CN102063951A - Transparent conductive film and manufacturing method thereof - Google Patents
Transparent conductive film and manufacturing method thereof Download PDFInfo
- Publication number
- CN102063951A CN102063951A CN2010105332289A CN201010533228A CN102063951A CN 102063951 A CN102063951 A CN 102063951A CN 2010105332289 A CN2010105332289 A CN 2010105332289A CN 201010533228 A CN201010533228 A CN 201010533228A CN 102063951 A CN102063951 A CN 102063951A
- Authority
- CN
- China
- Prior art keywords
- groove
- conductive film
- transparent
- metal
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1208—Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1258—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by using a substrate provided with a shape pattern, e.g. grooves, banks, resist pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1283—After-treatment of the printed patterns, e.g. sintering or curing methods
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/01—Tools for processing; Objects used during processing
- H05K2203/0104—Tools for processing; Objects used during processing for patterning or coating
- H05K2203/0108—Male die used for patterning, punching or transferring
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/11—Treatments characterised by their effect, e.g. heating, cooling, roughening
- H05K2203/1131—Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Non-Insulated Conductors (AREA)
Abstract
本发明提供一种透明导电膜,该透明导电膜包括透明基底和导电金属,其中在透明基底上利用纳米压印技术压制出用于埋设导电金属颗粒的凹槽以及用于透光的网格,通过设计凹槽的线宽和深度以及占整个透明导电膜的比重,得到了一种透光率高且导电性好的透明导电膜。同时,由于导电金属部分被镶嵌在透明基底内部,不易脱落和氧化,并且可以采用柔性材料作为透明基底,开发出能在更多场合下应用的透明导电膜。同时本发明还提供了该透明导电膜的制作方法。
The invention provides a transparent conductive film, which comprises a transparent substrate and a conductive metal, wherein nanoimprinting technology is used to press out grooves for embedding conductive metal particles and grids for light transmission on the transparent substrate, By designing the line width and depth of the groove and the proportion of the entire transparent conductive film, a transparent conductive film with high light transmittance and good conductivity is obtained. At the same time, since the conductive metal part is embedded in the transparent substrate, it is not easy to fall off and oxidize, and flexible materials can be used as the transparent substrate to develop a transparent conductive film that can be used in more occasions. At the same time, the invention also provides a manufacturing method of the transparent conductive film.
Description
技术领域technical field
本发明涉及一种透明导电膜及其制作方法,尤其是一种嵌入式的透明导电膜及其制作方法。The invention relates to a transparent conductive film and a manufacturing method thereof, in particular to an embedded transparent conductive film and a manufacturing method thereof.
背景技术Background technique
透明导电膜被广泛用于触控液晶面板、有机放光二极体(OLED)以及电磁屏蔽等领域。目前,比较常见的透明导电膜有ITO膜和金属膜两种,前者是在透明的玻璃或者塑料基板表面,通过蒸镀或溅射的方法形成一层铟-锡氧化物膜(ITO)等的透明导电性材料,后者是在透明的玻璃或者塑料基板表面,通过金属镀或蒸镀的方法,在整个表面形成金属薄膜,然后通过光刻对其加工,将金属层刻蚀成微细的金属网格。Transparent conductive films are widely used in fields such as touch liquid crystal panels, organic light emitting diodes (OLEDs), and electromagnetic shielding. At present, the more common transparent conductive films are ITO film and metal film. The former is to form a layer of indium-tin oxide film (ITO) on the surface of transparent glass or plastic substrate by evaporation or sputtering. Transparent conductive material, the latter is formed on the surface of a transparent glass or plastic substrate by metal plating or vapor deposition to form a metal film on the entire surface, and then process it by photolithography to etch the metal layer into fine metal particles. grid.
但是,ITO膜虽然透光性优异,其导电性能却一般,不适用于电气、航空等要求较高的领域。而金属膜虽然具有较佳的导电性,但是在加工金属膜的时候,需要除去大部分的金属薄膜,所以存在着浪费多、生产成本高的缺点。However, although the ITO film has excellent light transmittance, its electrical conductivity is average, and it is not suitable for high-demand fields such as electrical and aviation. Although the metal film has better conductivity, most of the metal film needs to be removed when processing the metal film, so there are disadvantages of waste and high production cost.
近年来,一些科学家提出了直接在透明基底表面一次成型网格状金属导线的方法。其中一种是是将银奈米粒子、有机溶剂、介面活性剂与水性溶剂等原料掺合并乳化,当这种墨水被涂布在透明基板表面时,因为溶剂的极性、表面能及挥发度的差异,得以在基板表面自动形成任意形状的银网状构造,经过烧结之后便成为透明导电膜。这个技术目前所发表的透明导电膜其表面电阻值约4~270Ω/sq,可见光透光率约75~86%。In recent years, some scientists have proposed a method of forming grid-like metal wires directly on the surface of a transparent substrate. One of them is to mix and emulsify raw materials such as silver nanoparticles, organic solvents, surfactants and aqueous solvents. When this ink is coated on the surface of a transparent substrate, due to the polarity, surface energy and volatility of the solvent The difference can automatically form a silver network structure of any shape on the surface of the substrate, and it will become a transparent conductive film after sintering. The surface resistance value of the transparent conductive film published by this technology is about 4-270Ω/sq, and the visible light transmittance is about 75-86%.
但是由这种方法得到的网状金属银线,其形状大小和位置分布完全依赖溶剂本身的特性,可控性非常差,容易造成某些区域过度密集,而有些地方则非常稀疏,使得透明导电膜的透光均匀度和导电均匀度都受到影响。另外所有将导电金属线制作在薄膜表面之上的透明导电膜,其金属层都容易氧化并掉落,大大影响了透明导电膜的使用寿命。However, the shape, size and position distribution of the mesh metal silver wires obtained by this method are completely dependent on the characteristics of the solvent itself, and the controllability is very poor, and it is easy to cause some areas to be overly dense, while some areas are very sparse, making transparent and conductive Both the uniformity of light transmission and the uniformity of conductivity of the film are affected. In addition, for all transparent conductive films made of conductive metal lines on the surface of the film, the metal layer is easy to oxidize and fall off, which greatly affects the service life of the transparent conductive film.
发明内容Contents of the invention
针对以上问题,本发明提出了一种透明导电膜及其制作方法。该透明导电膜利用纳米压印的方法,在表面形成规则的亚微米图形,将导电金属填设在这些亚微米图形中形成导电金属线,从而达到严格控制金属线的配置位置和尺寸,使得该透明导电膜导电性和透光性在显著提高的同时,还能按照运用场合的不同进行可控的设计。另外,由于金属导线被镶嵌在薄膜内部,其稳定性和抗氧化的能力也得以改善。In view of the above problems, the present invention proposes a transparent conductive film and a manufacturing method thereof. The transparent conductive film uses the method of nanoimprinting to form regular submicron patterns on the surface, and fill conductive metal in these submicron patterns to form conductive metal lines, so as to strictly control the configuration position and size of the metal lines, so that the While the conductivity and light transmittance of the transparent conductive film are significantly improved, it can also be controllably designed according to different application scenarios. In addition, since the metal wires are embedded inside the film, its stability and oxidation resistance are also improved.
根据本发明的目的提出的一种透明导电膜,包括透明基底和导电金属,该透明基底包括导电区和透光区,该导电区为相互连通的网线状凹槽,该透光区为该网线状凹槽围成的网格;该导电金属填设于该导电区的网线状凹槽内,其中该凹槽的面积与该网格的面积之比小于5%。A kind of transparent conductive film that proposes according to the object of the present invention comprises a transparent substrate and a conductive metal, and the transparent substrate includes a conductive region and a light-transmitting region, the conductive region is a network line-shaped groove connected to each other, and the light-transmitting region is the network line A grid surrounded by a grid-shaped groove; the conductive metal is filled in the grid-shaped groove of the conductive area, wherein the ratio of the area of the groove to the area of the grid is less than 5%.
根据本发明的目的提出的一种透明导电膜,其中所述透光区的网格为正多边形网格,其边长尺度小于200um。According to the purpose of the present invention, a transparent conductive film is proposed, wherein the grid of the light-transmitting area is a regular polygonal grid, and its side length is less than 200um.
根据本发明的目的提出的一种透明导电膜,其中所述透明基底为柔性透明材料,其透光率大于85%。According to the purpose of the present invention, a transparent conductive film is proposed, wherein the transparent substrate is a flexible transparent material, and its light transmittance is greater than 85%.
根据本发明的目的提出的一种透明导电膜,其中所述导电区的凹槽深宽比大于1∶1。According to the purpose of the present invention, a transparent conductive film is proposed, wherein the groove aspect ratio of the conductive region is greater than 1:1.
根据本发明的目的提出的一种透明导电膜的制作方法,包括如下步骤:A kind of preparation method of transparent conductive film proposed according to the object of the present invention comprises the following steps:
压印工艺:使用金属凸模在一透明基底上压印出网格图案,其中该网格的边线为凹槽,且该凹槽的面积与该网格的面积之比小于5%;Embossing process: using a metal punch to emboss a grid pattern on a transparent substrate, wherein the edge of the grid is a groove, and the ratio of the area of the groove to the area of the grid is less than 5%;
金属化工艺:对该透明基底进行金属化,使凹槽内充满导电金属;Metallization process: Metallize the transparent substrate to fill the groove with conductive metal;
抛光工艺:去除透明基底表面多余的导电金属,只保留凹槽中的导电金属,从而形成透明导电膜。Polishing process: remove excess conductive metal on the surface of the transparent substrate, and only retain the conductive metal in the groove, thereby forming a transparent conductive film.
根据本发明的目的提出的一种透明导电膜的制作方法,其中所述金属化工艺为湿法涂布工艺,包括:A kind of preparation method of transparent conductive film proposed according to the purpose of the present invention, wherein said metallization process is a wet coating process, comprising:
采用连续式涂布方法,在透明基底表面涂布掺有疏水溶剂的纳米银浆;Continuous coating method is used to coat the nano-silver paste mixed with hydrophobic solvent on the surface of the transparent substrate;
根据自流平效应使银浆沉积于凹槽中;According to the self-leveling effect, the silver paste is deposited in the groove;
加热烘烤,使银浆凝结,在凹槽中形成金属线栅。Heat and bake to make the silver paste condense and form a metal wire grid in the groove.
根据本发明的目的提出的一种透明导电膜的制作方法,其中在透明基底上涂布一层疏水层,以加快纳米银浆往凹槽中聚集。A method for making a transparent conductive film proposed according to the object of the present invention, wherein a hydrophobic layer is coated on a transparent substrate to accelerate the accumulation of nano-silver paste in the groove.
根据本发明的目的提出的一种透明导电膜的制作方法,其中所述金属化工艺为电铸工艺或溅射工艺,通过电铸或溅射,在透明基底的凹槽中生长出导电金属。According to the object of the present invention, a method for manufacturing a transparent conductive film is proposed, wherein the metallization process is an electroforming process or a sputtering process, and a conductive metal is grown in a groove of a transparent substrate through electroforming or sputtering.
根据本发明的目的提出的一种透明导电膜的制作方法,其中还包括金属凸膜的制备工艺,该制备工艺包括:A kind of preparation method of transparent conductive film that proposes according to the object of the present invention, wherein also comprise the preparation technology of metal convex film, this preparation process comprises:
光刻工艺:采用扫描光刻或平铺光刻,在光刻胶表面刻蚀出网格图案,该网格的边线为凹槽,且该凹槽的深宽比大于1∶1;Photolithography process: use scanning lithography or tile lithography to etch a grid pattern on the surface of the photoresist, the edge of the grid is a groove, and the depth-to-width ratio of the groove is greater than 1:1;
镀电极:通过真空溅射或者化学镀的方法,对具有凹槽图形的光刻胶进行金属化,使整个光刻胶表面,包括凹槽部分,形成电极层;Electrode plating: Metallize the photoresist with groove pattern by vacuum sputtering or electroless plating, so that the entire surface of the photoresist, including the groove part, forms an electrode layer;
电铸母板:带有导电层的光刻胶干板置入电铸槽中,进行金属离子的电沉积,在电极层上逐步沉积形成一定厚度金属薄板;Electroformed motherboard: The photoresist dry plate with a conductive layer is placed in the electroforming tank for electrodeposition of metal ions, which are gradually deposited on the electrode layer to form a thin metal plate of a certain thickness;
脱胶:将金属薄板从光刻胶干板上分离,并去除光刻胶,在金属板上形成凸型的网格图形结构。Degumming: separate the metal thin plate from the photoresist dry plate, remove the photoresist, and form a convex grid pattern structure on the metal plate.
根据本发明的目的提出的一种透明导电膜的制作方法,其中所述压印工艺为卷对卷辊筒压印。According to the object of the present invention, a method for making a transparent conductive film is proposed, wherein the embossing process is roll-to-roll roller embossing.
根据本发明的目的提出的一种透明导电膜的制作方法,其中所述抛光工艺为机械抛光、化学电解或化学腐蚀中的一种。According to the object of the present invention, a method for manufacturing a transparent conductive film is proposed, wherein the polishing process is one of mechanical polishing, chemical electrolysis or chemical corrosion.
上述的透明导电膜及其制作方法,利用纳米压印技术在透明基底表面压制出供导电金属埋设的凹槽,通过设计凹槽的线宽和深度以及占整个透明导电膜的比重,得到了一种透光率高且导电性好的透明导电膜。同时,由于导电金属部分被镶嵌在透明基底内部,不易脱落和氧化,并且可以采用柔性材料作为透明基底,开发出能在更多场合下应用的透明导电膜。In the above-mentioned transparent conductive film and its manufacturing method, a groove for embedding conductive metal is pressed on the surface of the transparent substrate by using nano-imprint technology, and a groove is obtained by designing the line width and depth of the groove and the proportion of the entire transparent conductive film. A transparent conductive film with high light transmittance and good conductivity. At the same time, since the conductive metal part is embedded in the transparent substrate, it is not easy to fall off and oxidize, and flexible materials can be used as the transparent substrate, and a transparent conductive film that can be applied in more occasions has been developed.
下面结合附图以具体实施例对本发明做详细说明。The present invention will be described in detail below with specific embodiments in conjunction with the accompanying drawings.
附图说明Description of drawings
图1是本发明的透明导电膜示意图;Fig. 1 is a schematic diagram of a transparent conductive film of the present invention;
图2是图1中透明基底的示意图;Fig. 2 is a schematic diagram of the transparent substrate in Fig. 1;
图3是图1中A-A方向上的剖视图;Fig. 3 is the cross-sectional view on A-A direction among Fig. 1;
图4是本发明的凸膜制备流程图;Fig. 4 is the flow chart of convex film preparation of the present invention;
图5是本发明的透明导电膜的制作流程图。Fig. 5 is a flow chart of making the transparent conductive film of the present invention.
具体实施方式Detailed ways
请一并参见图1、图2,图1是本发明的透明导电膜示意图,图2是图1中透明基底的示意图。如图所示,该透明导电膜100包括透明基底110和导电金属120。透明基底110包括导电区111和透光区112,导电区111为相互连通的网状凹槽,导电金属120填设在导电区111中,透光区112为网状凹槽围成的网格。该导电金属120可以是由银浆烧结而成的银粒子线,也可以是其他比如铜、镍、铝等金属通过电铸或者溅射的方法沉积在该导电区111中形成的导电线。下面将分别对透明导电膜100的透光性和导电性做分析。Please refer to FIG. 1 and FIG. 2 together. FIG. 1 is a schematic diagram of the transparent conductive film of the present invention, and FIG. 2 is a schematic diagram of the transparent substrate in FIG. 1 . As shown in the figure, the transparent
对于透光性:通常情况下,该导电区111填设导电金属120后不透光,所以该透明导电膜100的实际透光率由导电区111的面积大小和透明基底110自身的透光率决定。即导电区111的面积占透光区面积的比值越小,透明导电膜100的透光率越高。通常,导电区111与透光区112的面积比为5%,透明基底110本身的透光率为90%时,透明导电膜100的透光率可达85%以上。为了获得较高的透光率,我们选择导电区111的凹槽的面积与整个网格的面积之比小于5%,且透明基底110的透光率大于90%。特别的,当透光区112的网格为正多边形时,导电区111和透光区112的面积之比可由如下公式计算:For light transmittance: under normal circumstances, the
P=1-a2/(a+L*tan180/n)2 (1)P=1-a 2 /(a+L*tan180/n) 2 (1)
式(1)中:a为正多边形的边长,L为导电区111的宽度,n为正变形的边数。In the formula (1): a is the side length of the regular polygon, L is the width of the
以正六边形网格为例,当网格边长为35um,透光率为90%时,金属导电线的线宽为3um左右。Taking a regular hexagonal grid as an example, when the side length of the grid is 35um and the light transmittance is 90%, the line width of the metal conductive wire is about 3um.
对于导电性:该透明导电膜的导电性主要依赖导电金属120的电特性以及横截面,请参见图3,图3是图1中A-A方向上的剖视图。如图所示,导电金属120的横截面由导电区111的宽度和深度决定。由于宽度受透光率的影响,不可能做的很宽,因此,需要将导电区111的深度设计的比较深,以提高导电金属120的横截面。优选地,我们将深宽比设计成大于1∶1,以金属银为例,在宽度为3um时,该透明导电膜100的表面阻抗可达到大于3.5Ω/sq的范围。Regarding conductivity: the conductivity of the transparent conductive film mainly depends on the electrical properties and cross-section of the
实际应用中,我们可以根据透明导电膜的导电性和透光性上的平衡需要,以及所使用的场合的限致,灵活的设计网线的宽度和深度。另外,对于一些对透明导光膜表面整体导电性要求较高的应用领域,比如在触点内置式触空屏幕中,或者一些电磁屏蔽应用中,需要设计高密度的导电网线,因此将网格的尺寸设计在200um以下。In practical applications, we can flexibly design the width and depth of the network cable according to the balance between the conductivity and light transmittance of the transparent conductive film, as well as the limitations of the used occasions. In addition, for some application fields that require high overall conductivity of the surface of the transparent light guide film, such as in the touch screen with built-in contacts, or in some electromagnetic shielding applications, it is necessary to design high-density conductive mesh lines, so the mesh The size design is below 200um.
下面将具体介绍本发明的透明导电膜的制作方法。The manufacturing method of the transparent conductive film of the present invention will be described in detail below.
本发明在制作上述的透明导电膜时,选择以纳米压印的方法形成该透明导电膜表面的网状凹槽。特别地,当透明基底为柔性材料时,可以通过卷对卷的辊筒压印的方法高速的生产该透明导电膜。因而在制膜之前,首先需要进行凸膜的制备。In the present invention, when the above-mentioned transparent conductive film is produced, the method of nanoimprinting is used to form the mesh grooves on the surface of the transparent conductive film. In particular, when the transparent substrate is a flexible material, the transparent conductive film can be produced at high speed by a roll-to-roll roll embossing method. Therefore, before the film is formed, the convex film needs to be prepared first.
请参见图4,图4是本发明的凸膜制备流程图。如图所示,该凸膜的制备包括:采用扫描光刻或平铺光刻,在光刻胶表面刻蚀出网格图案,该网格的边线为凹槽,且该凹槽的深宽比大于1∶1;Please refer to FIG. 4 . FIG. 4 is a flowchart of the preparation of the convex film of the present invention. As shown in the figure, the preparation of the convex film includes: using scanning lithography or tile lithography to etch a grid pattern on the surface of the photoresist, the edge of the grid is a groove, and the depth and width of the groove are The ratio is greater than 1:1;
通过真空溅射或者化学镀的方法,对具有凹槽图形的光刻胶进行金属化,使整个光刻胶表面,包括凹槽部分,形成电极层;Metallize the photoresist with a groove pattern by vacuum sputtering or electroless plating, so that the entire surface of the photoresist, including the groove part, forms an electrode layer;
带有导电层的光刻胶干板置入电铸槽中,进行金属离子的电沉积,在导电层上逐步沉积形成一定厚度金属薄板;The photoresist dry plate with the conductive layer is placed in the electroforming tank, and the electrodeposition of metal ions is carried out, and a metal thin plate of a certain thickness is gradually deposited on the conductive layer;
将金属薄板从光刻胶干板上分离,并去除光刻胶,在金属板上形成凸型的网格图形结构。The metal thin plate is separated from the photoresist dry plate, and the photoresist is removed to form a convex grid pattern structure on the metal plate.
其中,当网格为正四边形时,采用扫描光刻的方法,选择0.5um的梳妆光点对光刻胶表面进行纵向和横向的两次曝光,该种刻蚀方法优点是刻蚀速度快,且容易刻蚀出深纹图案。Among them, when the grid is a regular quadrilateral, the method of scanning lithography is adopted, and the light spot of 0.5um is selected to expose the surface of the photoresist twice vertically and horizontally. The advantage of this etching method is that the etching speed is fast, And it is easy to etch a deep grain pattern.
当网格为其他多边形时,采用平铺投影曝光的方法,现在光阑上预先设置曝光图形,然后以该图形对光刻胶表面进行曝光,直接形成具有正多边形图样的网格,并通过机械辅助,将单次曝光的图形拼接成整体,实现网格的刻蚀。该种刻蚀方法的优点是曝光图形可控,但机械精度要求较高。When the grid is other polygons, the method of tiled projection exposure is adopted. Now the exposure figure is preset on the diaphragm, and then the surface of the photoresist is exposed with this figure to directly form a grid with a regular polygon pattern, and through mechanical Auxiliary, splicing the single-exposure graphics into a whole to realize the etching of the grid. The advantage of this etching method is that the exposure pattern is controllable, but the mechanical precision is relatively high.
请再参见图5,图5是本发明的透明导电膜的制作流程图。如图所示,该方法主要包括三大工艺:首先是压印工艺,通过一表面有网格图样的金属凸模,对透明基底表面施压,在施压的同时,可以采用加热或者紫外固化等手段,将凸模表面的图案转移到透明基底上,以形成网线为凹槽的网格图案。其中该网格图案的边线为凹槽,且该凹槽的面积与该网格的面积之比小于5%。Please refer to FIG. 5 again. FIG. 5 is a flow chart of making the transparent conductive film of the present invention. As shown in the figure, the method mainly includes three major processes: first, the embossing process, through a metal punch with a grid pattern on the surface, to apply pressure to the surface of the transparent substrate, while applying pressure, heating or UV curing can be used Transfer the pattern on the surface of the convex mold to the transparent substrate to form a grid pattern with mesh lines as grooves. Wherein the edge of the grid pattern is a groove, and the ratio of the area of the groove to the area of the grid is less than 5%.
其次是金属化工艺,该工艺的目的是在导电区的凹槽中填设导电金属,使其充满或者溢出凹槽。具体地,该金属化工艺可以由以下几种方法进行:The second is the metallization process. The purpose of this process is to fill the conductive metal in the groove of the conductive area so that it fills or overflows the groove. Specifically, the metallization process can be performed by the following methods:
第一种方法可以为湿法涂布工艺。该方法包括:The first method may be a wet coating process. The method includes:
采用连续式涂布方法,在透明基底表面涂布掺有疏水溶剂的纳米银浆,该纳米银浆中的银粒子直径在50nm-70nm左右,其疏水溶剂比重为10%-20%之间;Using continuous coating method, coating the nano-silver paste mixed with hydrophobic solvent on the surface of the transparent substrate, the diameter of silver particles in the nano-silver paste is about 50nm-70nm, and the specific gravity of the hydrophobic solvent is between 10%-20%;
根据自流平效应,银浆会自动沉积于凹槽中,或者可以在透明基底表面增涂一层10%的疏水层,该疏水层的厚度控制在200nm以内,使其远小于凹槽的深度,则配合银浆中本身含有的疏水剂成分,可以加快银粒子往凹槽处聚集,在连续式涂布后,确保银粒子充满于凹槽中;According to the self-leveling effect, the silver paste will be automatically deposited in the groove, or a 10% hydrophobic layer can be coated on the surface of the transparent substrate. The thickness of the hydrophobic layer is controlled within 200nm, making it much smaller than the depth of the groove. In combination with the hydrophobic agent contained in the silver paste, it can accelerate the accumulation of silver particles to the grooves, and ensure that the silver particles are filled in the grooves after continuous coating;
加热烘烤,使银浆凝结,最终在凹槽中形成金属线栅。Heat and bake to make the silver paste condense, and finally form a metal wire grid in the groove.
这种方法的优点是工艺简单,操作方便,能够配合卷对卷(Roll to Roll)的连续式涂布方法,高速化大尺寸的进行生产。但缺点是银浆的附着力不佳,容易脱落,且涂布的均匀性效果不佳,容易使一些地方银浆聚集的比较多,而一些地方则比较稀疏。The advantage of this method is that the process is simple, the operation is convenient, and it can cooperate with the continuous coating method of roll-to-roll (Roll to Roll) to produce large-scale at high speed. But the disadvantage is that the adhesion of the silver paste is not good, it is easy to fall off, and the uniformity of the coating is not good, and it is easy to make the silver paste gather more in some places, while it is relatively sparse in some places.
第二种方法为电铸工艺或溅射工艺。在透明基底上,通过电铸工艺、或者真空溅射工艺沉积金属导电层,由于凹槽的内部两侧表面同时沉积,因此,在凹槽中的金属填充速度,比图形表面的金属沉积的速度快两倍。例如,对于凹槽线宽为2um,则槽填充完成时,表面金属厚度约为1um。The second method is an electroforming process or a sputtering process. On the transparent substrate, the metal conductive layer is deposited by electroforming process or vacuum sputtering process. Since the inner two sides of the groove are deposited simultaneously, the metal filling speed in the groove is faster than the metal deposition speed on the pattern surface. twice as fast. For example, for a groove line width of 2um, the surface metal thickness is about 1um when the groove is filled.
这种方法的优点是工艺相对成熟,金属沉积均匀,可以选择多种金属如铜、镍、铝等作为导电金属进行沉积,且附着力强不易脱落。缺点是表面全部都附有金属,容易造成浪费,且耗时长不适用大尺寸的制作。The advantage of this method is that the process is relatively mature, the metal deposition is uniform, and a variety of metals such as copper, nickel, aluminum, etc. can be selected as conductive metals for deposition, and the adhesion is strong and not easy to fall off. The disadvantage is that the surface is all attached to metal, which is easy to cause waste, and it takes a long time to make it not suitable for large-scale production.
最后为抛光工艺,该步骤主要为了去除在表面多余的金属层,保留导电区凹槽中的导电金属,以提高透明导光膜整体的透光性。该抛光工艺可以采用机械抛光、化学电解或化学腐蚀中的一种。The last is the polishing process. This step is mainly to remove the redundant metal layer on the surface and retain the conductive metal in the groove of the conductive area to improve the overall light transmittance of the transparent light guide film. The polishing process may adopt one of mechanical polishing, chemical electrolysis or chemical corrosion.
综上所述,本发明提供了一种透明导电膜,该透明导电膜利用纳米压印技术在透明基底表面压制出供导电金属埋设的凹槽,通过设计凹槽的线宽和深度以及占整个透明导电膜的比重,得到了一种透光率高且导电性好的透明导电膜。同时,由于导电金属部分被镶嵌在透明基底内部,不易脱落和氧化,并且可以采用柔性材料作为透明基底,开发出能在更多场合下应用的透明导电膜。In summary, the present invention provides a transparent conductive film, which utilizes nanoimprint technology to press out grooves for embedding conductive metals on the surface of a transparent substrate. By designing the line width and depth of the grooves and occupying the entire By adjusting the specific gravity of the transparent conductive film, a transparent conductive film with high light transmittance and good conductivity is obtained. At the same time, since the conductive metal part is embedded in the transparent substrate, it is not easy to fall off and oxidize, and flexible materials can be used as the transparent substrate to develop a transparent conductive film that can be used in more occasions.
由以上较佳具体实施例的详述,希望能更加清楚描述本发明的特征与精神,而并非以上述所揭露的较佳具体实施例来对本发明的权利要求范围加以限制。相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的权利要求的范围内。From the above detailed description of the preferred embodiments, it is hoped that the characteristics and spirit of the present invention can be described more clearly, and the scope of the claims of the present invention is not limited by the preferred embodiments disclosed above. On the contrary, the intention is to cover various modifications and equivalent arrangements within the scope of the appended claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010533228 CN102063951B (en) | 2010-11-05 | 2010-11-05 | Transparent conductive film and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010533228 CN102063951B (en) | 2010-11-05 | 2010-11-05 | Transparent conductive film and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102063951A true CN102063951A (en) | 2011-05-18 |
CN102063951B CN102063951B (en) | 2013-07-03 |
Family
ID=43999186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010533228 Active CN102063951B (en) | 2010-11-05 | 2010-11-05 | Transparent conductive film and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102063951B (en) |
Cited By (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102708946A (en) * | 2012-05-09 | 2012-10-03 | 崔铮 | Double-sided graphical transparent conductive film and preparation method thereof |
CN102903423A (en) * | 2012-10-25 | 2013-01-30 | 南昌欧菲光科技有限公司 | Conduction structure in transparent conduction film, transparent conduction film and manufacture method thereof |
CN102930922A (en) * | 2012-10-25 | 2013-02-13 | 南昌欧菲光科技有限公司 | Transparent conducting film with anisotropic conductivity |
CN103123564A (en) * | 2013-03-22 | 2013-05-29 | 汕头超声显示器技术有限公司 | Capacitive touch screen and manufacturing method thereof |
CN103176650A (en) * | 2013-03-01 | 2013-06-26 | 南昌欧菲光科技有限公司 | Conductive glass substrate and manufacturing method of conductive glass substrate |
CN103235675A (en) * | 2013-05-09 | 2013-08-07 | 苏州维业达触控科技有限公司 | Capacitive touch sensor production method and capacitive touch sensor |
CN103246402A (en) * | 2013-05-17 | 2013-08-14 | 汕头超声显示器技术有限公司 | Display device with integrated touch control function |
CN103246421A (en) * | 2013-05-17 | 2013-08-14 | 汕头超声显示器技术有限公司 | Polarizing piece with integrated touch control function and manufacturing method thereof |
CN103279240A (en) * | 2013-05-30 | 2013-09-04 | 南昌欧菲光科技有限公司 | Touch panel |
CN103295671A (en) * | 2013-05-30 | 2013-09-11 | 南昌欧菲光科技有限公司 | Transparent conducting film |
CN103294314A (en) * | 2013-05-17 | 2013-09-11 | 汕头超声显示器技术有限公司 | Capacitive touch screen with light polarization function |
CN103309527A (en) * | 2012-03-15 | 2013-09-18 | 鸿富锦精密工业(深圳)有限公司 | Capacitive touchpad and manufacturing equipment for same |
CN103325441A (en) * | 2012-03-21 | 2013-09-25 | 宸鸿科技(厦门)有限公司 | Conductive thin film of touch panel and manufacturing method thereof |
CN103337300A (en) * | 2013-05-07 | 2013-10-02 | 西安交通大学 | Transparent film mosaic circuit production method by using external electric field to drive filling |
CN103345961A (en) * | 2013-05-30 | 2013-10-09 | 南昌欧菲光科技有限公司 | Transparent conducting film |
CN103413593A (en) * | 2013-03-30 | 2013-11-27 | 深圳欧菲光科技股份有限公司 | Transparent electric conductor and preparation method thereof |
CN103425320A (en) * | 2013-02-04 | 2013-12-04 | 南昌欧菲光科技有限公司 | Transparent touch screen |
CN103426500A (en) * | 2013-02-04 | 2013-12-04 | 南昌欧菲光科技有限公司 | Double-layer transparent conductive film and preparation method thereof |
CN103456390A (en) * | 2013-02-05 | 2013-12-18 | 南昌欧菲光科技有限公司 | Conducting film and manufacturing method thereof |
CN103744571A (en) * | 2014-01-26 | 2014-04-23 | 苏州维业达触控科技有限公司 | Ultrathin touch sensor and manufacturing method thereof |
CN103827783A (en) * | 2011-07-21 | 2014-05-28 | 未来奈米科技股份有限公司 | Apparatus and method for manufacturing a touch screen panel |
CN103902115A (en) * | 2012-12-28 | 2014-07-02 | 深圳欧菲光科技股份有限公司 | Transparent conductor for touch screen and preparing method and application of transparent conductor |
WO2014116534A1 (en) | 2013-01-28 | 2014-07-31 | Eastman Kodak Company | Micro-wire pattern for electrode connection |
WO2014117479A1 (en) * | 2013-02-04 | 2014-08-07 | 南昌欧菲光科技有限公司 | Transparent conductive film |
CN103992041A (en) * | 2014-04-30 | 2014-08-20 | 天津宝兴威科技有限公司 | Manufacturing method of nano metal grid transparent electro-conductive glass |
CN104009124A (en) * | 2014-06-13 | 2014-08-27 | 苏州苏大维格光电科技股份有限公司 | Solar cell superfine electrode transferring thin film, preparing method and application method of solar cell superfine electrode transferring thin film |
US8828503B1 (en) | 2013-02-28 | 2014-09-09 | Eastman Kodak Company | Making multi-layer micro-wire structure |
US8865292B2 (en) | 2013-01-22 | 2014-10-21 | Eastman Kodak Company | Micro-channel structure for micro-wires |
WO2014180077A1 (en) * | 2013-05-10 | 2014-11-13 | 合肥京东方光电科技有限公司 | Flexible substrate, manufacturing method for same, and oled display apparatus |
US8895429B2 (en) | 2013-03-05 | 2014-11-25 | Eastman Kodak Company | Micro-channel structure with variable depths |
CN104185410A (en) * | 2014-09-12 | 2014-12-03 | 苏州大学 | Electromagnetic shielding case based on micro metal grid and manufacturing method of electromagnetic shielding case |
US8932474B1 (en) | 2013-03-05 | 2015-01-13 | Eastman Kodak Company | Imprinted multi-layer micro structure method |
CN104350551A (en) * | 2013-03-07 | 2015-02-11 | Lg化学株式会社 | Transparent substrate including thin metal wires and manufacturing method thereof |
US20150060113A1 (en) * | 2013-01-22 | 2015-03-05 | Yongcai Wang | Photocurable composition, article, and method of use |
WO2015038345A1 (en) | 2013-09-11 | 2015-03-19 | Eastman Kodak Company | Multi-layer micro-wire substrate structure |
WO2015041870A1 (en) | 2013-09-20 | 2015-03-26 | Eastman Kodak Company | Imprinted multi-level micro-wire circuit structure |
US9005744B2 (en) | 2012-08-10 | 2015-04-14 | Eastman Kodak Company | Conductive micro-wire structure |
US9058084B2 (en) | 2013-04-15 | 2015-06-16 | Eastman Kodak Company | Hybrid single-side touch screen |
US9061463B2 (en) | 2013-02-28 | 2015-06-23 | Eastman Kodak Company | Embossed micro-structure with cured transfer material method |
CN104766675A (en) * | 2015-03-11 | 2015-07-08 | 中山大学 | Application of Microwave in Preparation of Transparent Conductive Thin Film |
JP2015520444A (en) * | 2013-03-28 | 2015-07-16 | ナンチャン オー−フィルム テック カンパニー リミテッド | Transparent conductive film and method for producing the same |
US9085194B2 (en) | 2013-03-05 | 2015-07-21 | Eastman Kodak Company | Embossing stamp for optically diffuse micro-channel |
CN104795130A (en) * | 2014-01-20 | 2015-07-22 | 中国科学院苏州纳米技术与纳米仿生研究所 | Transparent conductive film and preparation method thereof |
TWI494814B (en) * | 2013-05-30 | 2015-08-01 | Nanchang O Film Tech Co Ltd | Transparent conductive film |
US9099227B2 (en) | 2013-01-22 | 2015-08-04 | Eastman Kodak Company | Method of forming conductive films with micro-wires |
CN104835555A (en) * | 2015-05-13 | 2015-08-12 | 南京邮电大学 | Preparation method of patterned metal transparent conductive film |
US9131606B2 (en) | 2012-08-10 | 2015-09-08 | Eastman Kodak Company | Micro-channel pattern for effective ink distribution |
US9161456B1 (en) | 2014-09-03 | 2015-10-13 | Eastman Kodak Company | Making imprinted micro-wire rib structure |
US9167700B2 (en) | 2013-03-05 | 2015-10-20 | Eastman Kodak Company | Micro-channel connection method |
CN105045455A (en) * | 2015-09-07 | 2015-11-11 | 张家港康得新光电材料有限公司 | Metal grid transparent conducting film, preparation method thereof and capacitive touch screen |
US9186698B1 (en) | 2014-10-21 | 2015-11-17 | Eastman Kodak Company | Making imprinted multi-layer structure |
TWI509481B (en) * | 2013-05-30 | 2015-11-21 | Nanchang O Film Tech Co Ltd | Transparent conductive film |
US9195358B1 (en) | 2014-04-16 | 2015-11-24 | Eastman Kodak Company | Z-fold multi-element substrate structure |
CN105088805A (en) * | 2015-09-16 | 2015-11-25 | 苏州大学 | Method for preparing functional material through nanoimprint |
CN105152124A (en) * | 2015-08-04 | 2015-12-16 | 上海交通大学 | Method for storing CNTs (Carbon Nanotubes) by using deep silicon etching technology |
CN105183202A (en) * | 2014-05-30 | 2015-12-23 | 宸鸿光电科技股份有限公司 | Touch module and manufacturing method thereof |
US9229260B2 (en) | 2013-04-15 | 2016-01-05 | Eastman Kodak Company | Imprinted bi-layer micro-structure |
CN105374467A (en) * | 2015-10-23 | 2016-03-02 | 苏州大学 | Nanometer transfer method and nanometer functional device |
US9282647B2 (en) | 2012-02-28 | 2016-03-08 | Eastman Kodak Company | Method of making micro-channel structure for micro-wires |
US9288901B2 (en) | 2014-04-25 | 2016-03-15 | Eastman Kodak Company | Thin-film multi-layer micro-wire structure |
US9296013B2 (en) | 2013-02-28 | 2016-03-29 | Eastman Kodak Company | Making multi-layer micro-wire structure |
CN105448423A (en) * | 2014-06-12 | 2016-03-30 | 宸鸿科技(厦门)有限公司 | Conducting film manufacturing method, touch control panel manufacturing method, and touch control panel |
US9304636B2 (en) | 2013-09-20 | 2016-04-05 | Eastman Kodak Company | Micro-wire touch screen with unpatterned conductive layer |
US9345144B2 (en) | 2013-02-28 | 2016-05-17 | Eastman Kodak Company | Making multi-layer micro-wire structure |
US9374894B2 (en) | 2013-03-05 | 2016-06-21 | Eastman Kodak Company | Imprinted micro-wire rib structure |
CN105742380A (en) * | 2016-03-30 | 2016-07-06 | 江苏欧达丰新能源科技发展有限公司 | Coining process of solar cell grid line electrode pattern |
US9416281B1 (en) | 2014-10-29 | 2016-08-16 | Eastman Kodak Company | Making imprinted multi-layer biocidal particle structure |
US9415419B2 (en) | 2014-10-21 | 2016-08-16 | Eastman Kodak Company | Making imprinted multi-layer biocidal particle structure |
CN105856707A (en) * | 2015-01-18 | 2016-08-17 | 朱继承 | Separable printed film, composite type printed structure and manufacturing method thereof |
US9426885B2 (en) | 2013-02-28 | 2016-08-23 | Eastman Kodak Company | Multi-layer micro-wire structure |
US9434146B2 (en) | 2014-10-21 | 2016-09-06 | Eastman Kodak Company | Using imprinted particle structure |
US9439302B2 (en) | 2013-05-30 | 2016-09-06 | Nanchang O-Film Tech Co., Ltd. | Transparent conductive film |
US9448674B2 (en) | 2013-09-11 | 2016-09-20 | Eastman Kodak Company | Making multi-layer micro-wire structure |
CN105960155A (en) * | 2016-05-30 | 2016-09-21 | 天诺光电材料股份有限公司 | Flexible transparent conductive material for electromagnetic shielding window, and preparation method |
US9465501B2 (en) | 2013-09-11 | 2016-10-11 | Eastman Kodak Company | Multi-layer micro-wire substrate method |
US9476010B2 (en) | 2014-10-21 | 2016-10-25 | Eastman Kodak Company | Using imprinted multi-layer biocidal particle structure |
US9513759B2 (en) | 2013-09-11 | 2016-12-06 | Eastman Kodak Company | Multi-layer micro-wire structure |
US9516744B2 (en) | 2014-04-16 | 2016-12-06 | Eastman Kodak Company | Wrap-around micro-wire circuit method |
US9510591B2 (en) | 2014-10-29 | 2016-12-06 | Eastman Kodak Company | Imprinted multi-layer biocidal particle structure |
CN106229080A (en) * | 2016-08-26 | 2016-12-14 | 华南理工大学 | Low resistance electrically conducting transparent network film for flexible electronic device and preparation method thereof |
US9545101B2 (en) | 2014-10-29 | 2017-01-17 | Eastman Kodak Company | Using imprinted multi-layer biocidal particle structure |
CN106373664A (en) * | 2015-07-23 | 2017-02-01 | 北京华纳高科科技有限公司 | Preparation method and product of high-performance metal grid transparent conductive film |
CN106547397A (en) * | 2016-10-19 | 2017-03-29 | 苏州维业达触控科技有限公司 | A kind of manufacture method of nesa coating, nesa coating and touch screen |
CN106683795A (en) * | 2017-03-02 | 2017-05-17 | 苏州维业达触控科技有限公司 | Coating method of transparent conducting film and device for forming hydrophobic and oleophobic substance |
CN106782741A (en) * | 2015-11-24 | 2017-05-31 | 仇明侠 | A kind of flexible transparent conducting film based on nano impression and preparation method thereof |
US9754704B2 (en) | 2014-04-29 | 2017-09-05 | Eastman Kodak Company | Making thin-film multi-layer micro-wire structure |
CN107731349A (en) * | 2017-08-29 | 2018-02-23 | 苏州泛普科技股份有限公司 | A kind of hollow out plain conductor and preparation method and application |
CN107943357A (en) * | 2017-12-28 | 2018-04-20 | 苏州柏特瑞新材料有限公司 | A kind of preparation method of metal grill capacitive touch screen |
CN108012586A (en) * | 2015-06-10 | 2018-05-08 | 吴铉锡 | Utilize the electromagnetic shielding material of nanostructure |
TWI647712B (en) * | 2013-12-03 | 2019-01-11 | 美商柯達公司 | Preparation of articles with conductive microwire patterns |
US20190035719A1 (en) * | 2017-07-28 | 2019-01-31 | Tdk Corporation | Electroconductive substrate, electronic device and display device |
WO2019024217A1 (en) * | 2017-08-02 | 2019-02-07 | 意力(广州)电子科技有限公司 | Conductive film and touch screen |
CN109493998A (en) * | 2018-12-17 | 2019-03-19 | 太原理工大学 | A kind of flexible transparent conducting film and preparation method thereof based on patterning layer assembly self-supporting film |
CN109991772A (en) * | 2019-03-29 | 2019-07-09 | 云谷(固安)科技有限公司 | Display panel film layer structure and its preparation process |
CN110831418A (en) * | 2018-08-09 | 2020-02-21 | 鸿富锦精密工业(武汉)有限公司 | Case panel and case adopting same |
CN111016357A (en) * | 2019-12-05 | 2020-04-17 | 福建华阳超纤有限公司 | Manufacturing method of color-changing sun-proof super-fine leather fabric |
CN111679556A (en) * | 2020-07-08 | 2020-09-18 | 大连集思特科技有限公司 | A kind of manufacturing method of flexible transparent display screen based on nanoimprint technology |
CN113130138A (en) * | 2021-04-28 | 2021-07-16 | 江苏软讯科技有限公司 | Nano-silver conductive film and preparation method thereof |
CN113391733A (en) * | 2021-07-09 | 2021-09-14 | 江苏软讯科技有限公司 | Metal grid flexible conductive film and manufacturing method thereof |
CN113885251A (en) * | 2020-07-02 | 2022-01-04 | 苏州维业达触控科技有限公司 | LED light-emitting assembly and manufacturing method thereof, backlight module, and liquid crystal display device |
CN114283994A (en) * | 2021-11-23 | 2022-04-05 | 华中科技大学 | An embedded metal mesh flexible electrode film and its preparation method and application |
US12048092B2 (en) | 2019-05-06 | 2024-07-23 | 3M Innovative Properties Company | Patterned conductive article |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0279308A (en) * | 1988-09-14 | 1990-03-19 | Seiko Epson Corp | Electrode formation method |
CN1192717A (en) * | 1995-06-07 | 1998-09-09 | 德克斯特公司 | Debossable films |
CN101120626A (en) * | 2005-02-15 | 2008-02-06 | 富士胶片株式会社 | Light transmitting conductive film, light transmitting electromagnetic shield film, optical filter and method for manufaturing display filter |
CN101276079A (en) * | 2007-03-28 | 2008-10-01 | C.R.F.阿西安尼顾问公司 | Method for obtaining a transparent conductive film |
CN101512682A (en) * | 2006-09-28 | 2009-08-19 | 富士胶片株式会社 | Self-luminous display device and manufacturing method thereof, transparent conductive film, electroluminescent element, transparent electrode for solar cell, and transparent electrode for electronic paper |
WO2009108801A2 (en) * | 2008-02-28 | 2009-09-03 | Sunlight Photonics Inc. | Composite substrates for thin film electro-optical devices |
-
2010
- 2010-11-05 CN CN 201010533228 patent/CN102063951B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0279308A (en) * | 1988-09-14 | 1990-03-19 | Seiko Epson Corp | Electrode formation method |
CN1192717A (en) * | 1995-06-07 | 1998-09-09 | 德克斯特公司 | Debossable films |
CN101120626A (en) * | 2005-02-15 | 2008-02-06 | 富士胶片株式会社 | Light transmitting conductive film, light transmitting electromagnetic shield film, optical filter and method for manufaturing display filter |
CN101512682A (en) * | 2006-09-28 | 2009-08-19 | 富士胶片株式会社 | Self-luminous display device and manufacturing method thereof, transparent conductive film, electroluminescent element, transparent electrode for solar cell, and transparent electrode for electronic paper |
CN101276079A (en) * | 2007-03-28 | 2008-10-01 | C.R.F.阿西安尼顾问公司 | Method for obtaining a transparent conductive film |
WO2009108801A2 (en) * | 2008-02-28 | 2009-09-03 | Sunlight Photonics Inc. | Composite substrates for thin film electro-optical devices |
Non-Patent Citations (3)
Title |
---|
《IEEE》 20100625 Joop van Deelen et al HIGHLY IMPROVED TRANSPARENT CONDUCTORS BY COMBINATION OF TCOS AND METALLIC GRIDS 第000992-000993页 1-10 , * |
JOOP VAN DEELEN ET AL: "HIGHLY IMPROVED TRANSPARENT CONDUCTORS BY COMBINATION OF TCOS AND METALLIC GRIDS", 《IEEE》 * |
RONN ANDRIESSEN ET AL: "TOWARDS LOW COST, EFFICIENT AND STABLE ORGANIC PHOTOVOLTAIC MODULES", 《25TH EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE AND EXHIBITION》 * |
Cited By (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103827783A (en) * | 2011-07-21 | 2014-05-28 | 未来奈米科技股份有限公司 | Apparatus and method for manufacturing a touch screen panel |
CN103827783B (en) * | 2011-07-21 | 2017-02-15 | 未来奈米科技股份有限公司 | Apparatus and method for manufacturing a touch screen panel |
US9282647B2 (en) | 2012-02-28 | 2016-03-08 | Eastman Kodak Company | Method of making micro-channel structure for micro-wires |
CN107765933B (en) * | 2012-03-15 | 2020-12-18 | 烟台正海科技股份有限公司 | Capacitive touch panel |
CN108228012A (en) * | 2012-03-15 | 2018-06-29 | 罗灿 | A kind of manufacturing method of capacitive type touch pad |
CN107765933A (en) * | 2012-03-15 | 2018-03-06 | 深圳迈辽技术转移中心有限公司 | Capacitive type touch pad |
CN103309527B (en) * | 2012-03-15 | 2018-01-16 | 深圳市振宇达智能机器人科技有限公司 | Capacitive type touch pad and its manufacturing equipment |
CN103309527A (en) * | 2012-03-15 | 2013-09-18 | 鸿富锦精密工业(深圳)有限公司 | Capacitive touchpad and manufacturing equipment for same |
CN103325441A (en) * | 2012-03-21 | 2013-09-25 | 宸鸿科技(厦门)有限公司 | Conductive thin film of touch panel and manufacturing method thereof |
WO2013139240A1 (en) * | 2012-03-21 | 2013-09-26 | 宸鸿科技(厦门)有限公司 | Conductive film of touch control panel and manufacturing method thereof |
CN102708946B (en) * | 2012-05-09 | 2015-01-07 | 南昌欧菲光科技有限公司 | Double-sided graphical transparent conductive film and preparation method thereof |
CN102708946A (en) * | 2012-05-09 | 2012-10-03 | 崔铮 | Double-sided graphical transparent conductive film and preparation method thereof |
US9137893B2 (en) | 2012-08-10 | 2015-09-15 | Eastman Kodak Company | Micro-wire electrode buss |
US9131606B2 (en) | 2012-08-10 | 2015-09-08 | Eastman Kodak Company | Micro-channel pattern for effective ink distribution |
US9005744B2 (en) | 2012-08-10 | 2015-04-14 | Eastman Kodak Company | Conductive micro-wire structure |
US9167688B2 (en) | 2012-08-10 | 2015-10-20 | Eastman Kodak Company | Micro-wire pattern for electrode connection |
CN102930922A (en) * | 2012-10-25 | 2013-02-13 | 南昌欧菲光科技有限公司 | Transparent conducting film with anisotropic conductivity |
JP2015501502A (en) * | 2012-10-25 | 2015-01-15 | 南昌欧菲光科技有限公司Nanchang O−Film Tech. Co., Ltd. | Conductive structure of transparent conductive film, transparent conductive film, and manufacturing method thereof |
WO2014063417A1 (en) * | 2012-10-25 | 2014-05-01 | 南昌欧菲光科技有限公司 | Conductive structure in transparent conductive film, transparent conductive film, and manufacturing method |
CN102903423A (en) * | 2012-10-25 | 2013-01-30 | 南昌欧菲光科技有限公司 | Conduction structure in transparent conduction film, transparent conduction film and manufacture method thereof |
CN102903423B (en) * | 2012-10-25 | 2015-05-13 | 南昌欧菲光科技有限公司 | Conduction structure in transparent conduction film, transparent conduction film and manufacture method thereof |
CN102930922B (en) * | 2012-10-25 | 2015-07-08 | 南昌欧菲光科技有限公司 | Transparent conducting film with anisotropic conductivity |
CN103902115B (en) * | 2012-12-28 | 2018-04-06 | 深圳欧菲光科技股份有限公司 | Touch-screen transparent conductive body and its preparation method and application |
CN103902115A (en) * | 2012-12-28 | 2014-07-02 | 深圳欧菲光科技股份有限公司 | Transparent conductor for touch screen and preparing method and application of transparent conductor |
US20150060113A1 (en) * | 2013-01-22 | 2015-03-05 | Yongcai Wang | Photocurable composition, article, and method of use |
US9099227B2 (en) | 2013-01-22 | 2015-08-04 | Eastman Kodak Company | Method of forming conductive films with micro-wires |
US8865292B2 (en) | 2013-01-22 | 2014-10-21 | Eastman Kodak Company | Micro-channel structure for micro-wires |
WO2014116534A1 (en) | 2013-01-28 | 2014-07-31 | Eastman Kodak Company | Micro-wire pattern for electrode connection |
CN103426500A (en) * | 2013-02-04 | 2013-12-04 | 南昌欧菲光科技有限公司 | Double-layer transparent conductive film and preparation method thereof |
TWI493575B (en) * | 2013-02-04 | 2015-07-21 | 南昌歐菲光科技有限公司 | Transparent conductive film |
WO2014117479A1 (en) * | 2013-02-04 | 2014-08-07 | 南昌欧菲光科技有限公司 | Transparent conductive film |
CN103426500B (en) * | 2013-02-04 | 2016-03-09 | 南昌欧菲光科技有限公司 | double-layer transparent conductive film and preparation method thereof |
CN103425320A (en) * | 2013-02-04 | 2013-12-04 | 南昌欧菲光科技有限公司 | Transparent touch screen |
CN103456390B (en) * | 2013-02-05 | 2016-04-27 | 南昌欧菲光科技有限公司 | Conducting film and manufacture method thereof |
US9521746B2 (en) | 2013-02-05 | 2016-12-13 | Nanchang O-Film Tech. Co., Ltd. | Conductive film and preparation method thereof |
WO2014121582A1 (en) * | 2013-02-05 | 2014-08-14 | 南昌欧菲光科技有限公司 | Conductive film and manufacturing method thereof |
CN103456390A (en) * | 2013-02-05 | 2013-12-18 | 南昌欧菲光科技有限公司 | Conducting film and manufacturing method thereof |
US9345144B2 (en) | 2013-02-28 | 2016-05-17 | Eastman Kodak Company | Making multi-layer micro-wire structure |
US9061463B2 (en) | 2013-02-28 | 2015-06-23 | Eastman Kodak Company | Embossed micro-structure with cured transfer material method |
US9296013B2 (en) | 2013-02-28 | 2016-03-29 | Eastman Kodak Company | Making multi-layer micro-wire structure |
US9426885B2 (en) | 2013-02-28 | 2016-08-23 | Eastman Kodak Company | Multi-layer micro-wire structure |
US8828503B1 (en) | 2013-02-28 | 2014-09-09 | Eastman Kodak Company | Making multi-layer micro-wire structure |
US9226411B2 (en) | 2013-02-28 | 2015-12-29 | Eastman Kodak Company | Making multi-layer micro-wire structure |
CN103176650B (en) * | 2013-03-01 | 2016-09-28 | 南昌欧菲光科技有限公司 | Conducting glass substrate and preparation method thereof |
CN103176650A (en) * | 2013-03-01 | 2013-06-26 | 南昌欧菲光科技有限公司 | Conductive glass substrate and manufacturing method of conductive glass substrate |
US9085194B2 (en) | 2013-03-05 | 2015-07-21 | Eastman Kodak Company | Embossing stamp for optically diffuse micro-channel |
US9078360B2 (en) | 2013-03-05 | 2015-07-07 | Eastman Kodak Company | Imprinted multi-layer micro-structure |
US9374894B2 (en) | 2013-03-05 | 2016-06-21 | Eastman Kodak Company | Imprinted micro-wire rib structure |
US8895429B2 (en) | 2013-03-05 | 2014-11-25 | Eastman Kodak Company | Micro-channel structure with variable depths |
US9423562B2 (en) | 2013-03-05 | 2016-08-23 | Eastman Kodak Company | Imprinted micro-wire circuit multi-level stamp method |
US9215798B2 (en) | 2013-03-05 | 2015-12-15 | Eastman Kodak Company | Imprinted multi-layer micro-structure method with multi-level stamp |
US9277642B2 (en) | 2013-03-05 | 2016-03-01 | Eastman Kodak Company | Imprinted bi-layer micro-structure method |
US9417385B2 (en) | 2013-03-05 | 2016-08-16 | Eastman Kodak Company | Imprinted multi-level micro-wire circuit structure method |
US9101056B2 (en) | 2013-03-05 | 2015-08-04 | Eastman Kodak Company | Imprinted bi-layer micro-structure method with bi-level stamp |
US8932474B1 (en) | 2013-03-05 | 2015-01-13 | Eastman Kodak Company | Imprinted multi-layer micro structure method |
US9167700B2 (en) | 2013-03-05 | 2015-10-20 | Eastman Kodak Company | Micro-channel connection method |
CN104350551A (en) * | 2013-03-07 | 2015-02-11 | Lg化学株式会社 | Transparent substrate including thin metal wires and manufacturing method thereof |
CN104350551B (en) * | 2013-03-07 | 2016-11-30 | Lg化学株式会社 | Transparent substrate including thin metal wires and method of manufacturing the same |
CN103123564B (en) * | 2013-03-22 | 2015-12-09 | 汕头超声显示器技术有限公司 | A kind of capacitance touch screen and manufacture method thereof |
CN103123564A (en) * | 2013-03-22 | 2013-05-29 | 汕头超声显示器技术有限公司 | Capacitive touch screen and manufacturing method thereof |
JP2015520444A (en) * | 2013-03-28 | 2015-07-16 | ナンチャン オー−フィルム テック カンパニー リミテッド | Transparent conductive film and method for producing the same |
CN103413593A (en) * | 2013-03-30 | 2013-11-27 | 深圳欧菲光科技股份有限公司 | Transparent electric conductor and preparation method thereof |
CN103413593B (en) * | 2013-03-30 | 2014-09-17 | 深圳欧菲光科技股份有限公司 | Transparent electric conductor and preparation method thereof |
US9229260B2 (en) | 2013-04-15 | 2016-01-05 | Eastman Kodak Company | Imprinted bi-layer micro-structure |
US9058084B2 (en) | 2013-04-15 | 2015-06-16 | Eastman Kodak Company | Hybrid single-side touch screen |
CN103337300A (en) * | 2013-05-07 | 2013-10-02 | 西安交通大学 | Transparent film mosaic circuit production method by using external electric field to drive filling |
CN103235675A (en) * | 2013-05-09 | 2013-08-07 | 苏州维业达触控科技有限公司 | Capacitive touch sensor production method and capacitive touch sensor |
CN103235675B (en) * | 2013-05-09 | 2017-02-08 | 苏州维业达触控科技有限公司 | Capacitive touch sensor production method and capacitive touch sensor |
US9281493B2 (en) | 2013-05-10 | 2016-03-08 | Hefei Boe Optoelectronics Technology Co., Ltd. | Flexible substrate and manufacturing method thereof, OLED display device |
WO2014180077A1 (en) * | 2013-05-10 | 2014-11-13 | 合肥京东方光电科技有限公司 | Flexible substrate, manufacturing method for same, and oled display apparatus |
CN103246402A (en) * | 2013-05-17 | 2013-08-14 | 汕头超声显示器技术有限公司 | Display device with integrated touch control function |
CN103294314B (en) * | 2013-05-17 | 2016-12-07 | 汕头超声显示器技术有限公司 | A kind of capacitance touch screen with polarisation function |
CN103246421B (en) * | 2013-05-17 | 2016-10-05 | 汕头超声显示器技术有限公司 | The polaroid of a kind of integrated touch controllable function and manufacture method thereof |
CN103294314A (en) * | 2013-05-17 | 2013-09-11 | 汕头超声显示器技术有限公司 | Capacitive touch screen with light polarization function |
CN103246421A (en) * | 2013-05-17 | 2013-08-14 | 汕头超声显示器技术有限公司 | Polarizing piece with integrated touch control function and manufacturing method thereof |
CN103295671B (en) * | 2013-05-30 | 2016-08-10 | 南昌欧菲光科技有限公司 | Nesa coating |
TWI494814B (en) * | 2013-05-30 | 2015-08-01 | Nanchang O Film Tech Co Ltd | Transparent conductive film |
TWI509481B (en) * | 2013-05-30 | 2015-11-21 | Nanchang O Film Tech Co Ltd | Transparent conductive film |
US9516754B2 (en) | 2013-05-30 | 2016-12-06 | Nanchang O-Film Tech Co., Ltd. | Transparent conductive film |
CN103279240B (en) * | 2013-05-30 | 2016-03-09 | 南昌欧菲光科技有限公司 | touch panel |
CN103345961A (en) * | 2013-05-30 | 2013-10-09 | 南昌欧菲光科技有限公司 | Transparent conducting film |
US9439302B2 (en) | 2013-05-30 | 2016-09-06 | Nanchang O-Film Tech Co., Ltd. | Transparent conductive film |
TWI509480B (en) * | 2013-05-30 | 2015-11-21 | Nanchang O Film Tech Co Ltd | Touch panel |
CN103295671A (en) * | 2013-05-30 | 2013-09-11 | 南昌欧菲光科技有限公司 | Transparent conducting film |
CN103279240A (en) * | 2013-05-30 | 2013-09-04 | 南昌欧菲光科技有限公司 | Touch panel |
WO2015038345A1 (en) | 2013-09-11 | 2015-03-19 | Eastman Kodak Company | Multi-layer micro-wire substrate structure |
US9448674B2 (en) | 2013-09-11 | 2016-09-20 | Eastman Kodak Company | Making multi-layer micro-wire structure |
US9513759B2 (en) | 2013-09-11 | 2016-12-06 | Eastman Kodak Company | Multi-layer micro-wire structure |
US9107316B2 (en) | 2013-09-11 | 2015-08-11 | Eastman Kodak Company | Multi-layer micro-wire substrate structure |
US9465501B2 (en) | 2013-09-11 | 2016-10-11 | Eastman Kodak Company | Multi-layer micro-wire substrate method |
US9304636B2 (en) | 2013-09-20 | 2016-04-05 | Eastman Kodak Company | Micro-wire touch screen with unpatterned conductive layer |
WO2015041870A1 (en) | 2013-09-20 | 2015-03-26 | Eastman Kodak Company | Imprinted multi-level micro-wire circuit structure |
TWI647712B (en) * | 2013-12-03 | 2019-01-11 | 美商柯達公司 | Preparation of articles with conductive microwire patterns |
CN104795130A (en) * | 2014-01-20 | 2015-07-22 | 中国科学院苏州纳米技术与纳米仿生研究所 | Transparent conductive film and preparation method thereof |
CN104795130B (en) * | 2014-01-20 | 2017-12-05 | 中国科学院苏州纳米技术与纳米仿生研究所 | Transparent conductive film and preparation method thereof |
CN103744571A (en) * | 2014-01-26 | 2014-04-23 | 苏州维业达触控科技有限公司 | Ultrathin touch sensor and manufacturing method thereof |
US9603240B2 (en) | 2014-04-16 | 2017-03-21 | Eastman Kodak Company | Making Z-fold micro-wire substrate structure |
US9516744B2 (en) | 2014-04-16 | 2016-12-06 | Eastman Kodak Company | Wrap-around micro-wire circuit method |
US9195358B1 (en) | 2014-04-16 | 2015-11-24 | Eastman Kodak Company | Z-fold multi-element substrate structure |
US9635755B2 (en) | 2014-04-16 | 2017-04-25 | Eastman Kodak Company | Making Z-fold multi-element substrate structure |
US9288901B2 (en) | 2014-04-25 | 2016-03-15 | Eastman Kodak Company | Thin-film multi-layer micro-wire structure |
US9754704B2 (en) | 2014-04-29 | 2017-09-05 | Eastman Kodak Company | Making thin-film multi-layer micro-wire structure |
CN103992041A (en) * | 2014-04-30 | 2014-08-20 | 天津宝兴威科技有限公司 | Manufacturing method of nano metal grid transparent electro-conductive glass |
CN105183202B (en) * | 2014-05-30 | 2018-05-04 | 宸鸿光电科技股份有限公司 | Touch module and manufacturing method thereof |
CN105183202A (en) * | 2014-05-30 | 2015-12-23 | 宸鸿光电科技股份有限公司 | Touch module and manufacturing method thereof |
CN105448423A (en) * | 2014-06-12 | 2016-03-30 | 宸鸿科技(厦门)有限公司 | Conducting film manufacturing method, touch control panel manufacturing method, and touch control panel |
CN105448423B (en) * | 2014-06-12 | 2018-06-22 | 宸鸿科技(厦门)有限公司 | The production method of conductive film and the production method of touch panel and touch panel |
US11476373B2 (en) | 2014-06-13 | 2022-10-18 | Svg Optronics Co., Ltd. | Solar cell superfine electrode transfer thin film, manufacturing method and application method thereof |
CN104009124A (en) * | 2014-06-13 | 2014-08-27 | 苏州苏大维格光电科技股份有限公司 | Solar cell superfine electrode transferring thin film, preparing method and application method of solar cell superfine electrode transferring thin film |
US9161456B1 (en) | 2014-09-03 | 2015-10-13 | Eastman Kodak Company | Making imprinted micro-wire rib structure |
CN104185410B (en) * | 2014-09-12 | 2017-09-01 | 苏州大学 | Electromagnetic shielding cover based on micro metal grid and preparation method thereof |
CN104185410A (en) * | 2014-09-12 | 2014-12-03 | 苏州大学 | Electromagnetic shielding case based on micro metal grid and manufacturing method of electromagnetic shielding case |
US9415419B2 (en) | 2014-10-21 | 2016-08-16 | Eastman Kodak Company | Making imprinted multi-layer biocidal particle structure |
US9186698B1 (en) | 2014-10-21 | 2015-11-17 | Eastman Kodak Company | Making imprinted multi-layer structure |
US9420783B2 (en) | 2014-10-21 | 2016-08-23 | Eastman Kodak Company | Making imprinted particle structure |
US9434146B2 (en) | 2014-10-21 | 2016-09-06 | Eastman Kodak Company | Using imprinted particle structure |
US9476010B2 (en) | 2014-10-21 | 2016-10-25 | Eastman Kodak Company | Using imprinted multi-layer biocidal particle structure |
US9510591B2 (en) | 2014-10-29 | 2016-12-06 | Eastman Kodak Company | Imprinted multi-layer biocidal particle structure |
US9416281B1 (en) | 2014-10-29 | 2016-08-16 | Eastman Kodak Company | Making imprinted multi-layer biocidal particle structure |
US9545101B2 (en) | 2014-10-29 | 2017-01-17 | Eastman Kodak Company | Using imprinted multi-layer biocidal particle structure |
CN105856707A (en) * | 2015-01-18 | 2016-08-17 | 朱继承 | Separable printed film, composite type printed structure and manufacturing method thereof |
CN104766675A (en) * | 2015-03-11 | 2015-07-08 | 中山大学 | Application of Microwave in Preparation of Transparent Conductive Thin Film |
CN104835555A (en) * | 2015-05-13 | 2015-08-12 | 南京邮电大学 | Preparation method of patterned metal transparent conductive film |
CN104835555B (en) * | 2015-05-13 | 2017-09-15 | 南京邮电大学 | A kind of preparation method of pattern metal transparent conductive film |
CN108012586A (en) * | 2015-06-10 | 2018-05-08 | 吴铉锡 | Utilize the electromagnetic shielding material of nanostructure |
CN106373664B (en) * | 2015-07-23 | 2018-09-04 | 北京华纳高科科技有限公司 | A kind of high-performance metal grid method for preparing transparent conductive film and its product |
CN106373664A (en) * | 2015-07-23 | 2017-02-01 | 北京华纳高科科技有限公司 | Preparation method and product of high-performance metal grid transparent conductive film |
CN105152124A (en) * | 2015-08-04 | 2015-12-16 | 上海交通大学 | Method for storing CNTs (Carbon Nanotubes) by using deep silicon etching technology |
CN105045455A (en) * | 2015-09-07 | 2015-11-11 | 张家港康得新光电材料有限公司 | Metal grid transparent conducting film, preparation method thereof and capacitive touch screen |
CN105088805A (en) * | 2015-09-16 | 2015-11-25 | 苏州大学 | Method for preparing functional material through nanoimprint |
CN105374467A (en) * | 2015-10-23 | 2016-03-02 | 苏州大学 | Nanometer transfer method and nanometer functional device |
CN105374467B (en) * | 2015-10-23 | 2017-03-22 | 苏州大学 | Nanometer transfer method and nanometer functional device |
CN106782741A (en) * | 2015-11-24 | 2017-05-31 | 仇明侠 | A kind of flexible transparent conducting film based on nano impression and preparation method thereof |
CN105742380A (en) * | 2016-03-30 | 2016-07-06 | 江苏欧达丰新能源科技发展有限公司 | Coining process of solar cell grid line electrode pattern |
CN105960155A (en) * | 2016-05-30 | 2016-09-21 | 天诺光电材料股份有限公司 | Flexible transparent conductive material for electromagnetic shielding window, and preparation method |
CN106229080A (en) * | 2016-08-26 | 2016-12-14 | 华南理工大学 | Low resistance electrically conducting transparent network film for flexible electronic device and preparation method thereof |
CN106547397A (en) * | 2016-10-19 | 2017-03-29 | 苏州维业达触控科技有限公司 | A kind of manufacture method of nesa coating, nesa coating and touch screen |
CN106547397B (en) * | 2016-10-19 | 2022-03-22 | 苏州维业达触控科技有限公司 | Method for making transparent conductive film, transparent conductive film and touch screen |
CN106683795A (en) * | 2017-03-02 | 2017-05-17 | 苏州维业达触控科技有限公司 | Coating method of transparent conducting film and device for forming hydrophobic and oleophobic substance |
US20190035719A1 (en) * | 2017-07-28 | 2019-01-31 | Tdk Corporation | Electroconductive substrate, electronic device and display device |
US10867898B2 (en) * | 2017-07-28 | 2020-12-15 | Tdk Corporation | Electroconductive substrate, electronic device and display device |
US11031330B2 (en) | 2017-07-28 | 2021-06-08 | Tdk Corporation | Electroconductive substrate, electronic device and display device |
WO2019024217A1 (en) * | 2017-08-02 | 2019-02-07 | 意力(广州)电子科技有限公司 | Conductive film and touch screen |
CN107731349A (en) * | 2017-08-29 | 2018-02-23 | 苏州泛普科技股份有限公司 | A kind of hollow out plain conductor and preparation method and application |
CN107943357A (en) * | 2017-12-28 | 2018-04-20 | 苏州柏特瑞新材料有限公司 | A kind of preparation method of metal grill capacitive touch screen |
CN110831418A (en) * | 2018-08-09 | 2020-02-21 | 鸿富锦精密工业(武汉)有限公司 | Case panel and case adopting same |
CN109493998A (en) * | 2018-12-17 | 2019-03-19 | 太原理工大学 | A kind of flexible transparent conducting film and preparation method thereof based on patterning layer assembly self-supporting film |
CN109991772A (en) * | 2019-03-29 | 2019-07-09 | 云谷(固安)科技有限公司 | Display panel film layer structure and its preparation process |
CN109991772B (en) * | 2019-03-29 | 2023-03-14 | 广州国显科技有限公司 | Display panel film structure and preparation process thereof |
US12048092B2 (en) | 2019-05-06 | 2024-07-23 | 3M Innovative Properties Company | Patterned conductive article |
US12133327B2 (en) | 2019-05-06 | 2024-10-29 | 3M Innovative Properties Company | Patterned article including electrically conductive elements |
CN111016357B (en) * | 2019-12-05 | 2022-02-25 | 福建华阳超纤有限公司 | Manufacturing method of color-changing sun-proof super-fine leather fabric |
CN111016357A (en) * | 2019-12-05 | 2020-04-17 | 福建华阳超纤有限公司 | Manufacturing method of color-changing sun-proof super-fine leather fabric |
CN113885251A (en) * | 2020-07-02 | 2022-01-04 | 苏州维业达触控科技有限公司 | LED light-emitting assembly and manufacturing method thereof, backlight module, and liquid crystal display device |
CN111679556A (en) * | 2020-07-08 | 2020-09-18 | 大连集思特科技有限公司 | A kind of manufacturing method of flexible transparent display screen based on nanoimprint technology |
CN113130138B (en) * | 2021-04-28 | 2022-12-13 | 江苏软讯科技有限公司 | Nano-silver conductive film and preparation method thereof |
CN113130138A (en) * | 2021-04-28 | 2021-07-16 | 江苏软讯科技有限公司 | Nano-silver conductive film and preparation method thereof |
CN113391733A (en) * | 2021-07-09 | 2021-09-14 | 江苏软讯科技有限公司 | Metal grid flexible conductive film and manufacturing method thereof |
CN114283994A (en) * | 2021-11-23 | 2022-04-05 | 华中科技大学 | An embedded metal mesh flexible electrode film and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN102063951B (en) | 2013-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102063951B (en) | Transparent conductive film and manufacturing method thereof | |
CN104835555B (en) | A kind of preparation method of pattern metal transparent conductive film | |
CN103207702B (en) | Touch-screen and manufacture method thereof | |
CA2826027C (en) | Patterned flexible transparent conductive sheet and manufacturing method thereof | |
US20150313022A1 (en) | Grid and nanostructure transparent conductor for low sheet resistance applications | |
EP3385995A1 (en) | Flexible transparent thin film | |
CN105489784B (en) | Electrode and its application prepared by the preparation method and this method of compliant conductive electrode | |
JP6131196B2 (en) | Method for metallizing a textured surface | |
CN113470890B (en) | Transparent conductive film structure and manufacturing method thereof | |
KR101682501B1 (en) | Transparant electrode containing silver nanowire-patterned layer and graphene layer, and manufacturing method thereof | |
JP2011167924A (en) | Material with low reflection conductive surface and manufacturing method thereof | |
CN103408993A (en) | Conductive ink, transparent conductor and preparation method thereof | |
CN113066604A (en) | Conductive film and preparation method thereof | |
US20190334055A1 (en) | Flexible transparent thin film | |
KR100957487B1 (en) | Method for fabricating plastic electrode film | |
CN105374467B (en) | Nanometer transfer method and nanometer functional device | |
CN1292977C (en) | Deep submicron three-dimensional rolling mould and its mfg. method | |
Yang et al. | All‐Solution‐Processed, Scalable, Self‐Cracking Ag Network Transparent Conductor | |
CN113782256B (en) | Method for manufacturing low-surface-roughness transparent electrode | |
Chung et al. | Ag paste-based nanomesh electrodes for large-area touch screen panels | |
US20140205810A1 (en) | Method of making micro-channel structure for micro-wires | |
CN113936844B (en) | Transparent conductive electrode, preparation method thereof and electronic device | |
CN110265178A (en) | Preparation method of flexible transparent conductive film | |
US20140262452A1 (en) | Embossed micro-structure with cured transfer material method | |
CN102709156A (en) | Wet etching method for ZnO-based transparent conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 215026 No. 478 South Street, Suzhou Industrial Park, Jiangsu, China Co-patentee after: Suzhou University Patentee after: SUZHOU SUDAVIG SCIENCE AND TECHNOLOGY GROUP Co.,Ltd. Address before: 215026 No. 478 South Street, Suzhou Industrial Park, Jiangsu, China Co-patentee before: Suzhou University Patentee before: SVG OPTRONICS, Co.,Ltd. |