CN102075208B - 一种低功耗射频前端 - Google Patents
一种低功耗射频前端 Download PDFInfo
- Publication number
- CN102075208B CN102075208B CN201010620294XA CN201010620294A CN102075208B CN 102075208 B CN102075208 B CN 102075208B CN 201010620294X A CN201010620294X A CN 201010620294XA CN 201010620294 A CN201010620294 A CN 201010620294A CN 102075208 B CN102075208 B CN 102075208B
- Authority
- CN
- China
- Prior art keywords
- transistor
- inductance
- transistorized
- connects
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Amplifiers (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
Abstract
本发明提出了一种低功耗射频前端,包括锁相环、低噪声放大器和功率放大器,所述锁相环包括压控振荡器,还包括模式切换控制器,所述模式切换控制器的两输出端分别接功率放大器及低噪声放大器的输入端,所述低噪声放大器及功率放大器分别通过第一负载网络和第二负载网络与压控振荡器相连接,所述模式切换控制器及压控振荡器均接电源端。本发明利用了电流复用技术,使得低噪声放大器、压控振荡器和功率放大器这三个模块的总功耗大大降低,而每个模块使用的电流没有减小,因此电路的性能不会有明显的恶化;引入模式切换控制器后可以将不需要使用的模块关断,进一步减小系统功耗。
Description
技术领域
本发明涉及的是一种射频前端,具体涉及的是一种低功耗射频前端。
背景技术
在无线传感网、ZigBee和GPS中,低功耗收发系统(模块)设计是主要的目标。实现低功耗设计的方法之一是将MOS管偏置在亚阈值区。但是此方法存在一些问题,比如在亚阈值区工作的晶体管的尺寸一般都很大,限制了晶体管的最高工作频率,也就是说电路的工作速度比较低,通常这种方法不适合在射频领域中应用。另外一种方法是减小各支路晶体管的尺寸,使得获得较小的工作电流,这将导致较大的失配和闪烁噪声。以上讨论表明,在射频领域中,使晶体管工作于亚阈值区,获得较小的工作电流或减小晶体管尺寸,获得较小的工作电流都存在一定的问题。
发明内容
针对现有技术上存在的不足,本发明目的是在于提供一种低功耗的射频前端,复用了一路电流,供多个模块使用,对于每个模块电流足够保证其性能,而对于多个模块在不严重恶化性能的前提下实现了低功耗。
为了实现上述目的,本发明是通过如下的技术方案来实现:
本发明包括锁相环、低噪声放大器和功率放大器,锁相环包括压控振荡器,本发明还包括模式切换控制器,模式切换控制器的两输出端分别接功率放大器及低噪声放大器的输入端,低噪声放大器及功率放大器分别通过第一负载网络和第二负载网络与压控振荡器相连接,模式切换控制器及压控振荡器均接电源端;模式切换控制器包括晶体管,其中,第十七晶体管的栅极接第十晶体管的栅极,其公共端接控制逻辑输入信号,源极接电源端,漏极接第十晶体管的漏极;第十晶体管的源极接地,漏极接第十八晶体管的栅极和第十一晶体管的栅极;第十八晶体管的源极接电源端,漏极接第十一晶体管的漏极,栅极接第十四晶体管的栅极和第十五晶体管的栅极;第十一晶体管的漏极接第十三晶体管的栅极和第十六晶体管的栅极,源极接地;第十四晶体管的漏极接第零电阻的一端和第一电阻的一端,源极接地,第零电阻的另一端和第一电阻的另一端分别和低噪声放大器中的第四晶体管的栅极和第五晶体管的栅极连接;第十三晶体管的源极接第十四晶体管的漏极,漏极接第十二晶体管的栅极;第十二晶体管的漏极接基准电流,栅极与漏极短接,源极接地;第十六晶体管的源极接地,漏极接第二电阻的一端和第三电阻的一端,第二电阻的另一端和第三电阻的另一端分别和功率放大器中的第六晶体管的栅极和第七晶体管的栅极连接;第十五晶体管的源极接第十六晶体管的漏极,漏极接第十二晶体管的漏极。本发明的压控振荡器、功率放大器和低噪声放大器这三个模块共用一路电流,大大降低了电路的总功耗。
上述低噪声放大器还包括第三电感、第四电感、第一电容、与第一电容一端串联的第五电感、第二电容、与第二电容一端串联的第六电感、第二晶体管和第三晶体管;第五电感和第六电感的另一端分别接第四晶体管和第五晶体管的栅极,第四晶体管和第五晶体管的源极分别接第三电感和第四电感的一端,第三电感和第四电感的另一端均接地,第四晶体管和第五晶体管的漏极分别接第二晶体管和第三晶体管的源极,第二晶体管和第三晶体管的栅极均接第一偏置电压,第二晶体管及第三晶体管的漏极分别接第一负载网络中的第一电感的一端及第二负载网络中的第二电感的一端,第一电感的另一端和第二电感的另一端分别接压控振荡器中第零晶体管和第一晶体管的源极。
上述功率放大器还包括第三电容、第四电容、第八晶体管和第九晶体管;第三电容的一端和第四电容的一端分别接第六晶体管和第七晶体管的栅极,第六晶体管和第七晶体管的源极均接地,第六晶体管和第七晶体管的漏极分别接第八晶体管和第九晶体管的源极,第八晶体管和第九晶体管的栅极均接第二偏置电压,第八晶体管及第九晶体管的漏极分别接第一负载网络中的第一电感的一端及第二负载网络中的第二电感的一端。
上述压控振荡器还包括谐振网络;谐振网络包括第零电感、第零电容和可变电容,三者相互并联,第零电感有三个端口,除与第零电容并联的两个端口外,第三个端口接电源端;第零晶体管的栅极接第一晶体管的漏极,其公共端接可变电容的一个极板;第一晶体管的栅极接第零晶体管的漏极,其公共端接可变电容的另一个极板。
上述第零晶体管的源极和第一晶体管的源极通过第七电容相连,第零晶体管的源极及第一晶体管的源极还分别连接有第五电容的一端和第六电容的一端,第五电容的另一端和第六电容的另一端均接地。
上述第一负载网络还包括与第一电感相连接的第一电容阵列;第二负载网络(2b)还包括与第二电感相连接的第二电容阵列;第一电容阵列和第二电容阵列均包括二进制权重电容C[1]、C[2]、……C[n],电容C[1]的一端接第一控制字晶体管的漏极,电容C[2]的一端接第二控制字晶体管的漏端,以此类推,电容C[n]的一端接第n控制字晶体管的漏极,所有控制字晶体管的栅极分别接控制字K[1]、K[2]……K[n],所有控制字晶体管的源极均接地;第一电容阵列中的电容C[1]、C[2]、……C[n]的另一端均和第一电感的一端连接,同时接第二晶体管的漏极;第二电容阵列中的电容C[1]、C[2]、……C[n]的另一端均和第二电感的一端连接,同时接第三晶体管的漏极。采用第一电容阵列及第二电容阵列,使得在接收和发射模式下,均可以实现负载的数字控制,可以修正不同工作模式下不同连接关系引起的寄生电容的差异,同时也可以补偿工艺、温度、电压引起的电容偏差。
本发明使得低噪声放大器、压控振荡器和功率放大器这三个模块的总功耗大大降低,而每个模块使用的电流没有减小,因此电路的性能不会有明显的恶化;引入模式切换控制器后可以将不需要使用的模块关断,进一步减小系统功耗;使用电容阵列使得低噪声放大器和功率放大器的负载可以通过数字控制的方法进行调整,可以修正不同工作模式下不同连接关系引起的寄生电容的差异,同时也可以补偿工艺、温度、电压引起的电容偏差;在压控振荡器交叉耦合管源极引入电容第五电容和第六电容,能够有效地抑制输出共模电平的变化,使其保持在适当的范围之内。
附图说明
下面结合附图和具体实施方式来详细说明本发明:
图1为本发明的系统图;
图2为本发明的核心电路框图;
图3为本发明的核心电路原理图;
图4为本发明工作于接收模式时相关输出波形图(图中A为低噪声放大器输入波形,B为压控振荡器输出波形,C为低噪声放大器输出波形)。
图中各序号分别表示:
1-压控振荡器;2a-第一负载网络;2b-第二负载网络;3-功率放大器;4-低噪声放大器;5-模式切换控制器;Mod-控制逻辑输入信号;BiasL-第一控制逻辑输出信号;BiasP-第二控制逻辑输出信号;Ibias-基准电流;vco1-压控振荡器的第一差分输出端;vco2-压控振荡器的第二差分输出端;LNAin1-低噪声放大器的第一差分输入端;LNAin2-低噪声放大器的第二差分输入端;PAin1-功率放大器的第一差分输入端;PAin2-功率放大器的第二差分输入端;out1-第一公共差分输出端;out2-第二公共差分输出端;fout-中频输出信号;fin-中频输入信号;V1-第一偏置电压;V2-第二偏置电压;M1-第一晶体管;M2-第二晶体管;M3-第三晶体管;M4-第四晶体管;M5-第五晶体管;M6-第六晶体管;M7-第七晶体管;M8-第八晶体管;M9-第九晶体管;M10-第十晶体管;M11-第十一晶体管;M12-第十二晶体管;M13-第十三晶体管;M14-第十四晶体管;M15-第十五晶体管;M16-第十六晶体管;P0-第十七晶体管;P1-第十八晶体管;R0-第零电阻;R1-第一电阻;R2-第二电阻;R3-第三电阻;L0-第零电感;L1-第一电感;L2-第二电感;L3-第三电感;L4-第四电感;L5-第五电感;L6-第六电感;C0-第零电容;C1-第一电容;C2-第二电容;C3-第三电容;C4-第四电容;C5-第五电容;C6-第六电容;Cv-可变电容;Cc-第七电容;CO1-第八电容;CO2-第九电容;K[1]、K[2]…K[n]-控制字;C[1]、C[2]…C[n]-二进制权重电容。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
参见图1和图2,本发明包括锁相环6、低噪声放大器4、功率放大器3和模式切换控制器5,锁相环6包括压控振荡器1。该压控振荡器1的电流是与低噪声放大器4和功率放大器3复用的。下混频器7b输入来自低噪声放大器4的输出射频信号和锁相环6提供的本振信号,产生中频输出信号fout;上混频器7a输入来自于中频输入信号fin和锁相环6提供的本振信号,输出作为功率放大器3的输入信号。
模式切换控制器5的两输出端分别接功率放大器3及低噪声放大器4,功率放大器3及低噪声放大器4分别通过第一负载网络2a和第二负载网络2b与压控振荡器1相连接,模式切换控制器5及压控振荡器1均接电源端。电源端为压控振荡器1和模式切换控制器5供电,而功率放大器3和低噪声放大器4则共用压控振荡器1的电流。
本发明采用多模块层叠电流复用技术,通过模式切换控制器5控制为层叠连接的压控振荡器1和低噪声放大器4或压控振荡器1和功率放大器3提供偏置电流,使得功率放大器3和低噪声放大器4选择性工作。工作在发射模式时,压控振荡器1与功率放大器3层叠连接,功率放大器3共用压控振荡器1的尾电流,低噪声放大器4不工作;而工作于接收模式时,模式切换控制器5将切断压控振荡器1与功率放大器3的层叠通路,同时导通压控振荡器1与低噪声放大器4的层叠通路,低噪声放大器4共用压控振荡器1的尾电流,功率放大器3不工作。本发明的压控振荡器1、功率放大器3和低噪声放大器4这三个模块共用一路电流,大大降低了电路的总功耗。
低噪声放大器4及功率放大器3分别共用第一负载网络2a和第二负载网络2b。第一负载网络2a包括第一电感L1和第一电容阵列;第二负载网络2b包括第二电感L2和第二电容阵列。第一电容阵列和第二电容阵列均由二进制权重电容C[1]、C[2]…C[n]及开关组成,开关漏极分别接二进制权重电容C[1]、C[2]…C[n]下极板,栅极分别接控制字K[1]、K[2]…K[n],开关源极均接地。
第一负载网络2a及第二负载网络2b分别通过改变第一电容阵列及第二电容阵列的控制字K[1]、K[2]…K[n],可以选通不同的电容,与第一电感L1及第二电感L2谐振。采用第一电容阵列及第二电容阵列的好处是:在接收和发射模式下均可以实现负载的数字控制,可以修正不同工作模式下不同连接关系引起的寄生电容的差异,同时也可以补偿工艺、温度、电压引起的电容偏差。
参见图3,本发明的模式切换控制器5包括晶体管,其中,第十七晶体管M17的栅极接第十晶体管M10的栅极,其公共端接控制逻辑输入信号Mod,源极接电源端,漏极接第十晶体管M10的漏极;第十晶体管M10的源极接地,漏极接第十八晶体管M18的栅极和第十一晶体管M11的栅极;第十八晶体管M18的源极接电源端,漏极接第十一晶体管M11的漏极,栅极接第十四晶体管M14的栅极和第十五晶体管M15的栅极;第十一晶体管M11的漏极接第十三晶体管M13的栅极和第十六晶体管M16的栅极,源极接地;第十四晶体管M14的漏极通过第零电阻R0及第一电阻R1接低噪声放大器4,源极接地;第十三晶体管M13的源极接第十四晶体管M14的漏极,漏极接第十二晶体管M12的栅极;第十二晶体管M12的漏极接基准电流Ibias,栅极与漏极短接,源极接地;第十六晶体管M16的源极接地,漏极通过第二电阻R2及第三电阻R3接功率放大器3;第十五晶体管M15的源极接第十六晶体管M16的漏极,漏极接第十二晶体管M12的漏极。
其中,第十三晶体管M13和第十四晶体管M14组成第一开关,第十五晶体管M15和第十六晶体管M16组成第二开关;第十七晶体管M17和第十晶体管M10构成第一反相器,第十八晶体管M18和第十一晶体管M11组成第二反相器,第一反相器和第二反相器产生控制逻辑输入信号Mod的同相和反相信号来控制第一开关和第二开关。
低噪声放大器4包括第三电感L3、第四电感L4、第一电容C1、与第一电容C1下极板相连接的第五电感L5、第二电容C2、与第二电容C2下极板相连接的第六电感L6、第二晶体管M2、第三晶体管M3、第四晶体管M4和第五晶体管M5。低噪声放大器的第一差分输入端LNAin1和低噪声放大器的第二差分输入端LNAin2分别接第一电容C1的上极板和第二电容C2的上极板;第五电感L5和第六电感L6的另一端分别接第四晶体管M4的栅极和第五晶体管M5的栅极,第四晶体管M4和第五晶体管M5的源极分别接第三电感L3和第四电感L4的一端,第三电感L3和第四电感L4的另一端均接地,第四晶体管M4和第五晶体管M5的漏极分别接第二晶体管M2和第三晶体管M3的源极,第二晶体管M2和第三晶体管M3的栅极均接第一偏置电压V1,第一偏置电压V1由参考电压源和缓冲器构成,第二晶体管M2的漏极接第一电感L1下端、第一电容阵列和小容量的第九电容CO2上极板,第三晶体管M3的漏极接第二电感L2下端、第二电容阵列和第八电容CO1的上极板。第四晶体管M4的栅极及第五晶体管M5的栅极分别与第零电阻R0及第一电阻R1相连接。第八电容CO1的下极板及第九电容CO2的下极板分别接第一公共差分输出端out1及第二公共差分输出端out2。
第二晶体管M2、第四晶体管M4和第三晶体管M3、第五晶体管M5分别构成共源共栅结构,作为低噪声放大器4的放大管,提供一定的增益,同时减小第一公共差分输出端out1及第二公共差分输出端out2对放大管的影响。第三电感L3、第四电感L4、第五电感L5和第六电感L6用于低噪声放大器4的输入阻抗匹配,第一电容C1和第二电容C2用于隔离直流信号,并将低噪声放大器的第一差分输入端LNAin1及低噪声放大器的第二差分输入端LNAin2耦合到低噪声放大器4的输入管。
功率放大器3包括第三电容C3、第四电容C4、第六晶体管M6、第七晶体管M7、第八晶体管M8和第九晶体管M9;功率放大器的第一差分输入端PAin1和功率放大器的第二差分输入端PAin2分别接第三电容C3的上极板和第四电容C4的上极板,第三电容C3的下极板和第四电容C4的下极板分别接第六晶体管M6的栅极和第七晶体管M7的栅极,第六晶体管M6的源极和第七晶体管M7的源极均接地,第六晶体管M6的漏极和第七晶体管M7的漏极分别接第八晶体管M8的源极和第九晶体管M9的源极,第八晶体管M8的栅极和第九晶体管M9的栅极均接第二偏置电压V2,第二偏置电压V2由参考电压源和缓冲器构成,第八晶体管M8的漏极接第一电感L1下端、第一电容阵列和第九电容CO2的上极板,第九晶体管M9的漏极接第二电感L2下端、第二电容阵列和第八电容CO1的上极板;第八电容CO1的下极板和第九电容CO2的下极板分别接第一公共差分输出端out1及第二公共差分输出端out2。第六晶体管M6的栅极及第七晶体管M7的栅极分别与第二电阻R2及第三电阻R3相连接。第一公共差分输出端out1及第二公共差分输出端out2为低噪声放大器4和功率放大器3的公共输出端。
第六晶体管M6、第八晶体管M8和第七晶体管M7、第九晶体管M9分别构成共源共栅结构,作为功率放大器3的放大管,提供较高的功率增益;第三电容C3和第四电容C4用于隔离直流信号,并将功率放大器的第一差分输入端PAin1和功率放大器的第二差分输入端PAin2耦合到功率放大器3的输入管。
压控振荡器1包括谐振网络、第零晶体管和第一晶体管M1,vco1为压控振荡器的第一差分输出端,vco2为压控振荡器的第二差分输出端。谐振网络包括第零电感L0、第零电容C0和可变电容Cv,三者相互并联,且第零电感L0接电源端;第零晶体管的栅极接第一晶体管M1的漏极,其公共端接可变电容Cv的一个极板,第一晶体管M1的栅极接第零晶体管的漏极,其公共端接可变电容Cv的另一个极板。第一晶体管M1和第零晶体管构成负阻,给压控振荡器1提供维持振荡的能量。
第零晶体管的源极和第一晶体管M1的源极通过大容量的第七电容Cc相连,通过第七电容Cc连接,对射频信号短路,低中频信号开路,保持压控振荡器1尾电流恒定;同时第零晶体管的源极和第一晶体管M1的源极分别接第五电容C5的上极板和第六电容C6的上极板,第五电容C5的下极板和第六电容C6的下极板均接地,第五电容C5和第六电容C6能够有效地抑制输出共模电平的变化,使其保持在适当的范围之内。同时,第零晶体管及第一晶体管M1的源极分别与第一电感L1及第二电感L2的上端相连接。
以下为本发明的工作过程:
当控制逻辑输入信号Mod为高电平时,第十三晶体管M13和第十六晶体管M16导通,第十四晶体管M14、第十五晶体管M15关断,所以第二控制逻辑输出信号BiasP电平被下拉到地电位,功率放大器3被切断,而第一控制逻辑输出信号BiasL电平与第十二晶体管M12栅漏极电位相同,此时,第十二晶体管M12、第四晶体管M4和第五晶体管M5构成第一电流镜,为低噪声放大器4及压控振荡器1层叠结构的两条支路提供电流。
反之,当控制逻辑输入信号Mod为低电平时,第十四晶体管M14、第十五晶体管M15导通,第十三晶体管M13和第十六晶体管M16关断,低噪声放大器4被切断,压控振荡器1和功率放大器3构成层叠结构,由第十二晶体管M12、第六晶体管M6和第七晶体管M7构成的第二电流镜为其提供电流。
当控制逻辑输入信号Mod为高电平时,为接收模式;当控制逻辑输入信号Mod为低电平时,为发射模式;两种工作模式由模式切换控制器5进行切换。
参见图4,虽然本发明采用了层叠技术,但是低噪声放大器4的工作并不影响压控振荡器1的起振,压控振荡器1起振后,也不会对低噪声放大器4的工作有影响,所以压控振荡器1与低噪声放大器4的层叠结构能够互不影响的工作。同样的,压控振荡器1与功率放大器3的层叠结构也能正常工作。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (6)
1.一种低功耗射频前端,包括锁相环(6)、低噪声放大器(4)和功率放大器(3),所述锁相环(6)包括压控振荡器(1),其特征在于,还包括模式切换控制器(5),所述模式切换控制器(5)的两输出端分别接功率放大器(3)及低噪声放大器(4)的输入端,所述低噪声放大器(4)及功率放大器(3)分别通过第一负载网络(2a)和第二负载网络(2b)与压控振荡器(1)相连接,所述模式切换控制器(5)及压控振荡器(1)均接电源端;
所述模式切换控制器(5)包括晶体管,其中,第十七晶体管的栅极接第十晶体管的栅极,其公共端接控制逻辑输入信号,源极接电源端,漏极接第十晶体管的漏极;第十晶体管的源极接地,漏极接第十八晶体管的栅极和第十一晶体管的栅极;第十八晶体管的源极接电源端,漏极接第十一晶体管的漏极,栅极接第十四晶体管的栅极和第十五晶体管的栅极;第十一晶体管的漏极接第十三晶体管的栅极和第十六晶体管的栅极,源极接地;第十四晶体管的漏极接第零电阻的一端和第一电阻的一端,源极接地,第零电阻的另一端和第一电阻的另一端分别和低噪声放大器(4)中的第四晶体管的栅极和第五晶体管的栅极连接;第十三晶体管的源极接第十四晶体管的漏极,漏极接第十二晶体管的栅极;第十二晶体管的漏极接基准电流,栅极与漏极短接,源极接地;第十六晶体管的源极接地,漏极接第二电阻的一端和第三电阻的一端,第二电阻的另一端和第三电阻的另一端分别和功率放大器(3)中的第六晶体管的栅极和第七晶体管的栅极连接;第十五晶体管的源极接第十六晶体管的漏极,漏极接第十二晶体管的漏极。
2.根据权利要求1所述的低功耗射频前端,其特征在于,所述低噪声放大器(4)还包括第三电感、第四电感、第一电容、与第一电容一端串联的第五电感、第二电容、与第二电容一端串联的第六电感、第二晶体管和第三晶体管;所述第五电感和第六电感的另一端分别接第四晶体管和第五晶体管的栅极,第四晶体管和第五晶体管的源极分别接第三电感和第四电感的一端,所述第三电感和第四电感的另一端均接地,所述第四晶体管和第五晶体管的漏极分别接第二晶体管和第三晶体管的源极,第二晶体管和第三晶体管的栅极均接第一偏置电压,第二晶体管及第三晶体管的漏极分别接第一负载网络(2a)中的第一电感的一端及第二负载网络(2b)中的第二电感的一端,所述第一电感的另一端和第二电感的另一端分别接压控振荡器(1)中第零晶体管和第一晶体管的源极。
3.根据权利要求1所述的低功耗射频前端,其特征在于,所述功率放大器(3)还包括第三电容、第四电容、第八晶体管和第九晶体管;所述第三电容的一端和第四电容的一端分别接第六晶体管和第七晶体管的栅极,第六晶体管和第七晶体管的源极均接地,第六晶体管和第七晶体管的漏极分别接第八晶体管和第九晶体管的源极,第八晶体管和第九晶体管的栅极均接第二偏置电压,第八晶体管及第九晶体管的漏极分别接第一负载网络(2a)中的第一电感的一端及第二负载网络(2b)中的第二电感的一端。
4.根据权利要求1所述的低功耗射频前端,其特征在于,所述压控振荡器(1)还包括谐振网络;所述谐振网络包括第零电感、第零电容和可变电容,三者相互并联,所述第零电感有三个端口,除与第零电容并联的两个端口外,第三个端口接电源端;第零晶体管的栅极接第一晶体管的漏极,其公共端接可变电容的一个极板;第一晶体管的栅极接第零晶体管的漏极,其公共端接可变电容的另一个极板。
5.根据权利要求4所述的低功耗射频前端,其特征在于,所述第零晶体管的源极和第一晶体管的源极通过第七电容相连,所述第零晶体管的源极及第一晶体管的源极还分别连接有第五电容的一端和第六电容的一端,所述第五电容的另一端和第六电容的另一端均接地。
6.根据权利要求1至4任意一项所述的低功耗射频前端,其特征在于,
所述第一负载网络(2a)还包括与第一电感相连接的第一电容阵列;
所述第二负载网络(2b)还包括与第二电感相连接的第二电容阵列;
所述第一电容阵列和第二电容阵列均包括二进制权重电容C[1]、C[2]、……C[n],所述电容C[1]的一端接第一控制字晶体管的漏极,所述电容C[2]的一端接第二控制字晶体管的漏端,以此类推,所述电容C[n]的一端接第n控制字晶体管的漏极,所有控制字晶体管的栅极分别接控制字K[1]、K[2]……K[n],所有控制字晶体管的源极均接地;
所述第一电容阵列中的电容C[1]、C[2]、……C[n]的另一端均和第一电感的一端连接,同时接第二晶体管的漏极;
所述第二电容阵列中的电容C[1]、C[2]、……C[n]的另一端均和第二电感的一端连接,同时接第三晶体管的漏极。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010620294XA CN102075208B (zh) | 2010-12-31 | 2010-12-31 | 一种低功耗射频前端 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010620294XA CN102075208B (zh) | 2010-12-31 | 2010-12-31 | 一种低功耗射频前端 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102075208A CN102075208A (zh) | 2011-05-25 |
CN102075208B true CN102075208B (zh) | 2013-07-31 |
Family
ID=44033572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010620294XA Expired - Fee Related CN102075208B (zh) | 2010-12-31 | 2010-12-31 | 一种低功耗射频前端 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102075208B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103454654B (zh) * | 2013-09-11 | 2015-03-18 | 中国电子科技集团公司第五十四研究所 | 一种用于卫星导航射频前端的可配置的匹配网络 |
CN103546187B (zh) * | 2013-11-01 | 2015-06-03 | 东南大学 | 一种基于同相i和正交q支路电流复用的射频收发机 |
CN112946315B (zh) * | 2021-02-10 | 2022-09-16 | 复旦大学 | 一种无电磁流量计的流速计 |
CN114513057B (zh) * | 2022-02-21 | 2024-11-19 | 东南大学 | 一种双负载容性能量传输系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1140941A (zh) * | 1995-04-13 | 1997-01-22 | 三星电子株式会社 | 有单个锁相环的收发机设备及其方法 |
CN1636330A (zh) * | 2002-02-20 | 2005-07-06 | 皇家飞利浦电子股份有限公司 | 带有联合功率放大器的移动多模终端 |
US20060135109A1 (en) * | 2003-06-10 | 2006-06-22 | Klumperink Eric A M | Mixer circuit, receiver comprising a mixer circuit, wireless communication comprising a receiver, method for generating an output signal by mixing an input signal with an oscillator signal |
US20090021317A1 (en) * | 2007-07-19 | 2009-01-22 | Uniband Electronic Corp. | CMOS cross-coupled differential voltage controlled oscillator |
US20100164621A1 (en) * | 2008-12-30 | 2010-07-01 | Vishnu Srinivasan | Output gain stage for a power amplifier |
CN101888256A (zh) * | 2010-04-01 | 2010-11-17 | 华东师范大学 | 一种多模多频多应用直接变频无线收发器 |
CN201910794U (zh) * | 2010-12-31 | 2011-07-27 | 东南大学 | 一种低功耗射频前端 |
-
2010
- 2010-12-31 CN CN201010620294XA patent/CN102075208B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1140941A (zh) * | 1995-04-13 | 1997-01-22 | 三星电子株式会社 | 有单个锁相环的收发机设备及其方法 |
CN1636330A (zh) * | 2002-02-20 | 2005-07-06 | 皇家飞利浦电子股份有限公司 | 带有联合功率放大器的移动多模终端 |
US20060135109A1 (en) * | 2003-06-10 | 2006-06-22 | Klumperink Eric A M | Mixer circuit, receiver comprising a mixer circuit, wireless communication comprising a receiver, method for generating an output signal by mixing an input signal with an oscillator signal |
US20090021317A1 (en) * | 2007-07-19 | 2009-01-22 | Uniband Electronic Corp. | CMOS cross-coupled differential voltage controlled oscillator |
US20100164621A1 (en) * | 2008-12-30 | 2010-07-01 | Vishnu Srinivasan | Output gain stage for a power amplifier |
CN101888256A (zh) * | 2010-04-01 | 2010-11-17 | 华东师范大学 | 一种多模多频多应用直接变频无线收发器 |
CN201910794U (zh) * | 2010-12-31 | 2011-07-27 | 东南大学 | 一种低功耗射频前端 |
Also Published As
Publication number | Publication date |
---|---|
CN102075208A (zh) | 2011-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201910794U (zh) | 一种低功耗射频前端 | |
US8742798B2 (en) | Method and apparatus for local oscillation distribution | |
US7961058B2 (en) | Frequency divider using an injection-locking-range enhancement technique | |
US8723609B2 (en) | Voltage-controlled oscillator module and method for generating oscillator signals | |
CN201042006Y (zh) | 单片集成的低功耗2.4GHz收发芯片 | |
CN110729967B (zh) | 一种具有宽调谐范围的窄带切换毫米波压控振荡器 | |
CN201039084Y (zh) | 基于电容补偿的低幅度误差低相噪射频压控振荡器 | |
CN102075208B (zh) | 一种低功耗射频前端 | |
JP2006121435A (ja) | 発振器、通信装置 | |
WO2007019281A2 (en) | Origami cascaded topology for analog and mixed-signal applications | |
CN103078591A (zh) | 低功耗宽带压控振荡器 | |
CN103684424B (zh) | 一种基于源极退化电容的宽锁定范围电流模锁存分频器 | |
WO2018010180A1 (zh) | 一种振荡器 | |
US7388446B2 (en) | Directly modulated CMOS VCO | |
CN111342775B (zh) | 一种基于电流复用和变压器耦合缓冲放大器的双核振荡器 | |
CN115549591A (zh) | 基于碳纳米管场效应晶体管的压控振荡器 | |
CN100539395C (zh) | 一种超低电压的cmos电感电容谐振腔压控振荡器 | |
CN108886413A (zh) | 对无线传感器装置所用的电压控制振荡器中的电压进行变压 | |
US11171600B2 (en) | Device and method for voltage controlled oscillator comprising distributed active transformer cores | |
CN102299682A (zh) | 振荡电路 | |
Neeraja et al. | Review of ultra low power receiver front-end designs | |
CN111313892B (zh) | 一种宽锁定范围的可切换双核注入锁定分频器 | |
US9991895B2 (en) | Wireless radio-frequency transmission apparatus | |
CN100511968C (zh) | 压控振荡器 | |
Li et al. | Study on a $0.13-\upmu\mathrm {m} $ CMOS Class-E 2.4 GHz Adjustable Power Amplifier for IoT Application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170111 Address after: 99 No. 214135 Jiangsu province Wuxi city Wuxi District Linghu Avenue Patentee after: Southeast University Wuxi branch Address before: 99 No. 214135 Jiangsu New District of Wuxi City Linghu Avenue Patentee before: SOUTHEAST University |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130731 |
|
CF01 | Termination of patent right due to non-payment of annual fee |