CN102064109B - Thin film transistor and manufacturing method thereof - Google Patents
Thin film transistor and manufacturing method thereof Download PDFInfo
- Publication number
- CN102064109B CN102064109B CN 201010541631 CN201010541631A CN102064109B CN 102064109 B CN102064109 B CN 102064109B CN 201010541631 CN201010541631 CN 201010541631 CN 201010541631 A CN201010541631 A CN 201010541631A CN 102064109 B CN102064109 B CN 102064109B
- Authority
- CN
- China
- Prior art keywords
- layer
- oxide
- semi
- thin film
- film transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 239000004065 semiconductor Substances 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000000137 annealing Methods 0.000 claims abstract description 19
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 12
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 12
- 239000011787 zinc oxide Substances 0.000 claims description 12
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 8
- 229910052738 indium Inorganic materials 0.000 claims description 7
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- 230000002238 attenuated effect Effects 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 4
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 4
- 229910003266 NiCo Inorganic materials 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910001195 gallium oxide Inorganic materials 0.000 claims description 4
- YTBWYQYUOZHUKJ-UHFFFAOYSA-N oxocobalt;oxonickel Chemical compound [Co]=O.[Ni]=O YTBWYQYUOZHUKJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 229910001887 tin oxide Inorganic materials 0.000 claims description 4
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims 4
- 229910006404 SnO 2 Inorganic materials 0.000 claims 2
- 229910007717 ZnSnO Inorganic materials 0.000 claims 2
- QTZWZWHIGHUPPD-UHFFFAOYSA-N [Ge]=O.[O-2].[Cd+2] Chemical compound [Ge]=O.[O-2].[Cd+2] QTZWZWHIGHUPPD-UHFFFAOYSA-N 0.000 claims 2
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 239000007769 metal material Substances 0.000 description 9
- 239000004020 conductor Substances 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 4
- 238000005224 laser annealing Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 229910003107 Zn2SnO4 Inorganic materials 0.000 description 2
- 229910007694 ZnSnO3 Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 2
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- DGRIPWYWLYDWDO-UHFFFAOYSA-N [Si][In] Chemical compound [Si][In] DGRIPWYWLYDWDO-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种薄膜晶体管及其制造方法,且特别涉及一种具有氧化物沟道层的薄膜晶体管及其制造方法。The invention relates to a thin film transistor and its manufacturing method, and in particular to a thin film transistor with an oxide channel layer and its manufacturing method.
背景技术 Background technique
近来环保意识抬头,具有低消耗功率、空间利用效率佳、无辐射、高画质等优越特性的平面显示面板(flat display panels)已成为市场主流。常见的平面显示器包括液晶显示器(liquid crystal displays)、等离子体显示器(plasmadisplays)、有机电激发光显示器(electroluminescent displays)等。以目前最为普及的液晶显示器为例,其主要是由薄膜晶体管阵列基板、彩色滤光基板以及夹于二者之间的液晶层所构成。在公知的薄膜晶体管阵列基板上,多采用非晶硅(a-Si)薄膜晶体管或低温多晶硅薄膜晶体管作为各个子像素的切换元件。近年来,已有研究指出氧化物半导体(oxide semiconductor)薄膜晶体管相较于非晶硅薄膜晶体管,具有较高的载子移动率(mobility),而氧化物半导体薄膜晶体管相较于低温多晶硅薄膜晶体管,则具有较佳的临界电压(threat holdvoltage,Vth)均匀性。因此,氧化物半导体薄膜晶体管有潜力成为下一代平面显示器的关键元件。Recently, the awareness of environmental protection has risen, and flat display panels (flat display panels) with superior characteristics such as low power consumption, good space utilization efficiency, no radiation, and high image quality have become the mainstream of the market. Common flat panel displays include liquid crystal displays, plasma displays, and electroluminescent displays. Taking the currently most popular liquid crystal display as an example, it is mainly composed of a thin film transistor array substrate, a color filter substrate, and a liquid crystal layer sandwiched between them. On known thin film transistor array substrates, amorphous silicon (a-Si) thin film transistors or low-temperature polysilicon thin film transistors are often used as switching elements for each sub-pixel. In recent years, studies have pointed out that oxide semiconductor thin film transistors have higher carrier mobility than amorphous silicon thin film transistors, and oxide semiconductor thin film transistors have higher mobility than low-temperature polysilicon thin film transistors. , it has better threshold voltage (threat hold voltage, Vth) uniformity. Therefore, oxide semiconductor thin film transistors have the potential to become key components of next-generation flat-panel displays.
图1A至图1D为公知氧化物半导体薄膜晶体管的制造流程剖面示意图。请依序参考图1A至图1D,首先于基板100上形成缓冲层101,再于缓冲层101上的部分区域形成栅极102,然后于基板100上全面性地形成栅绝缘层104以覆盖栅极102,如图1A所示。接着,于栅绝缘层104上形成氧化物半导体层106,如图1B所示。然后,以光掩模M为掩模,进行准分子激光退火(exaimer laser annealing)工艺,使得氧化物半导体层106中未被光掩模M所遮蔽的部分转化为两个欧姆接触层106b,而氧化物半导体层106中被光掩模M所遮蔽的部分则维持半导体的特性而形成氧化物沟道层106a。欧姆接触层106b位于氧化物沟道层106a两侧并与此氧化物沟道层106a连接,如图1B以及图1C所示。最后,于栅绝缘层104与欧姆接触层106b上分别形成彼此电性绝缘的源极S与漏极D。如此一来,便完成公知氧化物半导体薄膜晶体管的制作。1A to 1D are schematic cross-sectional views of the manufacturing process of a conventional oxide semiconductor thin film transistor. Please refer to FIG. 1A to FIG. 1D in sequence. First, a
然而,以上述的工艺所制作的氧化物半导体薄膜晶体管其电气特性(漏极电流与栅极电压的关系)较为不稳定。因此,在公知技术中,为了使上述的氧化物半导体薄膜晶体管的电气特性维持稳定,常于完成上述工艺之后,对氧化物沟道层106a进行退火处理,如高温退火工艺(thermal annealing)或准分子激光退火(excimer laser annealing)工艺,以使氧化物半导体薄膜晶体管的电气特性趋于稳定。然而,此工艺却会使得公知的氧化物半导体薄膜晶体管的工艺变得较为繁复。承上述,如何改善氧化物半导体薄膜晶体管的电气特性但不增加工艺的复杂度,实为研发者关注的问题之一。However, the electrical characteristics (the relationship between the drain current and the gate voltage) of the oxide semiconductor thin film transistor fabricated by the above process are relatively unstable. Therefore, in the known technology, in order to maintain the electrical characteristics of the above-mentioned oxide semiconductor thin film transistor, the
发明内容 Contents of the invention
本发明的目的在于克服现有技术中的缺陷。The purpose of the present invention is to overcome the disadvantages of the prior art.
本发明提供一种薄膜晶体管,其具有稳定的电气特性。The present invention provides a thin film transistor having stable electrical characteristics.
本发明提供一种薄膜晶体管的制造方法,其有助于薄膜晶体管的量产。The invention provides a method for manufacturing a thin film transistor, which is helpful for the mass production of the thin film transistor.
本发明提供一种薄膜晶体管的制造方法,其包括:于基板上形成栅极。接着,于基板上形成栅绝缘层以覆盖栅极。然后,于栅绝缘层上形成氧化物半导体层。之后,于氧化物半导体层的部分区域上形成半透光层。接着,以半透光层为掩模,进行光学退火工艺以使氧化物半导体层转化为一氧化物沟道层以及两个欧姆接触层,其中氧化物沟道层位于半透光层下方,而欧姆接触层位于氧化物沟道层两侧并与氧化物沟道层连接。最后,于栅绝缘层与欧姆接触层上形成彼此电性绝缘的源极与漏极。The invention provides a manufacturing method of a thin film transistor, which includes: forming a gate on a substrate. Next, a gate insulating layer is formed on the substrate to cover the gate. Then, an oxide semiconductor layer is formed on the gate insulating layer. Afterwards, a semi-transparent layer is formed on a partial region of the oxide semiconductor layer. Then, using the semi-transparent layer as a mask, an optical annealing process is performed to convert the oxide semiconductor layer into an oxide channel layer and two ohmic contact layers, wherein the oxide channel layer is located under the semi-transparent layer, and The ohmic contact layer is located on both sides of the oxide channel layer and connected with the oxide channel layer. Finally, a source electrode and a drain electrode electrically insulated from each other are formed on the gate insulating layer and the ohmic contact layer.
本发明提供一种薄膜晶体管的制造方法,其包括:于基板上形成栅极。接着,于基板上形成栅绝缘层以覆盖栅极。然后,于栅绝缘层上形成彼此电性绝缘的源极与漏极。之后,于栅绝缘层、源极以及漏极上形成氧化物半导体层。接着,于氧化物半导体层的部分区域上形成半透光层。最后,以半透光层为掩模,进行一光学退火工艺以使氧化物半导体层转化为一氧化物沟道层以及两个欧姆接触层,其中氧化物沟道层位于半透光层下方,而欧姆接触层位于氧化物沟道层两侧并与氧化物沟道层连接。The invention provides a manufacturing method of a thin film transistor, which includes: forming a gate on a substrate. Next, a gate insulating layer is formed on the substrate to cover the gate. Then, a source and a drain electrically insulated from each other are formed on the gate insulating layer. Afterwards, an oxide semiconductor layer is formed on the gate insulating layer, the source and the drain. Next, a semi-transparent layer is formed on a partial region of the oxide semiconductor layer. Finally, using the semi-transparent layer as a mask, an optical annealing process is performed to convert the oxide semiconductor layer into an oxide channel layer and two ohmic contact layers, wherein the oxide channel layer is located under the semi-transparent layer, And the ohmic contact layer is located on both sides of the oxide channel layer and connected with the oxide channel layer.
本发明提供一种薄膜晶体管,其包括栅极、栅绝缘层、氧化物半导体层、半透光层、源极以及漏极。栅绝缘层覆盖栅极。氧化物半导体层配置于栅绝缘层上且位于栅极上方。氧化物半导体层包括氧化物沟道层以及两个欧姆接触层,其中欧姆接触层位于氧化物沟道层两侧并与氧化物沟道层连接。半透光层位于氧化物沟道层上方。源极与漏极位于栅绝缘层与欧姆接触层上,且源极与漏极彼此电性绝缘。The invention provides a thin film transistor, which includes a gate, a gate insulating layer, an oxide semiconductor layer, a semitransparent layer, a source and a drain. A gate insulating layer covers the gate. The oxide semiconductor layer is disposed on the gate insulating layer and located above the gate. The oxide semiconductor layer includes an oxide channel layer and two ohmic contact layers, wherein the ohmic contact layers are located on both sides of the oxide channel layer and connected to the oxide channel layer. The semi-transmissive layer is located above the oxide channel layer. The source and the drain are located on the gate insulating layer and the ohmic contact layer, and the source and the drain are electrically insulated from each other.
本发明提供一种薄膜晶体管,其包括栅极、栅绝缘层、源极、漏极、氧化物半导体层以及半透光层。栅绝缘层覆盖栅极。源极与漏极配置于栅绝缘层上且彼此电性绝缘。氧化物半导体层配置于栅绝缘层、源极以及漏极上。氧化物半导体层包括氧化物沟道层以及两个欧姆接触层,其中欧姆接触层位于氧化物沟道层两侧并与氧化物沟道层连接。半透光层位于氧化物沟道层上方。The invention provides a thin film transistor, which includes a gate, a gate insulating layer, a source, a drain, an oxide semiconductor layer and a semitransparent layer. A gate insulating layer covers the gate. The source and the drain are disposed on the gate insulating layer and electrically insulated from each other. The oxide semiconductor layer is disposed on the gate insulating layer, the source and the drain. The oxide semiconductor layer includes an oxide channel layer and two ohmic contact layers, wherein the ohmic contact layers are located on both sides of the oxide channel layer and connected to the oxide channel layer. The semi-transmissive layer is located above the oxide channel layer.
在本发明的一实施例中,前述的氧化物半导体层的材质包括氧化铟镓锌(IGZO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化锡(ZnO)、氧化镉·氧化锗(2CdO·GeO2)或氧化镍钴(NiCo2O4)。In an embodiment of the present invention, the material of the aforementioned oxide semiconductor layer includes indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), indium gallium oxide (IGO), tin oxide (ZnO), cadmium oxide. Germanium (2CdO·GeO 2 ) or nickel cobalt oxide (NiCo 2 O 4 ).
在本发明的一实施例中,前述的半透光层的材质包括氧化硅(SiOx)、氮化硅(SiNx)、氧化钛(TiOx)、三氧化二铟(In2O3)、InGaO3、InGaZnO、SnO2、ZnO、Zn2In2O5、银(Ag)、ZnSnO3、Zn2SnO4或非晶硅(a-Si)。In an embodiment of the present invention, the material of the aforementioned semi-transparent layer includes silicon oxide (SiOx), silicon nitride (SiNx), titanium oxide (TiOx), indium trioxide (In2O3), InGaO3, InGaZnO, SnO2 , ZnO, Zn2In2O5, silver (Ag), ZnSnO3, Zn2SnO4 or amorphous silicon (a-Si).
在本发明的一实施例中,前述的光学退火工艺利用激光照射半透光层以及氧化物半导体层。In an embodiment of the present invention, the aforementioned optical annealing process utilizes laser light to irradiate the semi-transparent layer and the oxide semiconductor layer.
在本发明的一实施例中,于前述的光学退火工艺中,激光经过半透光层之后,激光的能量衰减为10%至90%之间。In an embodiment of the present invention, in the aforementioned optical annealing process, after the laser passes through the semi-transparent layer, the energy of the laser is attenuated between 10% and 90%.
在本发明的一实施例中,前述的半透光层包括一半透光遮蔽层或一半透光吸收层。In an embodiment of the present invention, the aforementioned semi-transparent layer includes a semi-transparent shielding layer or a semi-transparent absorbing layer.
在本发明的一实施例中,前述的欧姆接触层的片电阻为Rs1(Ω/□),而氧化物沟道层的片电阻为Rs2(Ω/□),且Rs2/Rs1约为108。In an embodiment of the present invention, the sheet resistance of the aforementioned ohmic contact layer is Rs1 (Ω/□), and the sheet resistance of the oxide channel layer is Rs2 (Ω/□), and Rs2/Rs1 is about 10 8 .
在本发明的一实施例中,前述的欧姆接触层的片电阻Rs1约为104Ω/□,而氧化物沟道层的片电阻Rs2约为1012Ω/□。In an embodiment of the present invention, the sheet resistance Rs1 of the aforementioned ohmic contact layer is about 10 4 Ω/□, and the sheet resistance Rs2 of the oxide channel layer is about 10 12 Ω/□.
在本发明的一实施例中,于前述的薄膜晶体管的制造方法中,在形成半透光层之前,还包括于半透光层与氧化物半导体层之间形成一介电层。In an embodiment of the present invention, in the aforementioned manufacturing method of the thin film transistor, before forming the semi-transparent layer, it further includes forming a dielectric layer between the semi-transparent layer and the oxide semiconductor layer.
本发明的薄膜晶体管具有稳定的电气特性,且本发明的工艺较为简单,有利于薄膜晶体管的量产。The thin film transistor of the invention has stable electrical characteristics, and the process of the invention is relatively simple, which is beneficial to mass production of the thin film transistor.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.
附图说明 Description of drawings
图1A至图1D为公知的氧化物半导体薄膜晶体管制造流程剖面示意图。FIG. 1A to FIG. 1D are cross-sectional schematic diagrams of a known manufacturing process of an oxide semiconductor thin film transistor.
图2A至图2E为本发明的第一实施例的薄膜晶体管制造流程剖面示意图。2A to 2E are schematic cross-sectional views of the manufacturing process of the thin film transistor according to the first embodiment of the present invention.
图2F至图2H为本发明的第一实施例的薄膜晶体管部分制造流程剖面示意图。2F to 2H are schematic cross-sectional views of a part of the manufacturing process of the thin film transistor according to the first embodiment of the present invention.
图2E、图2H为本发明的第一实施例的薄膜晶体管剖面示意图。2E and 2H are schematic cross-sectional views of the thin film transistor according to the first embodiment of the present invention.
图2I为本发明的一实施例的薄膜晶体管剖面示意图。FIG. 2I is a schematic cross-sectional view of a thin film transistor according to an embodiment of the present invention.
图3A至图3E为本发明的第二实施例的薄膜晶体管制造流程剖面示意图。3A to 3E are schematic cross-sectional views of the manufacturing process of the thin film transistor according to the second embodiment of the present invention.
图3G至图3H为本发明的第二实施例的薄膜晶体管部分制造流程剖面示意图。3G to 3H are schematic cross-sectional views of a part of the manufacturing process of the thin film transistor according to the second embodiment of the present invention.
图3E、图3H为本发明的第二实施例的薄膜晶体管剖面示意图。3E and 3H are schematic cross-sectional views of a thin film transistor according to a second embodiment of the present invention.
图3F为本发明的一实施例的薄膜晶体管剖面示意图。FIG. 3F is a schematic cross-sectional view of a thin film transistor according to an embodiment of the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
100、200:基板100, 200: Substrate
101:缓冲层101: buffer layer
102、202:栅极102, 202: grid
104、204:栅绝缘层104, 204: gate insulating layer
106、206:氧化物半导体层106, 206: oxide semiconductor layer
106a、206a:氧化物沟道层106a, 206a: oxide channel layer
106b、206b:欧姆接触层106b, 206b: ohmic contact layer
207:介电层207: Dielectric layer
208:半透光层208: semi-transparent layer
S、S’:源极S, S': source
D、D’:漏极D, D': Drain
M:掩模M: mask
L:激光L: Laser
TFT:薄膜晶体管TFT: thin film transistor
具体实施方式 Detailed ways
【第一实施例】【The first embodiment】
图2A至图2E为本实施例的薄膜晶体管制造流程剖面示意图。首先,请参照图2A,于基板200上形栅极202。接着,于基板200上全面性地形成栅绝缘层204以覆盖栅极202。在本实施例中,基板200的材质例如为玻璃、石英、有机聚合物、不透光/反射材料(如导电材料、晶片、陶瓷等)或是其它合适的材料。2A to 2E are schematic cross-sectional views of the manufacturing process of the thin film transistor of this embodiment. First, referring to FIG. 2A , a
在本实施例中,栅极202的材料一般是金属材料。但,本发明不限于此,在其他实施例中,栅极202的材料也可以使用其他导电材料,如合金、金属材料的氮化物、金属材料的氧化物、金属材料的氮氧化物或是金属材料与其它导材料的堆叠层。此外,本实施例的栅绝缘层204的材质例如为无机介电材料(如氧化硅、氮化硅、氮氧化硅或上述至少二种材料的堆叠层)、有机介电材料或上述有机与无机介电材料的组合,但本发明不限于此。In this embodiment, the material of the
接着请参照图2B,于栅绝缘层204上的部分区域形成氧化物半导体层206。在本实施例中,氧化物半导体层206的材质例如为非晶硅的氧化铟镓锌(IGZO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化锡(ZnO)、氧化镉、氧化锗(2CdO·GeO2)、氧化镍钴(NiCo2O4)或其他合适的材料。Next, referring to FIG. 2B , an
接着请参照图2C,于氧化物半导体层206的部分区域上形成半透光层208。在本实施例中,半透光层例如为半透光遮蔽层,以遮蔽部分入射光。但,本发明不限于此,在其他实施例中,半透光层亦可为半透光吸收层,以吸收部分入射光。在本实施例中,半透光层208的材质例如为氧化硅(SiOx)、氮化硅(SiNx)、氧化钛(TiOx)、三氧化二铟(In2O3)、InGaO3、InGaZnO、SnO2、ZnO、Zn2In2O5、银(Ag)、ZnSnO3、Zn2SnO4或非晶硅(a-Si),但本发明不限于此。Next, referring to FIG. 2C , a
接着请参照图2C以及图2D,以上述的半透光层208为掩模,进行光学退火工艺以使氧化物半导体层206转化为氧化物沟道层206a以及两个欧姆接触层206b,如图2C以及图2D所示。更详细地说,本实施例的光学退火工艺例如是利用激光L照射半透光层208以及氧化物半导体层206,其中被未半透光层208遮蔽的部分氧化物半导体层206其可接收的激光L能量较大(约等于原入射的激光L能量),而被半透光层208遮蔽的氧化物半导体层206,其可接收到的激光L能量较小。举例而言,被半透光层208所遮蔽的氧化物半导体层206,其可接收到的激光L能量为原入射激光L能量的10%至90%之间。Next, please refer to FIG. 2C and FIG. 2D , using the above-mentioned
在本实施例中,接收能量较大的激光L的部分氧化物半导体层206可转化为阻值较低的欧姆接触层206b,而部分被能量较小的激光L照射的氧化物半导体层206则为电气特性稳定的氧化物沟道层206a,如图2D所示。更进一步地说,若本实施例的欧姆接触层206b的片电阻为Rs1(Ω/□),而氧化物沟道层206a的片电阻为Rs2(Ω/□),则氧化物沟道层206a的片电阻Rs2与欧姆接触层206b的片电阻为Rs1(Ω/□)的比值(Rs2/Rs1)约为108。更详细地说,在本实施例中,欧姆接触层206b的片电阻Rs1例如约为104Ω/□,而氧化物沟道层206a的片电阻Rs2例如约为1012Ω/□。In this embodiment, the part of the
值得注意的是,在本实施例中,可通过部分氧化物半导体层206上的半透光层208,使得被半透光层208遮蔽的氧化物半导体层206与未被半透光层208遮蔽的氧化物半导体层206可同时接收到不同能量的激光L。因此,本实施例可同时形成电气特性良好的氧化物沟道层206a以及低阻值的欧姆接触层206b。此外,本实施例的半透光层208的厚度或组成可被适当地调整以改变其令激光L能量衰减的能力,进而使得氧化物沟道层206a的电气特性可被最佳化(optimized)。It is worth noting that, in this embodiment, the
接着请参照图2E,于部分栅绝缘层204与欧姆接触层206b上分别形成彼此电性绝缘源极S’与漏极D’。在本实施例中,彼此电性绝缘的源极S’与漏极D’可分别通过位于其下的欧姆接触层206b与氧化物沟道层206a形成一良好的欧姆接触(ohmic contact)。在本实施例中,源极S’与漏极D’的材料一般是金属材料。但,本发明不限于此,在其他实施例中,源极S’与漏极D’的材料也可以使用其他导电材料,如合金、金属材料的氮化物、金属材料的氧化物、金属材料的氮氧化物或是金属材料与其它导材料的堆叠层。Next, referring to FIG. 2E , a source S' and a drain D' are electrically insulated from each other on part of the
在完成源极S’与漏极D’的制作之后,便初步完成了本实施例的薄膜晶体管TFT的制作。After the fabrication of the source S' and the drain D' is completed, the fabrication of the thin film transistor TFT of this embodiment is preliminarily completed.
由图2E可清楚得知,本实施例的薄膜晶体管TFT包括栅极202、栅绝缘层204、氧化物半导体层206、半透光层208、源极S’以及漏极D’。栅绝缘层204覆盖栅极202。氧化物半导体层206包括氧化物沟道层206a以及两个欧姆接触层206b,其中欧姆接触层206b位于氧化物沟道层206a两侧并与氧化物沟道层206a连接。氧化物半导体层206配置于栅绝缘层204上且氧化物沟道层206a位于栅极202上方。半透光层208位于氧化物沟道层206a上方。源极S’与漏极D’,位于栅绝缘层204与欧姆接触层206b上,且源极S’与漏极D’彼此电性绝缘。It can be clearly seen from FIG. 2E that the thin film transistor TFT of this embodiment includes a
另外,本实施例可在形成半透光层208之前,于半透光层208与氧化物半导体层206之间形成介电层207,如图2F所示。在本实施例中,介电层207的材质可为一透明的介电材料,例如为氧化硅(SiOx),但本发明不限于此。In addition, in this embodiment, a
接着,以上述的半透光层208为掩模进行光学退火工艺,以使氧化物半导体层206转化为氧化物沟道层206a以及两个欧姆接触层206b,如图2F以及图2G所示。Next, an optical annealing process is performed using the
接着请参考图2H,本实施例亦可于部分栅绝缘层204上的欧姆接触层206b上分别形成彼此电性绝缘的源极S’与漏极D’。当然,在其他实施例中,亦可在完成源极S’与漏极D’的制作后,选择性地将半透光层208去除,而形成如图2I所示的薄膜晶体管TFT。Next, please refer to FIG. 2H , in this embodiment, a source S' and a drain D' electrically insulated from each other can also be formed on the
由图2H可清楚得知,本实施例的薄膜晶体管TFT亦可包括栅极202、栅绝缘层204、氧化物半导体层206、介电层207、半透光层208、源极S’以及漏极D’。栅绝缘层204覆盖栅极202。氧化物半导体层206包括氧化物沟道层206a以及两个欧姆接触层206b,其中欧姆接触层206b位于氧化物沟道层206a两侧并与氧化物沟道层206a连接。氧化物半导体层206配置于栅绝缘层204上且氧化物沟道层206a位于栅极202上方。介电层207位于氧化物沟道层206a之上,而半透光层208位于氧化物沟道层206a与介电层207上方。此外,源极S’与漏极D’位于部分栅绝缘层204之上的欧姆接触层206b之上,并与介电层207连接,且源极S’与漏极D’彼此电性绝缘。It can be clearly seen from FIG. 2H that the thin film transistor TFT of this embodiment may also include a
【第二实施例】【Second Embodiment】
图3A至图3E为本实施例的薄膜晶体管制造流程剖面示意图。本实施例的薄膜晶体管其各组成可使用的材料与第一实施例相同,以下就不再重述。3A to 3E are schematic cross-sectional views of the manufacturing process of the thin film transistor of this embodiment. The materials that can be used for the various components of the thin film transistor of this embodiment are the same as those of the first embodiment, and will not be repeated below.
首先,请参照图3A,于基板200上形一栅极202。接着,于基板200上全面性地形成栅绝缘层204以覆盖栅极202。First, please refer to FIG. 3A , a
接着请参照图3B,于栅绝缘层204上的部分区域形成彼此电性绝缘的源极S’与漏极D’。Next, please refer to FIG. 3B , a source S' and a drain D' electrically insulated from each other are formed on a part of the
接着请参照图3C,于栅绝缘层204、源极S’以及漏极D’上形成氧化物半导体层206。换句话说,本实施例的氧化物半导体层206覆盖栅极202上方的部分栅绝缘层204、部分的源极S’以及部分的漏极D’。Next, referring to FIG. 3C , an
接着请参照图3D,于氧化物半导体层206的部分区域上形成半透光层208。Next, referring to FIG. 3D , a
接着请参照图3D以及图3E,以上述的半透光层208为掩模,进行光学退火工艺以使氧化物半导体层206转化为氧化物沟道层206a以及两个欧姆接触层206b,如图3D以及图3E所示。更详细地说,本实施例的光学退火工艺例如是利用激光L照射半透光层208以及氧化物半导体层206。其中,被未半透光层208遮蔽的部分氧化物半导体层206,其可接收的激光L能量较大(约等于原入射的激光L能量),而被半透光层208遮蔽的氧化物半导体层206,其可接收到的激光L能量较小。举例而言,被半透光层208所遮蔽的氧化物半导体层206,其可接收到的激光L能量为原入射激光L能量的10%至90%之间。Next, please refer to FIG. 3D and FIG. 3E , using the above-mentioned
在本实施例中,接收能量较大的激光L的部分氧化物半导体层206可转化为阻值较低的欧姆接触层206b,而接收能量较小的激光L的部分氧化物半导体层206则为电气特性稳定的氧化物沟道层206a,如图3E所示。更进一步地说,若本实施例的欧姆接触层206b的片电阻为Rs1(Ω/□),而氧化物沟道层206a的片电阻为Rs2(Ω/□),则氧化物沟道层206a的片电阻Rs2与欧姆接触层206b的片电阻为Rs1(Ω/□)的比值(Rs2/Rs1)约为108。更详细地说,在本实施例中,欧姆接触层206b的片电阻Rs1例如约为104Ω/□,而氧化物沟道层206a的片电阻Rs2例如约为1012Ω/□。In this embodiment, the part of the
值得注意的是,在本实施例中,亦可通过部分氧化物半导体层206上的半透光层208,使得被半透光层208遮蔽的氧化物半导体层206与未被半透光层208遮蔽的氧化物半导体层206可同时接收到不同能量的激光L。因此,本实施例可同时形成电气特性良好的氧化物沟道层206a以及低阻值的欧姆接触层206b。此外,本实施例的半透光层208的厚度或组成亦可被适当得调整以改变其令激光L能量衰减的能力,进而使得氧化物沟道层206a的电气特性可被最佳化(optimized)。It is worth noting that, in this embodiment, the
在完成氧化物沟道层206a与欧姆接触层206b的制作之后,便初步完成了本实施例的薄膜晶体管TFT的制作。当然,在其他实施例中,亦可在完成氧化物沟道层206a与欧姆接触层206b的制作后,选择性地将光阻层208去除,而形成如图3F所示的薄膜晶体管TFT。After the
由图3E可清楚得知,本实施例的薄膜晶体管TFT可包括栅极202、栅绝缘层204、氧化物半导体层206、半透光层208、源极S以及漏极D。栅绝缘层204覆盖栅极202。源极S’与漏极D’配置于部分栅绝缘层204上且彼此电性绝缘。氧化物半导体层206配置于栅绝缘层204、源极S’以及漏极D’上。氧化物半导体层206包括一氧化物沟道层206a以及两个欧姆接触层206b。其中,欧姆接触层206b位于氧化物沟道层206a两侧并与氧化物沟道层206连接。并且,两欧姆接触层206b分别与源极S’以及漏极D’连接。半透光层208位于氧化物沟道层206上方。It can be clearly seen from FIG. 3E that the thin film transistor TFT of this embodiment may include a
另外,在本实施例亦可在形成半透光层208之前,于半透光层208与氧化物半导体层206之间形成介电层207,如图3G所示。接着,以上述的半透光层208为掩模并通过介电层207,进行光学退火工艺亦可使氧化物半导体层206转化为氧化物沟道层206a以及两个欧姆接触层206b,如图3G以及图3H所示。In addition, in this embodiment, a
由图3H可清楚得知,本实施例的薄膜晶体管TFT亦可包括栅极202、栅绝缘层204、氧化物半导体层206、介电层207、半透光层208、源极S’以及漏极D’。栅绝缘层204覆盖栅极202。源极S’与漏极D’配置于栅绝缘层204上且彼此电性绝缘。氧化物半导体层206配置于栅绝缘层204、源极S’以及漏极D’上。氧化物半导体层206包括一氧化物沟道层206a以及两个欧姆接触层206b。其中,欧姆接触层206b位于氧化物沟道层206a两侧并与氧化物沟道层206连接。并且,两欧姆接触层206b分别与源极S’以及漏极D’连接。介电层207位于氧化物沟道层206a、欧姆接触层206b、源极S’、漏极D’以及部分栅绝缘层204之上。半透光层208位于介电层207与氧化物沟道层206a的部分区域上方。It can be clearly seen from FIG. 3H that the thin film transistor TFT of this embodiment may also include a
综上所述,本发明通过一半透光层,可同时形成电气特性良好的氧化物沟道层以及低阻值的欧姆接触层。因此,本发明的薄膜晶体管的电气特性以及量产性可被兼顾。In summary, the present invention can simultaneously form an oxide channel layer with good electrical characteristics and an ohmic contact layer with low resistance through the semi-transparent layer. Therefore, the electrical characteristics and mass productivity of the thin film transistor of the present invention can be balanced.
虽然本发明已以实施例公开如上,然其并非用以限定本发明,任何所属技术领域中的技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视随附的权利要求所界定的保护范围为准。Although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Any person skilled in the art may make some modifications and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be determined by the scope of protection defined by the appended claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010541631 CN102064109B (en) | 2010-11-08 | 2010-11-08 | Thin film transistor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010541631 CN102064109B (en) | 2010-11-08 | 2010-11-08 | Thin film transistor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102064109A CN102064109A (en) | 2011-05-18 |
CN102064109B true CN102064109B (en) | 2013-05-29 |
Family
ID=43999329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010541631 Active CN102064109B (en) | 2010-11-08 | 2010-11-08 | Thin film transistor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102064109B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103021825A (en) * | 2011-09-27 | 2013-04-03 | 鸿富锦精密工业(深圳)有限公司 | Manufacturing method of thin film transistor |
CN104112711B (en) * | 2014-07-22 | 2017-05-03 | 深圳市华星光电技术有限公司 | Manufacturing method of coplanar oxide semiconductor TFT (Thin Film Transistor) substrate |
CN104992981B (en) * | 2015-05-26 | 2018-03-06 | 中国科学院宁波材料技术与工程研究所 | Oxide thin film transistor and preparation method thereof and phase inverter and preparation method thereof |
CN104900531A (en) | 2015-06-08 | 2015-09-09 | 京东方科技集团股份有限公司 | Oxide thin-film transistor and array substrate, and manufacturing methods thereof, and display apparatus |
CN105789222B (en) | 2016-04-29 | 2018-11-06 | 深圳市华星光电技术有限公司 | array substrate, liquid crystal display panel and array substrate manufacturing method |
CN106920754A (en) | 2017-02-17 | 2017-07-04 | 深圳市华星光电技术有限公司 | A kind of thin film transistor (TFT) and preparation method thereof |
CN106876481B (en) | 2017-05-04 | 2020-11-03 | 京东方科技集团股份有限公司 | Oxide thin film transistor, manufacturing method thereof, array substrate and display device |
CN109037076A (en) * | 2018-08-16 | 2018-12-18 | 北京大学深圳研究生院 | The method of metal oxide thin-film transistor preparation |
CN114927588B (en) * | 2022-04-20 | 2024-07-23 | 武汉大学 | Transistor type photoelectric detector and preparation method thereof |
CN115000019A (en) * | 2022-05-15 | 2022-09-02 | 陈梓林 | Manufacturing method of oxide TFT thin film circuit |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1441467A (en) * | 2001-11-09 | 2003-09-10 | 株式会社半导体能源研究所 | Laser radiator, laser radiation method and method for producing semiconductor device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005064453A (en) * | 2003-07-29 | 2005-03-10 | Advanced Display Inc | Thin film transistor and manufacturing method thereof |
US7112499B2 (en) * | 2004-01-16 | 2006-09-26 | Chartered Semiconductor Manufacturing Ltd. | Dual step source/drain extension junction anneal to reduce the junction depth: multiple-pulse low energy laser anneal coupled with rapid thermal anneal |
-
2010
- 2010-11-08 CN CN 201010541631 patent/CN102064109B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1441467A (en) * | 2001-11-09 | 2003-09-10 | 株式会社半导体能源研究所 | Laser radiator, laser radiation method and method for producing semiconductor device |
Non-Patent Citations (1)
Title |
---|
JP特开2005-64453A 2005.03.10 |
Also Published As
Publication number | Publication date |
---|---|
CN102064109A (en) | 2011-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102064109B (en) | Thin film transistor and manufacturing method thereof | |
CN105552027B (en) | The production method and array substrate of array substrate | |
TWI423346B (en) | Thin film transistor and method of manufacturing same | |
CN105489552B (en) | The production method of LTPS array substrates | |
CN105470197B (en) | The preparation method of low temperature polycrystalline silicon array base palte | |
US10707236B2 (en) | Array substrate, manufacturing method therefor and display device | |
CN102176098B (en) | Pixel structure and manufacturing method thereof | |
CN105702623B (en) | Manufacturing method of TFT array substrate | |
CN105633016A (en) | Manufacturing method of TFT substrate and prepared TFT substrate | |
CN107204309B (en) | The production method and its structure of dual gate metal oxide semiconductor TFT substrate | |
CN102709326B (en) | Thin film transistor (TFT) and its manufacture method, array base palte and display device | |
CN104979405A (en) | Thin film transistor, array substrate and display device | |
WO2018010214A1 (en) | Method for manufacturing metal oxide thin film transistor array substrate | |
CN108666218A (en) | Thin film transistor, display substrate, manufacturing method thereof, and display device | |
TW201519416A (en) | Thin film transistor driving back plate and manufacturing method thereof | |
US10833104B2 (en) | Array substrate and its fabricating method, display device | |
CN106356306A (en) | Top gate type thin film transistor and production method thereof | |
CN106098560A (en) | The manufacture method of top gate type thin film transistor | |
CN106449655A (en) | Thin film transistor array substrate and manufacturing method thereof | |
CN105576017A (en) | Thin-film transistor based on zinc oxide thin film | |
CN102629590B (en) | Thin film transistor array substrate and manufacturing method thereof | |
CN105702586A (en) | Thin film transistor, array substrate, production method of thin film transistor and display device | |
CN105140291A (en) | Film transistor, manufacturing method thereof, array substrate and display device | |
CN104795449B (en) | Thin-film transistor and manufacture method, array base palte, display unit | |
WO2017166337A1 (en) | Thin-film transistor, method for fabricating thin-film transistor, and liquid-crystal display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |