[go: up one dir, main page]

CN102064206A - Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof - Google Patents

Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof Download PDF

Info

Publication number
CN102064206A
CN102064206A CN2010105651335A CN201010565133A CN102064206A CN 102064206 A CN102064206 A CN 102064206A CN 2010105651335 A CN2010105651335 A CN 2010105651335A CN 201010565133 A CN201010565133 A CN 201010565133A CN 102064206 A CN102064206 A CN 102064206A
Authority
CN
China
Prior art keywords
layer
multicomponent
doping
mixed crystal
material structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010105651335A
Other languages
Chinese (zh)
Inventor
常本康
李飙
徐源
杜玉杰
王晓晖
杜晓晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN2010105651335A priority Critical patent/CN102064206A/en
Publication of CN102064206A publication Critical patent/CN102064206A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Led Devices (AREA)

Abstract

本发明提供一种反射式GaN紫外光电阴极材料结构及其制作方法,其结构自下而上由衬底、非故意掺杂的AlN缓冲层、p型GaxAl1-xN多组分混晶光电发射层以及Cs或Cs/O激活层构成;其中,非故意掺杂的AlN缓冲层生长在衬底上;p型GaxAl1-xN多组分混晶光电发射层外延生长在前述AlN缓冲层上;Cs或Cs/O激活层吸附在p型GaxAl1-xN多组分混晶光电发射层的前表面上,厚度在nm数量级。该结构采用多组分和梯度掺杂光电发射层,增大了发射层内光激发电子的逃逸深度,提高了发射层内电子发射到真空的几率,从而提高了GaN紫外光电阴极的总体量子效率,获得较高的紫外灵敏度。

Figure 201010565133

The present invention provides a reflective GaN ultraviolet photocathode material structure and its manufacturing method . crystal photoemission layer and Cs or Cs/O active layer; wherein, the unintentionally doped AlN buffer layer is grown on the substrate; the p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer is epitaxially grown on On the aforementioned AlN buffer layer; the Cs or Cs/O active layer is adsorbed on the front surface of the p-type GaxAl1 -xN multi-component mixed crystal photoemission layer, and the thickness is on the order of nm. The structure adopts multi-component and gradient doping photoelectric emission layer, which increases the escape depth of photoexcited electrons in the emission layer, improves the probability of electron emission into vacuum in the emission layer, and thus improves the overall quantum efficiency of GaN UV photocathode , to obtain higher UV sensitivity.

Figure 201010565133

Description

多组分、梯度掺杂GaN紫外光电阴极材料结构及其制作方法 Multi-component, gradient doped GaN ultraviolet photocathode material structure and fabrication method

技术领域technical field

本发明属于紫外探测材料技术领域,具体涉及一种基于半导体材料外延技术、半导体材料掺杂技术和超高真空表面激活技术相结合的反射式紫外光电阴极材料结构及其制作方法。The invention belongs to the technical field of ultraviolet detection materials, and in particular relates to a reflective ultraviolet photocathode material structure and a manufacturing method based on the combination of semiconductor material epitaxy technology, semiconductor material doping technology and ultra-high vacuum surface activation technology.

背景技术Background technique

近年来,随着GaN材料制备技术、p型掺杂技术的完善以及超高真空技术的发展,GaN紫外光电阴极正成为一种新型高性能的紫外光电阴极。这种阴极的表面具有负电子亲和势(Negative Electron Affinity,NEA),即阴极的表面真空能级低于体内导带底能级,因此体内光激发电子只需运行到表面,就可以通过隧穿发射到真空,无需过剩动能去克服材料表面的势垒,使光激发电子的逸出几率大大增加,并且为冷电子发射,因此具有量子效率高、暗发射小、发射电子能量分布集中等独特优点。其量子效率一般>24%,大大高于传统的紫外光电阴极10%的量子效率(如碲化铯,具有正电子亲和势,Positive Electron Affinity,PEA),并且,GaN材料禁带宽度为~3.4eV,响应400nm以下的紫外辐射,是典型的“日盲”材料,具有良好的抗辐射能力。In recent years, with the improvement of GaN material preparation technology, p-type doping technology and the development of ultra-high vacuum technology, GaN UV photocathode is becoming a new type of high-performance UV photocathode. The surface of this cathode has negative electron affinity (Negative Electron Affinity, NEA), that is, the surface vacuum energy level of the cathode is lower than the bottom energy level of the conduction band in the body. Through emission into vacuum, there is no need for excess kinetic energy to overcome the potential barrier on the surface of the material, so that the escape probability of photo-excited electrons is greatly increased, and it is cold electron emission, so it has unique advantages such as high quantum efficiency, small dark emission, and concentrated energy distribution of emitted electrons. advantage. Its quantum efficiency is generally >24%, which is much higher than the 10% quantum efficiency of the traditional ultraviolet photocathode (such as cesium telluride, which has positron affinity, Positive Electron Affinity, PEA), and the band gap of GaN material is ~ 3.4eV, responding to ultraviolet radiation below 400nm, is a typical "sun-blind" material with good radiation resistance.

GaN紫外光电阴极可以在反射模式或透射模式下工作。当光从阴极前表面入射而电子也从前表面发射时为反射模式工作;当光从阴极的后表面入射而电子从前表面发射时为透射模式工作。反射式的GaN紫外光电阴极材料结构自下而上一般包括衬底材料(通常采用蓝宝石)、外延生长在衬底上的AlN缓冲层、生长在缓冲层上的p型GaN光电发射材料以及低逸出功元素吸附的激活层。其中光电发射层采用p型均匀掺杂,由于发射层表面和体内存在浓度差,被入射光从价带激发到导带的电子以扩散形式向体表运动。输运过程中一些电子在多次与晶格碰撞损失能量后被复合,无法逸出,从而降低电子发射数量,导致阴极量子效率较低。GaN UV photocathodes can be operated in reflective or transmissive mode. It operates in reflective mode when light is incident from the front surface of the cathode and electrons are also emitted from the front surface; in transmissive mode when light is incident from the back surface of the cathode and electrons are emitted from the front surface. The reflective GaN ultraviolet photocathode material structure generally includes a substrate material (usually sapphire), an AlN buffer layer epitaxially grown on the substrate, a p-type GaN photoemissive material grown on the buffer layer, and a low escape Activation layer for active element adsorption. The photoemissive layer is evenly doped with p-type. Due to the concentration difference between the surface of the emissive layer and the body, the electrons excited by the incident light from the valence band to the conduction band move to the body surface in the form of diffusion. During the transport process, some electrons are recombined after multiple collisions with the lattice and lose energy, and cannot escape, thereby reducing the number of electrons emitted, resulting in a low quantum efficiency of the cathode.

经文献检索发现,采用变掺杂结构光电发射层可以提高光激发电子从体内到体表的输运能力,增大了电子逸出量,从而得到较高的量子效率。光电发射层采取适当的变掺杂结构,可以在发射层体内产生有利于电子向表面运动的内建电场,使激发到导带的电子在向表面运动的过程中既存在体内和体表间的浓度差引起的扩散运动,又能在内建电场的作用下作漂移运动,扩散加上漂移的运动方式可以增加电子到达阴极表面的几率,进而电子逸出几率增大,量子效率获得提高。但是发射层体内较深处光激发电子逸出比例仍较小,光激发电子逸出深度仍有提升的空间。According to literature search, the use of variable doping structure photoemission layer can improve the transport ability of photoexcited electrons from the body to the body surface, increase the amount of electron escape, and thus obtain higher quantum efficiency. The photoemissive layer adopts an appropriate variable doping structure, which can generate a built-in electric field in the emissive layer body that is conducive to the movement of electrons to the surface, so that the electrons excited to the conduction band exist in the gap between the body and the body surface during the movement to the surface. The diffusion movement caused by the concentration difference can also perform drift movement under the action of the built-in electric field. The movement mode of diffusion and drift can increase the probability of electrons reaching the surface of the cathode, thereby increasing the probability of electrons escaping and improving the quantum efficiency. However, the proportion of photoexcited electrons escaped from the deeper part of the emissive layer is still small, and there is still room for improvement in the photoexcited electrons escape depth.

发明内容Contents of the invention

本发明所解决的技术问题在于提供一种进一步提高光激发电子逸出深度的多组分、梯度掺杂GaN紫外光电阴极材料结构及其制作方法。The technical problem to be solved by the present invention is to provide a multi-component, gradient doped GaN ultraviolet photocathode material structure and a manufacturing method for further improving the escape depth of photoexcited electrons.

实现本发明目的的技术解决方案为:一种多组分、梯度掺杂GaN紫外光电阴极材料结构,该材料结构自下而上依次为衬底、非故意掺杂的AlN缓冲层、p型GaxAl1-xN多组分混晶光电发射层以及Cs或Cs/O激活层。The technical solution to realize the object of the present invention is: a multi-component, gradient doped GaN ultraviolet photocathode material structure, the material structure is successively substrate, unintentionally doped AlN buffer layer, p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer and Cs or Cs/O active layer.

一种制造多组分、梯度掺杂GaN紫外光电阴极材料结构的方法,包括以下步骤:A method for manufacturing a multi-component, gradient doped GaN ultraviolet photocathode material structure, comprising the following steps:

步骤1、在双面抛光的蓝宝石衬底的上表面,通过半导体材料的外延生长工艺生长非故意掺杂的AlN缓冲层;Step 1. On the upper surface of the double-sided polished sapphire substrate, grow an unintentionally doped AlN buffer layer through the epitaxial growth process of semiconductor materials;

步骤2、通过外延生长工艺以及III-V族化合物半导体材料的p型掺杂工艺,在步骤1获得的AlN缓冲层上生长p型GaxAl1-xN多组分混晶光电发射层作为光电发射材料;Step 2, grow a p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer on the AlN buffer layer obtained in step 1 by epitaxial growth process and p-type doping process of III-V compound semiconductor materials as photoelectric emissive materials;

步骤3、利用化学清洗去除步骤2得到的阴极材料表面油脂及加工过程中残存的无机附着物;然后将其送入超高真空系统中,对材料表面进行加热净化,使材料表面达到原子级洁净程度;Step 3. Use chemical cleaning to remove the grease on the surface of the cathode material obtained in step 2 and the remaining inorganic attachments during processing; then send it into an ultra-high vacuum system to heat and purify the surface of the material to make the surface of the material reach atomic level cleanliness degree;

步骤4、在上述p型GaN材料表面通过激活工艺吸附单层Cs或多层Cs/O,以形成Cs或Cs/O激活层,最终制备出具有负电子亲和势的多组分、梯度掺杂结构GaN紫外光电阴极。Step 4. Adsorb a single layer of Cs or multiple layers of Cs/O on the surface of the p-type GaN material through an activation process to form a Cs or Cs/O activation layer, and finally prepare a multi-component, gradient doped Heterostructure GaN UV photocathode.

本发明与现有技术相比,其显著优点:1)本发明提出一种基于半导体材料外延技术、半导体材料掺杂技术和超高真空表面激活技术相结合的反射式紫外光电阴极材料结构,该结构采用GaxAl1-xN多组分和梯度掺杂光电发射层,增大了发射层内光激发电子的逃逸深度,提高了发射层内电子发射到真空的几率,从而提高了GaN紫外光电阴极的总体量子效率,获得较高的紫外灵敏度;2)由于GaxAl1-xN多组分混晶发射层材料的禁带宽度随x的改变而相应变化,对应于紫外响应阈可调;3)这种紫外光电阴极材料结构可以作为一种高效的紫外冷电子源,应用于微波管、回旋加速度计等装置;也可作为主动式紫外探测器的光敏元件,应用于紫外告警等领域。Compared with the prior art, the present invention has significant advantages: 1) The present invention proposes a reflective ultraviolet photocathode material structure based on the combination of semiconductor material epitaxy technology, semiconductor material doping technology and ultra-high vacuum surface activation technology. The structure adopts Ga x Al 1-x N multi-component and gradient doped photoemissive layer, which increases the escape depth of photo-excited electrons in the emissive layer and improves the probability of electron emission into vacuum in the emissive layer, thus improving the GaN ultraviolet The overall quantum efficiency of the photocathode can obtain higher ultraviolet sensitivity; 2) Since the forbidden band width of the Ga x Al 1-x N multi-component mixed crystal emission layer material changes correspondingly with the change of x, the corresponding ultraviolet response threshold can be 3) The structure of this ultraviolet photocathode material can be used as a high-efficiency ultraviolet cold electron source, applied to microwave tubes, cyclotron accelerometers and other devices; it can also be used as a photosensitive element of active ultraviolet detectors, applied to ultraviolet alarms, etc. field.

下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.

附图说明Description of drawings

图1为本发明GaN紫外光电阴极材料的层结构示意图。FIG. 1 is a schematic diagram of the layer structure of the GaN ultraviolet photocathode material of the present invention.

图2为本发明GaN紫外光电阴极材料工作原理图。Fig. 2 is a working principle diagram of the GaN ultraviolet photocathode material of the present invention.

具体实施方式Detailed ways

结合图1、图2,本发明的一种多组分、梯度掺杂GaN紫外光电阴极材料结构,该材料结构自下而上依次为衬底1、非故意掺杂的AlN缓冲层2、p型GaxAl1-xN多组分混晶光电发射层3以及Cs或Cs/O激活层4。所述衬底1为双面抛光的蓝宝石。所述非故意掺杂的AlN缓冲层2外延生长在衬底1上,厚度在10-200nm之间。所述p型GaxAl1-xN多组分混晶光电发射层3外延生长在AlN缓冲层2上,厚度在100-200nm之间,掺杂浓度范围为1016-1019cm-3,掺杂浓度从体内到表面依次减小,GaxAl1-xN多组分混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1。所述Cs或Cs/O激活层4吸附在p型GaxAl1-xN多组分混晶光电发射层3的前表面上,厚度在nm数量级。1 and 2, a multi-component, gradient-doped GaN ultraviolet photocathode material structure of the present invention, the material structure is a substrate 1, an unintentionally doped AlN buffer layer 2, p Type GaxAl1 -xN multi-component mixed crystal photoemission layer 3 and Cs or Cs/O active layer 4. The substrate 1 is double-sided polished sapphire. The unintentionally doped AlN buffer layer 2 is epitaxially grown on the substrate 1 with a thickness between 10-200nm. The p-type Ga x Al 1-x N multi-component mixed crystal photoelectric emission layer 3 is epitaxially grown on the AlN buffer layer 2, the thickness is between 100-200 nm, and the doping concentration range is 10 16 -10 19 cm -3 , the doping concentration decreases sequentially from the body to the surface, and the ratio control parameter x in the Ga x Al 1-x N multi-component mixed crystal gradually changes from 0 to 1 with the AlN buffer layer as the growth starting point. The Cs or Cs/O active layer 4 is adsorbed on the front surface of the p-type GaxAl1 -xN multi-component mixed crystal photoelectric emission layer 3, and its thickness is on the order of nm.

一种制造多组分、梯度掺杂GaN紫外光电阴极材料结构的方法,包括以下步骤:A method for manufacturing a multi-component, gradient doped GaN ultraviolet photocathode material structure, comprising the following steps:

步骤1、在双面抛光的蓝宝石衬底1的上表面,通过半导体材料的外延生长工艺生长非故意掺杂的AlN缓冲层2;所述非故意掺杂的AlN缓冲层2的厚度为10-200nm。Step 1, on the upper surface of the double-sided polished sapphire substrate 1, grow an unintentionally doped AlN buffer layer 2 through the epitaxial growth process of semiconductor materials; the thickness of the unintentionally doped AlN buffer layer 2 is 10- 200nm.

步骤2、通过外延生长工艺以及III-V族化合物半导体材料的p型掺杂工艺,在步骤1获得的AlN缓冲层2上生长p型GaxAl1-xN多组分混晶光电发射层3作为光电发射材料;所述p型GaxAl1-xN多组分混晶光电发射层3的厚度为100-200nm,其掺杂浓度范围在1016-1019cm-3且掺杂浓度从体内到表面依次减小,所述GaxAl1-xN多组分混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1。Step 2, grow a p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer on the AlN buffer layer 2 obtained in step 1 by epitaxial growth process and p-type doping process of III-V compound semiconductor materials 3 as a photoemissive material; the p-type Ga x Al 1-x N multi-component mixed crystal photoemissive layer 3 has a thickness of 100-200 nm, its doping concentration ranges from 10 16 to 10 19 cm -3 and is doped The concentration decreases sequentially from the body to the surface, and the ratio control parameter x in the GaxAl1 -xN multi-component mixed crystal gradually changes from 0 to 1 with the AlN buffer layer as the growth starting point.

步骤3、利用化学清洗去除步骤2得到的阴极材料表面油脂及加工过程中残存的无机附着物;然后将其送入超高真空系统中,对材料表面进行加热净化,使材料表面达到原子级洁净程度;对材料表面进行加热净化时的温度为700-900℃,加热时间为10-30分钟。Step 3. Use chemical cleaning to remove the grease on the surface of the cathode material obtained in step 2 and the remaining inorganic attachments during processing; then send it into an ultra-high vacuum system to heat and purify the surface of the material to make the surface of the material reach atomic level cleanliness degree; when the material surface is heated and purified, the temperature is 700-900° C., and the heating time is 10-30 minutes.

步骤4、在上述p型GaN材料表面通过激活工艺吸附单层Cs或多层Cs/O,以形成Cs或Cs/O激活层4,最终制备出具有负电子亲和势的多组分、梯度掺杂结构GaN紫外光电阴极。Step 4. Adsorb a single layer of Cs or multiple layers of Cs/O on the surface of the p-type GaN material through an activation process to form a Cs or Cs/O activation layer 4, and finally prepare a multi-component, gradient Doped structure GaN ultraviolet photocathode.

结合图2,本发明反射式GaN紫外光电阴极材料结构的工作原理为:该紫外光电阴极材料的工作模式为反射式,即紫外光从阴极的前表面入射进来,经过激活层4被p型GaxAl1-xN多组分混晶光电发射层3吸收,光电发射层3吸收光子后获得能量,当入射光子能量大于GaN材料的禁带宽度(Eg=3.4eV)时,处于价带的电子就可以跃迁到导带成为自由电子,这些自由电子通过扩散加上漂移的运动方式到达阴极表面并且发射到真空。GaxAl1-xN多组分结构一方面提高了发射层深处光激发电子的逸出几率,另一方面增加了对紫外响应波长的调整。当电子发射到真空后被外加强电压收集,并通过外加采集电路以光电流形式输出。入射的紫外光越强,p型GaxAl1-xN多组分混晶光电发射层3吸收的光子能量就越多,输出的光电流也就越大。2, the working principle of the reflective GaN ultraviolet photocathode material structure of the present invention is: the working mode of the ultraviolet photocathode material is reflective, that is, the ultraviolet light is incident from the front surface of the cathode, and is absorbed by the p-type GaN through the active layer 4. x Al 1-x N multi-component mixed crystal photoemission layer 3 absorbs, and the photoemission layer 3 obtains energy after absorbing photons. When the incident photon energy is greater than the forbidden band width of GaN material (Eg=3.4eV), it is in the valence band The electrons can jump to the conduction band to become free electrons, and these free electrons reach the surface of the cathode through diffusion and drift and are emitted into the vacuum. The Ga x Al 1-x N multi-component structure improves the escape probability of photoexcited electrons deep in the emissive layer on the one hand, and increases the adjustment of the ultraviolet response wavelength on the other hand. When the electrons are emitted into the vacuum, they are collected by an external strong voltage, and output in the form of photocurrent through an external collection circuit. The stronger the incident ultraviolet light is, the more photon energy is absorbed by the p-type GaxAl1 -xN multi-component mixed crystal photoemission layer 3, and the output photocurrent is also larger.

下面结合实施例对本发明做进一步详细的描述:Below in conjunction with embodiment the present invention is described in further detail:

实施例1:如图1所示,一种反射式GaN紫外光电阴极材料结构,该材料结构自下而上由衬底1(如蓝宝石)、非故意掺杂AlN缓冲层2、p型GaxAl1-xN多组分混晶光电发射层3以及Cs或Cs/O激活层4构成;其中,非故意掺杂的AlN缓冲层2外延生长在衬底层1上,厚度为50nm;p型GaxAl1-xN多组分混晶光电发射层3外延生长在前述AlN缓冲层2上,厚度为120nm,掺杂浓度依次为1×1018、4×1017、2×1017和6×1016,由体内到体表渐次降低,混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1;Cs激活层4通过超高真空激活工艺吸附在p型GaxAl1-xN多组分混晶光电发射层3的前表面上,厚度为一个单原子层。Embodiment 1: as shown in Figure 1, a kind of reflective GaN ultraviolet photocathode material structure, this material structure is made up of substrate 1 (such as sapphire), unintentional doping AlN buffer layer 2, p-type Ga x Al 1-x N multi-component mixed crystal photoelectric emission layer 3 and Cs or Cs/O active layer 4; wherein, the unintentionally doped AlN buffer layer 2 is epitaxially grown on the substrate layer 1 with a thickness of 50nm; p-type Ga x Al 1-x N multi-component mixed crystal photoemissive layer 3 is epitaxially grown on the aforementioned AlN buffer layer 2 with a thickness of 120nm and doping concentrations of 1×10 18 , 4×10 17 , 2×10 17 and 6×10 16 , which gradually decreases from the body to the body surface, the proportion control parameter x in the mixed crystal starts from the AlN buffer layer, and gradually changes from 0 to 1; the Cs active layer 4 is adsorbed on the p-type Ga x by the ultra-high vacuum activation process On the front surface of the Al 1-x N multicomponent mixed crystal photoelectric emission layer 3 , the thickness is one monoatomic layer.

实施例2:与实施1不同的是,AlN缓冲层的厚度为100nm;p型GaxAl1-xN多组分混晶光电发射层3外延生长在前述AlN缓冲层2上,厚度为120nm,掺杂浓度依次为1×1018、4×1017、2×1017和6×1016,由体内到体表渐次降低,混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1;Cs激活层4通过超高真空激活工艺吸附在p型GaxAl1-xN多组分混晶光电发射层3的前表面上,厚度为一个单原子层。Embodiment 2: Different from Embodiment 1, the thickness of the AlN buffer layer is 100nm; the p-type GaxAl1 -xN multi-component mixed crystal photoemission layer 3 is epitaxially grown on the aforementioned AlN buffer layer 2, and the thickness is 120nm , the doping concentration is 1×10 18 , 4×10 17 , 2×10 17 and 6×10 16 , which gradually decrease from the body to the body surface. The proportion control parameter x in the mixed crystal takes the AlN buffer layer as the growth starting point, from 0 gradually becomes 1; the Cs active layer 4 is adsorbed on the front surface of the p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer 3 through an ultra-high vacuum activation process, with a thickness of one monoatomic layer.

实施例3:与实施1不同的是,AlN缓冲层的厚度为100nm;p型GaxAl1-xN多组分混晶光电发射层3外延生长在前述AlN缓冲层2上,厚度为150nm,掺杂浓度依次为1×1018、4×1017、2×1017和6×1016,由体内到体表渐次降低,混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1;Cs激活层4通过超高真空激活工艺吸附在p型GaxAl1-xN多组分混晶光电发射层3的前表面上,厚度为一个单原子层。Embodiment 3: Different from Embodiment 1, the thickness of the AlN buffer layer is 100nm; the p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer 3 is epitaxially grown on the aforementioned AlN buffer layer 2 with a thickness of 150nm , the doping concentration is 1×10 18 , 4×10 17 , 2×10 17 and 6×10 16 , which gradually decrease from the body to the body surface. The proportion control parameter x in the mixed crystal takes the AlN buffer layer as the growth starting point, from 0 gradually becomes 1; the Cs active layer 4 is adsorbed on the front surface of the p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer 3 through an ultra-high vacuum activation process, with a thickness of one monoatomic layer.

实施例4:与实施1不同的是,AlN缓冲层的厚度为10nm;p型GaxAl1-xN多组分混晶光电发射层3外延生长在前述AlN缓冲层2上,厚度为100nm,掺杂浓度依次为1×1018、4×1017、2×1017和6×1016,由体内到体表渐次降低,混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1;Cs激活层4通过超高真空激活工艺吸附在p型GaxAl1-xN多组分混晶光电发射层3的前表面上,厚度为一个单原子层。Embodiment 4: Different from Embodiment 1, the thickness of the AlN buffer layer is 10 nm; the p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer 3 is epitaxially grown on the aforementioned AlN buffer layer 2, and the thickness is 100 nm , the doping concentration is 1×10 18 , 4×10 17 , 2×10 17 and 6×10 16 , which gradually decrease from the body to the body surface. The proportion control parameter x in the mixed crystal takes the AlN buffer layer as the growth starting point, from 0 gradually becomes 1; the Cs active layer 4 is adsorbed on the front surface of the p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer 3 through an ultra-high vacuum activation process, with a thickness of one monoatomic layer.

实施例5:与实施1不同的是,AlN缓冲层的厚度为200nm;p型GaxAl1-xN多组分混晶光电发射层3外延生长在前述AlN缓冲层2上,厚度为200nm,掺杂浓度依次为1×1018、4×1017、2×1017和6×1016,由体内到体表渐次降低,混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1;Cs激活层4通过超高真空激活工艺吸附在p型GaxAl1-xN多组分混晶光电发射层3的前表面上,厚度为一个单原子层。Embodiment 5: Different from Embodiment 1, the thickness of the AlN buffer layer is 200nm; the p-type GaxAl1 -xN multi-component mixed crystal photoemission layer 3 is epitaxially grown on the aforementioned AlN buffer layer 2, and the thickness is 200nm , the doping concentration is 1×10 18 , 4×10 17 , 2×10 17 and 6×10 16 , which gradually decrease from the body to the body surface. The proportion control parameter x in the mixed crystal takes the AlN buffer layer as the growth starting point, from 0 gradually becomes 1; the Cs active layer 4 is adsorbed on the front surface of the p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer 3 through an ultra-high vacuum activation process, with a thickness of one monoatomic layer.

上述反射式GaN紫外光电阴极材料结构的制作方法为:The manufacturing method of the reflective GaN ultraviolet photocathode material structure is as follows:

首先,在双面抛光的蓝宝石衬底1的上表面,通过半导体材料的外延生长工艺(如金属有机物化学汽相沉积,Metalorganic Chemical Vapor Deposition,MOCVD和分子束外延,Molecular Beam Epitaxy,MBE等)生长所述厚度的非故意掺杂的AlN缓冲层2;其次,再通过相同的外延生长工艺以及III-V族化合物半导体材料的p型掺杂工艺,在AlN缓冲层2上生长所述厚度、掺杂浓度范围在1016-1019cm-3的p型GaxAl1-xN多组分混晶光电发射层3作为光电发射材料;再次,将外延生长得到的阴极材料采用化学清洗(如采用2∶2∶1的浓硫酸、H2O2和去离子水的混合液清洗材料表面)去除发射层表面的油脂及加工过程中残存的无机附着物;接着将其送入超高真空系统中进行加热,如在710℃下对材料表面进行30分钟的加热净化,使材料表面达到原子级洁净程度;最后,在得到的p型GaxAl1-xN多组分混晶材料表面通过激活工艺吸附单层Cs或多层Cs/O,以形成Cs或Cs/O激活层,最终制备出具有负电子亲和势的GaN紫外光电阴极。First, on the upper surface of the double-sided polished sapphire substrate 1, grow by semiconductor material epitaxial growth process (such as metal organic chemical vapor deposition, Metalorganic Chemical Vapor Deposition, MOCVD and molecular beam epitaxy, Molecular Beam Epitaxy, MBE, etc.) An unintentionally doped AlN buffer layer 2 of the thickness; secondly, grow the AlN buffer layer 2 of the thickness, doped The p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer 3 with a dopant concentration range of 10 16 -10 19 cm -3 is used as the photoemission material; again, the cathode material obtained by epitaxial growth is chemically cleaned (such as Use 2:2:1 mixture of concentrated sulfuric acid, H 2 O 2 and deionized water to clean the surface of the material) to remove the grease on the surface of the emission layer and the remaining inorganic attachments during processing; then send it to the ultra-high vacuum system For example, heat and purify the surface of the material at 710°C for 30 minutes to make the surface of the material reach atomic level cleanliness; finally, pass through the surface of the obtained p-type Ga x Al 1-x N multi-component mixed crystal material The activation process adsorbs single-layer Cs or multi-layer Cs/O to form a Cs or Cs/O active layer, and finally prepares a GaN ultraviolet photocathode with negative electron affinity.

本发明并不限于所述实施对缓冲层、光电发射层厚度和激活层的厚度的限制,只要在本发明技术方案的结构上所作的简单变化,均落入本发明的保护范围。The present invention is not limited to the restrictions on the buffer layer, photoemission layer thickness and activation layer thickness, as long as the simple changes made in the structure of the technical solution of the present invention, all fall into the protection scope of the present invention.

Claims (9)

1. a multicomponent, grade doping GaN ultraviolet light photo-cathode material structure is characterized in that this material structure is followed successively by AlN resilient coating (2), the p type Ga of substrate (1), involuntary doping from bottom to top xAl 1-xN multicomponent mixed crystal photoemissive layer (3) and Cs or Cs/O active coating (4).
2. multicomponent according to claim 1, grade doping GaN ultraviolet light photo-cathode material structure is characterized in that described substrate (1) is the sapphire of twin polishing.
3. multicomponent according to claim 1, grade doping GaN ultraviolet light photo-cathode material structure is characterized in that, AlN resilient coating (2) epitaxial growth of described involuntary doping is on substrate (1), and thickness is between 10-200nm.
4. multicomponent according to claim 1, grade doping GaN ultraviolet light photo-cathode material structure is characterized in that, described p type Ga xAl 1-xN multicomponent mixed crystal photoemissive layer (3) epitaxial growth is on AlN resilient coating (2), and thickness is between 100-200nm, and the doping content scope is 10 16-10 19Cm -3, doping content is from reducing Ga successively to the surface in the body xAl 1-xThe proportional control parameter x serves as the growth starting point with the AlN resilient coating in the N multicomponent mixed crystal, fades to 1 from 0.
5. multicomponent according to claim 1, grade doping GaN ultraviolet light photo-cathode material structure is characterized in that, described Cs or Cs/O active coating (4) are adsorbed on p type Ga xAl 1-xOn the front surface of N multicomponent mixed crystal photoemissive layer (3), thickness is at the nm order of magnitude.
6. a method of making the described multicomponent of claim 1, grade doping GaN ultraviolet light photo-cathode material structure is characterized in that, may further comprise the steps:
Step 1, at the upper surface of the Sapphire Substrate (1) of twin polishing, by the grow AlN resilient coating (2) of involuntary doping of the epitaxial growth technology of semi-conducting material;
Step 2, by the p type doping process of epitaxial growth technology and III-V group iii v compound semiconductor material, go up growing p-type Ga at the AlN resilient coating (2) that step 1 obtains xAl 1-xN multicomponent mixed crystal photoemissive layer (3) is as photoemissive material;
Remaining inorganic attachment in step 3, the surperficial grease of the cathode material that utilizes chemical cleaning removal step 2 to obtain and the course of processing; Then it is sent in the ultra-high vacuum system, material surface is added thermal purification, make material surface reach the atom level clean level;
Step 4, at above-mentioned p type GaN material surface by activation technology absorption monolayer Cs or multi-layer C s/O, to form Cs or Cs/O active coating (4), finally prepare multicomponent, grade doping structure GaN ultraviolet light photo negative electrode with negative electron affinity.
7. according to the method for the described manufacturing multicomponent of claim 6, grade doping GaN ultraviolet light photo-cathode material structure, it is characterized in that the thickness of the AlN resilient coating (2) of involuntary doping in the step 1 is 10-200nm.
8. according to the method for the described manufacturing multicomponent of claim 6, grade doping GaN ultraviolet light photo-cathode material structure, it is characterized in that p type Ga in the step 2 xAl 1-xThe thickness of N multicomponent mixed crystal photoemissive layer (3) is 100-200nm, and its doping content scope is 10 16-10 19m -3And doping content is from reducing described Ga successively to the surface in the body xAl 1-xThe proportional control parameter x serves as the growth starting point with the AlN resilient coating in the N multicomponent mixed crystal, fades to 1 from 0.
9. according to the method for the described manufacturing multicomponent of claim 6, grade doping GaN ultraviolet light photo-cathode material structure, it is characterized in that the temperature when in the step 3 material surface being added thermal purification is 700-900 ℃, be 10-30 minute heating time.
CN2010105651335A 2010-11-30 2010-11-30 Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof Pending CN102064206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105651335A CN102064206A (en) 2010-11-30 2010-11-30 Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105651335A CN102064206A (en) 2010-11-30 2010-11-30 Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof

Publications (1)

Publication Number Publication Date
CN102064206A true CN102064206A (en) 2011-05-18

Family

ID=43999411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105651335A Pending CN102064206A (en) 2010-11-30 2010-11-30 Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof

Country Status (1)

Country Link
CN (1) CN102064206A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123885A (en) * 2013-01-24 2013-05-29 中国电子科技集团公司第五十五研究所 Variable doping structure of transmission-type photoelectric cathode material for enhancing thermal stability
CN103295855A (en) * 2013-05-29 2013-09-11 南京理工大学 Index-doped reflecting-type GaAs (gallium arsenide) photoelectric cathode and production method thereof
CN103779436A (en) * 2014-01-13 2014-05-07 南京理工大学 Transmission-type AlGaN ultraviolet photocathode and preparation method thereof
CN104752117A (en) * 2015-03-03 2015-07-01 东华理工大学 NEA electron source for vertically emitting AlGaAs/GaAs nanowires
CN105449066A (en) * 2015-12-07 2016-03-30 南京理工大学 Superlattice graded buffer layer transmissive AlGaN ultraviolet cathode and preparation method therefor
CN107393787A (en) * 2017-07-24 2017-11-24 中国电子科技集团公司第五十五研究所 The blue green light sensitive transmission formula GaAlAs negative electrodes of Al composition gradient gradual changes
CN108933181A (en) * 2018-07-09 2018-12-04 广西大学 The preparation method of transmission-type nanometer suede InAlN base PETE solar battery structure and its cathode
CN110379866A (en) * 2019-06-27 2019-10-25 南京理工大学 Solar battery based on vacuum separation formula p-n junction N-shaped varying doping GaN base anode
CN112687500A (en) * 2021-01-27 2021-04-20 南阳理工学院 Variable spectrum GaAlAs photoelectric emission material and preparation method thereof
CN113571390A (en) * 2021-06-23 2021-10-29 电子科技大学 A GaN photocathode with superlattice nanowire structure
CN113690119A (en) * 2021-06-22 2021-11-23 南京理工大学 Laminated composite GaAs-based photocathode with enhanced near-infrared response and preparation method thereof
CN115019912A (en) * 2022-04-24 2022-09-06 电子科技大学 A method for real-time control of electron escape probability from NEA GaN photocathode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866976A (en) * 2010-05-21 2010-10-20 重庆大学 Transmissive GaN ultraviolet photocathode based on variable doping structure and manufacturing method
CN101866977A (en) * 2010-06-25 2010-10-20 重庆大学 Transmissive GaN UV Photocathode Based on Gradient Buffer Layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866976A (en) * 2010-05-21 2010-10-20 重庆大学 Transmissive GaN ultraviolet photocathode based on variable doping structure and manufacturing method
CN101866977A (en) * 2010-06-25 2010-10-20 重庆大学 Transmissive GaN UV Photocathode Based on Gradient Buffer Layer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123885A (en) * 2013-01-24 2013-05-29 中国电子科技集团公司第五十五研究所 Variable doping structure of transmission-type photoelectric cathode material for enhancing thermal stability
CN103123885B (en) * 2013-01-24 2015-04-15 中国电子科技集团公司第五十五研究所 Variable doping structure of transmission-type photoelectric cathode material for enhancing thermal stability
CN103295855A (en) * 2013-05-29 2013-09-11 南京理工大学 Index-doped reflecting-type GaAs (gallium arsenide) photoelectric cathode and production method thereof
CN103779436A (en) * 2014-01-13 2014-05-07 南京理工大学 Transmission-type AlGaN ultraviolet photocathode and preparation method thereof
CN103779436B (en) * 2014-01-13 2017-01-04 南京理工大学 Transmission-type AlGaN ultraviolet light photo negative electrode and preparation method thereof
CN104752117A (en) * 2015-03-03 2015-07-01 东华理工大学 NEA electron source for vertically emitting AlGaAs/GaAs nanowires
CN105449066A (en) * 2015-12-07 2016-03-30 南京理工大学 Superlattice graded buffer layer transmissive AlGaN ultraviolet cathode and preparation method therefor
CN107393787A (en) * 2017-07-24 2017-11-24 中国电子科技集团公司第五十五研究所 The blue green light sensitive transmission formula GaAlAs negative electrodes of Al composition gradient gradual changes
CN108933181A (en) * 2018-07-09 2018-12-04 广西大学 The preparation method of transmission-type nanometer suede InAlN base PETE solar battery structure and its cathode
CN110379866A (en) * 2019-06-27 2019-10-25 南京理工大学 Solar battery based on vacuum separation formula p-n junction N-shaped varying doping GaN base anode
CN110379866B (en) * 2019-06-27 2021-04-06 南京理工大学 Solar cell based on vacuum separation type p-n junction n-type variable doping GaN-based anode
CN112687500A (en) * 2021-01-27 2021-04-20 南阳理工学院 Variable spectrum GaAlAs photoelectric emission material and preparation method thereof
CN113690119A (en) * 2021-06-22 2021-11-23 南京理工大学 Laminated composite GaAs-based photocathode with enhanced near-infrared response and preparation method thereof
CN113690119B (en) * 2021-06-22 2024-04-09 南京理工大学 Near-infrared response enhanced laminated composite GaAs-based photocathode and preparation method thereof
CN113571390A (en) * 2021-06-23 2021-10-29 电子科技大学 A GaN photocathode with superlattice nanowire structure
CN115019912A (en) * 2022-04-24 2022-09-06 电子科技大学 A method for real-time control of electron escape probability from NEA GaN photocathode
CN115019912B (en) * 2022-04-24 2024-12-13 电子科技大学 A method for real-time control of electron escape probability of NEA GaN photocathode

Similar Documents

Publication Publication Date Title
CN102064206A (en) Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof
Hsu et al. Doped ZnO 1D nanostructures: synthesis, properties, and photodetector application
CN101866976B (en) Transmission-type GaN ultraviolet photocathode based on varied-doping structure and manufacturing method
CN102610472B (en) Reflective GaA1As photoelectric cathode with sensitive peak response at 532nm and preparation method of reflective GaA1As photoelectric cathode
CN105428183B (en) A reflective NEA GaN nanowire array photocathode and its preparation method
CN105449066B (en) The ultraviolet photocathodes of superlattices component-gradient buffer layer transmission-type AlGaN and preparation method
CN109494275B (en) A kind of AlGaN-based solar-blind ultraviolet phototransistor detector and fabrication method thereof
CN101866977A (en) Transmissive GaN UV Photocathode Based on Gradient Buffer Layer
CN114220878B (en) Ga with carrier transport layer2O3GaN solar blind ultraviolet detector and preparation method thereof
CN101521238A (en) Heterojunction thermophotovoltaic cell based on Ga-In-As-Sb quarternary semiconductor
CN102087937A (en) Exponential-doping GaN ultraviolet photocathode material structure and preparation method thereof
CN100595858C (en) A reflective GaN ultraviolet photocathode material structure and its manufacturing method
CN103295855A (en) Index-doped reflecting-type GaAs (gallium arsenide) photoelectric cathode and production method thereof
CN108649076A (en) Change Al component transmission-type GaAlAs photocathodes with ultra-thin GaAs emission layers
CN101409311B (en) A silicon-based double heterojunction visible-blind ultraviolet detector and its manufacturing method
CN103779436B (en) Transmission-type AlGaN ultraviolet light photo negative electrode and preparation method thereof
CN109801820A (en) Multilayer tandem type wide spectrum responds photocathode and preparation method thereof
CN107895681B (en) Photocathode and preparation method thereof
CN110223897B (en) GaN nanowire array photocathode based on field-assisted index doping structure
CN201689902U (en) Transmission-type GaN ultraviolet photoelectric cathode based on varied doping structure
CN110416055B (en) GaN reflective photocathode with atomically thick ultrathin emissive layer
CN114068741B (en) A UV detector chip
CN110137294B (en) Nitride multi-junction solar cell and preparation method thereof
CN209675319U (en) A gallium oxide MIS structure ultraviolet detector
CN108242378A (en) A kind of preparation method of exponential doping GaN ultraviolet light photo-cathode material structures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110518