CN102064206A - Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof - Google Patents
Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof Download PDFInfo
- Publication number
- CN102064206A CN102064206A CN2010105651335A CN201010565133A CN102064206A CN 102064206 A CN102064206 A CN 102064206A CN 2010105651335 A CN2010105651335 A CN 2010105651335A CN 201010565133 A CN201010565133 A CN 201010565133A CN 102064206 A CN102064206 A CN 102064206A
- Authority
- CN
- China
- Prior art keywords
- layer
- multicomponent
- doping
- mixed crystal
- material structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 16
- 239000010406 cathode material Substances 0.000 title claims description 14
- 239000000463 material Substances 0.000 claims abstract description 58
- 239000013078 crystal Substances 0.000 claims abstract description 40
- 229910052792 caesium Inorganic materials 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000010410 layer Substances 0.000 claims description 96
- 238000005516 engineering process Methods 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 9
- 229910052594 sapphire Inorganic materials 0.000 claims description 8
- 239000010980 sapphire Substances 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 7
- 239000004519 grease Substances 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 11
- 238000000576 coating method Methods 0.000 claims 11
- 238000005498 polishing Methods 0.000 claims 2
- 238000000746 purification Methods 0.000 claims 2
- 238000010521 absorption reaction Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 238000001994 activation Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- LZDVDTNBLCLMGQ-UHFFFAOYSA-N cesium telluride Chemical compound [Cs][Te][Cs] LZDVDTNBLCLMGQ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Led Devices (AREA)
Abstract
本发明提供一种反射式GaN紫外光电阴极材料结构及其制作方法,其结构自下而上由衬底、非故意掺杂的AlN缓冲层、p型GaxAl1-xN多组分混晶光电发射层以及Cs或Cs/O激活层构成;其中,非故意掺杂的AlN缓冲层生长在衬底上;p型GaxAl1-xN多组分混晶光电发射层外延生长在前述AlN缓冲层上;Cs或Cs/O激活层吸附在p型GaxAl1-xN多组分混晶光电发射层的前表面上,厚度在nm数量级。该结构采用多组分和梯度掺杂光电发射层,增大了发射层内光激发电子的逃逸深度,提高了发射层内电子发射到真空的几率,从而提高了GaN紫外光电阴极的总体量子效率,获得较高的紫外灵敏度。
The present invention provides a reflective GaN ultraviolet photocathode material structure and its manufacturing method . crystal photoemission layer and Cs or Cs/O active layer; wherein, the unintentionally doped AlN buffer layer is grown on the substrate; the p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer is epitaxially grown on On the aforementioned AlN buffer layer; the Cs or Cs/O active layer is adsorbed on the front surface of the p-type GaxAl1 -xN multi-component mixed crystal photoemission layer, and the thickness is on the order of nm. The structure adopts multi-component and gradient doping photoelectric emission layer, which increases the escape depth of photoexcited electrons in the emission layer, improves the probability of electron emission into vacuum in the emission layer, and thus improves the overall quantum efficiency of GaN UV photocathode , to obtain higher UV sensitivity.
Description
技术领域technical field
本发明属于紫外探测材料技术领域,具体涉及一种基于半导体材料外延技术、半导体材料掺杂技术和超高真空表面激活技术相结合的反射式紫外光电阴极材料结构及其制作方法。The invention belongs to the technical field of ultraviolet detection materials, and in particular relates to a reflective ultraviolet photocathode material structure and a manufacturing method based on the combination of semiconductor material epitaxy technology, semiconductor material doping technology and ultra-high vacuum surface activation technology.
背景技术Background technique
近年来,随着GaN材料制备技术、p型掺杂技术的完善以及超高真空技术的发展,GaN紫外光电阴极正成为一种新型高性能的紫外光电阴极。这种阴极的表面具有负电子亲和势(Negative Electron Affinity,NEA),即阴极的表面真空能级低于体内导带底能级,因此体内光激发电子只需运行到表面,就可以通过隧穿发射到真空,无需过剩动能去克服材料表面的势垒,使光激发电子的逸出几率大大增加,并且为冷电子发射,因此具有量子效率高、暗发射小、发射电子能量分布集中等独特优点。其量子效率一般>24%,大大高于传统的紫外光电阴极10%的量子效率(如碲化铯,具有正电子亲和势,Positive Electron Affinity,PEA),并且,GaN材料禁带宽度为~3.4eV,响应400nm以下的紫外辐射,是典型的“日盲”材料,具有良好的抗辐射能力。In recent years, with the improvement of GaN material preparation technology, p-type doping technology and the development of ultra-high vacuum technology, GaN UV photocathode is becoming a new type of high-performance UV photocathode. The surface of this cathode has negative electron affinity (Negative Electron Affinity, NEA), that is, the surface vacuum energy level of the cathode is lower than the bottom energy level of the conduction band in the body. Through emission into vacuum, there is no need for excess kinetic energy to overcome the potential barrier on the surface of the material, so that the escape probability of photo-excited electrons is greatly increased, and it is cold electron emission, so it has unique advantages such as high quantum efficiency, small dark emission, and concentrated energy distribution of emitted electrons. advantage. Its quantum efficiency is generally >24%, which is much higher than the 10% quantum efficiency of the traditional ultraviolet photocathode (such as cesium telluride, which has positron affinity, Positive Electron Affinity, PEA), and the band gap of GaN material is ~ 3.4eV, responding to ultraviolet radiation below 400nm, is a typical "sun-blind" material with good radiation resistance.
GaN紫外光电阴极可以在反射模式或透射模式下工作。当光从阴极前表面入射而电子也从前表面发射时为反射模式工作;当光从阴极的后表面入射而电子从前表面发射时为透射模式工作。反射式的GaN紫外光电阴极材料结构自下而上一般包括衬底材料(通常采用蓝宝石)、外延生长在衬底上的AlN缓冲层、生长在缓冲层上的p型GaN光电发射材料以及低逸出功元素吸附的激活层。其中光电发射层采用p型均匀掺杂,由于发射层表面和体内存在浓度差,被入射光从价带激发到导带的电子以扩散形式向体表运动。输运过程中一些电子在多次与晶格碰撞损失能量后被复合,无法逸出,从而降低电子发射数量,导致阴极量子效率较低。GaN UV photocathodes can be operated in reflective or transmissive mode. It operates in reflective mode when light is incident from the front surface of the cathode and electrons are also emitted from the front surface; in transmissive mode when light is incident from the back surface of the cathode and electrons are emitted from the front surface. The reflective GaN ultraviolet photocathode material structure generally includes a substrate material (usually sapphire), an AlN buffer layer epitaxially grown on the substrate, a p-type GaN photoemissive material grown on the buffer layer, and a low escape Activation layer for active element adsorption. The photoemissive layer is evenly doped with p-type. Due to the concentration difference between the surface of the emissive layer and the body, the electrons excited by the incident light from the valence band to the conduction band move to the body surface in the form of diffusion. During the transport process, some electrons are recombined after multiple collisions with the lattice and lose energy, and cannot escape, thereby reducing the number of electrons emitted, resulting in a low quantum efficiency of the cathode.
经文献检索发现,采用变掺杂结构光电发射层可以提高光激发电子从体内到体表的输运能力,增大了电子逸出量,从而得到较高的量子效率。光电发射层采取适当的变掺杂结构,可以在发射层体内产生有利于电子向表面运动的内建电场,使激发到导带的电子在向表面运动的过程中既存在体内和体表间的浓度差引起的扩散运动,又能在内建电场的作用下作漂移运动,扩散加上漂移的运动方式可以增加电子到达阴极表面的几率,进而电子逸出几率增大,量子效率获得提高。但是发射层体内较深处光激发电子逸出比例仍较小,光激发电子逸出深度仍有提升的空间。According to literature search, the use of variable doping structure photoemission layer can improve the transport ability of photoexcited electrons from the body to the body surface, increase the amount of electron escape, and thus obtain higher quantum efficiency. The photoemissive layer adopts an appropriate variable doping structure, which can generate a built-in electric field in the emissive layer body that is conducive to the movement of electrons to the surface, so that the electrons excited to the conduction band exist in the gap between the body and the body surface during the movement to the surface. The diffusion movement caused by the concentration difference can also perform drift movement under the action of the built-in electric field. The movement mode of diffusion and drift can increase the probability of electrons reaching the surface of the cathode, thereby increasing the probability of electrons escaping and improving the quantum efficiency. However, the proportion of photoexcited electrons escaped from the deeper part of the emissive layer is still small, and there is still room for improvement in the photoexcited electrons escape depth.
发明内容Contents of the invention
本发明所解决的技术问题在于提供一种进一步提高光激发电子逸出深度的多组分、梯度掺杂GaN紫外光电阴极材料结构及其制作方法。The technical problem to be solved by the present invention is to provide a multi-component, gradient doped GaN ultraviolet photocathode material structure and a manufacturing method for further improving the escape depth of photoexcited electrons.
实现本发明目的的技术解决方案为:一种多组分、梯度掺杂GaN紫外光电阴极材料结构,该材料结构自下而上依次为衬底、非故意掺杂的AlN缓冲层、p型GaxAl1-xN多组分混晶光电发射层以及Cs或Cs/O激活层。The technical solution to realize the object of the present invention is: a multi-component, gradient doped GaN ultraviolet photocathode material structure, the material structure is successively substrate, unintentionally doped AlN buffer layer, p-type Ga x Al 1-x N multi-component mixed crystal photoemission layer and Cs or Cs/O active layer.
一种制造多组分、梯度掺杂GaN紫外光电阴极材料结构的方法,包括以下步骤:A method for manufacturing a multi-component, gradient doped GaN ultraviolet photocathode material structure, comprising the following steps:
步骤1、在双面抛光的蓝宝石衬底的上表面,通过半导体材料的外延生长工艺生长非故意掺杂的AlN缓冲层;Step 1. On the upper surface of the double-sided polished sapphire substrate, grow an unintentionally doped AlN buffer layer through the epitaxial growth process of semiconductor materials;
步骤2、通过外延生长工艺以及III-V族化合物半导体材料的p型掺杂工艺,在步骤1获得的AlN缓冲层上生长p型GaxAl1-xN多组分混晶光电发射层作为光电发射材料;
步骤3、利用化学清洗去除步骤2得到的阴极材料表面油脂及加工过程中残存的无机附着物;然后将其送入超高真空系统中,对材料表面进行加热净化,使材料表面达到原子级洁净程度;
步骤4、在上述p型GaN材料表面通过激活工艺吸附单层Cs或多层Cs/O,以形成Cs或Cs/O激活层,最终制备出具有负电子亲和势的多组分、梯度掺杂结构GaN紫外光电阴极。Step 4. Adsorb a single layer of Cs or multiple layers of Cs/O on the surface of the p-type GaN material through an activation process to form a Cs or Cs/O activation layer, and finally prepare a multi-component, gradient doped Heterostructure GaN UV photocathode.
本发明与现有技术相比,其显著优点:1)本发明提出一种基于半导体材料外延技术、半导体材料掺杂技术和超高真空表面激活技术相结合的反射式紫外光电阴极材料结构,该结构采用GaxAl1-xN多组分和梯度掺杂光电发射层,增大了发射层内光激发电子的逃逸深度,提高了发射层内电子发射到真空的几率,从而提高了GaN紫外光电阴极的总体量子效率,获得较高的紫外灵敏度;2)由于GaxAl1-xN多组分混晶发射层材料的禁带宽度随x的改变而相应变化,对应于紫外响应阈可调;3)这种紫外光电阴极材料结构可以作为一种高效的紫外冷电子源,应用于微波管、回旋加速度计等装置;也可作为主动式紫外探测器的光敏元件,应用于紫外告警等领域。Compared with the prior art, the present invention has significant advantages: 1) The present invention proposes a reflective ultraviolet photocathode material structure based on the combination of semiconductor material epitaxy technology, semiconductor material doping technology and ultra-high vacuum surface activation technology. The structure adopts Ga x Al 1-x N multi-component and gradient doped photoemissive layer, which increases the escape depth of photo-excited electrons in the emissive layer and improves the probability of electron emission into vacuum in the emissive layer, thus improving the GaN ultraviolet The overall quantum efficiency of the photocathode can obtain higher ultraviolet sensitivity; 2) Since the forbidden band width of the Ga x Al 1-x N multi-component mixed crystal emission layer material changes correspondingly with the change of x, the corresponding ultraviolet response threshold can be 3) The structure of this ultraviolet photocathode material can be used as a high-efficiency ultraviolet cold electron source, applied to microwave tubes, cyclotron accelerometers and other devices; it can also be used as a photosensitive element of active ultraviolet detectors, applied to ultraviolet alarms, etc. field.
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
附图说明Description of drawings
图1为本发明GaN紫外光电阴极材料的层结构示意图。FIG. 1 is a schematic diagram of the layer structure of the GaN ultraviolet photocathode material of the present invention.
图2为本发明GaN紫外光电阴极材料工作原理图。Fig. 2 is a working principle diagram of the GaN ultraviolet photocathode material of the present invention.
具体实施方式Detailed ways
结合图1、图2,本发明的一种多组分、梯度掺杂GaN紫外光电阴极材料结构,该材料结构自下而上依次为衬底1、非故意掺杂的AlN缓冲层2、p型GaxAl1-xN多组分混晶光电发射层3以及Cs或Cs/O激活层4。所述衬底1为双面抛光的蓝宝石。所述非故意掺杂的AlN缓冲层2外延生长在衬底1上,厚度在10-200nm之间。所述p型GaxAl1-xN多组分混晶光电发射层3外延生长在AlN缓冲层2上,厚度在100-200nm之间,掺杂浓度范围为1016-1019cm-3,掺杂浓度从体内到表面依次减小,GaxAl1-xN多组分混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1。所述Cs或Cs/O激活层4吸附在p型GaxAl1-xN多组分混晶光电发射层3的前表面上,厚度在nm数量级。1 and 2, a multi-component, gradient-doped GaN ultraviolet photocathode material structure of the present invention, the material structure is a substrate 1, an unintentionally doped
一种制造多组分、梯度掺杂GaN紫外光电阴极材料结构的方法,包括以下步骤:A method for manufacturing a multi-component, gradient doped GaN ultraviolet photocathode material structure, comprising the following steps:
步骤1、在双面抛光的蓝宝石衬底1的上表面,通过半导体材料的外延生长工艺生长非故意掺杂的AlN缓冲层2;所述非故意掺杂的AlN缓冲层2的厚度为10-200nm。Step 1, on the upper surface of the double-sided polished sapphire substrate 1, grow an unintentionally doped
步骤2、通过外延生长工艺以及III-V族化合物半导体材料的p型掺杂工艺,在步骤1获得的AlN缓冲层2上生长p型GaxAl1-xN多组分混晶光电发射层3作为光电发射材料;所述p型GaxAl1-xN多组分混晶光电发射层3的厚度为100-200nm,其掺杂浓度范围在1016-1019cm-3且掺杂浓度从体内到表面依次减小,所述GaxAl1-xN多组分混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1。
步骤3、利用化学清洗去除步骤2得到的阴极材料表面油脂及加工过程中残存的无机附着物;然后将其送入超高真空系统中,对材料表面进行加热净化,使材料表面达到原子级洁净程度;对材料表面进行加热净化时的温度为700-900℃,加热时间为10-30分钟。
步骤4、在上述p型GaN材料表面通过激活工艺吸附单层Cs或多层Cs/O,以形成Cs或Cs/O激活层4,最终制备出具有负电子亲和势的多组分、梯度掺杂结构GaN紫外光电阴极。Step 4. Adsorb a single layer of Cs or multiple layers of Cs/O on the surface of the p-type GaN material through an activation process to form a Cs or Cs/O activation layer 4, and finally prepare a multi-component, gradient Doped structure GaN ultraviolet photocathode.
结合图2,本发明反射式GaN紫外光电阴极材料结构的工作原理为:该紫外光电阴极材料的工作模式为反射式,即紫外光从阴极的前表面入射进来,经过激活层4被p型GaxAl1-xN多组分混晶光电发射层3吸收,光电发射层3吸收光子后获得能量,当入射光子能量大于GaN材料的禁带宽度(Eg=3.4eV)时,处于价带的电子就可以跃迁到导带成为自由电子,这些自由电子通过扩散加上漂移的运动方式到达阴极表面并且发射到真空。GaxAl1-xN多组分结构一方面提高了发射层深处光激发电子的逸出几率,另一方面增加了对紫外响应波长的调整。当电子发射到真空后被外加强电压收集,并通过外加采集电路以光电流形式输出。入射的紫外光越强,p型GaxAl1-xN多组分混晶光电发射层3吸收的光子能量就越多,输出的光电流也就越大。2, the working principle of the reflective GaN ultraviolet photocathode material structure of the present invention is: the working mode of the ultraviolet photocathode material is reflective, that is, the ultraviolet light is incident from the front surface of the cathode, and is absorbed by the p-type GaN through the active layer 4. x Al 1-x N multi-component mixed
下面结合实施例对本发明做进一步详细的描述:Below in conjunction with embodiment the present invention is described in further detail:
实施例1:如图1所示,一种反射式GaN紫外光电阴极材料结构,该材料结构自下而上由衬底1(如蓝宝石)、非故意掺杂AlN缓冲层2、p型GaxAl1-xN多组分混晶光电发射层3以及Cs或Cs/O激活层4构成;其中,非故意掺杂的AlN缓冲层2外延生长在衬底层1上,厚度为50nm;p型GaxAl1-xN多组分混晶光电发射层3外延生长在前述AlN缓冲层2上,厚度为120nm,掺杂浓度依次为1×1018、4×1017、2×1017和6×1016,由体内到体表渐次降低,混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1;Cs激活层4通过超高真空激活工艺吸附在p型GaxAl1-xN多组分混晶光电发射层3的前表面上,厚度为一个单原子层。Embodiment 1: as shown in Figure 1, a kind of reflective GaN ultraviolet photocathode material structure, this material structure is made up of substrate 1 (such as sapphire), unintentional doping
实施例2:与实施1不同的是,AlN缓冲层的厚度为100nm;p型GaxAl1-xN多组分混晶光电发射层3外延生长在前述AlN缓冲层2上,厚度为120nm,掺杂浓度依次为1×1018、4×1017、2×1017和6×1016,由体内到体表渐次降低,混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1;Cs激活层4通过超高真空激活工艺吸附在p型GaxAl1-xN多组分混晶光电发射层3的前表面上,厚度为一个单原子层。Embodiment 2: Different from Embodiment 1, the thickness of the AlN buffer layer is 100nm; the p-type GaxAl1 -xN multi-component mixed
实施例3:与实施1不同的是,AlN缓冲层的厚度为100nm;p型GaxAl1-xN多组分混晶光电发射层3外延生长在前述AlN缓冲层2上,厚度为150nm,掺杂浓度依次为1×1018、4×1017、2×1017和6×1016,由体内到体表渐次降低,混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1;Cs激活层4通过超高真空激活工艺吸附在p型GaxAl1-xN多组分混晶光电发射层3的前表面上,厚度为一个单原子层。Embodiment 3: Different from Embodiment 1, the thickness of the AlN buffer layer is 100nm; the p-type Ga x Al 1-x N multi-component mixed
实施例4:与实施1不同的是,AlN缓冲层的厚度为10nm;p型GaxAl1-xN多组分混晶光电发射层3外延生长在前述AlN缓冲层2上,厚度为100nm,掺杂浓度依次为1×1018、4×1017、2×1017和6×1016,由体内到体表渐次降低,混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1;Cs激活层4通过超高真空激活工艺吸附在p型GaxAl1-xN多组分混晶光电发射层3的前表面上,厚度为一个单原子层。Embodiment 4: Different from Embodiment 1, the thickness of the AlN buffer layer is 10 nm; the p-type Ga x Al 1-x N multi-component mixed
实施例5:与实施1不同的是,AlN缓冲层的厚度为200nm;p型GaxAl1-xN多组分混晶光电发射层3外延生长在前述AlN缓冲层2上,厚度为200nm,掺杂浓度依次为1×1018、4×1017、2×1017和6×1016,由体内到体表渐次降低,混晶中比例控制参数x以AlN缓冲层为生长起点,从0渐变为1;Cs激活层4通过超高真空激活工艺吸附在p型GaxAl1-xN多组分混晶光电发射层3的前表面上,厚度为一个单原子层。Embodiment 5: Different from Embodiment 1, the thickness of the AlN buffer layer is 200nm; the p-type GaxAl1 -xN multi-component mixed
上述反射式GaN紫外光电阴极材料结构的制作方法为:The manufacturing method of the reflective GaN ultraviolet photocathode material structure is as follows:
首先,在双面抛光的蓝宝石衬底1的上表面,通过半导体材料的外延生长工艺(如金属有机物化学汽相沉积,Metalorganic Chemical Vapor Deposition,MOCVD和分子束外延,Molecular Beam Epitaxy,MBE等)生长所述厚度的非故意掺杂的AlN缓冲层2;其次,再通过相同的外延生长工艺以及III-V族化合物半导体材料的p型掺杂工艺,在AlN缓冲层2上生长所述厚度、掺杂浓度范围在1016-1019cm-3的p型GaxAl1-xN多组分混晶光电发射层3作为光电发射材料;再次,将外延生长得到的阴极材料采用化学清洗(如采用2∶2∶1的浓硫酸、H2O2和去离子水的混合液清洗材料表面)去除发射层表面的油脂及加工过程中残存的无机附着物;接着将其送入超高真空系统中进行加热,如在710℃下对材料表面进行30分钟的加热净化,使材料表面达到原子级洁净程度;最后,在得到的p型GaxAl1-xN多组分混晶材料表面通过激活工艺吸附单层Cs或多层Cs/O,以形成Cs或Cs/O激活层,最终制备出具有负电子亲和势的GaN紫外光电阴极。First, on the upper surface of the double-sided polished sapphire substrate 1, grow by semiconductor material epitaxial growth process (such as metal organic chemical vapor deposition, Metalorganic Chemical Vapor Deposition, MOCVD and molecular beam epitaxy, Molecular Beam Epitaxy, MBE, etc.) An unintentionally doped
本发明并不限于所述实施对缓冲层、光电发射层厚度和激活层的厚度的限制,只要在本发明技术方案的结构上所作的简单变化,均落入本发明的保护范围。The present invention is not limited to the restrictions on the buffer layer, photoemission layer thickness and activation layer thickness, as long as the simple changes made in the structure of the technical solution of the present invention, all fall into the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105651335A CN102064206A (en) | 2010-11-30 | 2010-11-30 | Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105651335A CN102064206A (en) | 2010-11-30 | 2010-11-30 | Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102064206A true CN102064206A (en) | 2011-05-18 |
Family
ID=43999411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105651335A Pending CN102064206A (en) | 2010-11-30 | 2010-11-30 | Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102064206A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103123885A (en) * | 2013-01-24 | 2013-05-29 | 中国电子科技集团公司第五十五研究所 | Variable doping structure of transmission-type photoelectric cathode material for enhancing thermal stability |
CN103295855A (en) * | 2013-05-29 | 2013-09-11 | 南京理工大学 | Index-doped reflecting-type GaAs (gallium arsenide) photoelectric cathode and production method thereof |
CN103779436A (en) * | 2014-01-13 | 2014-05-07 | 南京理工大学 | Transmission-type AlGaN ultraviolet photocathode and preparation method thereof |
CN104752117A (en) * | 2015-03-03 | 2015-07-01 | 东华理工大学 | NEA electron source for vertically emitting AlGaAs/GaAs nanowires |
CN105449066A (en) * | 2015-12-07 | 2016-03-30 | 南京理工大学 | Superlattice graded buffer layer transmissive AlGaN ultraviolet cathode and preparation method therefor |
CN107393787A (en) * | 2017-07-24 | 2017-11-24 | 中国电子科技集团公司第五十五研究所 | The blue green light sensitive transmission formula GaAlAs negative electrodes of Al composition gradient gradual changes |
CN108933181A (en) * | 2018-07-09 | 2018-12-04 | 广西大学 | The preparation method of transmission-type nanometer suede InAlN base PETE solar battery structure and its cathode |
CN110379866A (en) * | 2019-06-27 | 2019-10-25 | 南京理工大学 | Solar battery based on vacuum separation formula p-n junction N-shaped varying doping GaN base anode |
CN112687500A (en) * | 2021-01-27 | 2021-04-20 | 南阳理工学院 | Variable spectrum GaAlAs photoelectric emission material and preparation method thereof |
CN113571390A (en) * | 2021-06-23 | 2021-10-29 | 电子科技大学 | A GaN photocathode with superlattice nanowire structure |
CN113690119A (en) * | 2021-06-22 | 2021-11-23 | 南京理工大学 | Laminated composite GaAs-based photocathode with enhanced near-infrared response and preparation method thereof |
CN115019912A (en) * | 2022-04-24 | 2022-09-06 | 电子科技大学 | A method for real-time control of electron escape probability from NEA GaN photocathode |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101866976A (en) * | 2010-05-21 | 2010-10-20 | 重庆大学 | Transmissive GaN ultraviolet photocathode based on variable doping structure and manufacturing method |
CN101866977A (en) * | 2010-06-25 | 2010-10-20 | 重庆大学 | Transmissive GaN UV Photocathode Based on Gradient Buffer Layer |
-
2010
- 2010-11-30 CN CN2010105651335A patent/CN102064206A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101866976A (en) * | 2010-05-21 | 2010-10-20 | 重庆大学 | Transmissive GaN ultraviolet photocathode based on variable doping structure and manufacturing method |
CN101866977A (en) * | 2010-06-25 | 2010-10-20 | 重庆大学 | Transmissive GaN UV Photocathode Based on Gradient Buffer Layer |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103123885A (en) * | 2013-01-24 | 2013-05-29 | 中国电子科技集团公司第五十五研究所 | Variable doping structure of transmission-type photoelectric cathode material for enhancing thermal stability |
CN103123885B (en) * | 2013-01-24 | 2015-04-15 | 中国电子科技集团公司第五十五研究所 | Variable doping structure of transmission-type photoelectric cathode material for enhancing thermal stability |
CN103295855A (en) * | 2013-05-29 | 2013-09-11 | 南京理工大学 | Index-doped reflecting-type GaAs (gallium arsenide) photoelectric cathode and production method thereof |
CN103779436A (en) * | 2014-01-13 | 2014-05-07 | 南京理工大学 | Transmission-type AlGaN ultraviolet photocathode and preparation method thereof |
CN103779436B (en) * | 2014-01-13 | 2017-01-04 | 南京理工大学 | Transmission-type AlGaN ultraviolet light photo negative electrode and preparation method thereof |
CN104752117A (en) * | 2015-03-03 | 2015-07-01 | 东华理工大学 | NEA electron source for vertically emitting AlGaAs/GaAs nanowires |
CN105449066A (en) * | 2015-12-07 | 2016-03-30 | 南京理工大学 | Superlattice graded buffer layer transmissive AlGaN ultraviolet cathode and preparation method therefor |
CN107393787A (en) * | 2017-07-24 | 2017-11-24 | 中国电子科技集团公司第五十五研究所 | The blue green light sensitive transmission formula GaAlAs negative electrodes of Al composition gradient gradual changes |
CN108933181A (en) * | 2018-07-09 | 2018-12-04 | 广西大学 | The preparation method of transmission-type nanometer suede InAlN base PETE solar battery structure and its cathode |
CN110379866A (en) * | 2019-06-27 | 2019-10-25 | 南京理工大学 | Solar battery based on vacuum separation formula p-n junction N-shaped varying doping GaN base anode |
CN110379866B (en) * | 2019-06-27 | 2021-04-06 | 南京理工大学 | Solar cell based on vacuum separation type p-n junction n-type variable doping GaN-based anode |
CN112687500A (en) * | 2021-01-27 | 2021-04-20 | 南阳理工学院 | Variable spectrum GaAlAs photoelectric emission material and preparation method thereof |
CN113690119A (en) * | 2021-06-22 | 2021-11-23 | 南京理工大学 | Laminated composite GaAs-based photocathode with enhanced near-infrared response and preparation method thereof |
CN113690119B (en) * | 2021-06-22 | 2024-04-09 | 南京理工大学 | Near-infrared response enhanced laminated composite GaAs-based photocathode and preparation method thereof |
CN113571390A (en) * | 2021-06-23 | 2021-10-29 | 电子科技大学 | A GaN photocathode with superlattice nanowire structure |
CN115019912A (en) * | 2022-04-24 | 2022-09-06 | 电子科技大学 | A method for real-time control of electron escape probability from NEA GaN photocathode |
CN115019912B (en) * | 2022-04-24 | 2024-12-13 | 电子科技大学 | A method for real-time control of electron escape probability of NEA GaN photocathode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102064206A (en) | Multi-component gradient-doping GaN UV (Ultraviolet) light cathode material structure and manufacture method thereof | |
Hsu et al. | Doped ZnO 1D nanostructures: synthesis, properties, and photodetector application | |
CN101866976B (en) | Transmission-type GaN ultraviolet photocathode based on varied-doping structure and manufacturing method | |
CN102610472B (en) | Reflective GaA1As photoelectric cathode with sensitive peak response at 532nm and preparation method of reflective GaA1As photoelectric cathode | |
CN105428183B (en) | A reflective NEA GaN nanowire array photocathode and its preparation method | |
CN105449066B (en) | The ultraviolet photocathodes of superlattices component-gradient buffer layer transmission-type AlGaN and preparation method | |
CN109494275B (en) | A kind of AlGaN-based solar-blind ultraviolet phototransistor detector and fabrication method thereof | |
CN101866977A (en) | Transmissive GaN UV Photocathode Based on Gradient Buffer Layer | |
CN114220878B (en) | Ga with carrier transport layer2O3GaN solar blind ultraviolet detector and preparation method thereof | |
CN101521238A (en) | Heterojunction thermophotovoltaic cell based on Ga-In-As-Sb quarternary semiconductor | |
CN102087937A (en) | Exponential-doping GaN ultraviolet photocathode material structure and preparation method thereof | |
CN100595858C (en) | A reflective GaN ultraviolet photocathode material structure and its manufacturing method | |
CN103295855A (en) | Index-doped reflecting-type GaAs (gallium arsenide) photoelectric cathode and production method thereof | |
CN108649076A (en) | Change Al component transmission-type GaAlAs photocathodes with ultra-thin GaAs emission layers | |
CN101409311B (en) | A silicon-based double heterojunction visible-blind ultraviolet detector and its manufacturing method | |
CN103779436B (en) | Transmission-type AlGaN ultraviolet light photo negative electrode and preparation method thereof | |
CN109801820A (en) | Multilayer tandem type wide spectrum responds photocathode and preparation method thereof | |
CN107895681B (en) | Photocathode and preparation method thereof | |
CN110223897B (en) | GaN nanowire array photocathode based on field-assisted index doping structure | |
CN201689902U (en) | Transmission-type GaN ultraviolet photoelectric cathode based on varied doping structure | |
CN110416055B (en) | GaN reflective photocathode with atomically thick ultrathin emissive layer | |
CN114068741B (en) | A UV detector chip | |
CN110137294B (en) | Nitride multi-junction solar cell and preparation method thereof | |
CN209675319U (en) | A gallium oxide MIS structure ultraviolet detector | |
CN108242378A (en) | A kind of preparation method of exponential doping GaN ultraviolet light photo-cathode material structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110518 |