[go: up one dir, main page]

CN102064109B - Thin film transistor and manufacturing method thereof - Google Patents

Thin film transistor and manufacturing method thereof Download PDF

Info

Publication number
CN102064109B
CN102064109B CN 201010541631 CN201010541631A CN102064109B CN 102064109 B CN102064109 B CN 102064109B CN 201010541631 CN201010541631 CN 201010541631 CN 201010541631 A CN201010541631 A CN 201010541631A CN 102064109 B CN102064109 B CN 102064109B
Authority
CN
China
Prior art keywords
layer
oxide
semi
thin film
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010541631
Other languages
Chinese (zh)
Other versions
CN102064109A (en
Inventor
林武雄
孙铭伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUO Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Priority to CN 201010541631 priority Critical patent/CN102064109B/en
Publication of CN102064109A publication Critical patent/CN102064109A/en
Application granted granted Critical
Publication of CN102064109B publication Critical patent/CN102064109B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

A method of manufacturing a thin film transistor, comprising: forming a grid electrode on a substrate; forming a gate insulating layer on the substrate to cover the gate electrode; forming an oxide semiconductor layer on the gate insulating layer; forming a semi-transparent layer on a partial region of the oxide semiconductor layer; using the semi-transparent layer as a mask, carrying out an optical annealing process to convert the oxide semiconductor layer into an oxide channel layer and two ohmic contact layers, wherein the oxide channel layer is positioned below the semi-transparent layer, and the ohmic contact layers are positioned at two sides of the oxide channel layer and are connected with the oxide channel layer; and forming a source electrode and a drain electrode which are electrically insulated with each other on the gate insulating layer and the ohmic contact layer. The thin film transistor has stable electrical characteristics, and the process of the invention is simpler, thereby being beneficial to the mass production of the thin film transistor.

Description

薄膜晶体管及其制造方法Thin film transistor and manufacturing method thereof

技术领域 technical field

本发明涉及一种薄膜晶体管及其制造方法,且特别涉及一种具有氧化物沟道层的薄膜晶体管及其制造方法。The invention relates to a thin film transistor and its manufacturing method, and in particular to a thin film transistor with an oxide channel layer and its manufacturing method.

背景技术 Background technique

近来环保意识抬头,具有低消耗功率、空间利用效率佳、无辐射、高画质等优越特性的平面显示面板(flat display panels)已成为市场主流。常见的平面显示器包括液晶显示器(liquid crystal displays)、等离子体显示器(plasmadisplays)、有机电激发光显示器(electroluminescent displays)等。以目前最为普及的液晶显示器为例,其主要是由薄膜晶体管阵列基板、彩色滤光基板以及夹于二者之间的液晶层所构成。在公知的薄膜晶体管阵列基板上,多采用非晶硅(a-Si)薄膜晶体管或低温多晶硅薄膜晶体管作为各个子像素的切换元件。近年来,已有研究指出氧化物半导体(oxide semiconductor)薄膜晶体管相较于非晶硅薄膜晶体管,具有较高的载子移动率(mobility),而氧化物半导体薄膜晶体管相较于低温多晶硅薄膜晶体管,则具有较佳的临界电压(threat holdvoltage,Vth)均匀性。因此,氧化物半导体薄膜晶体管有潜力成为下一代平面显示器的关键元件。Recently, the awareness of environmental protection has risen, and flat display panels (flat display panels) with superior characteristics such as low power consumption, good space utilization efficiency, no radiation, and high image quality have become the mainstream of the market. Common flat panel displays include liquid crystal displays, plasma displays, and electroluminescent displays. Taking the currently most popular liquid crystal display as an example, it is mainly composed of a thin film transistor array substrate, a color filter substrate, and a liquid crystal layer sandwiched between them. On known thin film transistor array substrates, amorphous silicon (a-Si) thin film transistors or low-temperature polysilicon thin film transistors are often used as switching elements for each sub-pixel. In recent years, studies have pointed out that oxide semiconductor thin film transistors have higher carrier mobility than amorphous silicon thin film transistors, and oxide semiconductor thin film transistors have higher mobility than low-temperature polysilicon thin film transistors. , it has better threshold voltage (threat hold voltage, Vth) uniformity. Therefore, oxide semiconductor thin film transistors have the potential to become key components of next-generation flat-panel displays.

图1A至图1D为公知氧化物半导体薄膜晶体管的制造流程剖面示意图。请依序参考图1A至图1D,首先于基板100上形成缓冲层101,再于缓冲层101上的部分区域形成栅极102,然后于基板100上全面性地形成栅绝缘层104以覆盖栅极102,如图1A所示。接着,于栅绝缘层104上形成氧化物半导体层106,如图1B所示。然后,以光掩模M为掩模,进行准分子激光退火(exaimer laser annealing)工艺,使得氧化物半导体层106中未被光掩模M所遮蔽的部分转化为两个欧姆接触层106b,而氧化物半导体层106中被光掩模M所遮蔽的部分则维持半导体的特性而形成氧化物沟道层106a。欧姆接触层106b位于氧化物沟道层106a两侧并与此氧化物沟道层106a连接,如图1B以及图1C所示。最后,于栅绝缘层104与欧姆接触层106b上分别形成彼此电性绝缘的源极S与漏极D。如此一来,便完成公知氧化物半导体薄膜晶体管的制作。1A to 1D are schematic cross-sectional views of the manufacturing process of a conventional oxide semiconductor thin film transistor. Please refer to FIG. 1A to FIG. 1D in sequence. First, a buffer layer 101 is formed on the substrate 100, and then a gate 102 is formed on a part of the buffer layer 101, and then a gate insulating layer 104 is formed on the substrate 100 to cover the gate. Pole 102, as shown in FIG. 1A. Next, an oxide semiconductor layer 106 is formed on the gate insulating layer 104 , as shown in FIG. 1B . Then, using the photomask M as a mask, an excimer laser annealing (exaimer laser annealing) process is performed, so that the part of the oxide semiconductor layer 106 not covered by the photomask M is converted into two ohmic contact layers 106b, and The portion of the oxide semiconductor layer 106 that is shielded by the photomask M maintains the characteristics of the semiconductor to form the oxide channel layer 106a. The ohmic contact layer 106b is located on both sides of the oxide channel layer 106a and connected to the oxide channel layer 106a, as shown in FIG. 1B and FIG. 1C. Finally, a source S and a drain D electrically insulated from each other are respectively formed on the gate insulating layer 104 and the ohmic contact layer 106b. In this way, the fabrication of known oxide semiconductor thin film transistors is completed.

然而,以上述的工艺所制作的氧化物半导体薄膜晶体管其电气特性(漏极电流与栅极电压的关系)较为不稳定。因此,在公知技术中,为了使上述的氧化物半导体薄膜晶体管的电气特性维持稳定,常于完成上述工艺之后,对氧化物沟道层106a进行退火处理,如高温退火工艺(thermal annealing)或准分子激光退火(excimer laser annealing)工艺,以使氧化物半导体薄膜晶体管的电气特性趋于稳定。然而,此工艺却会使得公知的氧化物半导体薄膜晶体管的工艺变得较为繁复。承上述,如何改善氧化物半导体薄膜晶体管的电气特性但不增加工艺的复杂度,实为研发者关注的问题之一。However, the electrical characteristics (the relationship between the drain current and the gate voltage) of the oxide semiconductor thin film transistor fabricated by the above process are relatively unstable. Therefore, in the known technology, in order to maintain the electrical characteristics of the above-mentioned oxide semiconductor thin film transistor, the oxide channel layer 106a is usually annealed after the above-mentioned process is completed, such as a high-temperature annealing process (thermal annealing) or quasi- Molecular laser annealing (excimer laser annealing) process to stabilize the electrical characteristics of the oxide semiconductor thin film transistor. However, this process will make the process of the known oxide semiconductor thin film transistor more complicated. Based on the above, how to improve the electrical characteristics of the oxide semiconductor thin film transistor without increasing the complexity of the process is actually one of the issues that developers are concerned about.

发明内容 Contents of the invention

本发明的目的在于克服现有技术中的缺陷。The purpose of the present invention is to overcome the disadvantages of the prior art.

本发明提供一种薄膜晶体管,其具有稳定的电气特性。The present invention provides a thin film transistor having stable electrical characteristics.

本发明提供一种薄膜晶体管的制造方法,其有助于薄膜晶体管的量产。The invention provides a method for manufacturing a thin film transistor, which is helpful for the mass production of the thin film transistor.

本发明提供一种薄膜晶体管的制造方法,其包括:于基板上形成栅极。接着,于基板上形成栅绝缘层以覆盖栅极。然后,于栅绝缘层上形成氧化物半导体层。之后,于氧化物半导体层的部分区域上形成半透光层。接着,以半透光层为掩模,进行光学退火工艺以使氧化物半导体层转化为一氧化物沟道层以及两个欧姆接触层,其中氧化物沟道层位于半透光层下方,而欧姆接触层位于氧化物沟道层两侧并与氧化物沟道层连接。最后,于栅绝缘层与欧姆接触层上形成彼此电性绝缘的源极与漏极。The invention provides a manufacturing method of a thin film transistor, which includes: forming a gate on a substrate. Next, a gate insulating layer is formed on the substrate to cover the gate. Then, an oxide semiconductor layer is formed on the gate insulating layer. Afterwards, a semi-transparent layer is formed on a partial region of the oxide semiconductor layer. Then, using the semi-transparent layer as a mask, an optical annealing process is performed to convert the oxide semiconductor layer into an oxide channel layer and two ohmic contact layers, wherein the oxide channel layer is located under the semi-transparent layer, and The ohmic contact layer is located on both sides of the oxide channel layer and connected with the oxide channel layer. Finally, a source electrode and a drain electrode electrically insulated from each other are formed on the gate insulating layer and the ohmic contact layer.

本发明提供一种薄膜晶体管的制造方法,其包括:于基板上形成栅极。接着,于基板上形成栅绝缘层以覆盖栅极。然后,于栅绝缘层上形成彼此电性绝缘的源极与漏极。之后,于栅绝缘层、源极以及漏极上形成氧化物半导体层。接着,于氧化物半导体层的部分区域上形成半透光层。最后,以半透光层为掩模,进行一光学退火工艺以使氧化物半导体层转化为一氧化物沟道层以及两个欧姆接触层,其中氧化物沟道层位于半透光层下方,而欧姆接触层位于氧化物沟道层两侧并与氧化物沟道层连接。The invention provides a manufacturing method of a thin film transistor, which includes: forming a gate on a substrate. Next, a gate insulating layer is formed on the substrate to cover the gate. Then, a source and a drain electrically insulated from each other are formed on the gate insulating layer. Afterwards, an oxide semiconductor layer is formed on the gate insulating layer, the source and the drain. Next, a semi-transparent layer is formed on a partial region of the oxide semiconductor layer. Finally, using the semi-transparent layer as a mask, an optical annealing process is performed to convert the oxide semiconductor layer into an oxide channel layer and two ohmic contact layers, wherein the oxide channel layer is located under the semi-transparent layer, And the ohmic contact layer is located on both sides of the oxide channel layer and connected with the oxide channel layer.

本发明提供一种薄膜晶体管,其包括栅极、栅绝缘层、氧化物半导体层、半透光层、源极以及漏极。栅绝缘层覆盖栅极。氧化物半导体层配置于栅绝缘层上且位于栅极上方。氧化物半导体层包括氧化物沟道层以及两个欧姆接触层,其中欧姆接触层位于氧化物沟道层两侧并与氧化物沟道层连接。半透光层位于氧化物沟道层上方。源极与漏极位于栅绝缘层与欧姆接触层上,且源极与漏极彼此电性绝缘。The invention provides a thin film transistor, which includes a gate, a gate insulating layer, an oxide semiconductor layer, a semitransparent layer, a source and a drain. A gate insulating layer covers the gate. The oxide semiconductor layer is disposed on the gate insulating layer and located above the gate. The oxide semiconductor layer includes an oxide channel layer and two ohmic contact layers, wherein the ohmic contact layers are located on both sides of the oxide channel layer and connected to the oxide channel layer. The semi-transmissive layer is located above the oxide channel layer. The source and the drain are located on the gate insulating layer and the ohmic contact layer, and the source and the drain are electrically insulated from each other.

本发明提供一种薄膜晶体管,其包括栅极、栅绝缘层、源极、漏极、氧化物半导体层以及半透光层。栅绝缘层覆盖栅极。源极与漏极配置于栅绝缘层上且彼此电性绝缘。氧化物半导体层配置于栅绝缘层、源极以及漏极上。氧化物半导体层包括氧化物沟道层以及两个欧姆接触层,其中欧姆接触层位于氧化物沟道层两侧并与氧化物沟道层连接。半透光层位于氧化物沟道层上方。The invention provides a thin film transistor, which includes a gate, a gate insulating layer, a source, a drain, an oxide semiconductor layer and a semitransparent layer. A gate insulating layer covers the gate. The source and the drain are disposed on the gate insulating layer and electrically insulated from each other. The oxide semiconductor layer is disposed on the gate insulating layer, the source and the drain. The oxide semiconductor layer includes an oxide channel layer and two ohmic contact layers, wherein the ohmic contact layers are located on both sides of the oxide channel layer and connected to the oxide channel layer. The semi-transmissive layer is located above the oxide channel layer.

在本发明的一实施例中,前述的氧化物半导体层的材质包括氧化铟镓锌(IGZO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化锡(ZnO)、氧化镉·氧化锗(2CdO·GeO2)或氧化镍钴(NiCo2O4)。In an embodiment of the present invention, the material of the aforementioned oxide semiconductor layer includes indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), indium gallium oxide (IGO), tin oxide (ZnO), cadmium oxide. Germanium (2CdO·GeO 2 ) or nickel cobalt oxide (NiCo 2 O 4 ).

在本发明的一实施例中,前述的半透光层的材质包括氧化硅(SiOx)、氮化硅(SiNx)、氧化钛(TiOx)、三氧化二铟(In2O3)、InGaO3、InGaZnO、SnO2、ZnO、Zn2In2O5、银(Ag)、ZnSnO3、Zn2SnO4或非晶硅(a-Si)。In an embodiment of the present invention, the material of the aforementioned semi-transparent layer includes silicon oxide (SiOx), silicon nitride (SiNx), titanium oxide (TiOx), indium trioxide (In2O3), InGaO3, InGaZnO, SnO2 , ZnO, Zn2In2O5, silver (Ag), ZnSnO3, Zn2SnO4 or amorphous silicon (a-Si).

在本发明的一实施例中,前述的光学退火工艺利用激光照射半透光层以及氧化物半导体层。In an embodiment of the present invention, the aforementioned optical annealing process utilizes laser light to irradiate the semi-transparent layer and the oxide semiconductor layer.

在本发明的一实施例中,于前述的光学退火工艺中,激光经过半透光层之后,激光的能量衰减为10%至90%之间。In an embodiment of the present invention, in the aforementioned optical annealing process, after the laser passes through the semi-transparent layer, the energy of the laser is attenuated between 10% and 90%.

在本发明的一实施例中,前述的半透光层包括一半透光遮蔽层或一半透光吸收层。In an embodiment of the present invention, the aforementioned semi-transparent layer includes a semi-transparent shielding layer or a semi-transparent absorbing layer.

在本发明的一实施例中,前述的欧姆接触层的片电阻为Rs1(Ω/□),而氧化物沟道层的片电阻为Rs2(Ω/□),且Rs2/Rs1约为108In an embodiment of the present invention, the sheet resistance of the aforementioned ohmic contact layer is Rs1 (Ω/□), and the sheet resistance of the oxide channel layer is Rs2 (Ω/□), and Rs2/Rs1 is about 10 8 .

在本发明的一实施例中,前述的欧姆接触层的片电阻Rs1约为104Ω/□,而氧化物沟道层的片电阻Rs2约为1012Ω/□。In an embodiment of the present invention, the sheet resistance Rs1 of the aforementioned ohmic contact layer is about 10 4 Ω/□, and the sheet resistance Rs2 of the oxide channel layer is about 10 12 Ω/□.

在本发明的一实施例中,于前述的薄膜晶体管的制造方法中,在形成半透光层之前,还包括于半透光层与氧化物半导体层之间形成一介电层。In an embodiment of the present invention, in the aforementioned manufacturing method of the thin film transistor, before forming the semi-transparent layer, it further includes forming a dielectric layer between the semi-transparent layer and the oxide semiconductor layer.

本发明的薄膜晶体管具有稳定的电气特性,且本发明的工艺较为简单,有利于薄膜晶体管的量产。The thin film transistor of the invention has stable electrical characteristics, and the process of the invention is relatively simple, which is beneficial to mass production of the thin film transistor.

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.

附图说明 Description of drawings

图1A至图1D为公知的氧化物半导体薄膜晶体管制造流程剖面示意图。FIG. 1A to FIG. 1D are cross-sectional schematic diagrams of a known manufacturing process of an oxide semiconductor thin film transistor.

图2A至图2E为本发明的第一实施例的薄膜晶体管制造流程剖面示意图。2A to 2E are schematic cross-sectional views of the manufacturing process of the thin film transistor according to the first embodiment of the present invention.

图2F至图2H为本发明的第一实施例的薄膜晶体管部分制造流程剖面示意图。2F to 2H are schematic cross-sectional views of a part of the manufacturing process of the thin film transistor according to the first embodiment of the present invention.

图2E、图2H为本发明的第一实施例的薄膜晶体管剖面示意图。2E and 2H are schematic cross-sectional views of the thin film transistor according to the first embodiment of the present invention.

图2I为本发明的一实施例的薄膜晶体管剖面示意图。FIG. 2I is a schematic cross-sectional view of a thin film transistor according to an embodiment of the present invention.

图3A至图3E为本发明的第二实施例的薄膜晶体管制造流程剖面示意图。3A to 3E are schematic cross-sectional views of the manufacturing process of the thin film transistor according to the second embodiment of the present invention.

图3G至图3H为本发明的第二实施例的薄膜晶体管部分制造流程剖面示意图。3G to 3H are schematic cross-sectional views of a part of the manufacturing process of the thin film transistor according to the second embodiment of the present invention.

图3E、图3H为本发明的第二实施例的薄膜晶体管剖面示意图。3E and 3H are schematic cross-sectional views of a thin film transistor according to a second embodiment of the present invention.

图3F为本发明的一实施例的薄膜晶体管剖面示意图。FIG. 3F is a schematic cross-sectional view of a thin film transistor according to an embodiment of the present invention.

其中,附图标记说明如下:Wherein, the reference signs are explained as follows:

100、200:基板100, 200: Substrate

101:缓冲层101: buffer layer

102、202:栅极102, 202: grid

104、204:栅绝缘层104, 204: gate insulating layer

106、206:氧化物半导体层106, 206: oxide semiconductor layer

106a、206a:氧化物沟道层106a, 206a: oxide channel layer

106b、206b:欧姆接触层106b, 206b: ohmic contact layer

207:介电层207: Dielectric layer

208:半透光层208: semi-transparent layer

S、S’:源极S, S': source

D、D’:漏极D, D': Drain

M:掩模M: mask

L:激光L: Laser

TFT:薄膜晶体管TFT: thin film transistor

具体实施方式 Detailed ways

【第一实施例】【The first embodiment】

图2A至图2E为本实施例的薄膜晶体管制造流程剖面示意图。首先,请参照图2A,于基板200上形栅极202。接着,于基板200上全面性地形成栅绝缘层204以覆盖栅极202。在本实施例中,基板200的材质例如为玻璃、石英、有机聚合物、不透光/反射材料(如导电材料、晶片、陶瓷等)或是其它合适的材料。2A to 2E are schematic cross-sectional views of the manufacturing process of the thin film transistor of this embodiment. First, referring to FIG. 2A , a gate 202 is formed on a substrate 200 . Next, a gate insulating layer 204 is formed entirely on the substrate 200 to cover the gate 202 . In this embodiment, the material of the substrate 200 is, for example, glass, quartz, organic polymer, opaque/reflective material (such as conductive material, wafer, ceramic, etc.) or other suitable materials.

在本实施例中,栅极202的材料一般是金属材料。但,本发明不限于此,在其他实施例中,栅极202的材料也可以使用其他导电材料,如合金、金属材料的氮化物、金属材料的氧化物、金属材料的氮氧化物或是金属材料与其它导材料的堆叠层。此外,本实施例的栅绝缘层204的材质例如为无机介电材料(如氧化硅、氮化硅、氮氧化硅或上述至少二种材料的堆叠层)、有机介电材料或上述有机与无机介电材料的组合,但本发明不限于此。In this embodiment, the material of the gate 202 is generally a metal material. However, the present invention is not limited thereto. In other embodiments, the material of the gate 202 can also use other conductive materials, such as alloys, nitrides of metal materials, oxides of metal materials, oxynitrides of metal materials, or metals. Stacked layers of materials and other conductive materials. In addition, the material of the gate insulating layer 204 in this embodiment is, for example, an inorganic dielectric material (such as silicon oxide, silicon nitride, silicon oxynitride, or a stacked layer of at least two of the above materials), an organic dielectric material, or the above-mentioned organic and inorganic materials. combinations of dielectric materials, but the invention is not limited thereto.

接着请参照图2B,于栅绝缘层204上的部分区域形成氧化物半导体层206。在本实施例中,氧化物半导体层206的材质例如为非晶硅的氧化铟镓锌(IGZO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化锡(ZnO)、氧化镉、氧化锗(2CdO·GeO2)、氧化镍钴(NiCo2O4)或其他合适的材料。Next, referring to FIG. 2B , an oxide semiconductor layer 206 is formed on a partial region on the gate insulating layer 204 . In this embodiment, the material of the oxide semiconductor layer 206 is, for example, amorphous silicon indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), indium gallium oxide (IGO), tin oxide (ZnO), cadmium oxide, Germanium oxide (2CdO·GeO 2 ), nickel cobalt oxide (NiCo 2 O 4 ), or other suitable materials.

接着请参照图2C,于氧化物半导体层206的部分区域上形成半透光层208。在本实施例中,半透光层例如为半透光遮蔽层,以遮蔽部分入射光。但,本发明不限于此,在其他实施例中,半透光层亦可为半透光吸收层,以吸收部分入射光。在本实施例中,半透光层208的材质例如为氧化硅(SiOx)、氮化硅(SiNx)、氧化钛(TiOx)、三氧化二铟(In2O3)、InGaO3、InGaZnO、SnO2、ZnO、Zn2In2O5、银(Ag)、ZnSnO3、Zn2SnO4或非晶硅(a-Si),但本发明不限于此。Next, referring to FIG. 2C , a semi-transparent layer 208 is formed on a partial region of the oxide semiconductor layer 206 . In this embodiment, the semi-transparent layer is, for example, a semi-transparent shielding layer to shield part of the incident light. However, the present invention is not limited thereto. In other embodiments, the semi-transparent layer can also be a semi-transparent absorbing layer to absorb part of the incident light. In this embodiment, the material of the semi-transparent layer 208 is, for example, silicon oxide (SiOx), silicon nitride (SiNx), titanium oxide (TiOx), indium trioxide (In2O3), InGaO3, InGaZnO, SnO2, ZnO, Zn2In2O5, silver (Ag), ZnSnO3, Zn2SnO4 or amorphous silicon (a-Si), but the present invention is not limited thereto.

接着请参照图2C以及图2D,以上述的半透光层208为掩模,进行光学退火工艺以使氧化物半导体层206转化为氧化物沟道层206a以及两个欧姆接触层206b,如图2C以及图2D所示。更详细地说,本实施例的光学退火工艺例如是利用激光L照射半透光层208以及氧化物半导体层206,其中被未半透光层208遮蔽的部分氧化物半导体层206其可接收的激光L能量较大(约等于原入射的激光L能量),而被半透光层208遮蔽的氧化物半导体层206,其可接收到的激光L能量较小。举例而言,被半透光层208所遮蔽的氧化物半导体层206,其可接收到的激光L能量为原入射激光L能量的10%至90%之间。Next, please refer to FIG. 2C and FIG. 2D , using the above-mentioned semi-transparent layer 208 as a mask, perform an optical annealing process to convert the oxide semiconductor layer 206 into an oxide channel layer 206a and two ohmic contact layers 206b, as shown in FIG. 2C and Figure 2D. In more detail, the optical annealing process of this embodiment is, for example, using laser light L to irradiate the semi-transparent layer 208 and the oxide semiconductor layer 206, wherein the part of the oxide semiconductor layer 206 that is not shielded by the semi-transparent layer 208 can receive The energy of the laser light L is relatively large (approximately equal to the energy of the original incident laser light L), while the oxide semiconductor layer 206 shielded by the semi-transparent layer 208 can receive relatively small energy of the laser light L. For example, the oxide semiconductor layer 206 shielded by the semi-transparent layer 208 can receive the energy of the laser L between 10% and 90% of the energy of the original incident laser L.

在本实施例中,接收能量较大的激光L的部分氧化物半导体层206可转化为阻值较低的欧姆接触层206b,而部分被能量较小的激光L照射的氧化物半导体层206则为电气特性稳定的氧化物沟道层206a,如图2D所示。更进一步地说,若本实施例的欧姆接触层206b的片电阻为Rs1(Ω/□),而氧化物沟道层206a的片电阻为Rs2(Ω/□),则氧化物沟道层206a的片电阻Rs2与欧姆接触层206b的片电阻为Rs1(Ω/□)的比值(Rs2/Rs1)约为108。更详细地说,在本实施例中,欧姆接触层206b的片电阻Rs1例如约为104Ω/□,而氧化物沟道层206a的片电阻Rs2例如约为1012Ω/□。In this embodiment, the part of the oxide semiconductor layer 206 that receives the laser light L with higher energy can be transformed into an ohmic contact layer 206b with a lower resistance, while the part of the oxide semiconductor layer 206 that is irradiated with the laser L with lower energy It is an oxide channel layer 206a with stable electrical characteristics, as shown in FIG. 2D . Furthermore, if the sheet resistance of the ohmic contact layer 206b in this embodiment is Rs1 (Ω/□), and the sheet resistance of the oxide channel layer 206a is Rs2 (Ω/□), then the oxide channel layer 206a The ratio (Rs2/Rs1) of the sheet resistance Rs2 of the ohmic contact layer 206b to the sheet resistance Rs1 (Ω/□) of the ohmic contact layer 206b is about 10 8 . More specifically, in this embodiment, the sheet resistance Rs1 of the ohmic contact layer 206 b is, for example, about 10 4 Ω/□, and the sheet resistance Rs2 of the oxide channel layer 206 a is, for example, about 10 12 Ω/□.

值得注意的是,在本实施例中,可通过部分氧化物半导体层206上的半透光层208,使得被半透光层208遮蔽的氧化物半导体层206与未被半透光层208遮蔽的氧化物半导体层206可同时接收到不同能量的激光L。因此,本实施例可同时形成电气特性良好的氧化物沟道层206a以及低阻值的欧姆接触层206b。此外,本实施例的半透光层208的厚度或组成可被适当地调整以改变其令激光L能量衰减的能力,进而使得氧化物沟道层206a的电气特性可被最佳化(optimized)。It is worth noting that, in this embodiment, the semi-transparent layer 208 on the oxide semiconductor layer 206 can be partially used to make the oxide semiconductor layer 206 shielded by the semi-transparent layer 208 and the part not shielded by the semi-transparent layer 208 The oxide semiconductor layer 206 can receive laser light L with different energies at the same time. Therefore, in this embodiment, the oxide channel layer 206 a with good electrical characteristics and the ohmic contact layer 206 b with low resistance can be formed simultaneously. In addition, the thickness or composition of the semi-transparent layer 208 in this embodiment can be properly adjusted to change its ability to attenuate the energy of the laser L, so that the electrical characteristics of the oxide channel layer 206a can be optimized (optimized) .

接着请参照图2E,于部分栅绝缘层204与欧姆接触层206b上分别形成彼此电性绝缘源极S’与漏极D’。在本实施例中,彼此电性绝缘的源极S’与漏极D’可分别通过位于其下的欧姆接触层206b与氧化物沟道层206a形成一良好的欧姆接触(ohmic contact)。在本实施例中,源极S’与漏极D’的材料一般是金属材料。但,本发明不限于此,在其他实施例中,源极S’与漏极D’的材料也可以使用其他导电材料,如合金、金属材料的氮化物、金属材料的氧化物、金属材料的氮氧化物或是金属材料与其它导材料的堆叠层。Next, referring to FIG. 2E , a source S' and a drain D' are electrically insulated from each other on part of the gate insulating layer 204 and the ohmic contact layer 206b, respectively. In this embodiment, the source S' and the drain D' electrically insulated from each other can respectively form a good ohmic contact through the ohmic contact layer 206b and the oxide channel layer 206a located thereunder. In this embodiment, the material of the source S' and the drain D' is generally a metal material. However, the present invention is not limited thereto. In other embodiments, the materials of the source S' and the drain D' can also use other conductive materials, such as alloys, nitrides of metal materials, oxides of metal materials, and metal materials. Oxynitride or stacked layers of metal materials and other conductive materials.

在完成源极S’与漏极D’的制作之后,便初步完成了本实施例的薄膜晶体管TFT的制作。After the fabrication of the source S' and the drain D' is completed, the fabrication of the thin film transistor TFT of this embodiment is preliminarily completed.

由图2E可清楚得知,本实施例的薄膜晶体管TFT包括栅极202、栅绝缘层204、氧化物半导体层206、半透光层208、源极S’以及漏极D’。栅绝缘层204覆盖栅极202。氧化物半导体层206包括氧化物沟道层206a以及两个欧姆接触层206b,其中欧姆接触层206b位于氧化物沟道层206a两侧并与氧化物沟道层206a连接。氧化物半导体层206配置于栅绝缘层204上且氧化物沟道层206a位于栅极202上方。半透光层208位于氧化物沟道层206a上方。源极S’与漏极D’,位于栅绝缘层204与欧姆接触层206b上,且源极S’与漏极D’彼此电性绝缘。It can be clearly seen from FIG. 2E that the thin film transistor TFT of this embodiment includes a gate 202, a gate insulating layer 204, an oxide semiconductor layer 206, a semi-transparent layer 208, a source S' and a drain D'. The gate insulating layer 204 covers the gate 202 . The oxide semiconductor layer 206 includes an oxide channel layer 206a and two ohmic contact layers 206b, wherein the ohmic contact layers 206b are located on both sides of the oxide channel layer 206a and connected to the oxide channel layer 206a. The oxide semiconductor layer 206 is disposed on the gate insulating layer 204 and the oxide channel layer 206 a is located above the gate 202 . The semi-transparent layer 208 is located above the oxide channel layer 206a. The source S' and the drain D' are located on the gate insulating layer 204 and the ohmic contact layer 206b, and the source S' and the drain D' are electrically insulated from each other.

另外,本实施例可在形成半透光层208之前,于半透光层208与氧化物半导体层206之间形成介电层207,如图2F所示。在本实施例中,介电层207的材质可为一透明的介电材料,例如为氧化硅(SiOx),但本发明不限于此。In addition, in this embodiment, a dielectric layer 207 may be formed between the semi-transmissive layer 208 and the oxide semiconductor layer 206 before forming the semi-transmissive layer 208 , as shown in FIG. 2F . In this embodiment, the material of the dielectric layer 207 can be a transparent dielectric material, such as silicon oxide (SiOx), but the invention is not limited thereto.

接着,以上述的半透光层208为掩模进行光学退火工艺,以使氧化物半导体层206转化为氧化物沟道层206a以及两个欧姆接触层206b,如图2F以及图2G所示。Next, an optical annealing process is performed using the semi-transparent layer 208 as a mask to transform the oxide semiconductor layer 206 into an oxide channel layer 206a and two ohmic contact layers 206b, as shown in FIG. 2F and FIG. 2G .

接着请参考图2H,本实施例亦可于部分栅绝缘层204上的欧姆接触层206b上分别形成彼此电性绝缘的源极S’与漏极D’。当然,在其他实施例中,亦可在完成源极S’与漏极D’的制作后,选择性地将半透光层208去除,而形成如图2I所示的薄膜晶体管TFT。Next, please refer to FIG. 2H , in this embodiment, a source S' and a drain D' electrically insulated from each other can also be formed on the ohmic contact layer 206b on a portion of the gate insulating layer 204, respectively. Of course, in other embodiments, the semi-transparent layer 208 may also be selectively removed after the source S' and the drain D' are fabricated, so as to form the thin film transistor TFT as shown in FIG. 2I .

由图2H可清楚得知,本实施例的薄膜晶体管TFT亦可包括栅极202、栅绝缘层204、氧化物半导体层206、介电层207、半透光层208、源极S’以及漏极D’。栅绝缘层204覆盖栅极202。氧化物半导体层206包括氧化物沟道层206a以及两个欧姆接触层206b,其中欧姆接触层206b位于氧化物沟道层206a两侧并与氧化物沟道层206a连接。氧化物半导体层206配置于栅绝缘层204上且氧化物沟道层206a位于栅极202上方。介电层207位于氧化物沟道层206a之上,而半透光层208位于氧化物沟道层206a与介电层207上方。此外,源极S’与漏极D’位于部分栅绝缘层204之上的欧姆接触层206b之上,并与介电层207连接,且源极S’与漏极D’彼此电性绝缘。It can be clearly seen from FIG. 2H that the thin film transistor TFT of this embodiment may also include a gate 202, a gate insulating layer 204, an oxide semiconductor layer 206, a dielectric layer 207, a semi-transparent layer 208, a source S' and a drain. Pole D'. The gate insulating layer 204 covers the gate 202 . The oxide semiconductor layer 206 includes an oxide channel layer 206a and two ohmic contact layers 206b, wherein the ohmic contact layers 206b are located on both sides of the oxide channel layer 206a and connected to the oxide channel layer 206a. The oxide semiconductor layer 206 is disposed on the gate insulating layer 204 and the oxide channel layer 206 a is located above the gate 202 . The dielectric layer 207 is located on the oxide channel layer 206 a, and the semi-transparent layer 208 is located on the oxide channel layer 206 a and the dielectric layer 207 . In addition, the source S' and the drain D' are located on part of the ohmic contact layer 206b on the gate insulating layer 204 and connected to the dielectric layer 207, and the source S' and the drain D' are electrically insulated from each other.

【第二实施例】【Second Embodiment】

图3A至图3E为本实施例的薄膜晶体管制造流程剖面示意图。本实施例的薄膜晶体管其各组成可使用的材料与第一实施例相同,以下就不再重述。3A to 3E are schematic cross-sectional views of the manufacturing process of the thin film transistor of this embodiment. The materials that can be used for the various components of the thin film transistor of this embodiment are the same as those of the first embodiment, and will not be repeated below.

首先,请参照图3A,于基板200上形一栅极202。接着,于基板200上全面性地形成栅绝缘层204以覆盖栅极202。First, please refer to FIG. 3A , a gate 202 is formed on the substrate 200 . Next, a gate insulating layer 204 is formed entirely on the substrate 200 to cover the gate 202 .

接着请参照图3B,于栅绝缘层204上的部分区域形成彼此电性绝缘的源极S’与漏极D’。Next, please refer to FIG. 3B , a source S' and a drain D' electrically insulated from each other are formed on a part of the gate insulating layer 204. Referring to FIG.

接着请参照图3C,于栅绝缘层204、源极S’以及漏极D’上形成氧化物半导体层206。换句话说,本实施例的氧化物半导体层206覆盖栅极202上方的部分栅绝缘层204、部分的源极S’以及部分的漏极D’。Next, referring to FIG. 3C , an oxide semiconductor layer 206 is formed on the gate insulating layer 204, the source S' and the drain D'. In other words, the oxide semiconductor layer 206 of this embodiment covers part of the gate insulating layer 204 above the gate 202, part of the source S' and part of the drain D'.

接着请参照图3D,于氧化物半导体层206的部分区域上形成半透光层208。Next, referring to FIG. 3D , a semi-transparent layer 208 is formed on a partial region of the oxide semiconductor layer 206 .

接着请参照图3D以及图3E,以上述的半透光层208为掩模,进行光学退火工艺以使氧化物半导体层206转化为氧化物沟道层206a以及两个欧姆接触层206b,如图3D以及图3E所示。更详细地说,本实施例的光学退火工艺例如是利用激光L照射半透光层208以及氧化物半导体层206。其中,被未半透光层208遮蔽的部分氧化物半导体层206,其可接收的激光L能量较大(约等于原入射的激光L能量),而被半透光层208遮蔽的氧化物半导体层206,其可接收到的激光L能量较小。举例而言,被半透光层208所遮蔽的氧化物半导体层206,其可接收到的激光L能量为原入射激光L能量的10%至90%之间。Next, please refer to FIG. 3D and FIG. 3E , using the above-mentioned semi-transparent layer 208 as a mask, perform an optical annealing process to convert the oxide semiconductor layer 206 into an oxide channel layer 206a and two ohmic contact layers 206b, as shown in FIG. 3D and Figure 3E. More specifically, the optical annealing process of this embodiment is, for example, using laser light L to irradiate the semi-transparent layer 208 and the oxide semiconductor layer 206 . Among them, the part of the oxide semiconductor layer 206 that is not shielded by the non-translucent layer 208 has a larger energy of the laser L that can be received (approximately equal to the energy of the original incident laser L), while the part of the oxide semiconductor layer that is shielded by the semi-transparent layer 208 Layer 206, which can receive less energy of the laser light L. For example, the oxide semiconductor layer 206 shielded by the semi-transparent layer 208 can receive the energy of the laser L between 10% and 90% of the energy of the original incident laser L.

在本实施例中,接收能量较大的激光L的部分氧化物半导体层206可转化为阻值较低的欧姆接触层206b,而接收能量较小的激光L的部分氧化物半导体层206则为电气特性稳定的氧化物沟道层206a,如图3E所示。更进一步地说,若本实施例的欧姆接触层206b的片电阻为Rs1(Ω/□),而氧化物沟道层206a的片电阻为Rs2(Ω/□),则氧化物沟道层206a的片电阻Rs2与欧姆接触层206b的片电阻为Rs1(Ω/□)的比值(Rs2/Rs1)约为108。更详细地说,在本实施例中,欧姆接触层206b的片电阻Rs1例如约为104Ω/□,而氧化物沟道层206a的片电阻Rs2例如约为1012Ω/□。In this embodiment, the part of the oxide semiconductor layer 206 that receives the laser light L with higher energy can be transformed into an ohmic contact layer 206b with a lower resistance, while the part of the oxide semiconductor layer 206 that receives the laser L with lower energy is An oxide channel layer 206a with stable electrical properties is shown in FIG. 3E. Furthermore, if the sheet resistance of the ohmic contact layer 206b in this embodiment is Rs1 (Ω/□), and the sheet resistance of the oxide channel layer 206a is Rs2 (Ω/□), then the oxide channel layer 206a The ratio (Rs2/Rs1) of the sheet resistance Rs2 of the ohmic contact layer 206b to the sheet resistance Rs1 (Ω/□) of the ohmic contact layer 206b is about 10 8 . More specifically, in this embodiment, the sheet resistance Rs1 of the ohmic contact layer 206 b is, for example, about 10 4 Ω/□, and the sheet resistance Rs2 of the oxide channel layer 206 a is, for example, about 10 12 Ω/□.

值得注意的是,在本实施例中,亦可通过部分氧化物半导体层206上的半透光层208,使得被半透光层208遮蔽的氧化物半导体层206与未被半透光层208遮蔽的氧化物半导体层206可同时接收到不同能量的激光L。因此,本实施例可同时形成电气特性良好的氧化物沟道层206a以及低阻值的欧姆接触层206b。此外,本实施例的半透光层208的厚度或组成亦可被适当得调整以改变其令激光L能量衰减的能力,进而使得氧化物沟道层206a的电气特性可被最佳化(optimized)。It is worth noting that, in this embodiment, the semi-transparent layer 208 on the oxide semiconductor layer 206 can also be used to make the oxide semiconductor layer 206 shielded by the semi-transparent layer 208 and the part not covered by the semi-transparent layer 208 The shielded oxide semiconductor layer 206 can simultaneously receive laser light L with different energies. Therefore, in this embodiment, the oxide channel layer 206 a with good electrical characteristics and the ohmic contact layer 206 b with low resistance can be formed simultaneously. In addition, the thickness or composition of the semi-transparent layer 208 in this embodiment can also be properly adjusted to change its ability to attenuate the energy of the laser L, so that the electrical characteristics of the oxide channel layer 206a can be optimized. ).

在完成氧化物沟道层206a与欧姆接触层206b的制作之后,便初步完成了本实施例的薄膜晶体管TFT的制作。当然,在其他实施例中,亦可在完成氧化物沟道层206a与欧姆接触层206b的制作后,选择性地将光阻层208去除,而形成如图3F所示的薄膜晶体管TFT。After the oxide channel layer 206 a and the ohmic contact layer 206 b are fabricated, the fabrication of the thin film transistor TFT of this embodiment is preliminarily completed. Of course, in other embodiments, the photoresist layer 208 may also be selectively removed after the oxide channel layer 206 a and the ohmic contact layer 206 b are fabricated, so as to form the thin film transistor TFT as shown in FIG. 3F .

由图3E可清楚得知,本实施例的薄膜晶体管TFT可包括栅极202、栅绝缘层204、氧化物半导体层206、半透光层208、源极S以及漏极D。栅绝缘层204覆盖栅极202。源极S’与漏极D’配置于部分栅绝缘层204上且彼此电性绝缘。氧化物半导体层206配置于栅绝缘层204、源极S’以及漏极D’上。氧化物半导体层206包括一氧化物沟道层206a以及两个欧姆接触层206b。其中,欧姆接触层206b位于氧化物沟道层206a两侧并与氧化物沟道层206连接。并且,两欧姆接触层206b分别与源极S’以及漏极D’连接。半透光层208位于氧化物沟道层206上方。It can be clearly seen from FIG. 3E that the thin film transistor TFT of this embodiment may include a gate 202 , a gate insulating layer 204 , an oxide semiconductor layer 206 , a semi-transparent layer 208 , a source S and a drain D. As shown in FIG. The gate insulating layer 204 covers the gate 202 . The source S' and the drain D' are disposed on a portion of the gate insulating layer 204 and are electrically insulated from each other. The oxide semiconductor layer 206 is disposed on the gate insulating layer 204, the source S' and the drain D'. The oxide semiconductor layer 206 includes an oxide channel layer 206a and two ohmic contact layers 206b. Wherein, the ohmic contact layer 206b is located on both sides of the oxide channel layer 206a and connected to the oxide channel layer 206 . Moreover, the two ohmic contact layers 206b are respectively connected to the source S' and the drain D'. The semi-transparent layer 208 is located above the oxide channel layer 206 .

另外,在本实施例亦可在形成半透光层208之前,于半透光层208与氧化物半导体层206之间形成介电层207,如图3G所示。接着,以上述的半透光层208为掩模并通过介电层207,进行光学退火工艺亦可使氧化物半导体层206转化为氧化物沟道层206a以及两个欧姆接触层206b,如图3G以及图3H所示。In addition, in this embodiment, a dielectric layer 207 may be formed between the semi-transmissive layer 208 and the oxide semiconductor layer 206 before forming the semi-transmissive layer 208 , as shown in FIG. 3G . Next, the oxide semiconductor layer 206 can also be transformed into an oxide channel layer 206a and two ohmic contact layers 206b by performing an optical annealing process through the dielectric layer 207 using the above-mentioned semi-transparent layer 208 as a mask, as shown in the figure 3G and Figure 3H.

由图3H可清楚得知,本实施例的薄膜晶体管TFT亦可包括栅极202、栅绝缘层204、氧化物半导体层206、介电层207、半透光层208、源极S’以及漏极D’。栅绝缘层204覆盖栅极202。源极S’与漏极D’配置于栅绝缘层204上且彼此电性绝缘。氧化物半导体层206配置于栅绝缘层204、源极S’以及漏极D’上。氧化物半导体层206包括一氧化物沟道层206a以及两个欧姆接触层206b。其中,欧姆接触层206b位于氧化物沟道层206a两侧并与氧化物沟道层206连接。并且,两欧姆接触层206b分别与源极S’以及漏极D’连接。介电层207位于氧化物沟道层206a、欧姆接触层206b、源极S’、漏极D’以及部分栅绝缘层204之上。半透光层208位于介电层207与氧化物沟道层206a的部分区域上方。It can be clearly seen from FIG. 3H that the thin film transistor TFT of this embodiment may also include a gate 202, a gate insulating layer 204, an oxide semiconductor layer 206, a dielectric layer 207, a semi-transparent layer 208, a source S' and a drain. Pole D'. The gate insulating layer 204 covers the gate 202 . The source S' and the drain D' are disposed on the gate insulating layer 204 and electrically insulated from each other. The oxide semiconductor layer 206 is disposed on the gate insulating layer 204, the source S' and the drain D'. The oxide semiconductor layer 206 includes an oxide channel layer 206a and two ohmic contact layers 206b. Wherein, the ohmic contact layer 206b is located on both sides of the oxide channel layer 206a and connected to the oxide channel layer 206 . Moreover, the two ohmic contact layers 206b are respectively connected to the source S' and the drain D'. The dielectric layer 207 is located on the oxide channel layer 206a, the ohmic contact layer 206b, the source S', the drain D' and part of the gate insulating layer 204. The semi-transparent layer 208 is located above the dielectric layer 207 and part of the oxide channel layer 206a.

综上所述,本发明通过一半透光层,可同时形成电气特性良好的氧化物沟道层以及低阻值的欧姆接触层。因此,本发明的薄膜晶体管的电气特性以及量产性可被兼顾。In summary, the present invention can simultaneously form an oxide channel layer with good electrical characteristics and an ohmic contact layer with low resistance through the semi-transparent layer. Therefore, the electrical characteristics and mass productivity of the thin film transistor of the present invention can be balanced.

虽然本发明已以实施例公开如上,然其并非用以限定本发明,任何所属技术领域中的技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视随附的权利要求所界定的保护范围为准。Although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Any person skilled in the art may make some modifications and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be determined by the scope of protection defined by the appended claims.

Claims (16)

1.一种薄膜晶体管的制造方法,包括:  1. A method for manufacturing a thin film transistor, comprising: 于一基板上形成一栅极;  forming a gate on a substrate; 于该基板上形成一栅绝缘层以覆盖该栅极;  forming a gate insulating layer on the substrate to cover the gate; 于该栅绝缘层上形成一氧化物半导体层;  forming an oxide semiconductor layer on the gate insulating layer; 于该氧化物半导体层的部分区域上形成一半透光层;  forming a semi-transparent layer on a part of the oxide semiconductor layer; 以该半透光层为掩模,进行一光学退火工艺以使该氧化物半导体层转化为一氧化物沟道层以及两个欧姆接触层,其中该氧化物沟道层位于该半透光层下方,而所述两个欧姆接触层位于该氧化物沟道层两侧并与该氧化物沟道层连接;以及  Using the semi-transparent layer as a mask, perform an optical annealing process to convert the oxide semiconductor layer into an oxide channel layer and two ohmic contact layers, wherein the oxide channel layer is located in the semi-transparent layer below, and the two ohmic contact layers are located on both sides of the oxide channel layer and connected to the oxide channel layer; and 于该栅绝缘层与所述两个欧姆接触层上形成彼此电性绝缘的一源极与一漏极,  A source and a drain electrically insulated from each other are formed on the gate insulating layer and the two ohmic contact layers, 其中该光学退火工艺利用一激光照射该半透光层以及该氧化物半导体层,且该激光经过该半透光层之后,该激光的能量衰减为10%至90%之间。  The optical annealing process uses a laser to irradiate the semi-transparent layer and the oxide semiconductor layer, and after the laser passes through the semi-transparent layer, the energy of the laser is attenuated between 10% and 90%. the 2.如权利要求1所述的薄膜晶体管的制造方法,其中该氧化物半导体层的材质包括氧化铟镓锌(IGZO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化锡(ZnO),氧化镉·氧化锗(2CdO·GeO2)或氧化镍钴(NiCo2O4)。  2. The manufacturing method of a thin film transistor as claimed in claim 1, wherein the material of the oxide semiconductor layer comprises indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), indium gallium oxide (IGO), tin oxide (ZnO ), cadmium oxide germanium oxide (2CdO GeO 2 ) or nickel cobalt oxide (NiCo 2 O 4 ). 3.如权利要求1所述的薄膜晶体管的制造方法,其中该半透光层的材质包括氧化硅(SiOx)、氮化硅(SiNx)、氧化钛(TiOx)、三氧化二铟(In2O3)、InGaO3、InGaZnO、SnO2、ZnO、Zn2In2O5、银(Ag)、ZnSnO3、Zn2SnO4或非晶硅(a-Si)。  3. The manufacturing method of a thin film transistor as claimed in claim 1, wherein the material of the semi-transparent layer comprises silicon oxide (SiOx), silicon nitride (SiNx), titanium oxide (TiOx), indium trioxide ( In2 O 3 ), InGaO 3 , InGaZnO, SnO 2 , ZnO, Zn 2 In 2 O 5 , silver (Ag), ZnSnO 3 , Zn 2 SnO 4 , or amorphous silicon (a-Si). 4.如权利要求1所述的薄膜晶体管的制造方法,其中该半透光层包括一半透光遮蔽层或一半透光吸收层。  4. The manufacturing method of the thin film transistor according to claim 1, wherein the semi-transparent layer comprises a semi-transparent shielding layer or a semi-transparent absorbing layer. the 5.如权利要求1所述的薄膜晶体管的制造方法,其中所述两个欧姆接触层的片电阻为Rs1,而氧化物沟道层的片电阻为Rs2,且Rs2/Rs1为108。  5 . The method for manufacturing a thin film transistor according to claim 1 , wherein the sheet resistance of the two ohmic contact layers is Rs1, and the sheet resistance of the oxide channel layer is Rs2, and Rs2/Rs1 is 10 8 . 6.如权利要求5所述的薄膜晶体管的制造方法,其中Rs1为104Ω/□,而Rs2为1012Ω/□。  6. The method for manufacturing a thin film transistor according to claim 5, wherein Rs1 is 10 4 Ω/□, and Rs2 is 10 12 Ω/□. 7.如权利要求1所述的薄膜晶体管的制造方法,在形成该半透光层之前,还包括于该半透光层与该氧化物半导体层之间形成一介电层。  7 . The method for manufacturing a thin film transistor according to claim 1 , further comprising forming a dielectric layer between the semi-transmissive layer and the oxide semiconductor layer before forming the semi-transmissive layer. the 8.一种薄膜晶体管的制造方法,包括:  8. A method for manufacturing a thin film transistor, comprising: 于一基板上形成一栅极;  forming a gate on a substrate; 于该基板上形成一栅绝缘层以覆盖该栅极;  forming a gate insulating layer on the substrate to cover the gate; 于该栅绝缘层上形成彼此电性绝缘的一源极与一漏极;  forming a source and a drain electrically insulated from each other on the gate insulating layer; 于该栅绝缘层、该源极以及该漏极上形成一氧化物半导体层;  forming an oxide semiconductor layer on the gate insulating layer, the source and the drain; 于该氧化物半导体层的部分区域上形成一半透光层;以及  forming a semi-transparent layer on a partial region of the oxide semiconductor layer; and 以该半透光层为掩模,进行一光学退火工艺以使该氧化物半导体层转化为一氧化物沟道层以及两个欧姆接触层,其中该氧化物沟道层位于该半透光层下方,而所述两个欧姆接触层位于该氧化物沟道层两侧并与该氧化物沟道层连接,  Using the semi-transparent layer as a mask, perform an optical annealing process to convert the oxide semiconductor layer into an oxide channel layer and two ohmic contact layers, wherein the oxide channel layer is located on the semi-transparent layer below, and the two ohmic contact layers are located on both sides of the oxide channel layer and connected to the oxide channel layer, 其中该光学退火工艺利用一激光照射该半透光层以及该氧化物半导体层,且该激光经过该半透光层之后,该激光的能量衰减为10%至90%之间。  Wherein the optical annealing process uses a laser to irradiate the semi-transparent layer and the oxide semiconductor layer, and after the laser passes through the semi-transparent layer, the energy of the laser is attenuated between 10% and 90%. the 9.如权利要求8所述的薄膜晶体管的制造方法,其中该氧化物半导体层的材质包括氧化铟镓锌(IGZO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化锡(ZnO),氧化镉·氧化锗(2CdO·GeO2)或氧化镍钴(NiCo2O4)。  9. The manufacturing method of a thin film transistor as claimed in claim 8, wherein the material of the oxide semiconductor layer comprises indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), indium gallium oxide (IGO), tin oxide (ZnO ), cadmium oxide germanium oxide (2CdO GeO 2 ) or nickel cobalt oxide (NiCo 2 O 4 ). 10.如权利要求8所述的薄膜晶体管的制造方法,其中该半透光层的材质包括氧化硅(SiOx)、氮化硅(SiNx)、氧化钛(TiOx)、三氧化二铟(In2O3)、InGaO3、InGaZnO、SnO2、ZnO、Zn2In2O5、银(Ag)、ZnSnO3、Zn2SnO4或非晶硅(a-Si)。  10. The manufacturing method of a thin film transistor as claimed in claim 8, wherein the material of the semi-transparent layer comprises silicon oxide (SiOx), silicon nitride (SiNx), titanium oxide (TiOx), indium trioxide ( In2 O 3 ), InGaO 3 , InGaZnO, SnO 2 , ZnO, Zn 2 In 2 O 5 , silver (Ag), ZnSnO 3 , Zn 2 SnO 4 , or amorphous silicon (a-Si). 11.如权利要求8所述的薄膜晶体管的制造方法,其中该半透光层包括一半透光遮蔽层或一半透光吸收层。  11. The manufacturing method of the thin film transistor according to claim 8, wherein the semi-transparent layer comprises a semi-transparent shielding layer or a semi-transparent absorbing layer. the 12.如权利要求8所述的薄膜晶体管的制造方法,其中所述两个欧姆接触层的片电阻为Rs1,而氧化物沟道层的片电阻为Rs2,且Rs2/Rs1为108。  12 . The method for manufacturing a thin film transistor according to claim 8 , wherein the sheet resistance of the two ohmic contact layers is Rs1, and the sheet resistance of the oxide channel layer is Rs2, and Rs2/Rs1 is 10 8 . 13.如权利要求12所述的薄膜晶体管的制造方法,其中Rs1为104Ω/□,而Rs2为1012Ω/□。  13. The method for manufacturing a thin film transistor according to claim 12, wherein Rs1 is 10 4 Ω/□, and Rs2 is 10 12 Ω/□. 14.如权利要求8所述的薄膜晶体管的制造方法,在形成该半透光层之前,还包括于该半透光层与该氧化物半导体层之间形成一介电层。  14. The method for manufacturing a thin film transistor according to claim 8, further comprising forming a dielectric layer between the semi-transparent layer and the oxide semiconductor layer before forming the semi-transparent layer. the 15.一种薄膜晶体管,包括:  15. A thin film transistor comprising: 一栅极;  a gate; 一栅绝缘层,覆盖该栅极;  a gate insulating layer covering the gate; 一氧化物半导体层,配置于该栅绝缘层上且位于该栅极上方,该氧化物 半导体层包括一氧化物沟道层以及两个欧姆接触层,所述两个欧姆接触层位于该氧化物沟道层两侧并与该氧化物沟道层连接;  An oxide semiconductor layer, configured on the gate insulating layer and located above the gate, the oxide semiconductor layer includes an oxide channel layer and two ohmic contact layers, the two ohmic contact layers are located on the oxide On both sides of the channel layer and connected to the oxide channel layer; 一半透光层,位于该氧化物沟道层上方;以及  a semi-transmissive layer overlying the oxide channel layer; and 一源极与一漏极,位于该栅绝缘层与所述两个欧姆接触层上,且该源极与该漏极彼此电性绝缘,  A source and a drain are located on the gate insulating layer and the two ohmic contact layers, and the source and the drain are electrically insulated from each other, 其中用于对该氧化物半导体层进行退火的激光在经过该半透光层后,该激光的能量衰减为10%至90%之间。  Wherein, after the laser light used for annealing the oxide semiconductor layer passes through the semi-transparent layer, the energy of the laser light is attenuated between 10% and 90%. the 16.一种薄膜晶体管,包括:  16. A thin film transistor comprising: 一栅极;  a gate; 一栅绝缘层,覆盖该栅极;  a gate insulating layer covering the gate; 一源极与一漏极,配置于该栅绝缘层上且彼此电性绝缘;  A source and a drain are disposed on the gate insulating layer and are electrically insulated from each other; 一氧化物半导体层,配置于该栅绝缘层、该源极以及该漏极上,该氧化物半导体层包括一氧化物沟道层以及两个欧姆接触层,所述两个欧姆接触层位于该氧化物沟道层两侧并与该氧化物沟道层连接;以及  An oxide semiconductor layer is disposed on the gate insulating layer, the source and the drain, the oxide semiconductor layer includes an oxide channel layer and two ohmic contact layers, and the two ohmic contact layers are located on the on both sides of and connected to the oxide channel layer; and 一半透光层,位于该氧化物沟道层上方,  a semi-transparent layer located above the oxide channel layer, 其中用于对该氧化物半导体层进行退火的激光在经过该半透光层后,该激光的能量衰减为10%至90%之间。  Wherein, after the laser light used for annealing the oxide semiconductor layer passes through the semi-transparent layer, the energy of the laser light is attenuated between 10% and 90%. the
CN 201010541631 2010-11-08 2010-11-08 Thin film transistor and manufacturing method thereof Active CN102064109B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010541631 CN102064109B (en) 2010-11-08 2010-11-08 Thin film transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010541631 CN102064109B (en) 2010-11-08 2010-11-08 Thin film transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN102064109A CN102064109A (en) 2011-05-18
CN102064109B true CN102064109B (en) 2013-05-29

Family

ID=43999329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010541631 Active CN102064109B (en) 2010-11-08 2010-11-08 Thin film transistor and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN102064109B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103021825A (en) * 2011-09-27 2013-04-03 鸿富锦精密工业(深圳)有限公司 Manufacturing method of thin film transistor
CN104112711B (en) * 2014-07-22 2017-05-03 深圳市华星光电技术有限公司 Manufacturing method of coplanar oxide semiconductor TFT (Thin Film Transistor) substrate
CN104992981B (en) * 2015-05-26 2018-03-06 中国科学院宁波材料技术与工程研究所 Oxide thin film transistor and preparation method thereof and phase inverter and preparation method thereof
CN104900531A (en) 2015-06-08 2015-09-09 京东方科技集团股份有限公司 Oxide thin-film transistor and array substrate, and manufacturing methods thereof, and display apparatus
CN105789222B (en) 2016-04-29 2018-11-06 深圳市华星光电技术有限公司 array substrate, liquid crystal display panel and array substrate manufacturing method
CN106920754A (en) 2017-02-17 2017-07-04 深圳市华星光电技术有限公司 A kind of thin film transistor (TFT) and preparation method thereof
CN106876481B (en) 2017-05-04 2020-11-03 京东方科技集团股份有限公司 Oxide thin film transistor, manufacturing method thereof, array substrate and display device
CN109037076A (en) * 2018-08-16 2018-12-18 北京大学深圳研究生院 The method of metal oxide thin-film transistor preparation
CN114927588B (en) * 2022-04-20 2024-07-23 武汉大学 Transistor type photoelectric detector and preparation method thereof
CN115000019A (en) * 2022-05-15 2022-09-02 陈梓林 Manufacturing method of oxide TFT thin film circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441467A (en) * 2001-11-09 2003-09-10 株式会社半导体能源研究所 Laser radiator, laser radiation method and method for producing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064453A (en) * 2003-07-29 2005-03-10 Advanced Display Inc Thin film transistor and manufacturing method thereof
US7112499B2 (en) * 2004-01-16 2006-09-26 Chartered Semiconductor Manufacturing Ltd. Dual step source/drain extension junction anneal to reduce the junction depth: multiple-pulse low energy laser anneal coupled with rapid thermal anneal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441467A (en) * 2001-11-09 2003-09-10 株式会社半导体能源研究所 Laser radiator, laser radiation method and method for producing semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2005-64453A 2005.03.10

Also Published As

Publication number Publication date
CN102064109A (en) 2011-05-18

Similar Documents

Publication Publication Date Title
CN102064109B (en) Thin film transistor and manufacturing method thereof
CN105552027B (en) The production method and array substrate of array substrate
TWI423346B (en) Thin film transistor and method of manufacturing same
CN105489552B (en) The production method of LTPS array substrates
CN105470197B (en) The preparation method of low temperature polycrystalline silicon array base palte
US10707236B2 (en) Array substrate, manufacturing method therefor and display device
CN102176098B (en) Pixel structure and manufacturing method thereof
CN105702623B (en) Manufacturing method of TFT array substrate
CN105633016A (en) Manufacturing method of TFT substrate and prepared TFT substrate
CN107204309B (en) The production method and its structure of dual gate metal oxide semiconductor TFT substrate
CN102709326B (en) Thin film transistor (TFT) and its manufacture method, array base palte and display device
CN104979405A (en) Thin film transistor, array substrate and display device
WO2018010214A1 (en) Method for manufacturing metal oxide thin film transistor array substrate
CN108666218A (en) Thin film transistor, display substrate, manufacturing method thereof, and display device
TW201519416A (en) Thin film transistor driving back plate and manufacturing method thereof
US10833104B2 (en) Array substrate and its fabricating method, display device
CN106356306A (en) Top gate type thin film transistor and production method thereof
CN106098560A (en) The manufacture method of top gate type thin film transistor
CN106449655A (en) Thin film transistor array substrate and manufacturing method thereof
CN105576017A (en) Thin-film transistor based on zinc oxide thin film
CN102629590B (en) Thin film transistor array substrate and manufacturing method thereof
CN105702586A (en) Thin film transistor, array substrate, production method of thin film transistor and display device
CN105140291A (en) Film transistor, manufacturing method thereof, array substrate and display device
CN104795449B (en) Thin-film transistor and manufacture method, array base palte, display unit
WO2017166337A1 (en) Thin-film transistor, method for fabricating thin-film transistor, and liquid-crystal display panel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant