)、I(1/γ,λ)=I(-γ,λ)=I(γ,λ)且I(γ,1/λ)=I(γ,-λ)=I(γ,λ)。如此,寻找最优变换矩阵时只需要把γ和λ的取值范围设定在三角形区域0≤γ≤1,0≤λ≤γ即可。针对4D-2PAM,独立Rayleigh信道以及1/2 码率条件下,当λ=γ=1时为最优解。从而得到的R矩阵即为归一化Hadamard矩阵的一个初等行列变换。于是本发明提出,对于4D-2PAM、独立Rayleigh信道和常用码率(≤3/4),4×4的Hadamard矩阵及其初等行列变换均可认为是最优变换矩阵。这一最优变换矩阵对于其他四维正交星座图比如4D-4PAM、4D-8PAM等均有效。  Obviously, for a given channel condition, a given SNR and a given unrotated 4D constellation, the mutual information shown in (1) can be written as a function I(γ,λ) of γ and λ. For the 4D-nPAM constellation diagram, the following properties can also be obtained: I(γ,λ)=I(λ,γ), I(1/γ,λ)=I(-γ,λ)=I(γ,λ) And I(γ,1/λ)=I(γ,-λ)=I(γ,λ). In this way, when looking for the optimal transformation matrix, it is only necessary to set the value ranges of γ and λ in the triangular area 0≤γ≤1, 0≤λ≤γ. For 4D-2PAM, under the conditions of independent Rayleigh channel and 1/2 code rate, when λ=γ=1 is the optimal solution. The resulting R matrix is an elementary row-column transformation of the normalized Hadamard matrix. Therefore, the present invention proposes that for 4D-2PAM, independent Rayleigh channel and common code rate (≤3/4), the 4×4 Hadamard matrix and its elementary row-column transformation can be considered as the optimal transformation matrix. This optimal transformation matrix is valid for other four-dimensional orthogonal constellation diagrams such as 4D-4PAM and 4D-8PAM. the

为了更好地反映最优星座旋转在Rayleigh衰落信道下所能带来的增益,本发明提出并选取了最优的变换矩阵,并给出了2D-2PAM(即QPSK)/3D-2PAM/4D-2PAM限制下(1)式所示的互信息值随着信噪比的变化趋势,如图4所示。图中列举了解调解码系统已知CSI条件下Rayleigh信道的信道容量,以及星座图不旋转情况下2D-2PAM(即QPSK)/3D-2PAM/4D-2PAM星座图限制条件下的互信息值作为参考;中间的三条曲线即为上述三种星座图限制条件下,选取合适的变换矩阵所得到的互信息值。从图中可以看出,选择最优的变换矩阵在衰落信道下带来明显的增益,且维数越高,互信息越逼近衰落信道的信道容量。  In order to better reflect the gain that the optimal constellation rotation can bring in the Rayleigh fading channel, the present invention proposes and selects the optimal transformation matrix, and gives 2D-2PAM (QPSK)/3D-2PAM/4D The variation trend of the mutual information value shown in (1) with the signal-to-noise ratio under the -2PAM limit is shown in Figure 4. The figure lists the channel capacity of the Rayleigh channel under the known CSI condition of the demodulation and decoding system, and the mutual information value under the constraints of 2D-2PAM (ie QPSK)/3D-2PAM/4D-2PAM constellation diagram under the condition that the constellation diagram does not rotate as Reference; the three curves in the middle are the mutual information values obtained by selecting an appropriate transformation matrix under the constraints of the above three constellation diagrams. It can be seen from the figure that choosing the optimal transformation matrix brings obvious gains in fading channels, and the higher the dimension, the closer the mutual information is to the channel capacity of fading channels. the

实施例1-采用多维星座图的BICM-ID系统  Embodiment 1 - BICM-ID system adopting multi-dimensional constellation diagram

本实施例提出了一种依照本发明一种实施方式的采用多维星座图的BICM-ID系统。为了使得BICM-ID系统在中低频谱效率下,能同时在AWGN和衰落信道下提供逼近香农极限的性能,本实施例提出在BICM-ID编码调制系统中采用星座旋转的多维星座图,同时结合SSD技术。  This embodiment proposes a BICM-ID system using a multi-dimensional constellation diagram according to an implementation manner of the present invention. In order to enable the BICM-ID system to provide performance close to Shannon’s limit in AWGN and fading channels at the same time under medium and low spectral efficiency, this embodiment proposes to use a multi-dimensional constellation diagram with constellation rotation in the BICM-ID coded modulation system, combined with SSD technology. the

如图6所示为该BICM-ID系统发射端的编码调制系统及方法示意图:  As shown in Figure 6, it is a schematic diagram of the coded modulation system and method of the BICM-ID system transmitter:

S101.对输入信息比特进行信道编码及比特交织,得到编码交织比特;  S101. Perform channel coding and bit interleaving on the input information bits to obtain coded interleaving bits;

S102.对编码交织比特进行K维脉冲幅度调制的星座映射,得到 K维实数向量的星座映射符号,其中,K为正整数;  S102. Carry out constellation mapping of K-dimensional pulse amplitude modulation to coded interleaving bits, and obtain the constellation mapping symbol of K-dimensional real number vector, wherein K is a positive integer;

S103.对星座映射符号进行星座旋转,得到K维实数向量的多维已旋转星座映射符号;  S103. Perform constellation rotation on the constellation mapping symbols to obtain multi-dimensional rotated constellation mapping symbols of K-dimensional real number vectors;

S104.对多维已旋转星座映射符号进行维数转换得到第一一维实数符号;  S104. Perform dimension conversion on the multi-dimensional rotated constellation mapping symbol to obtain the first one-dimensional real number symbol;

S105.对第一一维实数符号进行通用实数交织,得到第二一维实数符号;  S105. Perform universal real number interleaving on the first one-dimensional real number symbol to obtain the second one-dimensional real number symbol;

S106.对第二一维实数符号进行维数转换,得到编码调制符号并输出。  S106. Perform dimension conversion on the second one-dimensional real number symbols to obtain coded modulation symbols and output them. the

其中,步骤S101中的信道编码可以是卷积码、分组码、LDPC码、Turbo码、串行级联信道编码、或并行级联信道编码;  Wherein, the channel coding in step S101 can be convolutional code, block code, LDPC code, Turbo code, serial concatenated channel coding, or parallel concatenated channel coding;

图6所示为采用多维星座图进行星座映射并结合SSD技术的BICM-ID发送端的编码调制系统框图。待传输信息先经过编码交织模块进行信道编码和比特交织之后,在星座映射模块进行多维星座映射,然后在星座旋转模块进行星座旋转,随后进行维数转换1使得多维实数信号转换为一维实数信号,之后进行通用实数交织,交织后的信号将进行维数转换2后得到所需维度的信号(通常是二维实数信号),并送给发射端后续模块。  FIG. 6 is a block diagram of a coding and modulation system of a BICM-ID transmitting end that adopts a multidimensional constellation diagram for constellation mapping and combines SSD technology. After the information to be transmitted is channel coded and bit interleaved by the encoding and interleaving module, the multidimensional constellation mapping is performed in the constellation mapping module, and then the constellation rotation is performed in the constellation rotation module, followed by dimension conversion 1 so that the multidimensional real number signal is converted into a one-dimensional real number signal , and then carry out general real number interleaving, and the interleaved signal will undergo dimension conversion 2 to obtain a signal of the required dimension (usually a two-dimensional real number signal), and send it to the subsequent module of the transmitter. the

该编码调制系统的特征在于:  The coded modulation system is characterized in that:

1.步骤S101中的信道编码包括但不限于Turbo码、串行级联码、并行级联码、LDPC码、卷积码等;  1. The channel coding in step S101 includes but is not limited to Turbo codes, serial concatenated codes, parallel concatenated codes, LDPC codes, convolutional codes, etc.;

2.步骤S101中的比特交织在特殊情况下可以取消,比如信道编码码长已经足够长,或者信道编码为内部有比特交织的级联编码;  2. The bit interleaving in step S101 can be canceled under special circumstances, for example, the channel coding code length is long enough, or the channel coding is concatenated coding with internal bit interleaving;

3.步骤S102中多维星座映射和步骤S103中的星座旋转可以合二为一,只需要完成针对已旋转星座的多维星座映射(简称多维已旋转星座映射,接收端相应地简称为多维已旋转星座解 映射)即可。  3. The multi-dimensional constellation mapping in step S102 and the constellation rotation in step S103 can be combined into one, only need to complete the multi-dimensional constellation mapping for the rotated constellation (referred to as multi-dimensional rotated constellation mapping, the receiving end is correspondingly referred to as multi-dimensional rotated constellation demapping). the

如图7所示为采用高维星座图并结合SSD技术的BICM-ID系统接收端的解调解码系统框图。在接收端,通常接收到的信号在步骤S201先经过相位校正模块进行相位校正后送给维数转换模块的维数转换单元2’(与发送端维数转换2对应)在步骤S202转换为一维实数信号,之后在步骤S203进行通用实数解交织并在步骤S204完成维数转换1’(与发送端维数转换1对应)以恢复多维信号,同时CSI的幅度信息也同样经过解交织和维数转换后送给解映射模块。在CSI的幅度信息辅助下,在步骤S205-步骤S207根据已旋转星座对解交织后的多维信号进行星座解映射,之后的操作与传统BICM-ID接收端一致。  Figure 7 is a block diagram of the demodulation and decoding system at the receiving end of the BICM-ID system using a high-dimensional constellation diagram combined with SSD technology. At the receiving end, usually the received signal is firstly corrected by the phase correction module in step S201 and then sent to the dimension conversion unit 2' of the dimension conversion module (corresponding to the dimension conversion 2 at the sending end) and converted into a Dimensional real number signal, then perform general real number deinterleaving in step S203 and complete dimension conversion 1' (corresponding to dimension conversion 1 at the sending end) in step S204 to restore the multidimensional signal, and the amplitude information of CSI is also deinterleaved and dimensioned After the number is converted, it is sent to the demapping module. With the assistance of CSI amplitude information, constellation demapping is performed on the deinterleaved multi-dimensional signal according to the rotated constellation in step S205-step S207, and subsequent operations are consistent with traditional BICM-ID receivers. the

该接收端解调解码系统的特征在于:  The receiving end demodulation decoding system is characterized in that:

1.接收信号在CSI的相位信息辅助下完成步骤S201相位校正。  1. The received signal completes the phase correction in step S201 with the assistance of the phase information of the CSI. the

2.仅将CSI的幅度信息进行步骤S203通用实数解交织和步骤S204维数转换1’,之后送给解映射模块以辅助完成多维已旋转星座解映射。  2. Only the magnitude information of the CSI is subjected to step S203 general real number deinterleaving and step S204 dimension conversion 1', and then sent to the demapping module to assist in completing multidimensional rotated constellation demapping. the

3.步骤S205星座解映射和步骤S206信道解码通过步骤S206解交织和步骤S208再交织形成一个环路,迭代进行。  3. Constellation demapping in step S205 and channel decoding in step S206 form a loop through deinterleaving in step S206 and reinterleaving in step S208, and are performed iteratively. the

实施例2  Example 2

为了进一步显示本发明提出的采用多维星座图并结合最优变换矩阵的BICM-ID系统的性能优势,本实施例给出一个采用3D-nPAM的带有各项具体参数的BICM-ID系统,并给出该系统的误码性能。  In order to further demonstrate the performance advantages of the BICM-ID system proposed by the present invention using a multi-dimensional constellation diagram combined with an optimal transformation matrix, this embodiment provides a BICM-ID system using 3D-nPAM with various specific parameters, and Give the bit error performance of the system. the

该系统的编码调制方法包括步骤:  The code modulation method of this system comprises steps:

S301.对输入比特进行信道编码和比特交织,得到编码交织比特;  S301. Perform channel coding and bit interleaving on the input bits to obtain coded interleaving bits;

该系统采用级联信道编码技术,包括并行级联和串行级联两种技术。如图8(a)和8(b)所示,分别表示采用并行级联和串行级联信道编码的BICM和BICM-ID系统发射端的编码调制方框图。其中, 并行级联信道编码的典型实例是以卷积码作为分量码的并行级联Turbo码,串行级联信道编码的典型实例是以卷积码作为分量码的串行级联Turbo码。编码调制方框图采用了两个交织单元,包括级联信道编码内部的交织单元和级联信道编码与星座映射之间的比特交织单元,增加了编码调制和解调解码的复杂度,在某些条件下可以将第二个交织单元去除。信道编码及比特交织的具体步骤如下:  The system uses cascaded channel coding techniques, including parallel cascading and serial cascading technologies. As shown in Fig. 8(a) and 8(b), respectively represent the coding and modulation block diagrams of the transmitting end of the BICM and BICM-ID systems using parallel concatenated and serial concatenated channel coding. Among them, a typical example of parallel concatenated channel coding is a parallel concatenated Turbo code with a convolutional code as a component code, and a typical example of a serial concatenated channel coding is a serial concatenated Turbo code with a convolutional code as a component code. The coding and modulation block diagram uses two interleaving units, including the interleaving unit inside the concatenated channel coding and the bit interleaving unit between the concatenated channel coding and constellation mapping, which increases the complexity of coding, modulation, demodulation and decoding. Under certain conditions Next, the second interleaving unit can be removed. The specific steps of channel coding and bit interleaving are as follows:

S301.a对信息比特进行第一分量码编码,得到第一编码比特;  S301.a encodes the first component code on the information bits to obtain the first coded bits;

S301.b对信息比特进行比特交织后进行第二分量码编码,得到第二编码比特;  S301.b performs bit interleaving on the information bits and then encodes the second component code to obtain the second coded bits;

S301.c将第一编码比特和第二编码比特合并得到编码比特;  S301.c combines the first coded bit and the second coded bit to obtain coded bits;

或者,该信道编码及比特交织的具体步骤如下:  Alternatively, the specific steps of the channel coding and bit interleaving are as follows:

S301.d对信息比特进行第一分量码编码,得到第一编码比特;  S301.d encodes the information bits with the first component code to obtain the first coded bits;

S301.e对第一编码比特进行比特交织,得到交织比特;  S301.e performs bit interleaving on the first coded bits to obtain interleaved bits;

S301.f对交织比特进行第二分量码编码,得到第二编码比特,第二编码比特就是编码交织比特;  S301.f performs the second component code encoding on the interleaved bits to obtain the second encoded bits, and the second encoded bits are the encoded interleaved bits;

S302.对编码比特进行三维脉冲幅度调制的星座映射,得到三维实数向量的星座映射符号;  S302. Perform constellation mapping of three-dimensional pulse amplitude modulation on the coded bits to obtain constellation mapping symbols of three-dimensional real number vectors;

多维脉冲幅度调制星座映射是一种将比特或比特组规则映射到多维实数空间点的星座映射。当维数K=3时,K维实数空间蜕化为三维空间,为3D-nPAM,其中n表示每一维空间的星座点数,显然星座点数M=n3。  Multidimensional pulse amplitude modulation constellation mapping is a constellation mapping that regularly maps bits or groups of bits to points in multidimensional real space. When the dimension K=3, the K-dimensional real number space degenerates into a three-dimensional space, which is 3D-nPAM, where n represents the number of constellation points in each dimensional space, obviously the number of constellation points M=n 3 .

针对不同的频谱效率需求,通常选择M=2m个星座点,其中m为正整数。  For different spectrum efficiency requirements, M=2 m constellation points are usually selected, where m is a positive integer.

S303.对步骤S302得到的星座映射符号进行星座旋转,得到三维实数向量的星座旋转符号;  S303. Perform constellation rotation on the constellation mapping symbols obtained in step S302 to obtain the constellation rotation symbols of the three-dimensional real number vector;

其中,星座旋转将输入的三维实数向量(即三维实数符号)进行矩阵变换,得到输出的三维实数向量(即三维实数符号),其中变换 矩阵优选为正交矩阵;进一步,变换矩阵可以选择为单位矩阵(即不旋转),还可以选择实施例2中描述的最优变换矩阵:  Among them, the constellation rotation performs matrix transformation on the input three-dimensional real number vector (that is, three-dimensional real number symbol), and obtains the output three-dimensional real number vector (that is, three-dimensional real number symbol), wherein the transformation matrix is preferably an orthogonal matrix; further, the transformation matrix can be selected as the unit matrix (i.e. without rotation), you can also choose the optimal transformation matrix described in Example 2:

RR == aa bb cc bb cc aa -- cc -- aa -- bb

其中a=(1+λ)/(1+λ+λ2),b=(λ+λ2)/(1+λ+λ2),c=-λ/(1+λ+λ2),λ为实数,且优选λ=1、-0.5或-2;  Where a=(1+λ)/(1+λ+λ 2 ), b=(λ+λ 2 )/(1+λ+λ 2 ), c=-λ/(1+λ+λ 2 ), λ is a real number, and preferably λ=1, -0.5 or -2;

S304.对步骤S303得到的星座旋转符号进行维数转换和通用实数交织,得到编码调制符号并输出。  S304. Perform dimension conversion and general real number interleaving on the constellation rotation symbols obtained in step S303 to obtain coded modulation symbols and output them. the

为了与星座旋转输出的三维实数向量进行接口,设置了第一维数转换步骤;为了与编码调制系统需要输出的二维实数向量进行接口,设置了第二维数转换步骤。维数转换将输入的三维实数向量转换为二维实数向量,其操作为,将N1个三维实数向量每一维上的所有实数符号(共3N1个)重新组成N2个二维实数向量,其中,3N1=2N2,N1、N2为正整数。  In order to interface with the three-dimensional real number vector output by constellation rotation, the first dimension conversion step is set; in order to interface with the two-dimensional real number vector output by the coded modulation system, a second dimension conversion step is set. Dimension conversion converts the input 3D real number vector into a 2D real number vector, and its operation is to recombine all the real number symbols (3N 1 in total) on each dimension of N 1 3D real number vectors into N 2 2D real number vectors , wherein, 3N 1 =2N 2 , N 1 and N 2 are positive integers.

为了展示本发明所提出系统的性能,本实施例中给出一个采用3D-2PAM星座图的具体编码调制系统,给出其各项详细参数:包括外码、Doping码字、星座映射方式、码长等。在给定的迭代次数情况下,详细给出了其误码性能,如附图9所示。该系统的具体参数如下:  In order to demonstrate the performance of the system proposed by the present invention, a specific coding and modulation system using 3D-2PAM constellation is given in this embodiment, and its detailed parameters are given: including outer code, Doping code word, constellation mapping method, code long wait. In the case of a given number of iterations, the bit error performance is given in detail, as shown in Figure 9. The specific parameters of the system are as follows:

●外码:码率为1/2的[7,5]8非系统卷积码;  Outer code: [7,5] 8 non-systematic convolutional code with code rate 1/2;

●比特交织:伪随机交织;  ●Bit interleaving: pseudo-random interleaving;

●Doping码字:码率为1的2状态系统卷积码,Doping率设为100,即每第100个信息比特被校验比特取代;  ●Doping code word: a 2-state system convolutional code with a code rate of 1, and the Doping rate is set to 100, that is, every 100th information bit is replaced by a check bit;

●码长:192,000比特;  ●Code length: 192,000 bits;

●迭代次数:100;  ●Number of iterations: 100;

●星座旋转参数:λ=1;  ●Constellation rotation parameter: λ=1;

●映射方式:令未旋转的3D-2PAM星座集合为{x0=(-1,-1,-1),x1=(-1,-1,+1),x2=(-1,+1,-1),…,x7=(+1,+1,+1)},映射方式为0→x7,1→x1,2→x0,3→x6,4→x4,5→x2,6→x3以及7→x5。  ●Mapping method: Let the unrotated 3D-2PAM constellation set be {x 0 =(-1,-1,-1), x 1 =(-1,-1,+1), x 2 =(-1, +1,-1),...,x 7 =(+1,+1,+1)}, the mapping method is 0→x 7 ,1→x 1 ,2→x 0 ,3→x 6 ,4→x 4 , 5→x 2 , 6→x 3 and 7→x 5 .

实施例3  Example 3

为了进一步显示本发明提出的采用多维星座图并结合最优旋转矩阵的BICM-ID系统的性能优势,本实施例给出一个采用4D-nPAM的带有各项具体参数的BICM-ID系统。  In order to further demonstrate the performance advantages of the BICM-ID system using the multi-dimensional constellation diagram combined with the optimal rotation matrix proposed by the present invention, this embodiment provides a BICM-ID system using 4D-nPAM with various specific parameters. the

该系统发送端的编码调制方法包括步骤:  The encoding and modulation method at the sending end of the system includes steps:

S401.对输入比特进行信道编码和比特交织,得到编码交织比特;  S401. Perform channel coding and bit interleaving on the input bits to obtain coded interleaving bits;

如图10(a)和10(b),分别表示本实施例提出的两种BICM-ID系统发射端编码调制方框图,采用具有并行特征的分量码组取代传统的单个分量码,其中,图10(a)表示采用并行级联信道编码的系统方框图,图10(b)表示采用串行级联信道编码的系统方框图。所述的信道编码及比特交织的具体步骤如下:  Figures 10(a) and 10(b) respectively show the two BICM-ID system transmitter coding and modulation block diagrams proposed in this embodiment, using component code groups with parallel features to replace traditional single component codes, among them, Figure 10 (a) shows the system block diagram using parallel concatenated channel coding, and Fig. 10(b) shows the system block diagram using serial concatenated channel coding. The specific steps of the channel coding and bit interleaving are as follows:

S401.a对信息比特进行第一分量码或第一分量码组的编码,得到第一编码比特;  S401.a encodes the first component code or the first component code group on the information bits to obtain the first coded bits;

S401.b对第一编码比特进行比特交织,得到交织比特;  S401.b performs bit interleaving on the first coded bits to obtain interleaved bits;

S401.c对交织比特进行第二分量码或第二分量码组的编码,得到第二编码比特,第二编码比特就是编码交织比特;  S401.c encodes the second component code or the second component code group on the interleaved bits to obtain the second coded bits, and the second coded bits are coded interleaved bits;

或者,所述的信道编码及比特交织的具体步骤如下:  Or, the specific steps of the channel coding and bit interleaving are as follows:

S401.d对信息比特进行第一分量码或第一分量码组编码,得到第一编码比特;  S401.d encodes the first component code or the first component code group on the information bits to obtain the first coded bits;

S401.e对信息比特进行比特交织后进行第二分量码或第二分量码组编码,得到第二编码比特;  S401.e performs bit interleaving on the information bits and then encodes the second component code or the second component code group to obtain the second coded bits;

S401.f将第一编码比特和第二编码比特合并得到编码交织比特;  S401.f combines the first encoded bit and the second encoded bit to obtain an encoded interleaved bit;

其中,分量码可以是卷积码或分组码;分量码组由多个分量码并行组成,分量码组的每个分量码可以是卷积码或分组码。  Wherein, the component codes may be convolutional codes or block codes; the component code groups are composed of multiple component codes in parallel, and each component code of the component code groups may be convolutional codes or block codes. the

S402.对编码交织比特进行四维脉冲幅度调制的星座映射,得到四维实数向量的星座映射符号;  S402. Perform constellation mapping of four-dimensional pulse amplitude modulation on coded interleaving bits, and obtain constellation mapping symbols of four-dimensional real number vectors;

S403.对所述星座映射符号进行星座旋转,得到四维实数向量的星座旋转符号;  S403. Perform constellation rotation on the constellation mapping symbols to obtain the constellation rotation symbols of the four-dimensional real number vector;

其中,星座旋转将输入的四维实数向量(即四维实数符号)进行矩阵变换,得到输出的四维实数向量(即四维实数符号),其中变换矩阵优选为正交矩阵;进一步,变换矩阵可以选择为单位矩阵(即不旋转),还可以选择实施例2中描述的最优变换矩阵:  Among them, the constellation rotation performs matrix transformation on the input four-dimensional real number vector (that is, the four-dimensional real number symbol) to obtain the output four-dimensional real number vector (that is, the four-dimensional real number symbol), wherein the transformation matrix is preferably an orthogonal matrix; further, the transformation matrix can be selected as the unit matrix (i.e. without rotation), you can also choose the optimal transformation matrix described in Example 2:

RR == Mm 11 -- Mm 22 Mm 22 Mm 11

其中 M 1 = a b - b a , M 2 = c d - d c , a = 1 1 + γ 2 · 1 1 + λ 2 , b = 1 1 + γ 2 · λ 1 + λ 2 , c = γ 1 + γ 2 · 1 1 + λ 2 , d = γ 1 + γ 2 · λ 1 + λ 2 , γ和λ均为实数,且优选γ=λ=1。  in m 1 = a b - b a , m 2 = c d - d c , and a = 1 1 + γ 2 · 1 1 + λ 2 , b = 1 1 + γ 2 &Center Dot; λ 1 + λ 2 , c = γ 1 + γ 2 &Center Dot; 1 1 + λ 2 , d = γ 1 + γ 2 &Center Dot; λ 1 + λ 2 , Both γ and λ are real numbers, and preferably γ=λ=1.

S404.对所述星座旋转符号进行维数转换和通用实数交织,得到编码调制符号并输出。  S404. Perform dimension conversion and general real number interleaving on the constellation rotation symbols to obtain coded modulation symbols and output them. the

为了与星座旋转输出的四维实数向量进行接口,设置了第一维数转换步骤;为了与编码调制系统需要输出的二维实数向量进行接口,设置了第二维数转换步骤。维数转换将输入的四维实数向量转换为二维实数向量,其操作为,将N1个四维实数向量每一维上的所有实数符号(共4N1个)重新组成N2个2维实数向量,其中,4N1=2N2,N1、N2为正整数。  In order to interface with the four-dimensional real number vector output by the constellation rotation, the first dimension conversion step is set; in order to interface with the two-dimensional real number vector that the coded modulation system needs to output, the second dimension conversion step is set. Dimension conversion converts the input four-dimensional real number vector into a two-dimensional real number vector, and its operation is to recombine all real number symbols (4N 1 in total) on each dimension of N 1 four-dimensional real number vectors into N 2 2-dimensional real number vectors , wherein, 4N 1 =2N 2 , N 1 and N 2 are positive integers.

以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。  The above embodiments are only used to illustrate the present invention, but not to limit the present invention. Those of ordinary skill in the relevant technical field can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, all Equivalent technical solutions also belong to the category of the present invention, and the scope of patent protection of the present invention should be defined by the claims. the

Claims (9)

1.一种基于多维星座映射的编码调制及解调解码方法,其中编码调制方法包括步骤:1. A coding modulation and demodulation decoding method based on multidimensional constellation mapping, wherein the coding modulation method comprises steps: S1.对输入信息比特进行信道编码及比特交织,得到编码交织比特;S1. Perform channel coding and bit interleaving on the input information bits to obtain coded and interleaved bits; S2.对所述编码交织比特进行已旋转的K维脉冲幅度调制星座映射,或进行K维脉冲幅度调制星座映射及星座旋转,得到多维已旋转星座映射符号,其中,K为正整数;S2. Performing rotated K-dimensional pulse amplitude modulation constellation mapping on the coded interleaving bits, or performing K-dimensional pulse amplitude modulation constellation mapping and constellation rotation, to obtain multi-dimensional rotated constellation mapping symbols, wherein K is a positive integer; S3.对所述多维已旋转星座映射符号进行维数转换及通用实数交织,得到编码调制符号并输出;S3. Perform dimension conversion and general real number interleaving on the multi-dimensional rotated constellation mapping symbols to obtain coded modulation symbols and output them; 其中解调解码方法包括步骤:Wherein the demodulation decoding method comprises steps: S4.利用外部输入的信道状态信息的相位信息,对接收信号进行相位校正;S4. Using the phase information of the externally input channel state information to perform phase correction on the received signal; S5.对所述相位校正后的信号进行维数转换和通用实数解交织,得到解交织信号,对外部输入的信道状态信息的幅度信息也进行通用实数解交织;S5. Perform dimension conversion and general real number deinterleaving on the phase-corrected signal to obtain a deinterleaved signal, and perform general real number deinterleaving on the amplitude information of the externally input channel state information; S6.若为第一次解映射,则直接对所述解交织信号进行多维已旋转星座的解映射,得到解映射后软信息,否则,利用上一次信道解码输出的外信息作为先验信息,进行多维已旋转星座的解映射,得到解映射后软信息;S6. If it is the first demapping, directly perform demapping of the multi-dimensional rotated constellation on the deinterleaved signal to obtain soft information after demapping, otherwise, use the external information output by the last channel decoding as prior information, Perform demapping of the multi-dimensional rotated constellation to obtain soft information after demapping; S7.对所述解映射后软信息进行解交织及信道解码;S7. Perform deinterleaving and channel decoding on the demapped soft information; S8.若达到设定迭代次数或信道解码校验成功,则输出信道解码结果,否则,对信道解码结果进行再交织,得到信道解码输出的外信息,并返回步骤S6。S8. If the set number of iterations is reached or the channel decoding verification is successful, output the channel decoding result; otherwise, re-interleave the channel decoding result to obtain the external information output by the channel decoding, and return to step S6. 2.如权利要求1所述的基于多维星座映射的编码调制及解调解码方法,其特征在于,步骤S2进一步包括:2. The coding, modulation, demodulation and decoding method based on multi-dimensional constellation mapping as claimed in claim 1, wherein step S2 further comprises: S2.1对K维脉冲幅度调制星座点进行星座旋转,得到已旋转的K维脉冲幅度调制星座点;S2.1 Perform constellation rotation on the K-dimensional pulse amplitude modulation constellation point to obtain the rotated K-dimensional pulse amplitude modulation constellation point; S2.2对所述编码交织比特进行已旋转的K维脉冲幅度调制星座映射,得到K维实数向量的多维已旋转星座映射符号;S2.2 Perform rotated K-dimensional pulse amplitude modulation constellation mapping on the coded interleaving bits to obtain multi-dimensional rotated constellation mapping symbols of K-dimensional real number vectors; 或包括:or include: S2.1对所述编码交织比特进行K维脉冲幅度调制星座映射,得到K维实数向量的星座映射符号;S2.1 Perform K-dimensional pulse amplitude modulation constellation mapping on the coded interleaving bits to obtain constellation mapping symbols of K-dimensional real number vectors; S2.2对所述星座映射符号进行星座旋转,得到K维实数向量的多维已旋转星座映射符号。S2.2 Perform constellation rotation on the constellation mapping symbols to obtain multi-dimensional rotated constellation mapping symbols of K-dimensional real number vectors. 3.如权利要求2所述的基于多维星座映射的编码调制及解调解码方法,其特征在于,步骤S2中:3. The coding modulation and demodulation decoding method based on multi-dimensional constellation mapping as claimed in claim 2, characterized in that, in step S2: 当K=1时,所述星座映射为脉冲幅度调制星座映射;When K=1, the constellation mapping is a pulse amplitude modulation constellation mapping; 当K=2时,所述星座映射为正交幅度调制星座映射;When K=2, the constellation mapping is quadrature amplitude modulation constellation mapping; 当K=3时,所述星座映射为三维脉冲幅度调制星座映射;When K=3, the constellation mapping is a three-dimensional pulse amplitude modulation constellation mapping; 当K=4时,所述星座映射为四维脉冲幅度调制星座映射。When K=4, the constellation mapping is a four-dimensional pulse amplitude modulation constellation mapping. 4.如权利要求2所述的基于多维星座映射的编码调制及解调解码方法,其特征在于,步骤S2.2中,所述星座旋转的方法为使用满秩矩阵对所述K维实数向量进行矩阵变换。4. The encoding modulation and demodulation decoding method based on multi-dimensional constellation mapping as claimed in claim 2, characterized in that, in step S2.2, the constellation rotation method is to use a full rank matrix for the K-dimensional real number vector Perform matrix transformations. 5.如权利要求4所述的基于多维星座映射的编码调制及解调解码方法,其特征在于,所述满秩矩阵为正交矩阵。5. The coding, modulation, demodulation and decoding method based on multi-dimensional constellation mapping according to claim 4, wherein the full rank matrix is an orthogonal matrix. 6.如权利要求3-5任一项所述的基于多维星座映射的编码调制及解调解码方法,其特征在于,6. The coding modulation and demodulation decoding method based on multi-dimensional constellation mapping according to any one of claims 3-5, characterized in that, K=2时,所述正交矩阵为 R = a b - b a , 其中, a = 1 / 1 + λ 2 , b = λ / 1 + λ 2 , λ为实数;When K=2, the orthogonal matrix is R = a b - b a , in, a = 1 / 1 + λ 2 , b = λ / 1 + λ 2 , λ is a real number; K=3时,所述正交矩阵为 R = a b c b c a - c - a - b , 其中,a=(1+λ)/(1+λ+λ2),b=(λ+λ2)/(1+λ+λ2),c=-λ/(1+λ+λ2),λ为实数;When K=3, the orthogonal matrix is R = a b c b c a - c - a - b , Among them, a=(1+λ)/(1+λ+λ 2 ), b=(λ+λ 2 )/(1+λ+λ 2 ), c=-λ/(1+λ+λ 2 ) , λ is a real number; K=4时,所述正交矩阵为 R = M 1 - M 2 M 2 M 1 , 其中, M 1 = a b - b a , M 2 = c d - d c , a = 1 1 + γ 2 · 1 1 + λ 2 , b = 1 1 + γ 2 · λ 1 + λ 2 , c = γ 1 + γ 2 · 1 1 + λ 2 , d = γ 1 + γ 2 · λ 1 + λ 2 , λ、γ均为实数。When K=4, the orthogonal matrix is R = m 1 - m 2 m 2 m 1 , in, m 1 = a b - b a , m 2 = c d - d c , and a = 1 1 + γ 2 &Center Dot; 1 1 + λ 2 , b = 1 1 + γ 2 &Center Dot; λ 1 + λ 2 , c = γ 1 + γ 2 · 1 1 + λ 2 , d = γ 1 + γ 2 &Center Dot; λ 1 + λ 2 , Both λ and γ are real numbers. 7.如权利要求1所述的基于多维星座映射的编码调制及解调解码方法,其特征在于,步骤S3进一步包括:7. The coding, modulation, demodulation and decoding method based on multi-dimensional constellation mapping as claimed in claim 1, wherein step S3 further comprises: S31.对所述多维已旋转星座映射符号进行维数转换,得到第一一维实数符号;S31. Perform dimension conversion on the multi-dimensional rotated constellation mapping symbol to obtain a first one-dimensional real number symbol; S32.对所述第一一维实数符号进行通用实数交织,得到第二一维实数符号;S32. Perform general real number interleaving on the first one-dimensional real number symbol to obtain a second one-dimensional real number symbol; S33.对所述第二一维实数符号进行维数转换,得到编码调制符号,并输出。S33. Perform dimension conversion on the second one-dimensional real number symbols to obtain coded modulation symbols, and output them. 8.如权利要求2或7所述的基于多维星座映射的编码调制及解调解码方法,其特征在于,步骤S3中,所述维数转换将输入的Kin维实数向量转换为Kout维实数向量,其方法为,将Nin个Kin维实数向量每一维上所有的共NinKin个实数符号重新组成Nout个Kout维实数向量,其中,NinKin=NoutKout,Kin和Kout为正整数。8. The coding modulation and demodulation decoding method based on multi-dimensional constellation mapping as claimed in claim 2 or 7, it is characterized in that, in step S3, described dimension conversion converts the input K in dimension real number vector into K out dimension The real number vector, its method is, all total N in K in real number symbols on each dimension of N in K in dimension real number vectors are re-formed N out K out dimension real number vectors, wherein, N in K in =N out K out , K in and K out are positive integers. 9.一种基于多维星座映射的编码调制及解调解码系统,其中编码调制系统包括:9. A code modulation and demodulation decoding system based on multi-dimensional constellation mapping, wherein the code modulation system includes: 编码交织模块,用于对输入信息比特进行信道编码及比特交织,得到编码交织比特;An encoding and interleaving module, configured to perform channel encoding and bit interleaving on input information bits to obtain encoded and interleaved bits; 星座映射模块,用于对所述编码交织比特进行已旋转的K维脉冲幅度调制星座映射,或进行K维脉冲幅度调制星座映射及星座旋转,得到多维已旋转星座映射符号,其中,K为正整数;The constellation mapping module is used to perform rotated K-dimensional pulse amplitude modulation constellation mapping on the coded interleaved bits, or perform K-dimensional pulse amplitude modulation constellation mapping and constellation rotation to obtain multi-dimensional rotated constellation mapping symbols, wherein K is positive integer; 维数转换及交织模块,用于对所述多维已旋转星座映射符号进行维数转换及通用实数交织,得到编码调制符号并输出;Dimension conversion and interleaving module, which is used to perform dimension conversion and general real number interleaving on the multi-dimensional rotated constellation mapping symbols to obtain coded modulation symbols and output them; 其中解调解码系统包括:The demodulation and decoding system includes: 相位校正模块,用于利用外部输入的信道状态信息的相位信息,对接收信号进行相位校正;The phase correction module is used to use the phase information of the externally input channel state information to perform phase correction on the received signal; 维数逆转换及解交织模块,用于对所述相位校正后的信号进行维数转换和通用实数解交织,得到解交织信号,对外部输入的信道状态信息的幅度信息也进行通用实数解交织;The dimensional inverse conversion and deinterleaving module is used to perform dimensional conversion and general real number deinterleaving on the phase-corrected signal to obtain a deinterleaved signal, and also perform general real number deinterleaving on the amplitude information of the externally input channel state information ; 解映射模块,若为第一次解映射,则直接对所述解交织信号进行多维已旋转星座解映射,得到解映射后软信息,否则,利用上一次信道解码输出的外信息作为先验信息,进行多维已旋转星座的解映射,得到解映射后软信息;The demapping module, if it is the first demapping, directly performs multi-dimensional rotated constellation demapping on the deinterleaved signal to obtain soft information after demapping, otherwise, uses the extrinsic information output by the last channel decoding as prior information , perform demapping of the multi-dimensional rotated constellation, and obtain soft information after demapping; 解交织解码模块,用于对所述解映射后软信息进行解交织及信道解码,得到信道解码结果;A deinterleaving and decoding module, configured to perform deinterleaving and channel decoding on the demapped soft information to obtain a channel decoding result; 控制模块,若达到设定迭代次数或信道解码校验成功,则输出信道解码结果,否则,将信道解码输出的外信息进行再交织,作为先验信息,反馈给解映射模块。The control module outputs the channel decoding result if the set number of iterations is reached or the channel decoding verification is successful; otherwise, the external information output by the channel decoding is re-interleaved as prior information and fed back to the demapping module.
CN 200910237769 2009-11-25 2009-11-25 Coding and modulation method, demodulation and decoding method and system based on multi-dimensional constellation mapping Active CN102075487B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910237769 CN102075487B (en) 2009-11-25 2009-11-25 Coding and modulation method, demodulation and decoding method and system based on multi-dimensional constellation mapping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910237769 CN102075487B (en) 2009-11-25 2009-11-25 Coding and modulation method, demodulation and decoding method and system based on multi-dimensional constellation mapping

Publications (2)

Publication Number Publication Date
CN102075487A CN102075487A (en) 2011-05-25
CN102075487B true CN102075487B (en) 2013-02-27

Family

ID=44033835

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910237769 Active CN102075487B (en) 2009-11-25 2009-11-25 Coding and modulation method, demodulation and decoding method and system based on multi-dimensional constellation mapping

Country Status (1)

Country Link
CN (1) CN102075487B (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281126B (en) * 2011-07-29 2013-11-06 清华大学 Digital video broadcasting-satellite second generation (DVB-S2) code modulation system-oriented constellation mapping and demapping method
WO2014017102A1 (en) * 2012-07-27 2014-01-30 パナソニック株式会社 Transmission method, reception method, transmitter, and receiver
US9509379B2 (en) * 2013-06-17 2016-11-29 Huawei Technologies Co., Ltd. System and method for designing and using multidimensional constellations
CN113067678B (en) * 2014-02-05 2023-12-08 三星电子株式会社 Transmitting apparatus and receiving apparatus
CN103873423B (en) * 2014-02-17 2017-04-05 复旦大学 A kind of single user four-dimension radio modem
CN111147183B (en) * 2014-02-20 2022-11-08 上海数字电视国家工程研究中心有限公司 Interleaving mapping method and de-interleaving de-mapping method of LDPC code words
CN104184550B (en) * 2014-07-29 2017-06-30 江苏中兴微通信息科技有限公司 The symbol interleaving and de-interweaving method and device of a kind of self-adaptation three-dimensional degree information
US10523383B2 (en) 2014-08-15 2019-12-31 Huawei Technologies Co., Ltd. System and method for generating waveforms and utilization thereof
CN104168088B (en) * 2014-08-21 2017-05-24 江苏中兴微通信息科技有限公司 Spatial modulation method and device based on dual interleaving
CN104717039B (en) * 2015-03-27 2018-03-20 东南大学 A kind of three-dimensional Bit Interleave method and device based on space-time rotation
CN105245980A (en) * 2015-09-14 2016-01-13 山东理工大学 Multidimensional All-Optical Network Coding Method Based on Logical Shift and XOR Operation
WO2017139915A1 (en) * 2016-02-15 2017-08-24 富士通株式会社 Information transmission method, device and communication system suitable for non-orthogonal multiple access
CN106130949B (en) * 2016-08-12 2019-05-10 上海交通大学 High-dimensional constellation generation method and system
EP3328012B1 (en) * 2016-11-24 2019-08-14 Technische Universität München Methods of converting or reconverting a data signal and method and system for data transmission and/or data reception
CN106899347B (en) * 2017-01-10 2020-07-28 上海交通大学 System and method for realizing high-speed signal transmission based on 2D TCM PAM8
CN108512798B (en) * 2017-02-28 2020-07-03 电信科学技术研究院 Constellation rotation angle determination method and device of graph division multiple access system
CN108631938B (en) * 2017-03-24 2023-04-14 北京三星通信技术研究有限公司 Multi-access method, transmitter and receiver
US11695507B2 (en) 2017-03-24 2023-07-04 Samsung Electronics Co., Ltd. Apparatus and method for in multiple access in wireless communication
CN106878228B (en) * 2017-03-28 2023-03-31 中国地质大学(武汉) Digital communication method based on four-dimensional signal constellation mapping and demapping
CN107733570B (en) * 2017-09-27 2020-08-14 西安邮电大学 Algebraic Interleaver-Based Constellation Mapping Method and Mapping Method Search Method
CN108449305B (en) * 2018-01-24 2020-10-30 复旦大学 A multi-user multiplexing method suitable for downlink transmission in wireless communication system
CN110138702B (en) * 2018-02-08 2021-03-05 中国移动通信有限公司研究院 Data transmission method and equipment
CN109412701B (en) * 2018-11-28 2021-10-12 复旦大学 Method for selecting odd-order quadrature amplitude modulation signal precoding constellation points
CN109361637B (en) * 2018-12-03 2020-09-08 西安电子科技大学 Orthogonal spatial coding modulation system and method for high-dimensional signal transmission
CN110278031A (en) * 2019-06-10 2019-09-24 华侨大学 Direct detection optical fiber communication system and communication method based on many-to-one mapping PS-PAM4
CN111064521B (en) * 2019-12-18 2020-11-17 南京信息工程大学 Multi-dimensional orthogonal coding modulation method based on code division probability shaping
CN111163030A (en) * 2019-12-19 2020-05-15 南京信息工程大学 An Optical Probabilistic Shaping Method Based on Dense Constellation Reduced Order Index
EP3852326B1 (en) * 2020-01-15 2022-06-29 Nokia Technologies Oy Transmitter
CN111585698B (en) * 2020-04-10 2021-06-18 北京邮电大学 A kind of multi-dimensional coding modulation method and decoding and demodulation method
CN112187375B (en) * 2020-09-23 2021-10-22 厦门大学 A three-dimensional spatial signal modulation and demodulation method and system based on MPPAM modulation
CN112532555B (en) * 2021-02-18 2021-04-23 中国人民解放军国防科技大学 A Constellation Rotation Encryption Method Based on Codebook Mapping and Constellation Extension
CN113794532B (en) * 2021-08-11 2022-09-16 清华大学 Block coding method and device
CN114884784B (en) * 2022-07-01 2022-09-20 成都星联芯通科技有限公司 Constellation point mapping relation generation method, signal transmission method and related device
CN115622852B (en) * 2022-10-21 2024-06-25 扬州大学 A modulation recognition method based on constellation KD tree enhancement and neural network GSENet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299746A (en) * 2008-06-30 2008-11-05 北京中星微电子有限公司 Method and device for mapping/de-mapping constellation as well as linear transformation constellation map
CN101340412A (en) * 2008-05-22 2009-01-07 清华大学 Amplitude-Phase Joint Keying Modulation and Demodulation Method Against Phase Noise
CN101374128A (en) * 2007-08-24 2009-02-25 中兴通讯股份有限公司 Transmission method and apparatus for multi-input multi-output OFDM system
CN101989887A (en) * 2009-07-31 2011-03-23 清华大学 Code modulation method, demodulation and decoding method and system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101796790B (en) * 2005-12-12 2013-12-18 皇家飞利浦电子股份有限公司 Integer spreading rotation matrices for QAM constellations and its application to decode-remodulate-forward cooperative communication strategy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374128A (en) * 2007-08-24 2009-02-25 中兴通讯股份有限公司 Transmission method and apparatus for multi-input multi-output OFDM system
CN101340412A (en) * 2008-05-22 2009-01-07 清华大学 Amplitude-Phase Joint Keying Modulation and Demodulation Method Against Phase Noise
CN101299746A (en) * 2008-06-30 2008-11-05 北京中星微电子有限公司 Method and device for mapping/de-mapping constellation as well as linear transformation constellation map
CN101989887A (en) * 2009-07-31 2011-03-23 清华大学 Code modulation method, demodulation and decoding method and system

Also Published As

Publication number Publication date
CN102075487A (en) 2011-05-25

Similar Documents

Publication Publication Date Title
CN102075487B (en) Coding and modulation method, demodulation and decoding method and system based on multi-dimensional constellation mapping
CN101848061B (en) Constellation restricted spread coding modulation method, demodulation decoding method and system thereof
CN102752261B (en) Constellation mapping method based on absolute phase shift keying (APSK) constellation map, coded modulation method and system
CN101989887A (en) Code modulation method, demodulation and decoding method and system
CN103765781B (en) It is used for the method and apparatus for sending and receiving information in broadcast/communication system
US8190981B2 (en) Apparatus and method for transmitting and receiving data in a communication system using low density parity check codes
CN101133558B (en) Method for transmitting data, method for receiving data, transmitter, receiver
CN102187593B (en) Channel interleaving method, channel interleaver and channel coding device
EP2297858B1 (en) Serial concatenation of trellis coded modulation and an inner non-binary ldpc code
US8811509B2 (en) Forward error correction (FEC) m-bit symbol modulation
CN103236902B (en) Constellation mapping, de-mapping method, coded modulation and decoding demodulating system
WO2009061148A1 (en) Apparatus and method for transmitting and receiving data in a communication system using low density parity check code
US8397109B2 (en) Bit mapping/demapping method and apparatus for communication system
EP2213063A2 (en) Low density parity check (ldpc) encoded higher order modulation
JP4575982B2 (en) 16QAM signal space expansion
CN102316072B (en) Encoding modulating method and demodulation modulating method
US20120033752A1 (en) Wireless communication device and wireless communication method
CN109076039A (en) Use the coding and modulating device of multidimensional non-uniform constellation
Xie et al. Coded modulation with signal space diversity
CN102684840B (en) Novel coding modulation method and device for low-density parity check code
CN103516465B (en) Coded modulation and demodulation and demodulation and decoding method, device and system
CN105959082B (en) Joint coding and modulation method and device based on multi-ary coding and high-order modulation
CN102185675B (en) Modulation mapping method for bit-interleaved coded modulation (BICM)-identification (ID) system based on low density parity check code (LDPC) coding
CN108432168A (en) A kind of method and apparatus demodulated and decode
JP5153588B2 (en) Wireless communication device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant