[go: up one dir, main page]

CN102063951A - Transparent conductive film and manufacturing method thereof - Google Patents

Transparent conductive film and manufacturing method thereof Download PDF

Info

Publication number
CN102063951A
CN102063951A CN2010105332289A CN201010533228A CN102063951A CN 102063951 A CN102063951 A CN 102063951A CN 2010105332289 A CN2010105332289 A CN 2010105332289A CN 201010533228 A CN201010533228 A CN 201010533228A CN 102063951 A CN102063951 A CN 102063951A
Authority
CN
China
Prior art keywords
groove
conductive film
transparent
metal
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105332289A
Other languages
Chinese (zh)
Other versions
CN102063951B (en
Inventor
陈林森
周小红
朱鹏飞
吴智华
浦东林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
SVG Tech Group Co Ltd
Original Assignee
Suzhou University
SVG Optronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43999186&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102063951(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Suzhou University, SVG Optronics Co Ltd filed Critical Suzhou University
Priority to CN 201010533228 priority Critical patent/CN102063951B/en
Publication of CN102063951A publication Critical patent/CN102063951A/en
Application granted granted Critical
Publication of CN102063951B publication Critical patent/CN102063951B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1208Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1258Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by using a substrate provided with a shape pattern, e.g. grooves, banks, resist pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0108Male die used for patterning, punching or transferring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明提供一种透明导电膜,该透明导电膜包括透明基底和导电金属,其中在透明基底上利用纳米压印技术压制出用于埋设导电金属颗粒的凹槽以及用于透光的网格,通过设计凹槽的线宽和深度以及占整个透明导电膜的比重,得到了一种透光率高且导电性好的透明导电膜。同时,由于导电金属部分被镶嵌在透明基底内部,不易脱落和氧化,并且可以采用柔性材料作为透明基底,开发出能在更多场合下应用的透明导电膜。同时本发明还提供了该透明导电膜的制作方法。

Figure 201010533228

The invention provides a transparent conductive film, which comprises a transparent substrate and a conductive metal, wherein nanoimprinting technology is used to press out grooves for embedding conductive metal particles and grids for light transmission on the transparent substrate, By designing the line width and depth of the groove and the proportion of the entire transparent conductive film, a transparent conductive film with high light transmittance and good conductivity is obtained. At the same time, since the conductive metal part is embedded in the transparent substrate, it is not easy to fall off and oxidize, and flexible materials can be used as the transparent substrate to develop a transparent conductive film that can be used in more occasions. At the same time, the invention also provides a manufacturing method of the transparent conductive film.

Figure 201010533228

Description

一种透明导电膜及其制作方法 A kind of transparent conductive film and preparation method thereof

技术领域technical field

本发明涉及一种透明导电膜及其制作方法,尤其是一种嵌入式的透明导电膜及其制作方法。The invention relates to a transparent conductive film and a manufacturing method thereof, in particular to an embedded transparent conductive film and a manufacturing method thereof.

背景技术Background technique

透明导电膜被广泛用于触控液晶面板、有机放光二极体(OLED)以及电磁屏蔽等领域。目前,比较常见的透明导电膜有ITO膜和金属膜两种,前者是在透明的玻璃或者塑料基板表面,通过蒸镀或溅射的方法形成一层铟-锡氧化物膜(ITO)等的透明导电性材料,后者是在透明的玻璃或者塑料基板表面,通过金属镀或蒸镀的方法,在整个表面形成金属薄膜,然后通过光刻对其加工,将金属层刻蚀成微细的金属网格。Transparent conductive films are widely used in fields such as touch liquid crystal panels, organic light emitting diodes (OLEDs), and electromagnetic shielding. At present, the more common transparent conductive films are ITO film and metal film. The former is to form a layer of indium-tin oxide film (ITO) on the surface of transparent glass or plastic substrate by evaporation or sputtering. Transparent conductive material, the latter is formed on the surface of a transparent glass or plastic substrate by metal plating or vapor deposition to form a metal film on the entire surface, and then process it by photolithography to etch the metal layer into fine metal particles. grid.

但是,ITO膜虽然透光性优异,其导电性能却一般,不适用于电气、航空等要求较高的领域。而金属膜虽然具有较佳的导电性,但是在加工金属膜的时候,需要除去大部分的金属薄膜,所以存在着浪费多、生产成本高的缺点。However, although the ITO film has excellent light transmittance, its electrical conductivity is average, and it is not suitable for high-demand fields such as electrical and aviation. Although the metal film has better conductivity, most of the metal film needs to be removed when processing the metal film, so there are disadvantages of waste and high production cost.

近年来,一些科学家提出了直接在透明基底表面一次成型网格状金属导线的方法。其中一种是是将银奈米粒子、有机溶剂、介面活性剂与水性溶剂等原料掺合并乳化,当这种墨水被涂布在透明基板表面时,因为溶剂的极性、表面能及挥发度的差异,得以在基板表面自动形成任意形状的银网状构造,经过烧结之后便成为透明导电膜。这个技术目前所发表的透明导电膜其表面电阻值约4~270Ω/sq,可见光透光率约75~86%。In recent years, some scientists have proposed a method of forming grid-like metal wires directly on the surface of a transparent substrate. One of them is to mix and emulsify raw materials such as silver nanoparticles, organic solvents, surfactants and aqueous solvents. When this ink is coated on the surface of a transparent substrate, due to the polarity, surface energy and volatility of the solvent The difference can automatically form a silver network structure of any shape on the surface of the substrate, and it will become a transparent conductive film after sintering. The surface resistance value of the transparent conductive film published by this technology is about 4-270Ω/sq, and the visible light transmittance is about 75-86%.

但是由这种方法得到的网状金属银线,其形状大小和位置分布完全依赖溶剂本身的特性,可控性非常差,容易造成某些区域过度密集,而有些地方则非常稀疏,使得透明导电膜的透光均匀度和导电均匀度都受到影响。另外所有将导电金属线制作在薄膜表面之上的透明导电膜,其金属层都容易氧化并掉落,大大影响了透明导电膜的使用寿命。However, the shape, size and position distribution of the mesh metal silver wires obtained by this method are completely dependent on the characteristics of the solvent itself, and the controllability is very poor, and it is easy to cause some areas to be overly dense, while some areas are very sparse, making transparent and conductive Both the uniformity of light transmission and the uniformity of conductivity of the film are affected. In addition, for all transparent conductive films made of conductive metal lines on the surface of the film, the metal layer is easy to oxidize and fall off, which greatly affects the service life of the transparent conductive film.

发明内容Contents of the invention

针对以上问题,本发明提出了一种透明导电膜及其制作方法。该透明导电膜利用纳米压印的方法,在表面形成规则的亚微米图形,将导电金属填设在这些亚微米图形中形成导电金属线,从而达到严格控制金属线的配置位置和尺寸,使得该透明导电膜导电性和透光性在显著提高的同时,还能按照运用场合的不同进行可控的设计。另外,由于金属导线被镶嵌在薄膜内部,其稳定性和抗氧化的能力也得以改善。In view of the above problems, the present invention proposes a transparent conductive film and a manufacturing method thereof. The transparent conductive film uses the method of nanoimprinting to form regular submicron patterns on the surface, and fill conductive metal in these submicron patterns to form conductive metal lines, so as to strictly control the configuration position and size of the metal lines, so that the While the conductivity and light transmittance of the transparent conductive film are significantly improved, it can also be controllably designed according to different application scenarios. In addition, since the metal wires are embedded inside the film, its stability and oxidation resistance are also improved.

根据本发明的目的提出的一种透明导电膜,包括透明基底和导电金属,该透明基底包括导电区和透光区,该导电区为相互连通的网线状凹槽,该透光区为该网线状凹槽围成的网格;该导电金属填设于该导电区的网线状凹槽内,其中该凹槽的面积与该网格的面积之比小于5%。A kind of transparent conductive film that proposes according to the object of the present invention comprises a transparent substrate and a conductive metal, and the transparent substrate includes a conductive region and a light-transmitting region, the conductive region is a network line-shaped groove connected to each other, and the light-transmitting region is the network line A grid surrounded by a grid-shaped groove; the conductive metal is filled in the grid-shaped groove of the conductive area, wherein the ratio of the area of the groove to the area of the grid is less than 5%.

根据本发明的目的提出的一种透明导电膜,其中所述透光区的网格为正多边形网格,其边长尺度小于200um。According to the purpose of the present invention, a transparent conductive film is proposed, wherein the grid of the light-transmitting area is a regular polygonal grid, and its side length is less than 200um.

根据本发明的目的提出的一种透明导电膜,其中所述透明基底为柔性透明材料,其透光率大于85%。According to the purpose of the present invention, a transparent conductive film is proposed, wherein the transparent substrate is a flexible transparent material, and its light transmittance is greater than 85%.

根据本发明的目的提出的一种透明导电膜,其中所述导电区的凹槽深宽比大于1∶1。According to the purpose of the present invention, a transparent conductive film is proposed, wherein the groove aspect ratio of the conductive region is greater than 1:1.

根据本发明的目的提出的一种透明导电膜的制作方法,包括如下步骤:A kind of preparation method of transparent conductive film proposed according to the object of the present invention comprises the following steps:

压印工艺:使用金属凸模在一透明基底上压印出网格图案,其中该网格的边线为凹槽,且该凹槽的面积与该网格的面积之比小于5%;Embossing process: using a metal punch to emboss a grid pattern on a transparent substrate, wherein the edge of the grid is a groove, and the ratio of the area of the groove to the area of the grid is less than 5%;

金属化工艺:对该透明基底进行金属化,使凹槽内充满导电金属;Metallization process: Metallize the transparent substrate to fill the groove with conductive metal;

抛光工艺:去除透明基底表面多余的导电金属,只保留凹槽中的导电金属,从而形成透明导电膜。Polishing process: remove excess conductive metal on the surface of the transparent substrate, and only retain the conductive metal in the groove, thereby forming a transparent conductive film.

根据本发明的目的提出的一种透明导电膜的制作方法,其中所述金属化工艺为湿法涂布工艺,包括:A kind of preparation method of transparent conductive film proposed according to the purpose of the present invention, wherein said metallization process is a wet coating process, comprising:

采用连续式涂布方法,在透明基底表面涂布掺有疏水溶剂的纳米银浆;Continuous coating method is used to coat the nano-silver paste mixed with hydrophobic solvent on the surface of the transparent substrate;

根据自流平效应使银浆沉积于凹槽中;According to the self-leveling effect, the silver paste is deposited in the groove;

加热烘烤,使银浆凝结,在凹槽中形成金属线栅。Heat and bake to make the silver paste condense and form a metal wire grid in the groove.

根据本发明的目的提出的一种透明导电膜的制作方法,其中在透明基底上涂布一层疏水层,以加快纳米银浆往凹槽中聚集。A method for making a transparent conductive film proposed according to the object of the present invention, wherein a hydrophobic layer is coated on a transparent substrate to accelerate the accumulation of nano-silver paste in the groove.

根据本发明的目的提出的一种透明导电膜的制作方法,其中所述金属化工艺为电铸工艺或溅射工艺,通过电铸或溅射,在透明基底的凹槽中生长出导电金属。According to the object of the present invention, a method for manufacturing a transparent conductive film is proposed, wherein the metallization process is an electroforming process or a sputtering process, and a conductive metal is grown in a groove of a transparent substrate through electroforming or sputtering.

根据本发明的目的提出的一种透明导电膜的制作方法,其中还包括金属凸膜的制备工艺,该制备工艺包括:A kind of preparation method of transparent conductive film that proposes according to the object of the present invention, wherein also comprise the preparation technology of metal convex film, this preparation process comprises:

光刻工艺:采用扫描光刻或平铺光刻,在光刻胶表面刻蚀出网格图案,该网格的边线为凹槽,且该凹槽的深宽比大于1∶1;Photolithography process: use scanning lithography or tile lithography to etch a grid pattern on the surface of the photoresist, the edge of the grid is a groove, and the depth-to-width ratio of the groove is greater than 1:1;

镀电极:通过真空溅射或者化学镀的方法,对具有凹槽图形的光刻胶进行金属化,使整个光刻胶表面,包括凹槽部分,形成电极层;Electrode plating: Metallize the photoresist with groove pattern by vacuum sputtering or electroless plating, so that the entire surface of the photoresist, including the groove part, forms an electrode layer;

电铸母板:带有导电层的光刻胶干板置入电铸槽中,进行金属离子的电沉积,在电极层上逐步沉积形成一定厚度金属薄板;Electroformed motherboard: The photoresist dry plate with a conductive layer is placed in the electroforming tank for electrodeposition of metal ions, which are gradually deposited on the electrode layer to form a thin metal plate of a certain thickness;

脱胶:将金属薄板从光刻胶干板上分离,并去除光刻胶,在金属板上形成凸型的网格图形结构。Degumming: separate the metal thin plate from the photoresist dry plate, remove the photoresist, and form a convex grid pattern structure on the metal plate.

根据本发明的目的提出的一种透明导电膜的制作方法,其中所述压印工艺为卷对卷辊筒压印。According to the object of the present invention, a method for making a transparent conductive film is proposed, wherein the embossing process is roll-to-roll roller embossing.

根据本发明的目的提出的一种透明导电膜的制作方法,其中所述抛光工艺为机械抛光、化学电解或化学腐蚀中的一种。According to the object of the present invention, a method for manufacturing a transparent conductive film is proposed, wherein the polishing process is one of mechanical polishing, chemical electrolysis or chemical corrosion.

上述的透明导电膜及其制作方法,利用纳米压印技术在透明基底表面压制出供导电金属埋设的凹槽,通过设计凹槽的线宽和深度以及占整个透明导电膜的比重,得到了一种透光率高且导电性好的透明导电膜。同时,由于导电金属部分被镶嵌在透明基底内部,不易脱落和氧化,并且可以采用柔性材料作为透明基底,开发出能在更多场合下应用的透明导电膜。In the above-mentioned transparent conductive film and its manufacturing method, a groove for embedding conductive metal is pressed on the surface of the transparent substrate by using nano-imprint technology, and a groove is obtained by designing the line width and depth of the groove and the proportion of the entire transparent conductive film. A transparent conductive film with high light transmittance and good conductivity. At the same time, since the conductive metal part is embedded in the transparent substrate, it is not easy to fall off and oxidize, and flexible materials can be used as the transparent substrate, and a transparent conductive film that can be applied in more occasions has been developed.

下面结合附图以具体实施例对本发明做详细说明。The present invention will be described in detail below with specific embodiments in conjunction with the accompanying drawings.

附图说明Description of drawings

图1是本发明的透明导电膜示意图;Fig. 1 is a schematic diagram of a transparent conductive film of the present invention;

图2是图1中透明基底的示意图;Fig. 2 is a schematic diagram of the transparent substrate in Fig. 1;

图3是图1中A-A方向上的剖视图;Fig. 3 is the cross-sectional view on A-A direction among Fig. 1;

图4是本发明的凸膜制备流程图;Fig. 4 is the flow chart of convex film preparation of the present invention;

图5是本发明的透明导电膜的制作流程图。Fig. 5 is a flow chart of making the transparent conductive film of the present invention.

具体实施方式Detailed ways

请一并参见图1、图2,图1是本发明的透明导电膜示意图,图2是图1中透明基底的示意图。如图所示,该透明导电膜100包括透明基底110和导电金属120。透明基底110包括导电区111和透光区112,导电区111为相互连通的网状凹槽,导电金属120填设在导电区111中,透光区112为网状凹槽围成的网格。该导电金属120可以是由银浆烧结而成的银粒子线,也可以是其他比如铜、镍、铝等金属通过电铸或者溅射的方法沉积在该导电区111中形成的导电线。下面将分别对透明导电膜100的透光性和导电性做分析。Please refer to FIG. 1 and FIG. 2 together. FIG. 1 is a schematic diagram of the transparent conductive film of the present invention, and FIG. 2 is a schematic diagram of the transparent substrate in FIG. 1 . As shown in the figure, the transparent conductive film 100 includes a transparent substrate 110 and a conductive metal 120 . The transparent substrate 110 includes a conductive area 111 and a light-transmitting area 112. The conductive area 111 is a network of grooves connected to each other. The conductive metal 120 is filled in the conductive area 111. The light-transmitting area 112 is a grid surrounded by a network of grooves. . The conductive metal 120 can be a silver particle wire formed by sintering silver paste, or a conductive wire formed by depositing other metals such as copper, nickel, aluminum, etc. in the conductive region 111 by electroforming or sputtering. The light transmittance and conductivity of the transparent conductive film 100 will be analyzed respectively below.

对于透光性:通常情况下,该导电区111填设导电金属120后不透光,所以该透明导电膜100的实际透光率由导电区111的面积大小和透明基底110自身的透光率决定。即导电区111的面积占透光区面积的比值越小,透明导电膜100的透光率越高。通常,导电区111与透光区112的面积比为5%,透明基底110本身的透光率为90%时,透明导电膜100的透光率可达85%以上。为了获得较高的透光率,我们选择导电区111的凹槽的面积与整个网格的面积之比小于5%,且透明基底110的透光率大于90%。特别的,当透光区112的网格为正多边形时,导电区111和透光区112的面积之比可由如下公式计算:For light transmittance: under normal circumstances, the conductive region 111 is opaque after filling the conductive metal 120, so the actual light transmittance of the transparent conductive film 100 is determined by the area size of the conductive region 111 and the light transmittance of the transparent substrate 110 itself Decide. That is, the smaller the ratio of the area of the conductive region 111 to the area of the transparent region, the higher the light transmittance of the transparent conductive film 100 . Usually, the area ratio of the conductive region 111 to the light-transmitting region 112 is 5%, and when the light transmittance of the transparent substrate 110 itself is 90%, the light transmittance of the transparent conductive film 100 can reach more than 85%. In order to obtain higher light transmittance, we choose that the ratio of the area of the grooves in the conductive region 111 to the area of the entire grid is less than 5%, and the light transmittance of the transparent substrate 110 is greater than 90%. In particular, when the mesh of the light-transmitting region 112 is a regular polygon, the area ratio of the conductive region 111 and the light-transmitting region 112 can be calculated by the following formula:

P=1-a2/(a+L*tan180/n)2    (1)P=1-a 2 /(a+L*tan180/n) 2 (1)

式(1)中:a为正多边形的边长,L为导电区111的宽度,n为正变形的边数。In the formula (1): a is the side length of the regular polygon, L is the width of the conductive region 111, and n is the number of sides of positive deformation.

以正六边形网格为例,当网格边长为35um,透光率为90%时,金属导电线的线宽为3um左右。Taking a regular hexagonal grid as an example, when the side length of the grid is 35um and the light transmittance is 90%, the line width of the metal conductive wire is about 3um.

对于导电性:该透明导电膜的导电性主要依赖导电金属120的电特性以及横截面,请参见图3,图3是图1中A-A方向上的剖视图。如图所示,导电金属120的横截面由导电区111的宽度和深度决定。由于宽度受透光率的影响,不可能做的很宽,因此,需要将导电区111的深度设计的比较深,以提高导电金属120的横截面。优选地,我们将深宽比设计成大于1∶1,以金属银为例,在宽度为3um时,该透明导电膜100的表面阻抗可达到大于3.5Ω/sq的范围。Regarding conductivity: the conductivity of the transparent conductive film mainly depends on the electrical properties and cross-section of the conductive metal 120 , please refer to FIG. 3 , which is a cross-sectional view along the direction A-A in FIG. 1 . As shown, the cross section of the conductive metal 120 is determined by the width and depth of the conductive region 111 . Since the width is affected by the light transmittance, it is impossible to make it very wide. Therefore, the depth of the conductive region 111 needs to be designed relatively deep to increase the cross-section of the conductive metal 120 . Preferably, we design the aspect ratio to be greater than 1:1. Taking metal silver as an example, when the width is 3um, the surface impedance of the transparent conductive film 100 can reach a range greater than 3.5Ω/sq.

实际应用中,我们可以根据透明导电膜的导电性和透光性上的平衡需要,以及所使用的场合的限致,灵活的设计网线的宽度和深度。另外,对于一些对透明导光膜表面整体导电性要求较高的应用领域,比如在触点内置式触空屏幕中,或者一些电磁屏蔽应用中,需要设计高密度的导电网线,因此将网格的尺寸设计在200um以下。In practical applications, we can flexibly design the width and depth of the network cable according to the balance between the conductivity and light transmittance of the transparent conductive film, as well as the limitations of the used occasions. In addition, for some application fields that require high overall conductivity of the surface of the transparent light guide film, such as in the touch screen with built-in contacts, or in some electromagnetic shielding applications, it is necessary to design high-density conductive mesh lines, so the mesh The size design is below 200um.

下面将具体介绍本发明的透明导电膜的制作方法。The manufacturing method of the transparent conductive film of the present invention will be described in detail below.

本发明在制作上述的透明导电膜时,选择以纳米压印的方法形成该透明导电膜表面的网状凹槽。特别地,当透明基底为柔性材料时,可以通过卷对卷的辊筒压印的方法高速的生产该透明导电膜。因而在制膜之前,首先需要进行凸膜的制备。In the present invention, when the above-mentioned transparent conductive film is produced, the method of nanoimprinting is used to form the mesh grooves on the surface of the transparent conductive film. In particular, when the transparent substrate is a flexible material, the transparent conductive film can be produced at high speed by a roll-to-roll roll embossing method. Therefore, before the film is formed, the convex film needs to be prepared first.

请参见图4,图4是本发明的凸膜制备流程图。如图所示,该凸膜的制备包括:采用扫描光刻或平铺光刻,在光刻胶表面刻蚀出网格图案,该网格的边线为凹槽,且该凹槽的深宽比大于1∶1;Please refer to FIG. 4 . FIG. 4 is a flowchart of the preparation of the convex film of the present invention. As shown in the figure, the preparation of the convex film includes: using scanning lithography or tile lithography to etch a grid pattern on the surface of the photoresist, the edge of the grid is a groove, and the depth and width of the groove are The ratio is greater than 1:1;

通过真空溅射或者化学镀的方法,对具有凹槽图形的光刻胶进行金属化,使整个光刻胶表面,包括凹槽部分,形成电极层;Metallize the photoresist with a groove pattern by vacuum sputtering or electroless plating, so that the entire surface of the photoresist, including the groove part, forms an electrode layer;

带有导电层的光刻胶干板置入电铸槽中,进行金属离子的电沉积,在导电层上逐步沉积形成一定厚度金属薄板;The photoresist dry plate with the conductive layer is placed in the electroforming tank, and the electrodeposition of metal ions is carried out, and a metal thin plate of a certain thickness is gradually deposited on the conductive layer;

将金属薄板从光刻胶干板上分离,并去除光刻胶,在金属板上形成凸型的网格图形结构。The metal thin plate is separated from the photoresist dry plate, and the photoresist is removed to form a convex grid pattern structure on the metal plate.

其中,当网格为正四边形时,采用扫描光刻的方法,选择0.5um的梳妆光点对光刻胶表面进行纵向和横向的两次曝光,该种刻蚀方法优点是刻蚀速度快,且容易刻蚀出深纹图案。Among them, when the grid is a regular quadrilateral, the method of scanning lithography is adopted, and the light spot of 0.5um is selected to expose the surface of the photoresist twice vertically and horizontally. The advantage of this etching method is that the etching speed is fast, And it is easy to etch a deep grain pattern.

当网格为其他多边形时,采用平铺投影曝光的方法,现在光阑上预先设置曝光图形,然后以该图形对光刻胶表面进行曝光,直接形成具有正多边形图样的网格,并通过机械辅助,将单次曝光的图形拼接成整体,实现网格的刻蚀。该种刻蚀方法的优点是曝光图形可控,但机械精度要求较高。When the grid is other polygons, the method of tiled projection exposure is adopted. Now the exposure figure is preset on the diaphragm, and then the surface of the photoresist is exposed with this figure to directly form a grid with a regular polygon pattern, and through mechanical Auxiliary, splicing the single-exposure graphics into a whole to realize the etching of the grid. The advantage of this etching method is that the exposure pattern is controllable, but the mechanical precision is relatively high.

请再参见图5,图5是本发明的透明导电膜的制作流程图。如图所示,该方法主要包括三大工艺:首先是压印工艺,通过一表面有网格图样的金属凸模,对透明基底表面施压,在施压的同时,可以采用加热或者紫外固化等手段,将凸模表面的图案转移到透明基底上,以形成网线为凹槽的网格图案。其中该网格图案的边线为凹槽,且该凹槽的面积与该网格的面积之比小于5%。Please refer to FIG. 5 again. FIG. 5 is a flow chart of making the transparent conductive film of the present invention. As shown in the figure, the method mainly includes three major processes: first, the embossing process, through a metal punch with a grid pattern on the surface, to apply pressure to the surface of the transparent substrate, while applying pressure, heating or UV curing can be used Transfer the pattern on the surface of the convex mold to the transparent substrate to form a grid pattern with mesh lines as grooves. Wherein the edge of the grid pattern is a groove, and the ratio of the area of the groove to the area of the grid is less than 5%.

其次是金属化工艺,该工艺的目的是在导电区的凹槽中填设导电金属,使其充满或者溢出凹槽。具体地,该金属化工艺可以由以下几种方法进行:The second is the metallization process. The purpose of this process is to fill the conductive metal in the groove of the conductive area so that it fills or overflows the groove. Specifically, the metallization process can be performed by the following methods:

第一种方法可以为湿法涂布工艺。该方法包括:The first method may be a wet coating process. The method includes:

采用连续式涂布方法,在透明基底表面涂布掺有疏水溶剂的纳米银浆,该纳米银浆中的银粒子直径在50nm-70nm左右,其疏水溶剂比重为10%-20%之间;Using continuous coating method, coating the nano-silver paste mixed with hydrophobic solvent on the surface of the transparent substrate, the diameter of silver particles in the nano-silver paste is about 50nm-70nm, and the specific gravity of the hydrophobic solvent is between 10%-20%;

根据自流平效应,银浆会自动沉积于凹槽中,或者可以在透明基底表面增涂一层10%的疏水层,该疏水层的厚度控制在200nm以内,使其远小于凹槽的深度,则配合银浆中本身含有的疏水剂成分,可以加快银粒子往凹槽处聚集,在连续式涂布后,确保银粒子充满于凹槽中;According to the self-leveling effect, the silver paste will be automatically deposited in the groove, or a 10% hydrophobic layer can be coated on the surface of the transparent substrate. The thickness of the hydrophobic layer is controlled within 200nm, making it much smaller than the depth of the groove. In combination with the hydrophobic agent contained in the silver paste, it can accelerate the accumulation of silver particles to the grooves, and ensure that the silver particles are filled in the grooves after continuous coating;

加热烘烤,使银浆凝结,最终在凹槽中形成金属线栅。Heat and bake to make the silver paste condense, and finally form a metal wire grid in the groove.

这种方法的优点是工艺简单,操作方便,能够配合卷对卷(Roll to Roll)的连续式涂布方法,高速化大尺寸的进行生产。但缺点是银浆的附着力不佳,容易脱落,且涂布的均匀性效果不佳,容易使一些地方银浆聚集的比较多,而一些地方则比较稀疏。The advantage of this method is that the process is simple, the operation is convenient, and it can cooperate with the continuous coating method of roll-to-roll (Roll to Roll) to produce large-scale at high speed. But the disadvantage is that the adhesion of the silver paste is not good, it is easy to fall off, and the uniformity of the coating is not good, and it is easy to make the silver paste gather more in some places, while it is relatively sparse in some places.

第二种方法为电铸工艺或溅射工艺。在透明基底上,通过电铸工艺、或者真空溅射工艺沉积金属导电层,由于凹槽的内部两侧表面同时沉积,因此,在凹槽中的金属填充速度,比图形表面的金属沉积的速度快两倍。例如,对于凹槽线宽为2um,则槽填充完成时,表面金属厚度约为1um。The second method is an electroforming process or a sputtering process. On the transparent substrate, the metal conductive layer is deposited by electroforming process or vacuum sputtering process. Since the inner two sides of the groove are deposited simultaneously, the metal filling speed in the groove is faster than the metal deposition speed on the pattern surface. twice as fast. For example, for a groove line width of 2um, the surface metal thickness is about 1um when the groove is filled.

这种方法的优点是工艺相对成熟,金属沉积均匀,可以选择多种金属如铜、镍、铝等作为导电金属进行沉积,且附着力强不易脱落。缺点是表面全部都附有金属,容易造成浪费,且耗时长不适用大尺寸的制作。The advantage of this method is that the process is relatively mature, the metal deposition is uniform, and a variety of metals such as copper, nickel, aluminum, etc. can be selected as conductive metals for deposition, and the adhesion is strong and not easy to fall off. The disadvantage is that the surface is all attached to metal, which is easy to cause waste, and it takes a long time to make it not suitable for large-scale production.

最后为抛光工艺,该步骤主要为了去除在表面多余的金属层,保留导电区凹槽中的导电金属,以提高透明导光膜整体的透光性。该抛光工艺可以采用机械抛光、化学电解或化学腐蚀中的一种。The last is the polishing process. This step is mainly to remove the redundant metal layer on the surface and retain the conductive metal in the groove of the conductive area to improve the overall light transmittance of the transparent light guide film. The polishing process may adopt one of mechanical polishing, chemical electrolysis or chemical corrosion.

综上所述,本发明提供了一种透明导电膜,该透明导电膜利用纳米压印技术在透明基底表面压制出供导电金属埋设的凹槽,通过设计凹槽的线宽和深度以及占整个透明导电膜的比重,得到了一种透光率高且导电性好的透明导电膜。同时,由于导电金属部分被镶嵌在透明基底内部,不易脱落和氧化,并且可以采用柔性材料作为透明基底,开发出能在更多场合下应用的透明导电膜。In summary, the present invention provides a transparent conductive film, which utilizes nanoimprint technology to press out grooves for embedding conductive metals on the surface of a transparent substrate. By designing the line width and depth of the grooves and occupying the entire By adjusting the specific gravity of the transparent conductive film, a transparent conductive film with high light transmittance and good conductivity is obtained. At the same time, since the conductive metal part is embedded in the transparent substrate, it is not easy to fall off and oxidize, and flexible materials can be used as the transparent substrate to develop a transparent conductive film that can be used in more occasions.

由以上较佳具体实施例的详述,希望能更加清楚描述本发明的特征与精神,而并非以上述所揭露的较佳具体实施例来对本发明的权利要求范围加以限制。相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的权利要求的范围内。From the above detailed description of the preferred embodiments, it is hoped that the characteristics and spirit of the present invention can be described more clearly, and the scope of the claims of the present invention is not limited by the preferred embodiments disclosed above. On the contrary, the intention is to cover various modifications and equivalent arrangements within the scope of the appended claims of the present invention.

Claims (10)

1.一种透明导电膜,包括透明基底和导电金属,其特征在于:所述透明基底包括导电区和透光区,该导电区为相互连通的网线状凹槽,该透光区为该网线状凹槽围成的网格;所述导电金属填没于该导电区的网线状凹槽内,其中该凹槽的面积与该网格的面积之比小于5%。1. A transparent conductive film, comprising a transparent substrate and a conductive metal, characterized in that: the transparent substrate comprises a conductive region and a light-transmitting region, the conductive region is a mesh-like groove connected to each other, and the light-transmitting region is the mesh line A grid surrounded by a grid-like groove; the conductive metal is filled in the wire-like groove of the conductive region, wherein the ratio of the area of the groove to the area of the grid is less than 5%. 2.如权利要求1所述的透明导电膜,其特征在于:所述透光区的网格为正多边形网格,其边长尺度小于200um。2 . The transparent conductive film according to claim 1 , wherein the grid in the light-transmitting region is a regular polygonal grid with a side length of less than 200 um. 3 . 3.如权利要求1所述的透明导电膜,其特征在于:所述透明基底为柔性透明材料,其透光率大于85%。3 . The transparent conductive film according to claim 1 , wherein the transparent substrate is a flexible transparent material with a light transmittance greater than 85%. 4 . 4.如权利要求1所述的透明导电膜,其特征在于:所述导电区的凹槽深宽比大于1∶1。4. The transparent conductive film according to claim 1, wherein the groove aspect ratio of the conductive region is greater than 1:1. 5.一种透明导电膜的制作方法,其特征在于,包括如下步骤:5. A preparation method of transparent conductive film, is characterized in that, comprises the steps: 压印工艺:使用金属凸模在一透明基底上压印出网格图案,其中该网格的边线为凹槽,且该凹槽的面积与该网格的面积之比小于5%;Embossing process: using a metal punch to emboss a grid pattern on a transparent substrate, wherein the edge of the grid is a groove, and the ratio of the area of the groove to the area of the grid is less than 5%; 金属化工艺:对该透明基底进行金属化,使凹槽内充满导电金属;Metallization process: Metallize the transparent substrate to fill the groove with conductive metal; 抛光工艺:去除透明基底表面多余的导电金属,只保留凹槽中的导电金属,从而形成透明导电膜。Polishing process: remove excess conductive metal on the surface of the transparent substrate, and only retain the conductive metal in the groove, thereby forming a transparent conductive film. 6.如权利要求5所述的透明导电膜的制作方法,其特征在于:所述金属化工艺为湿法涂布工艺,包括:6. The preparation method of transparent conductive film as claimed in claim 5, is characterized in that: described metallization process is wet coating process, comprises: 采用连续式涂布方法,在透明基底表面涂布掺有疏水溶剂的纳米银浆;Continuous coating method is used to coat the nano-silver paste mixed with hydrophobic solvent on the surface of the transparent substrate; 根据自流平效应使银浆沉积于凹槽中;According to the self-leveling effect, the silver paste is deposited in the groove; 加热烘烤,使银浆凝结,在凹槽中形成金属线栅。Heat and bake to make the silver paste condense and form a metal wire grid in the groove. 7.如权利要求6所述的透明导电膜的制作方法,其特征在于:在透明基底上涂布一层疏水层,以加快纳米银浆往凹槽中聚集。7. The manufacturing method of the transparent conductive film according to claim 6, characterized in that: coating a layer of hydrophobic layer on the transparent base to accelerate the aggregation of the nano-silver paste into the groove. 8.如权利要求5所述的透明导电膜的制作方法,其特征在于:所述金属化工艺为电铸工艺或溅射工艺,通过电铸或溅射,在透明基底的凹槽中生长出导电金属。8. The manufacturing method of the transparent conductive film according to claim 5, characterized in that: the metallization process is an electroforming process or a sputtering process, and through electroforming or sputtering, a metal layer is grown in the groove of the transparent substrate. conductive metal. 9.如权利要求5所述的透明导电膜的制作方法,其特征在于:还包括凸膜的制备工艺,该制备工艺包括:9. The manufacture method of transparent conductive film as claimed in claim 5, is characterized in that: also comprise the preparation process of convex film, this preparation process comprises: 采用扫描光刻或平铺投影光刻,在光刻胶表面刻蚀出网格图案,该网格的边线为凹槽,且该凹槽的深宽比大于1∶1;Using scanning lithography or tiled projection lithography to etch a grid pattern on the surface of the photoresist, the edge of the grid is a groove, and the depth-to-width ratio of the groove is greater than 1:1; 通过真空溅射或者化学镀的方法,对具有凹槽图形的光刻胶进行金属化,使整个光刻胶表面,包括凹槽部分,形成电极层;Metallize the photoresist with a groove pattern by vacuum sputtering or electroless plating, so that the entire surface of the photoresist, including the groove part, forms an electrode layer; 带有导电层的光刻胶干板置入电铸槽中,进行金属离子的电沉积,在导电层上逐步沉积形成一定厚度金属薄板;The photoresist dry plate with the conductive layer is placed in the electroforming tank, and the electrodeposition of metal ions is carried out, and a metal thin plate of a certain thickness is gradually deposited on the conductive layer; 将金属薄板从光刻胶干板上分离,并去除光刻胶,在金属板上形成凸型的网格图形结构。The metal thin plate is separated from the photoresist dry plate, and the photoresist is removed to form a convex grid pattern structure on the metal plate. 10.如权利要求5所述的透明导电膜的制作方法,其特征在于:所述压印工艺为平面压印或者卷对卷辊筒压印。10 . The method for manufacturing a transparent conductive film according to claim 5 , wherein the embossing process is planar embossing or roll-to-roll roller embossing. 11 .
CN 201010533228 2010-11-05 2010-11-05 Transparent conductive film and manufacturing method thereof Active CN102063951B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010533228 CN102063951B (en) 2010-11-05 2010-11-05 Transparent conductive film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010533228 CN102063951B (en) 2010-11-05 2010-11-05 Transparent conductive film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN102063951A true CN102063951A (en) 2011-05-18
CN102063951B CN102063951B (en) 2013-07-03

Family

ID=43999186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010533228 Active CN102063951B (en) 2010-11-05 2010-11-05 Transparent conductive film and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN102063951B (en)

Cited By (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102708946A (en) * 2012-05-09 2012-10-03 崔铮 Double-sided graphical transparent conductive film and preparation method thereof
CN102903423A (en) * 2012-10-25 2013-01-30 南昌欧菲光科技有限公司 Conduction structure in transparent conduction film, transparent conduction film and manufacture method thereof
CN102930922A (en) * 2012-10-25 2013-02-13 南昌欧菲光科技有限公司 Transparent conducting film with anisotropic conductivity
CN103123564A (en) * 2013-03-22 2013-05-29 汕头超声显示器技术有限公司 Capacitive touch screen and manufacturing method thereof
CN103176650A (en) * 2013-03-01 2013-06-26 南昌欧菲光科技有限公司 Conductive glass substrate and manufacturing method of conductive glass substrate
CN103235675A (en) * 2013-05-09 2013-08-07 苏州维业达触控科技有限公司 Capacitive touch sensor production method and capacitive touch sensor
CN103246402A (en) * 2013-05-17 2013-08-14 汕头超声显示器技术有限公司 Display device with integrated touch control function
CN103246421A (en) * 2013-05-17 2013-08-14 汕头超声显示器技术有限公司 Polarizing piece with integrated touch control function and manufacturing method thereof
CN103279240A (en) * 2013-05-30 2013-09-04 南昌欧菲光科技有限公司 Touch panel
CN103295671A (en) * 2013-05-30 2013-09-11 南昌欧菲光科技有限公司 Transparent conducting film
CN103294314A (en) * 2013-05-17 2013-09-11 汕头超声显示器技术有限公司 Capacitive touch screen with light polarization function
CN103309527A (en) * 2012-03-15 2013-09-18 鸿富锦精密工业(深圳)有限公司 Capacitive touchpad and manufacturing equipment for same
CN103325441A (en) * 2012-03-21 2013-09-25 宸鸿科技(厦门)有限公司 Conductive thin film of touch panel and manufacturing method thereof
CN103337300A (en) * 2013-05-07 2013-10-02 西安交通大学 Transparent film mosaic circuit production method by using external electric field to drive filling
CN103345961A (en) * 2013-05-30 2013-10-09 南昌欧菲光科技有限公司 Transparent conducting film
CN103413593A (en) * 2013-03-30 2013-11-27 深圳欧菲光科技股份有限公司 Transparent electric conductor and preparation method thereof
CN103425320A (en) * 2013-02-04 2013-12-04 南昌欧菲光科技有限公司 Transparent touch screen
CN103426500A (en) * 2013-02-04 2013-12-04 南昌欧菲光科技有限公司 Double-layer transparent conductive film and preparation method thereof
CN103456390A (en) * 2013-02-05 2013-12-18 南昌欧菲光科技有限公司 Conducting film and manufacturing method thereof
CN103744571A (en) * 2014-01-26 2014-04-23 苏州维业达触控科技有限公司 Ultrathin touch sensor and manufacturing method thereof
CN103827783A (en) * 2011-07-21 2014-05-28 未来奈米科技股份有限公司 Apparatus and method for manufacturing a touch screen panel
CN103902115A (en) * 2012-12-28 2014-07-02 深圳欧菲光科技股份有限公司 Transparent conductor for touch screen and preparing method and application of transparent conductor
WO2014116534A1 (en) 2013-01-28 2014-07-31 Eastman Kodak Company Micro-wire pattern for electrode connection
WO2014117479A1 (en) * 2013-02-04 2014-08-07 南昌欧菲光科技有限公司 Transparent conductive film
CN103992041A (en) * 2014-04-30 2014-08-20 天津宝兴威科技有限公司 Manufacturing method of nano metal grid transparent electro-conductive glass
CN104009124A (en) * 2014-06-13 2014-08-27 苏州苏大维格光电科技股份有限公司 Solar cell superfine electrode transferring thin film, preparing method and application method of solar cell superfine electrode transferring thin film
US8828503B1 (en) 2013-02-28 2014-09-09 Eastman Kodak Company Making multi-layer micro-wire structure
US8865292B2 (en) 2013-01-22 2014-10-21 Eastman Kodak Company Micro-channel structure for micro-wires
WO2014180077A1 (en) * 2013-05-10 2014-11-13 合肥京东方光电科技有限公司 Flexible substrate, manufacturing method for same, and oled display apparatus
US8895429B2 (en) 2013-03-05 2014-11-25 Eastman Kodak Company Micro-channel structure with variable depths
CN104185410A (en) * 2014-09-12 2014-12-03 苏州大学 Electromagnetic shielding case based on micro metal grid and manufacturing method of electromagnetic shielding case
US8932474B1 (en) 2013-03-05 2015-01-13 Eastman Kodak Company Imprinted multi-layer micro structure method
CN104350551A (en) * 2013-03-07 2015-02-11 Lg化学株式会社 Transparent substrate including thin metal wires and manufacturing method thereof
US20150060113A1 (en) * 2013-01-22 2015-03-05 Yongcai Wang Photocurable composition, article, and method of use
WO2015038345A1 (en) 2013-09-11 2015-03-19 Eastman Kodak Company Multi-layer micro-wire substrate structure
WO2015041870A1 (en) 2013-09-20 2015-03-26 Eastman Kodak Company Imprinted multi-level micro-wire circuit structure
US9005744B2 (en) 2012-08-10 2015-04-14 Eastman Kodak Company Conductive micro-wire structure
US9058084B2 (en) 2013-04-15 2015-06-16 Eastman Kodak Company Hybrid single-side touch screen
US9061463B2 (en) 2013-02-28 2015-06-23 Eastman Kodak Company Embossed micro-structure with cured transfer material method
CN104766675A (en) * 2015-03-11 2015-07-08 中山大学 Application of Microwave in Preparation of Transparent Conductive Thin Film
JP2015520444A (en) * 2013-03-28 2015-07-16 ナンチャン オー−フィルム テック カンパニー リミテッド Transparent conductive film and method for producing the same
US9085194B2 (en) 2013-03-05 2015-07-21 Eastman Kodak Company Embossing stamp for optically diffuse micro-channel
CN104795130A (en) * 2014-01-20 2015-07-22 中国科学院苏州纳米技术与纳米仿生研究所 Transparent conductive film and preparation method thereof
TWI494814B (en) * 2013-05-30 2015-08-01 Nanchang O Film Tech Co Ltd Transparent conductive film
US9099227B2 (en) 2013-01-22 2015-08-04 Eastman Kodak Company Method of forming conductive films with micro-wires
CN104835555A (en) * 2015-05-13 2015-08-12 南京邮电大学 Preparation method of patterned metal transparent conductive film
US9131606B2 (en) 2012-08-10 2015-09-08 Eastman Kodak Company Micro-channel pattern for effective ink distribution
US9161456B1 (en) 2014-09-03 2015-10-13 Eastman Kodak Company Making imprinted micro-wire rib structure
US9167700B2 (en) 2013-03-05 2015-10-20 Eastman Kodak Company Micro-channel connection method
CN105045455A (en) * 2015-09-07 2015-11-11 张家港康得新光电材料有限公司 Metal grid transparent conducting film, preparation method thereof and capacitive touch screen
US9186698B1 (en) 2014-10-21 2015-11-17 Eastman Kodak Company Making imprinted multi-layer structure
TWI509481B (en) * 2013-05-30 2015-11-21 Nanchang O Film Tech Co Ltd Transparent conductive film
US9195358B1 (en) 2014-04-16 2015-11-24 Eastman Kodak Company Z-fold multi-element substrate structure
CN105088805A (en) * 2015-09-16 2015-11-25 苏州大学 Method for preparing functional material through nanoimprint
CN105152124A (en) * 2015-08-04 2015-12-16 上海交通大学 Method for storing CNTs (Carbon Nanotubes) by using deep silicon etching technology
CN105183202A (en) * 2014-05-30 2015-12-23 宸鸿光电科技股份有限公司 Touch module and manufacturing method thereof
US9229260B2 (en) 2013-04-15 2016-01-05 Eastman Kodak Company Imprinted bi-layer micro-structure
CN105374467A (en) * 2015-10-23 2016-03-02 苏州大学 Nanometer transfer method and nanometer functional device
US9282647B2 (en) 2012-02-28 2016-03-08 Eastman Kodak Company Method of making micro-channel structure for micro-wires
US9288901B2 (en) 2014-04-25 2016-03-15 Eastman Kodak Company Thin-film multi-layer micro-wire structure
US9296013B2 (en) 2013-02-28 2016-03-29 Eastman Kodak Company Making multi-layer micro-wire structure
CN105448423A (en) * 2014-06-12 2016-03-30 宸鸿科技(厦门)有限公司 Conducting film manufacturing method, touch control panel manufacturing method, and touch control panel
US9304636B2 (en) 2013-09-20 2016-04-05 Eastman Kodak Company Micro-wire touch screen with unpatterned conductive layer
US9345144B2 (en) 2013-02-28 2016-05-17 Eastman Kodak Company Making multi-layer micro-wire structure
US9374894B2 (en) 2013-03-05 2016-06-21 Eastman Kodak Company Imprinted micro-wire rib structure
CN105742380A (en) * 2016-03-30 2016-07-06 江苏欧达丰新能源科技发展有限公司 Coining process of solar cell grid line electrode pattern
US9416281B1 (en) 2014-10-29 2016-08-16 Eastman Kodak Company Making imprinted multi-layer biocidal particle structure
US9415419B2 (en) 2014-10-21 2016-08-16 Eastman Kodak Company Making imprinted multi-layer biocidal particle structure
CN105856707A (en) * 2015-01-18 2016-08-17 朱继承 Separable printed film, composite type printed structure and manufacturing method thereof
US9426885B2 (en) 2013-02-28 2016-08-23 Eastman Kodak Company Multi-layer micro-wire structure
US9434146B2 (en) 2014-10-21 2016-09-06 Eastman Kodak Company Using imprinted particle structure
US9439302B2 (en) 2013-05-30 2016-09-06 Nanchang O-Film Tech Co., Ltd. Transparent conductive film
US9448674B2 (en) 2013-09-11 2016-09-20 Eastman Kodak Company Making multi-layer micro-wire structure
CN105960155A (en) * 2016-05-30 2016-09-21 天诺光电材料股份有限公司 Flexible transparent conductive material for electromagnetic shielding window, and preparation method
US9465501B2 (en) 2013-09-11 2016-10-11 Eastman Kodak Company Multi-layer micro-wire substrate method
US9476010B2 (en) 2014-10-21 2016-10-25 Eastman Kodak Company Using imprinted multi-layer biocidal particle structure
US9513759B2 (en) 2013-09-11 2016-12-06 Eastman Kodak Company Multi-layer micro-wire structure
US9516744B2 (en) 2014-04-16 2016-12-06 Eastman Kodak Company Wrap-around micro-wire circuit method
US9510591B2 (en) 2014-10-29 2016-12-06 Eastman Kodak Company Imprinted multi-layer biocidal particle structure
CN106229080A (en) * 2016-08-26 2016-12-14 华南理工大学 Low resistance electrically conducting transparent network film for flexible electronic device and preparation method thereof
US9545101B2 (en) 2014-10-29 2017-01-17 Eastman Kodak Company Using imprinted multi-layer biocidal particle structure
CN106373664A (en) * 2015-07-23 2017-02-01 北京华纳高科科技有限公司 Preparation method and product of high-performance metal grid transparent conductive film
CN106547397A (en) * 2016-10-19 2017-03-29 苏州维业达触控科技有限公司 A kind of manufacture method of nesa coating, nesa coating and touch screen
CN106683795A (en) * 2017-03-02 2017-05-17 苏州维业达触控科技有限公司 Coating method of transparent conducting film and device for forming hydrophobic and oleophobic substance
CN106782741A (en) * 2015-11-24 2017-05-31 仇明侠 A kind of flexible transparent conducting film based on nano impression and preparation method thereof
US9754704B2 (en) 2014-04-29 2017-09-05 Eastman Kodak Company Making thin-film multi-layer micro-wire structure
CN107731349A (en) * 2017-08-29 2018-02-23 苏州泛普科技股份有限公司 A kind of hollow out plain conductor and preparation method and application
CN107943357A (en) * 2017-12-28 2018-04-20 苏州柏特瑞新材料有限公司 A kind of preparation method of metal grill capacitive touch screen
CN108012586A (en) * 2015-06-10 2018-05-08 吴铉锡 Utilize the electromagnetic shielding material of nanostructure
TWI647712B (en) * 2013-12-03 2019-01-11 美商柯達公司 Preparation of articles with conductive microwire patterns
US20190035719A1 (en) * 2017-07-28 2019-01-31 Tdk Corporation Electroconductive substrate, electronic device and display device
WO2019024217A1 (en) * 2017-08-02 2019-02-07 意力(广州)电子科技有限公司 Conductive film and touch screen
CN109493998A (en) * 2018-12-17 2019-03-19 太原理工大学 A kind of flexible transparent conducting film and preparation method thereof based on patterning layer assembly self-supporting film
CN109991772A (en) * 2019-03-29 2019-07-09 云谷(固安)科技有限公司 Display panel film layer structure and its preparation process
CN110831418A (en) * 2018-08-09 2020-02-21 鸿富锦精密工业(武汉)有限公司 Case panel and case adopting same
CN111016357A (en) * 2019-12-05 2020-04-17 福建华阳超纤有限公司 Manufacturing method of color-changing sun-proof super-fine leather fabric
CN111679556A (en) * 2020-07-08 2020-09-18 大连集思特科技有限公司 A kind of manufacturing method of flexible transparent display screen based on nanoimprint technology
CN113130138A (en) * 2021-04-28 2021-07-16 江苏软讯科技有限公司 Nano-silver conductive film and preparation method thereof
CN113391733A (en) * 2021-07-09 2021-09-14 江苏软讯科技有限公司 Metal grid flexible conductive film and manufacturing method thereof
CN113885251A (en) * 2020-07-02 2022-01-04 苏州维业达触控科技有限公司 LED light-emitting assembly and manufacturing method thereof, backlight module, and liquid crystal display device
CN114283994A (en) * 2021-11-23 2022-04-05 华中科技大学 An embedded metal mesh flexible electrode film and its preparation method and application
US12048092B2 (en) 2019-05-06 2024-07-23 3M Innovative Properties Company Patterned conductive article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279308A (en) * 1988-09-14 1990-03-19 Seiko Epson Corp Electrode formation method
CN1192717A (en) * 1995-06-07 1998-09-09 德克斯特公司 Debossable films
CN101120626A (en) * 2005-02-15 2008-02-06 富士胶片株式会社 Light transmitting conductive film, light transmitting electromagnetic shield film, optical filter and method for manufaturing display filter
CN101276079A (en) * 2007-03-28 2008-10-01 C.R.F.阿西安尼顾问公司 Method for obtaining a transparent conductive film
CN101512682A (en) * 2006-09-28 2009-08-19 富士胶片株式会社 Self-luminous display device and manufacturing method thereof, transparent conductive film, electroluminescent element, transparent electrode for solar cell, and transparent electrode for electronic paper
WO2009108801A2 (en) * 2008-02-28 2009-09-03 Sunlight Photonics Inc. Composite substrates for thin film electro-optical devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279308A (en) * 1988-09-14 1990-03-19 Seiko Epson Corp Electrode formation method
CN1192717A (en) * 1995-06-07 1998-09-09 德克斯特公司 Debossable films
CN101120626A (en) * 2005-02-15 2008-02-06 富士胶片株式会社 Light transmitting conductive film, light transmitting electromagnetic shield film, optical filter and method for manufaturing display filter
CN101512682A (en) * 2006-09-28 2009-08-19 富士胶片株式会社 Self-luminous display device and manufacturing method thereof, transparent conductive film, electroluminescent element, transparent electrode for solar cell, and transparent electrode for electronic paper
CN101276079A (en) * 2007-03-28 2008-10-01 C.R.F.阿西安尼顾问公司 Method for obtaining a transparent conductive film
WO2009108801A2 (en) * 2008-02-28 2009-09-03 Sunlight Photonics Inc. Composite substrates for thin film electro-optical devices

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《IEEE》 20100625 Joop van Deelen et al HIGHLY IMPROVED TRANSPARENT CONDUCTORS BY COMBINATION OF TCOS AND METALLIC GRIDS 第000992-000993页 1-10 , *
JOOP VAN DEELEN ET AL: "HIGHLY IMPROVED TRANSPARENT CONDUCTORS BY COMBINATION OF TCOS AND METALLIC GRIDS", 《IEEE》 *
RONN ANDRIESSEN ET AL: "TOWARDS LOW COST, EFFICIENT AND STABLE ORGANIC PHOTOVOLTAIC MODULES", 《25TH EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE AND EXHIBITION》 *

Cited By (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103827783A (en) * 2011-07-21 2014-05-28 未来奈米科技股份有限公司 Apparatus and method for manufacturing a touch screen panel
CN103827783B (en) * 2011-07-21 2017-02-15 未来奈米科技股份有限公司 Apparatus and method for manufacturing a touch screen panel
US9282647B2 (en) 2012-02-28 2016-03-08 Eastman Kodak Company Method of making micro-channel structure for micro-wires
CN107765933B (en) * 2012-03-15 2020-12-18 烟台正海科技股份有限公司 Capacitive touch panel
CN108228012A (en) * 2012-03-15 2018-06-29 罗灿 A kind of manufacturing method of capacitive type touch pad
CN107765933A (en) * 2012-03-15 2018-03-06 深圳迈辽技术转移中心有限公司 Capacitive type touch pad
CN103309527B (en) * 2012-03-15 2018-01-16 深圳市振宇达智能机器人科技有限公司 Capacitive type touch pad and its manufacturing equipment
CN103309527A (en) * 2012-03-15 2013-09-18 鸿富锦精密工业(深圳)有限公司 Capacitive touchpad and manufacturing equipment for same
CN103325441A (en) * 2012-03-21 2013-09-25 宸鸿科技(厦门)有限公司 Conductive thin film of touch panel and manufacturing method thereof
WO2013139240A1 (en) * 2012-03-21 2013-09-26 宸鸿科技(厦门)有限公司 Conductive film of touch control panel and manufacturing method thereof
CN102708946B (en) * 2012-05-09 2015-01-07 南昌欧菲光科技有限公司 Double-sided graphical transparent conductive film and preparation method thereof
CN102708946A (en) * 2012-05-09 2012-10-03 崔铮 Double-sided graphical transparent conductive film and preparation method thereof
US9137893B2 (en) 2012-08-10 2015-09-15 Eastman Kodak Company Micro-wire electrode buss
US9131606B2 (en) 2012-08-10 2015-09-08 Eastman Kodak Company Micro-channel pattern for effective ink distribution
US9005744B2 (en) 2012-08-10 2015-04-14 Eastman Kodak Company Conductive micro-wire structure
US9167688B2 (en) 2012-08-10 2015-10-20 Eastman Kodak Company Micro-wire pattern for electrode connection
CN102930922A (en) * 2012-10-25 2013-02-13 南昌欧菲光科技有限公司 Transparent conducting film with anisotropic conductivity
JP2015501502A (en) * 2012-10-25 2015-01-15 南昌欧菲光科技有限公司Nanchang O−Film Tech. Co., Ltd. Conductive structure of transparent conductive film, transparent conductive film, and manufacturing method thereof
WO2014063417A1 (en) * 2012-10-25 2014-05-01 南昌欧菲光科技有限公司 Conductive structure in transparent conductive film, transparent conductive film, and manufacturing method
CN102903423A (en) * 2012-10-25 2013-01-30 南昌欧菲光科技有限公司 Conduction structure in transparent conduction film, transparent conduction film and manufacture method thereof
CN102903423B (en) * 2012-10-25 2015-05-13 南昌欧菲光科技有限公司 Conduction structure in transparent conduction film, transparent conduction film and manufacture method thereof
CN102930922B (en) * 2012-10-25 2015-07-08 南昌欧菲光科技有限公司 Transparent conducting film with anisotropic conductivity
CN103902115B (en) * 2012-12-28 2018-04-06 深圳欧菲光科技股份有限公司 Touch-screen transparent conductive body and its preparation method and application
CN103902115A (en) * 2012-12-28 2014-07-02 深圳欧菲光科技股份有限公司 Transparent conductor for touch screen and preparing method and application of transparent conductor
US20150060113A1 (en) * 2013-01-22 2015-03-05 Yongcai Wang Photocurable composition, article, and method of use
US9099227B2 (en) 2013-01-22 2015-08-04 Eastman Kodak Company Method of forming conductive films with micro-wires
US8865292B2 (en) 2013-01-22 2014-10-21 Eastman Kodak Company Micro-channel structure for micro-wires
WO2014116534A1 (en) 2013-01-28 2014-07-31 Eastman Kodak Company Micro-wire pattern for electrode connection
CN103426500A (en) * 2013-02-04 2013-12-04 南昌欧菲光科技有限公司 Double-layer transparent conductive film and preparation method thereof
TWI493575B (en) * 2013-02-04 2015-07-21 南昌歐菲光科技有限公司 Transparent conductive film
WO2014117479A1 (en) * 2013-02-04 2014-08-07 南昌欧菲光科技有限公司 Transparent conductive film
CN103426500B (en) * 2013-02-04 2016-03-09 南昌欧菲光科技有限公司 double-layer transparent conductive film and preparation method thereof
CN103425320A (en) * 2013-02-04 2013-12-04 南昌欧菲光科技有限公司 Transparent touch screen
CN103456390B (en) * 2013-02-05 2016-04-27 南昌欧菲光科技有限公司 Conducting film and manufacture method thereof
US9521746B2 (en) 2013-02-05 2016-12-13 Nanchang O-Film Tech. Co., Ltd. Conductive film and preparation method thereof
WO2014121582A1 (en) * 2013-02-05 2014-08-14 南昌欧菲光科技有限公司 Conductive film and manufacturing method thereof
CN103456390A (en) * 2013-02-05 2013-12-18 南昌欧菲光科技有限公司 Conducting film and manufacturing method thereof
US9345144B2 (en) 2013-02-28 2016-05-17 Eastman Kodak Company Making multi-layer micro-wire structure
US9061463B2 (en) 2013-02-28 2015-06-23 Eastman Kodak Company Embossed micro-structure with cured transfer material method
US9296013B2 (en) 2013-02-28 2016-03-29 Eastman Kodak Company Making multi-layer micro-wire structure
US9426885B2 (en) 2013-02-28 2016-08-23 Eastman Kodak Company Multi-layer micro-wire structure
US8828503B1 (en) 2013-02-28 2014-09-09 Eastman Kodak Company Making multi-layer micro-wire structure
US9226411B2 (en) 2013-02-28 2015-12-29 Eastman Kodak Company Making multi-layer micro-wire structure
CN103176650B (en) * 2013-03-01 2016-09-28 南昌欧菲光科技有限公司 Conducting glass substrate and preparation method thereof
CN103176650A (en) * 2013-03-01 2013-06-26 南昌欧菲光科技有限公司 Conductive glass substrate and manufacturing method of conductive glass substrate
US9085194B2 (en) 2013-03-05 2015-07-21 Eastman Kodak Company Embossing stamp for optically diffuse micro-channel
US9078360B2 (en) 2013-03-05 2015-07-07 Eastman Kodak Company Imprinted multi-layer micro-structure
US9374894B2 (en) 2013-03-05 2016-06-21 Eastman Kodak Company Imprinted micro-wire rib structure
US8895429B2 (en) 2013-03-05 2014-11-25 Eastman Kodak Company Micro-channel structure with variable depths
US9423562B2 (en) 2013-03-05 2016-08-23 Eastman Kodak Company Imprinted micro-wire circuit multi-level stamp method
US9215798B2 (en) 2013-03-05 2015-12-15 Eastman Kodak Company Imprinted multi-layer micro-structure method with multi-level stamp
US9277642B2 (en) 2013-03-05 2016-03-01 Eastman Kodak Company Imprinted bi-layer micro-structure method
US9417385B2 (en) 2013-03-05 2016-08-16 Eastman Kodak Company Imprinted multi-level micro-wire circuit structure method
US9101056B2 (en) 2013-03-05 2015-08-04 Eastman Kodak Company Imprinted bi-layer micro-structure method with bi-level stamp
US8932474B1 (en) 2013-03-05 2015-01-13 Eastman Kodak Company Imprinted multi-layer micro structure method
US9167700B2 (en) 2013-03-05 2015-10-20 Eastman Kodak Company Micro-channel connection method
CN104350551A (en) * 2013-03-07 2015-02-11 Lg化学株式会社 Transparent substrate including thin metal wires and manufacturing method thereof
CN104350551B (en) * 2013-03-07 2016-11-30 Lg化学株式会社 Transparent substrate including thin metal wires and method of manufacturing the same
CN103123564B (en) * 2013-03-22 2015-12-09 汕头超声显示器技术有限公司 A kind of capacitance touch screen and manufacture method thereof
CN103123564A (en) * 2013-03-22 2013-05-29 汕头超声显示器技术有限公司 Capacitive touch screen and manufacturing method thereof
JP2015520444A (en) * 2013-03-28 2015-07-16 ナンチャン オー−フィルム テック カンパニー リミテッド Transparent conductive film and method for producing the same
CN103413593A (en) * 2013-03-30 2013-11-27 深圳欧菲光科技股份有限公司 Transparent electric conductor and preparation method thereof
CN103413593B (en) * 2013-03-30 2014-09-17 深圳欧菲光科技股份有限公司 Transparent electric conductor and preparation method thereof
US9229260B2 (en) 2013-04-15 2016-01-05 Eastman Kodak Company Imprinted bi-layer micro-structure
US9058084B2 (en) 2013-04-15 2015-06-16 Eastman Kodak Company Hybrid single-side touch screen
CN103337300A (en) * 2013-05-07 2013-10-02 西安交通大学 Transparent film mosaic circuit production method by using external electric field to drive filling
CN103235675A (en) * 2013-05-09 2013-08-07 苏州维业达触控科技有限公司 Capacitive touch sensor production method and capacitive touch sensor
CN103235675B (en) * 2013-05-09 2017-02-08 苏州维业达触控科技有限公司 Capacitive touch sensor production method and capacitive touch sensor
US9281493B2 (en) 2013-05-10 2016-03-08 Hefei Boe Optoelectronics Technology Co., Ltd. Flexible substrate and manufacturing method thereof, OLED display device
WO2014180077A1 (en) * 2013-05-10 2014-11-13 合肥京东方光电科技有限公司 Flexible substrate, manufacturing method for same, and oled display apparatus
CN103246402A (en) * 2013-05-17 2013-08-14 汕头超声显示器技术有限公司 Display device with integrated touch control function
CN103294314B (en) * 2013-05-17 2016-12-07 汕头超声显示器技术有限公司 A kind of capacitance touch screen with polarisation function
CN103246421B (en) * 2013-05-17 2016-10-05 汕头超声显示器技术有限公司 The polaroid of a kind of integrated touch controllable function and manufacture method thereof
CN103294314A (en) * 2013-05-17 2013-09-11 汕头超声显示器技术有限公司 Capacitive touch screen with light polarization function
CN103246421A (en) * 2013-05-17 2013-08-14 汕头超声显示器技术有限公司 Polarizing piece with integrated touch control function and manufacturing method thereof
CN103295671B (en) * 2013-05-30 2016-08-10 南昌欧菲光科技有限公司 Nesa coating
TWI494814B (en) * 2013-05-30 2015-08-01 Nanchang O Film Tech Co Ltd Transparent conductive film
TWI509481B (en) * 2013-05-30 2015-11-21 Nanchang O Film Tech Co Ltd Transparent conductive film
US9516754B2 (en) 2013-05-30 2016-12-06 Nanchang O-Film Tech Co., Ltd. Transparent conductive film
CN103279240B (en) * 2013-05-30 2016-03-09 南昌欧菲光科技有限公司 touch panel
CN103345961A (en) * 2013-05-30 2013-10-09 南昌欧菲光科技有限公司 Transparent conducting film
US9439302B2 (en) 2013-05-30 2016-09-06 Nanchang O-Film Tech Co., Ltd. Transparent conductive film
TWI509480B (en) * 2013-05-30 2015-11-21 Nanchang O Film Tech Co Ltd Touch panel
CN103295671A (en) * 2013-05-30 2013-09-11 南昌欧菲光科技有限公司 Transparent conducting film
CN103279240A (en) * 2013-05-30 2013-09-04 南昌欧菲光科技有限公司 Touch panel
WO2015038345A1 (en) 2013-09-11 2015-03-19 Eastman Kodak Company Multi-layer micro-wire substrate structure
US9448674B2 (en) 2013-09-11 2016-09-20 Eastman Kodak Company Making multi-layer micro-wire structure
US9513759B2 (en) 2013-09-11 2016-12-06 Eastman Kodak Company Multi-layer micro-wire structure
US9107316B2 (en) 2013-09-11 2015-08-11 Eastman Kodak Company Multi-layer micro-wire substrate structure
US9465501B2 (en) 2013-09-11 2016-10-11 Eastman Kodak Company Multi-layer micro-wire substrate method
US9304636B2 (en) 2013-09-20 2016-04-05 Eastman Kodak Company Micro-wire touch screen with unpatterned conductive layer
WO2015041870A1 (en) 2013-09-20 2015-03-26 Eastman Kodak Company Imprinted multi-level micro-wire circuit structure
TWI647712B (en) * 2013-12-03 2019-01-11 美商柯達公司 Preparation of articles with conductive microwire patterns
CN104795130A (en) * 2014-01-20 2015-07-22 中国科学院苏州纳米技术与纳米仿生研究所 Transparent conductive film and preparation method thereof
CN104795130B (en) * 2014-01-20 2017-12-05 中国科学院苏州纳米技术与纳米仿生研究所 Transparent conductive film and preparation method thereof
CN103744571A (en) * 2014-01-26 2014-04-23 苏州维业达触控科技有限公司 Ultrathin touch sensor and manufacturing method thereof
US9603240B2 (en) 2014-04-16 2017-03-21 Eastman Kodak Company Making Z-fold micro-wire substrate structure
US9516744B2 (en) 2014-04-16 2016-12-06 Eastman Kodak Company Wrap-around micro-wire circuit method
US9195358B1 (en) 2014-04-16 2015-11-24 Eastman Kodak Company Z-fold multi-element substrate structure
US9635755B2 (en) 2014-04-16 2017-04-25 Eastman Kodak Company Making Z-fold multi-element substrate structure
US9288901B2 (en) 2014-04-25 2016-03-15 Eastman Kodak Company Thin-film multi-layer micro-wire structure
US9754704B2 (en) 2014-04-29 2017-09-05 Eastman Kodak Company Making thin-film multi-layer micro-wire structure
CN103992041A (en) * 2014-04-30 2014-08-20 天津宝兴威科技有限公司 Manufacturing method of nano metal grid transparent electro-conductive glass
CN105183202B (en) * 2014-05-30 2018-05-04 宸鸿光电科技股份有限公司 Touch module and manufacturing method thereof
CN105183202A (en) * 2014-05-30 2015-12-23 宸鸿光电科技股份有限公司 Touch module and manufacturing method thereof
CN105448423A (en) * 2014-06-12 2016-03-30 宸鸿科技(厦门)有限公司 Conducting film manufacturing method, touch control panel manufacturing method, and touch control panel
CN105448423B (en) * 2014-06-12 2018-06-22 宸鸿科技(厦门)有限公司 The production method of conductive film and the production method of touch panel and touch panel
US11476373B2 (en) 2014-06-13 2022-10-18 Svg Optronics Co., Ltd. Solar cell superfine electrode transfer thin film, manufacturing method and application method thereof
CN104009124A (en) * 2014-06-13 2014-08-27 苏州苏大维格光电科技股份有限公司 Solar cell superfine electrode transferring thin film, preparing method and application method of solar cell superfine electrode transferring thin film
US9161456B1 (en) 2014-09-03 2015-10-13 Eastman Kodak Company Making imprinted micro-wire rib structure
CN104185410B (en) * 2014-09-12 2017-09-01 苏州大学 Electromagnetic shielding cover based on micro metal grid and preparation method thereof
CN104185410A (en) * 2014-09-12 2014-12-03 苏州大学 Electromagnetic shielding case based on micro metal grid and manufacturing method of electromagnetic shielding case
US9415419B2 (en) 2014-10-21 2016-08-16 Eastman Kodak Company Making imprinted multi-layer biocidal particle structure
US9186698B1 (en) 2014-10-21 2015-11-17 Eastman Kodak Company Making imprinted multi-layer structure
US9420783B2 (en) 2014-10-21 2016-08-23 Eastman Kodak Company Making imprinted particle structure
US9434146B2 (en) 2014-10-21 2016-09-06 Eastman Kodak Company Using imprinted particle structure
US9476010B2 (en) 2014-10-21 2016-10-25 Eastman Kodak Company Using imprinted multi-layer biocidal particle structure
US9510591B2 (en) 2014-10-29 2016-12-06 Eastman Kodak Company Imprinted multi-layer biocidal particle structure
US9416281B1 (en) 2014-10-29 2016-08-16 Eastman Kodak Company Making imprinted multi-layer biocidal particle structure
US9545101B2 (en) 2014-10-29 2017-01-17 Eastman Kodak Company Using imprinted multi-layer biocidal particle structure
CN105856707A (en) * 2015-01-18 2016-08-17 朱继承 Separable printed film, composite type printed structure and manufacturing method thereof
CN104766675A (en) * 2015-03-11 2015-07-08 中山大学 Application of Microwave in Preparation of Transparent Conductive Thin Film
CN104835555A (en) * 2015-05-13 2015-08-12 南京邮电大学 Preparation method of patterned metal transparent conductive film
CN104835555B (en) * 2015-05-13 2017-09-15 南京邮电大学 A kind of preparation method of pattern metal transparent conductive film
CN108012586A (en) * 2015-06-10 2018-05-08 吴铉锡 Utilize the electromagnetic shielding material of nanostructure
CN106373664B (en) * 2015-07-23 2018-09-04 北京华纳高科科技有限公司 A kind of high-performance metal grid method for preparing transparent conductive film and its product
CN106373664A (en) * 2015-07-23 2017-02-01 北京华纳高科科技有限公司 Preparation method and product of high-performance metal grid transparent conductive film
CN105152124A (en) * 2015-08-04 2015-12-16 上海交通大学 Method for storing CNTs (Carbon Nanotubes) by using deep silicon etching technology
CN105045455A (en) * 2015-09-07 2015-11-11 张家港康得新光电材料有限公司 Metal grid transparent conducting film, preparation method thereof and capacitive touch screen
CN105088805A (en) * 2015-09-16 2015-11-25 苏州大学 Method for preparing functional material through nanoimprint
CN105374467A (en) * 2015-10-23 2016-03-02 苏州大学 Nanometer transfer method and nanometer functional device
CN105374467B (en) * 2015-10-23 2017-03-22 苏州大学 Nanometer transfer method and nanometer functional device
CN106782741A (en) * 2015-11-24 2017-05-31 仇明侠 A kind of flexible transparent conducting film based on nano impression and preparation method thereof
CN105742380A (en) * 2016-03-30 2016-07-06 江苏欧达丰新能源科技发展有限公司 Coining process of solar cell grid line electrode pattern
CN105960155A (en) * 2016-05-30 2016-09-21 天诺光电材料股份有限公司 Flexible transparent conductive material for electromagnetic shielding window, and preparation method
CN106229080A (en) * 2016-08-26 2016-12-14 华南理工大学 Low resistance electrically conducting transparent network film for flexible electronic device and preparation method thereof
CN106547397A (en) * 2016-10-19 2017-03-29 苏州维业达触控科技有限公司 A kind of manufacture method of nesa coating, nesa coating and touch screen
CN106547397B (en) * 2016-10-19 2022-03-22 苏州维业达触控科技有限公司 Method for making transparent conductive film, transparent conductive film and touch screen
CN106683795A (en) * 2017-03-02 2017-05-17 苏州维业达触控科技有限公司 Coating method of transparent conducting film and device for forming hydrophobic and oleophobic substance
US20190035719A1 (en) * 2017-07-28 2019-01-31 Tdk Corporation Electroconductive substrate, electronic device and display device
US10867898B2 (en) * 2017-07-28 2020-12-15 Tdk Corporation Electroconductive substrate, electronic device and display device
US11031330B2 (en) 2017-07-28 2021-06-08 Tdk Corporation Electroconductive substrate, electronic device and display device
WO2019024217A1 (en) * 2017-08-02 2019-02-07 意力(广州)电子科技有限公司 Conductive film and touch screen
CN107731349A (en) * 2017-08-29 2018-02-23 苏州泛普科技股份有限公司 A kind of hollow out plain conductor and preparation method and application
CN107943357A (en) * 2017-12-28 2018-04-20 苏州柏特瑞新材料有限公司 A kind of preparation method of metal grill capacitive touch screen
CN110831418A (en) * 2018-08-09 2020-02-21 鸿富锦精密工业(武汉)有限公司 Case panel and case adopting same
CN109493998A (en) * 2018-12-17 2019-03-19 太原理工大学 A kind of flexible transparent conducting film and preparation method thereof based on patterning layer assembly self-supporting film
CN109991772A (en) * 2019-03-29 2019-07-09 云谷(固安)科技有限公司 Display panel film layer structure and its preparation process
CN109991772B (en) * 2019-03-29 2023-03-14 广州国显科技有限公司 Display panel film structure and preparation process thereof
US12048092B2 (en) 2019-05-06 2024-07-23 3M Innovative Properties Company Patterned conductive article
US12133327B2 (en) 2019-05-06 2024-10-29 3M Innovative Properties Company Patterned article including electrically conductive elements
CN111016357B (en) * 2019-12-05 2022-02-25 福建华阳超纤有限公司 Manufacturing method of color-changing sun-proof super-fine leather fabric
CN111016357A (en) * 2019-12-05 2020-04-17 福建华阳超纤有限公司 Manufacturing method of color-changing sun-proof super-fine leather fabric
CN113885251A (en) * 2020-07-02 2022-01-04 苏州维业达触控科技有限公司 LED light-emitting assembly and manufacturing method thereof, backlight module, and liquid crystal display device
CN111679556A (en) * 2020-07-08 2020-09-18 大连集思特科技有限公司 A kind of manufacturing method of flexible transparent display screen based on nanoimprint technology
CN113130138B (en) * 2021-04-28 2022-12-13 江苏软讯科技有限公司 Nano-silver conductive film and preparation method thereof
CN113130138A (en) * 2021-04-28 2021-07-16 江苏软讯科技有限公司 Nano-silver conductive film and preparation method thereof
CN113391733A (en) * 2021-07-09 2021-09-14 江苏软讯科技有限公司 Metal grid flexible conductive film and manufacturing method thereof
CN114283994A (en) * 2021-11-23 2022-04-05 华中科技大学 An embedded metal mesh flexible electrode film and its preparation method and application

Also Published As

Publication number Publication date
CN102063951B (en) 2013-07-03

Similar Documents

Publication Publication Date Title
CN102063951B (en) Transparent conductive film and manufacturing method thereof
CN104835555B (en) A kind of preparation method of pattern metal transparent conductive film
CN103207702B (en) Touch-screen and manufacture method thereof
CA2826027C (en) Patterned flexible transparent conductive sheet and manufacturing method thereof
US20150313022A1 (en) Grid and nanostructure transparent conductor for low sheet resistance applications
EP3385995A1 (en) Flexible transparent thin film
CN105489784B (en) Electrode and its application prepared by the preparation method and this method of compliant conductive electrode
JP6131196B2 (en) Method for metallizing a textured surface
CN113470890B (en) Transparent conductive film structure and manufacturing method thereof
KR101682501B1 (en) Transparant electrode containing silver nanowire-patterned layer and graphene layer, and manufacturing method thereof
JP2011167924A (en) Material with low reflection conductive surface and manufacturing method thereof
CN103408993A (en) Conductive ink, transparent conductor and preparation method thereof
CN113066604A (en) Conductive film and preparation method thereof
US20190334055A1 (en) Flexible transparent thin film
KR100957487B1 (en) Method for fabricating plastic electrode film
CN105374467B (en) Nanometer transfer method and nanometer functional device
CN1292977C (en) Deep submicron three-dimensional rolling mould and its mfg. method
Yang et al. All‐Solution‐Processed, Scalable, Self‐Cracking Ag Network Transparent Conductor
CN113782256B (en) Method for manufacturing low-surface-roughness transparent electrode
Chung et al. Ag paste-based nanomesh electrodes for large-area touch screen panels
US20140205810A1 (en) Method of making micro-channel structure for micro-wires
CN113936844B (en) Transparent conductive electrode, preparation method thereof and electronic device
CN110265178A (en) Preparation method of flexible transparent conductive film
US20140262452A1 (en) Embossed micro-structure with cured transfer material method
CN102709156A (en) Wet etching method for ZnO-based transparent conductive film

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 215026 No. 478 South Street, Suzhou Industrial Park, Jiangsu, China

Co-patentee after: Suzhou University

Patentee after: SUZHOU SUDAVIG SCIENCE AND TECHNOLOGY GROUP Co.,Ltd.

Address before: 215026 No. 478 South Street, Suzhou Industrial Park, Jiangsu, China

Co-patentee before: Suzhou University

Patentee before: SVG OPTRONICS, Co.,Ltd.