CN101975994B - Three-dimensional imaging system with multi-stage lens - Google Patents
Three-dimensional imaging system with multi-stage lens Download PDFInfo
- Publication number
- CN101975994B CN101975994B CN2010102646710A CN201010264671A CN101975994B CN 101975994 B CN101975994 B CN 101975994B CN 2010102646710 A CN2010102646710 A CN 2010102646710A CN 201010264671 A CN201010264671 A CN 201010264671A CN 101975994 B CN101975994 B CN 101975994B
- Authority
- CN
- China
- Prior art keywords
- lens
- lenses
- level
- stage
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 106
- 230000009467 reduction Effects 0.000 claims abstract description 8
- 239000000284 extract Substances 0.000 claims abstract description 3
- 230000003287 optical effect Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 14
- 230000008859 change Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 238000003491 array Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
本发明是多级透镜的三维成像系统,包括多级透镜和传感器,多级透镜为第一级透镜、第二级透镜、……第N-2级透镜、第N-1级透镜、第N级透镜,其中:在光线传播的方向依序放置多级透镜和传感器,光线通过第一级透镜成像至第N-1级透镜用于生成多级场景缩小成像信息,多级场景缩小成像信息继续传播至第N级透镜,第N级透镜得到物体光线的多视角的场景二维信息,传感器提取多视角的场景二维信息,再通过立体匹配,从而获得场景中物体的深度信息。设计传感器像素尺寸和各级透镜的各个透镜的焦距,还有各级透镜的相邻透镜的距离,从而得到良好的深度分辨率。
The present invention is a three-dimensional imaging system of a multi-stage lens, including a multi-stage lens and a sensor. Level lens, wherein: multi-level lenses and sensors are placed in sequence in the direction of light propagation, the light passes through the first-level lens and is imaged to the N-1th level lens to generate multi-level scene reduction imaging information, and the multi-level scene reduction imaging information continues Propagate to the N-level lens, the N-level lens obtains the multi-view scene two-dimensional information of the object light, the sensor extracts the multi-view scene two-dimensional information, and then obtains the depth information of the object in the scene through stereo matching. Design the pixel size of the sensor, the focal length of each lens of each level of lens, and the distance between adjacent lenses of each level of lens, so as to obtain good depth resolution.
Description
技术领域 technical field
本发明涉及三维(3D)成像领域。更具体地,本发明涉及用于多级透镜的三维成像系统。The present invention relates to the field of three-dimensional (3D) imaging. More specifically, the present invention relates to three-dimensional imaging systems for multi-stage lenses.
背景技术 Background technique
三维技术的发展已经超过一个世纪了,但是通常因为对操作者的要求以及成本而在应用中受到限制。通常我们说一个客观的世界是三维的,客观世界的三维图像通过某种技术把它记录下来然后处理、压缩再传输出去,显示出来,最终在人的大脑中再现客观世界的图像。现在,3D系统正逐步的用于娱乐、商业和科学应用。随之而来的是,许多硬件和软件公司也加入了3D系统。Three-dimensional technology has been developed for more than a century, but its application is usually limited by operator requirements and cost. Usually we say that an objective world is three-dimensional, and the three-dimensional image of the objective world is recorded by a certain technology, then processed, compressed, and then transmitted, displayed, and finally the image of the objective world is reproduced in the human brain. Now, 3D systems are gradually being used in entertainment, business and scientific applications. Along with this, many hardware and software companies also joined the 3D system.
近几年来,NTT DoCoMo公布的Sharp Mova SH251iS手机,首次运用了能够显示3D图像的彩色屏幕。单个数码相机通过拍摄两张二维(2D)的不同角度的图像,然后经过处理从而得到3D图像。当3D图像被发送出去的时候,需要有类似功能的设备才能看到3D图像。并且由于单个数码相机拍摄的是2D图像,所以必须经过认为的处理转换成3D图像。为了得到比较好的3D图像,在拍摄的时候,拍摄的物体的位置的要求是比较苛刻的。所以这个图像的质量不能保证。In recent years, the Sharp Mova SH251iS mobile phone released by NTT DoCoMo has used a color screen capable of displaying 3D images for the first time. A single digital camera takes two two-dimensional (2D) images from different angles, and then processes them to obtain a 3D image. When 3D images are sent out, devices with similar capabilities are required to view the 3D images. And because a single digital camera shoots 2D images, it must be converted into 3D images through deliberate processing. In order to obtain a better 3D image, the requirements for the position of the object to be photographed are relatively strict when shooting. So the quality of this image cannot be guaranteed.
富士Real 3D W1用到了全新研发的“FinePix REAL 3D镜头系统”和自然影像处理引擎3D,其实利用了双目视觉,即利用两个镜头来模拟人的两只眼睛,经过处理从而形成有层次感的3D影像。首先融合了采集到两个CCD传感器上的同步2D信息,然后实时地将其处理成高质量的影像。但是需要两个镜头来模拟,从而使设备的尺寸太大,不便携带,从而推广受限。Fuji Real 3D W1 uses the newly developed "FinePix REAL 3D lens system" and the natural image processing engine 3D. In fact, it uses binocular vision, that is, uses two lenses to simulate the two eyes of a person. After processing, it forms a sense of hierarchy. 3D images. Firstly, the synchronous 2D information collected by two CCD sensors is fused, and then processed into high-quality images in real time. However, two lenses are required for simulation, which makes the size of the device too large and inconvenient to carry, thus limiting the promotion.
SwissRanger SR-2相机首次采用了TOF原理技术。将一束光作为参考发射到待测场景中,通过计算光束回光的时间差或者相位差,计算出场景中物体的距离,从而得到深度信息。此外,再结合相机拍摄获得二维影像信息,从而能同时获取整个场景。由于要用到参考光束,从而使得设备在获取整个场景的时候收到限制,最终导致深度分辨率低、视角小。The SwissRanger SR-2 camera adopts TOF principle technology for the first time. Send a beam of light as a reference into the scene to be tested, and calculate the distance of the object in the scene by calculating the time difference or phase difference of the beam back to the light, so as to obtain the depth information. In addition, combined with camera shooting to obtain two-dimensional image information, the entire scene can be acquired at the same time. Due to the use of a reference beam, the device is limited in capturing the entire scene, resulting in low depth resolution and a small viewing angle.
目前的三维获取设备的研究成果仍然存在设备的尺寸太大;深度分辨率低、是视角小;可重计算性弱;不能便捷地获取非刚体的完整物体等缺陷。The current research results of 3D acquisition equipment still have defects such as the size of the equipment is too large; the depth resolution is low, the viewing angle is small; the recomputability is weak; the non-rigid complete object cannot be easily obtained.
发明内容 Contents of the invention
为了解决现有技术的问题,本发明的目的是提供减少系统尺寸、提高深度分辨率、视场角大、可重计算性强、能便捷地获取刚体和非刚体的完整物体的多级透镜的三维成像系统。In order to solve the problems of the prior art, the object of the present invention is to provide a multi-level lens that reduces system size, improves depth resolution, has a large field of view, has strong recalculation, and can easily obtain rigid and non-rigid complete objects. 3D imaging system.
为达成上述目的,本发明提供多级透镜的三维成像系统,其技术方案包括:多级透镜和传感器,所述多级透镜为第一级透镜、第二级透镜、…第N-2级透镜、第N-1级透镜、第N级透镜,其中:在光线传播的方向依序放置多级透镜和传感器,光线通过第一级透镜成像至第N-1级透镜用于生成多级场景缩小成像信息,多级场景缩小成像信息继续传播至第N级透镜,第N级透镜得到物体光线的多视角的场景二维信息,传感器提取多视角的场景二维信息,再通过立体匹配,从而获得场景中物体的深度信息。In order to achieve the above object, the present invention provides a three-dimensional imaging system of a multi-level lens, and its technical solution includes: a multi-level lens and a sensor, and the multi-level lens is a first-level lens, a second-level lens, ... the N-2th level lens , the N-1st lens, the Nth-level lens, wherein: the multi-level lens and the sensor are placed in sequence in the direction of light propagation, and the light is imaged by the first-level lens to the N-1-th level lens to generate a multi-level scene reduction Imaging information, multi-level scene reduction imaging information continues to spread to the N-level lens, the N-level lens obtains the multi-view scene two-dimensional information of the object light, the sensor extracts the multi-view scene two-dimensional information, and then through stereo matching, to obtain Depth information of objects in the scene.
其中,所述多级透镜中的每一级透镜的个数是一个透镜,或是对称布局的多个透镜;每个透镜是单面凸透镜、或是双面凸透镜,并且透镜的形状是圆形,或是正多边形;多个透镜排布在平面上、或排布在曲面上,且曲面是各种曲率半径的曲面;所述曲面是凹面向入射光,或是凸面向入射光。Wherein, the number of each stage lens in the multistage lens is one lens, or a plurality of lenses arranged symmetrically; each lens is a single-sided convex lens or a double-sided convex lens, and the shape of the lens is circular , or a regular polygon; a plurality of lenses are arranged on a plane or on a curved surface, and the curved surface is a curved surface with various curvature radii; the curved surface is concave to incident light, or convex to incident light.
其中,所述对称布局的多个透镜是网格形布局透镜、环形布局透镜和任意正多边形布局透镜。Wherein, the plurality of lenses in the symmetrical layout are grid-shaped layout lenses, ring-shaped layout lenses and random regular polygon layout lenses.
其中,所述环形布局透镜为至少一个圆环形布局透镜或一个以上的圆环布局透镜。Wherein, the annular layout lens is at least one annular layout lens or more than one annular layout lens.
其中,所述第一级透镜所成实像上任意一点发出的光线都能到达下一级透镜中每一个透镜。Wherein, the light emitted from any point on the real image formed by the first-stage lens can reach each lens in the next-stage lens.
其中,所述传感器的像素尺寸小于视差的差别为深度分辨率;当选择多级透镜为两级透镜时,视差(disparity)的差别表示如下:Wherein, the pixel size of the sensor is smaller than the difference of the disparity is the depth resolution; when the multi-stage lens is selected as the two-stage lens, the difference of the disparity (disparity) is expressed as follows:
其中,设第二级透镜是由多个透镜组成,L为第二级透镜中多个透镜中相邻透镜的中心之间的距离,t为第二级透镜中的每个透镜到第一级透镜成像基准面的距离,g为第二级透镜中的每个透镜具有相同的焦距,和分别为场景中深度不同的两个物体针对第一级透镜的像距,且 Wherein, suppose that the second-order lens is made up of a plurality of lenses, L is the distance between the centers of adjacent lenses in the plurality of lenses in the second-order lens, and t is each lens in the second-order lens to the first-order The distance of the lens imaging datum plane, g is the same focal length of each lens in the second-stage lens, and are the image distances of two objects with different depths in the scene with respect to the first-stage lens, and
其中,所述传感器尺寸大于第N级透镜中每个透镜成像的范围。Wherein, the size of the sensor is larger than the imaging range of each lens in the N-th stage lens.
其中,第N级透镜的各透镜的布局在传感器上所成的像不重叠。Wherein, the images formed by the layout of the lenses of the Nth stage lens on the sensor do not overlap.
其中,物体在经过各级透镜在传感器上相邻两个透镜的像中,对应于相同物体部分的像素个数的比例要大于1/2。Wherein, in the images of two adjacent lenses on the sensor passing through the lenses of various levels, the ratio of the number of pixels corresponding to the same object part is greater than 1/2.
其中,三维成像系统的调焦是通过调节第一级透镜至第N级透镜及传感器其中一个或者几个器件的位置来获得清晰的成像。Among them, the focus adjustment of the three-dimensional imaging system is to obtain clear imaging by adjusting the position of one or several devices among the first-stage lens to the N-stage lens and the sensor.
其中,三维成像系统的调焦是同时通过调节第一级透镜至第N级透镜及传感器其中各个器件的位置来获得清晰的成像。Among them, the focus adjustment of the three-dimensional imaging system is to obtain clear imaging by adjusting the positions of the first-stage lens to the N-th stage lens and the position of each device in the sensor at the same time.
本发明的有益效果:本发明采用了多级透镜的三维成像技术,及各级透镜的对称布局,减小了系统尺寸,从而使得方便携带成为可能。灵活的透镜形状和多样的透镜布局所在面的选择扩大了视场角,大大增加了成像视角,提高了深度分辨率。同时,本发明提出了灵活的调焦方法,以满足该系统在不同场合使用。本发明能便捷地获取刚体和非刚体的完整物体的多级透镜的三维成像系统。Beneficial effects of the present invention: the present invention adopts the three-dimensional imaging technology of multi-level lenses and the symmetrical layout of the lenses at all levels, which reduces the size of the system and makes it possible to carry it easily. The flexible lens shape and the selection of various lens layout surfaces expand the field of view, greatly increase the imaging angle of view, and improve the depth resolution. At the same time, the present invention proposes a flexible focusing method to meet the requirements of using the system in different occasions. The invention can conveniently obtain the three-dimensional imaging system of the multi-stage lens of the complete object of the rigid body and the non-rigid body.
附图说明 Description of drawings
图1示出多级透镜的三维成像系统的一个实施例的框图。FIG. 1 shows a block diagram of one embodiment of a three-dimensional imaging system with multiple lenses.
图2示出多级透镜的三维成像系统的一个实施例的框图。Figure 2 shows a block diagram of one embodiment of a three-dimensional imaging system with multi-stage lenses.
图3a至图3h示出多级透镜的三维成像系统中各级透镜中透镜的布局类型。3a to 3h show the layout types of the lenses in the lenses of each level in the three-dimensional imaging system of the multi-level lenses.
图4a至图4b示出多级透镜的三维成像系统的基本光路图。4a to 4b show basic optical path diagrams of a three-dimensional imaging system with multi-level lenses.
图5a至图5b示出场景中两个深度不同的物体在多级透镜的三维成像系统中的光路图。5a to 5b show the optical path diagrams of two objects with different depths in the scene in the three-dimensional imaging system with multi-level lenses.
图6示出多级透镜的三维成像系统中确保最后一级透镜中的每个透镜成像不重叠和对应相同的像素部分比例的示意图1。FIG. 6 shows a schematic diagram 1 of ensuring that images of each lens in the last-stage lens do not overlap and correspond to the same proportion of pixels in a three-dimensional imaging system of multi-stage lenses.
图7示出二级透镜的三维成像系统中第二级透镜的2*3网格形布局透镜的示意图。FIG. 7 shows a schematic diagram of lenses in a 2*3 grid layout of the second-level lenses in the three-dimensional imaging system of the second-level lenses.
图8a至图8b示出多级透镜的三维成像系统中各级透镜排布在曲面和平面。8a to 8b show that in the three-dimensional imaging system of multi-level lenses, the lenses of each level are arranged on curved surfaces and planes.
图9a至图9l示出多级透镜的三维成像系统各级透镜中各个透镜的形状及相应透镜构成的排布示意。9a to 9l show the shape of each lens in the three-dimensional imaging system of the multi-level lens and the arrangement of the corresponding lens composition.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
这里描述了多级透镜的三维成像系统。多级透镜的三维成像系统允许用户利用多级透镜的设计来方便快捷地获取三维场景和三维物体。系统包括多级透镜和传感器系统两部分,多级透镜包括第一级透镜、第二级透镜、……第N-2级透镜、第N-1级透镜直到第N级透镜。A three-dimensional imaging system with multistage lenses is described here. The 3D imaging system with multi-level lenses allows users to take advantage of the design of multi-level lenses to obtain 3D scenes and 3D objects conveniently and quickly. The system includes two parts: a multi-level lens and a sensor system. The multi-level lens includes a first-level lens, a second-level lens, ... N-2 level lens, N-1 level lens until N-level lens.
图1示出两级透镜的三维成像系统的一个实施例的框图,包括第一级透镜和第二级透镜以及用于获取多维视角的二维信息的传感器等确保系统正确功能的多个组件。光线通过第一级透镜101成像之后继续传播经过第二级透镜102中各个透镜生成多级场景缩小成像信息,多级场景缩小成像信息最终通过传感器103获取场景中的物体的光线经过第一级透镜101和第二级透镜102所成像的信息。这个过程的基本光路图如图4a至图4b所示。第一级透镜101到第二级透镜102之间的距离为L1,第二级透镜102到传感器103之间的距离为L2。多级透镜的三维成像系统中的第一级透镜101选择的是一个透镜,第二级透镜102中的透镜的布局是3*3的网格形布局。第一级透镜101和第二级透镜102中透镜的布局不局限于这种布局,可以选择图3a至图3h示出的几个各级透镜中的透镜对称布局,也可以选择其他的对称布局。第一级透镜101所成实像上任意一点发出的光线方向都是有一定范围的,所以需要保证每一点发出的光线都能到达第二级透镜102中的每个透镜。传感器103的像素尺寸要保证小于深度分辨率,并且传感器103的尺寸大于第二级透镜102的成像范围,使得第二级透镜阵列的成像都在传感器103上,从而能反映出场景中物体的深度信息。通过调整各级透镜中的透镜的相互之间的位置,要确保在传感器103上的成像不重叠。但是场景缩小成像信息在经过第二级透镜102中相邻两个透镜所成的像中,对应于相同物体部分的像素个数的比例要大于1/2。第一级透镜101、第二级透镜102和传感器103之间的距离不是固定的,这三者之间的距离是否固定是由调焦方法决定的。调焦的具体方法可以通过同时调节第一级透镜101、第二级透镜102和传感器103的位置,即同时改变距离L1和距离L2来达到调焦的目的使传感器103上的成像清晰;也可以固定第二级透镜102和传感器103之间的距离L2,调节第一级透镜101的位置从而改变L1来调焦;也可以固定第一级透镜101和第二级透镜102之间的距离L1,调节传感器103的位置从而改变距离L2从而得到清晰的成像;也可以固定第一级透镜101和传感器103之间的距离L,调节第二级透镜102的位置从而改变距离L1和距离L2从而得到清晰的成像。FIG. 1 shows a block diagram of an embodiment of a two-stage lens 3D imaging system, including a first-stage lens and a second-stage lens, and a sensor for obtaining two-dimensional information of multi-dimensional viewing angles and other components to ensure correct functioning of the system. After the light is imaged by the first-
图2示出三级透镜的三维成像系统的一个实施例的框图,包括第一级透镜、第二级透镜、第三级透镜的三级透镜系统以及成像后用于获取多维视角的二维信息的传感器等确保系统正确功能的多个组件。光线通过第一级透镜101成像之后继续传播经过第二级透镜104成像后,再经过第三级透镜102最终通过传感器103获取物体经过这三级透镜101、104和102所成像的信息。这个过程的光路图如图4a至图4b所示。第一级透镜101到第二级透镜104之间的距离为L1,第二级透镜104到第三级透镜102之间的距离为L2,第三级透镜102到传感器103之间的距离为L3。图2示出的多级透镜的三维成像系统中的第一级透镜101选择的是一个透镜,第二级透镜104中的透镜布局是2*2的网格形布局透镜,第三级透镜102中的透镜布局是3*3的网格形布局透镜。其中各级透镜中透镜的布局不局限于这种布局,可以选择图3a至图3h示出的几个各级透镜中透镜的对称布局,也可以选择其他的对称布局。第一级透镜101所成实像上任意一点发出的光线方向都是有一定范围的,所以需要保证每一点发出的光线都能到达下一级透镜中的每一个透镜。传感器103的像素尺寸要保证小于深度分辨率,并且传感器103尺寸大于第三级透镜102的成像范围,使得第三级透镜102的透镜阵列的成像都在传感器103上,从而使得传感器103上能够反应出场景中物体成像的信息。通过调整各级透镜中的透镜的相互之间的位置,确保在传感器103上的成像不重叠,但是物体的光线经过各级透镜最终在传感器103上相邻的两个透镜的像中,对应于相同物体部分的像素个数的比例要大于1/2。第一级透镜101、第二级透镜104、第三级透镜102和传感器103之间的距离不是固定的,这三者之间的距离是否固定是由调焦方法决定的,具体方法可以通过同时调节第一级透镜101、第二级透镜104、第三级透镜102和传感器103的位置,即同时改变距离L1、距离L2和距离L3来达到调焦的目的使传感器204上的成像清晰;也可以固定第一级透镜101到第二级透镜104之间的距离L1和第二级透镜104到第三级透镜102之间的距离L2;调节传感器103的位置,改变距离L3从而获得清晰的成像;也可以固定第一级透镜101、第二级透镜104和传感器103的位置,调节第三级透镜102的位置,同时改变距离L2和距离L3从而获得清晰的成像;也可以固定第一级透镜101、第三级透镜102和传感器103的位置,调节第二级透镜104的位置,同时改变距离L1和距离L2从而得到清晰的成像;也可以固定第二级透镜104、第三级透镜102和传感器103的位置,调节第一级透镜101的位置,改变距离L1来获得清晰的成像;也可以固定第一级透镜101和第二级透镜104的位置,同时调节第三级透镜102和传感器103的位置,改变距离L2和距离L3来获得清晰的成像;也可以固定第一级透镜101和第三级透镜102的位置,同时调节第二级透镜104和传感器103的位置,改变距离L1、距离L2和距离L3来得到清晰的成像;也可以固定第一级透镜101和传感器103的位置,同时调节第二级透镜104和第三级透镜102的位置,改变距离L1、距离L2和距离L3,从而获得清晰的成像;也可以固定第二级透镜104和第三级透镜102之间的位置,同时调节第一级透镜101和传感器103的位置,改变距离L1和距离L3,从而获得清晰的成像;也可以固定第二级透镜104和传感器103的位置,同时调节第一级透镜101和第三级透镜102的位置,改变距离L1、距离L2和距离L3,从而获得清晰的成像;也可以固定第三级透镜102和传感器103的位置,同时调节第一级透镜101和第二级透镜104的位置,改变距离L1、距离L2和距离L3,从而获得清晰的成像。Fig. 2 shows the block diagram of an embodiment of the three-dimensional imaging system of the three-level lens, including the three-level lens system of the first-level lens, the second-level lens, the third-level lens and the two-dimensional information used to obtain the multi-dimensional viewing angle after imaging Sensors and other components that ensure the correct functioning of the system. The light is imaged by the first-
图1和图2只是对二级透镜的三维成像系统和三级透镜的三维成像系统进行了阐述。对于多级透镜的三维成像系统,可以扩展到更多级透镜的设计来进行三维成像,并且原理与图1和图2的成像原理一致。对于多级透镜的三维成像系统的调焦方法,图1和图2中只是针对二级透镜的三维成像系统和三级透镜的三维成像系统进行了具体的说明,但是对于更多级的透镜的三维成像系统来说,均可以通过调节各级透镜和传感器其中一个或者几个的位置来获得清晰的成像。Fig. 1 and Fig. 2 only illustrate the 3D imaging system of the secondary lens and the 3D imaging system of the tertiary lens. For the three-dimensional imaging system of multi-level lenses, the design of more-level lenses can be extended to perform three-dimensional imaging, and the principle is consistent with the imaging principles in Figure 1 and Figure 2 . For the focusing method of the three-dimensional imaging system of the multi-level lens, Fig. 1 and Fig. 2 are only for the three-dimensional imaging system of the second-level lens and the three-dimensional imaging system of the third-level lens. For a three-dimensional imaging system, clear imaging can be obtained by adjusting the positions of one or more of the lenses and sensors at all levels.
图3a-图3h示出多级透镜的三维成像系统中各级透镜中的透镜布局类型,例如图1中的第一级透镜101、第二级透镜102等,图2中的第一级透镜101、第二级透镜104、第三级透镜102等,甚至第N级透镜都可以是图3a-图3h中任意一种透镜的对称布局。图3a至图3h只列出了一些对称布局的透镜阵列:单个的透镜(如图3a)、网格形布局透镜(如图3b、图3d、图3e以及图3h)、环形布局透镜(如图3f)和正多边形布局透镜(如图3c和图3g)等。各级透镜的透镜阵列是对称布局的,也可以是正则排布的,可以是很多形式,图3a至图3h示出的只是列举了其中的一部分,甚至100*100的网格形布局透镜和200*200的网格形布局透镜也可以,其他对称布局或正则排布也可以,这里就不再一一赘述。Fig. 3 a-Fig. 3 h show the lens layout type in each stage lens in the three-dimensional imaging system of multistage lens, for example the
多级透镜的三维成像系统中的每个透镜可以是单面凸透镜(如图9a),也可以是双面凸透镜(如图9b),且透镜的形状不仅限于图9c的圆形,还可以是其他正多边形,如正三角形(如图9d)、正方形(如图9e)、正五边形(如图9f)、正六边形(如图9g)以及正八边形(如图9h)等多种正多边形。那么各级透镜的排布也可以是由多个正多边形构成的规则布局,如由正三角形构成的一种规则布局(如图9i)、由正方形构成的一种规则布局(如图9j)、由正六边形构成的一种规则布局(如图9k)以及由正八边形构成的一种规则布局(如图91)等等各种由多个其他的正多边形构成的规则布局。Each lens in the three-dimensional imaging system of the multi-stage lens can be a single-sided convex lens (as shown in Figure 9a) or a double-sided convex lens (as shown in Figure 9b), and the shape of the lens is not limited to the circle shown in Figure 9c, but can also be Other regular polygons, such as regular triangles (as shown in Figure 9d), squares (as shown in Figure 9e), regular pentagons (as shown in Figure 9f), regular hexagons (as shown in Figure 9g) and regular octagons (as shown in Figure 9h) regular polygon. Then the arrangement of lenses at all levels can also be a regular layout made of multiple regular polygons, such as a regular layout made of regular triangles (as shown in Figure 9i), a regular layout made of squares (as shown in Figure 9j), A regular layout composed of regular hexagons (as shown in FIG. 9k ) and a regular layout composed of regular octagons (as shown in FIG. 91 ) and other regular layouts composed of multiple other regular polygons.
多级透镜的三维成像系统中各级透镜中的各个透镜可以如图1和图2中所示排布在平面上,也可以排布在曲面上,并且曲面可以是任意曲率的曲面,曲面是凹面向入射光,或是凸面向入射光。图8a示出了各级透镜排布在凸曲面上的一个截面图,图8b示出了各级透镜排布在凹曲面上的一个截面图。In the three-dimensional imaging system of multi-level lenses, each lens in each level of lens can be arranged on a plane as shown in Figure 1 and Figure 2, and can also be arranged on a curved surface, and the curved surface can be a curved surface with any curvature, and the curved surface is Concave for incident light, or convex for incident light. Fig. 8a shows a cross-sectional view of lenses of various levels arranged on a convex surface, and Fig. 8b shows a cross-sectional view of lenses of various levels arranged on a concave surface.
图4a至图4b示出多级透镜的三维成像系统的一个具体的光路图。多级透镜的三维成像系统的光路图是以第一级透镜是一个透镜,第二级透镜是1*3的网格形透镜阵列的二级透镜的三维成像系统为例来说明的。其中第一级透镜101和第二级透镜(第二级透镜由10201、10202及10203构成第二级透镜阵列)中的透镜的个数可以是一个或者多个的对称布局的透镜阵列。并且透镜的级数也可以扩展到多级。与主光轴的距离为P的物体经过焦距为f的第一级透镜101成像,第一级透镜101所成的实像与主光轴的距离为Q,其中在第一级透镜101成像的光路中,物距为u1,像距为v1。光线继续传播经过第二级透镜中的焦距均为g的各个透镜,其中,将经过第一级透镜101所成的实像当作物体,那么在第二级级透镜成像的光路中,物距为u2,像距为v2。传感器103尺寸大于第二级透镜成像的范围。在图4b中,对于第一级透镜101所成的像经过中间的透镜10202,在传感器103上的成像到光轴的距离为Dm。对于与中间透镜10202相邻的一个透镜10201,其中心到主光轴(中间透镜10202)的距离为L,第一级透镜101所成的像经过边缘10201在传感器103上所成的像到这个透镜10201光轴的距离为Ds。那么,定义物体由中间透镜10201和其相邻透镜10202所成的两个像到各自透镜光轴的距离的差为视差(disparity),用D表示,即D=Ds-Dm。4a to 4b show a specific optical path diagram of a three-dimensional imaging system with multi-stage lenses. The optical path diagram of the three-dimensional imaging system with multi-stage lenses is illustrated by taking the three-dimensional imaging system with two-stage lenses in which the first-stage lens is a lens and the second-stage lens is a 1*3 grid-shaped lens array as an example. The number of lenses in the first-
图5a至图5b示出场景中两个深度不同的物体在多级透镜的三维成像系统中的光路图。在场景中,深度不同的物体1和2经过第一级透镜所成的实像的像距不同,对于下一级透镜来说,就是物距不同,导致视差不同。多级透镜的三维成像系统两个深度不同的光路图5a至图5b中物体1和物体2的物距分别为和其中像距分别为和其中第一级透镜101的焦距为f,第二级透镜中各透镜的焦距均为g,第二级透镜102到第一级透镜101成像基准面的距离为t,在这两个物体中,物体1成像在镜头的成像基准面上,则对于第二级透镜的物距为物体2成像在镜头成像基准面之前(向第一级透镜方向偏移),则对于第二级透镜的物距为物体1和物体2到光轴的距离分别为P1和P2,经过第一级透镜成像后,物体1的像和物体2的像到光轴的距离分别为Q1和Q2。物体1和物体2发出的光线分别按照图4a至图4b中的光路图,最终在传感器103上分别得到物体1和物体2的视差D(1)和D(2)。那么两个物体在两幅图像中的视差的差别δD(也称为深度分辨率)为:5a to 5b show the optical path diagrams of two objects with different depths in the scene in the three-dimensional imaging system with multi-level lenses. In the scene, objects 1 and 2 with different depths pass through the first-stage lens to form real images with different image distances. For the next-stage lens, the object distance is different, resulting in different parallax. Three-dimensional imaging system with multi-stage lens Two optical paths with different depths The object distances of
其中像距和表示为:where image distance and Expressed as:
为了能在传感器103上得到两个物体在两幅图像中的视差的差别δD,那么要求的传感器103的像素尺寸要小于两个物体在两幅图像中的视差的差别δD为:In order to obtain the difference δD of the parallax of two objects in the two images on the
才能够反映出物体在场景中的深度信息。同时为了使不同深度的物体在两幅图中的视差(disparity)有大于1像素的差别,需要使用焦距较长的第一级镜头。Only then can it reflect the depth information of the object in the scene. At the same time, in order to make the disparity (disparity) of objects at different depths in the two pictures have a difference greater than 1 pixel, it is necessary to use a first-stage lens with a longer focal length.
图6示出多级透镜的三维成像系统。其中要确保以下四个条件成立:一是最后一级透镜中相邻两个透镜之间的距离必须大于透镜的直径,这样透镜之间才不会重叠。二是在最后一级透镜中每个透镜的成像圆中取其最大的内接正方形为最终在传感器上要获取的图像,这些正方形内部不能有最后一级透镜中其他透镜所成的像。三是上述的内接正方形之间成像的公共区域要足够大,大于1/2。四是各个正方形都要落在传感器的范围内。通过上述四个条件确定最后一级透镜中的各个透镜的位置。图6的系统中,第一级透镜为一个焦距为f的透镜,有效口径为D,第二级透镜中各透镜焦距为g,直径为d,阵列如图7所示,其中,图7中Lx和Ly分别为第二级透镜中x轴和y轴方向上两个相邻透镜的圆心间的距离;第二级透镜中a、b、f、h称为边缘透镜,c和e称为中间透镜;光线经过第一级透镜所成的像到第二级透镜所在平面的距离作为物距,其值为u,经过第二级透镜到传感器的距离为像距其值为v,边缘透镜10201和中间透镜10202所获取到的第一级透镜成像平面上的两个圆的直径为L1,两个圆的圆心的距离为E,物体的光线通过第一级透镜所成的像,再经过边缘透镜10201和中间透镜10202的二次成像在传感器103上,半径为r,圆心之间的距离为S。Fig. 6 shows a three-dimensional imaging system with multi-level lenses. Among them, the following four conditions must be ensured to be satisfied: First, the distance between two adjacent lenses in the last-stage lens must be greater than the diameter of the lens, so that the lenses will not overlap. The second is to take the largest inscribed square in the imaging circle of each lens in the last-stage lens as the final image to be acquired on the sensor, and these squares cannot have images formed by other lenses in the last-stage lens. The third is that the common area imaged between the above-mentioned inscribed squares should be large enough, greater than 1/2. Fourth, each square must fall within the range of the sensor. The position of each lens in the last stage lens is determined by the above four conditions. In the system of Figure 6, the first-stage lens is a lens with a focal length of f and an effective aperture of D, and each lens in the second-stage lens has a focal length of g and a diameter of d, and the array is as shown in Figure 7, wherein, in Figure 7 L x and Ly are the distances between the centers of two adjacent lenses in the x-axis and y-axis directions of the second-level lens respectively; a, b, f, and h in the second-level lens are called edge lenses, and c and e It is called the intermediate lens; the distance from the image formed by the light through the first-level lens to the plane where the second-level lens is located is taken as the object distance, and its value is u, and the distance from the second-level lens to the sensor is the image distance, and its value is v, The diameter of the two circles on the first-stage lens imaging plane obtained by the edge lens 10201 and the middle lens 10202 is L1, and the distance between the centers of the two circles is E. The image formed by the light of the object passing through the first-stage lens, Then, the second image is formed on the sensor 103 through the edge lens 10201 and the middle lens 10202, the radius is r, and the distance between the centers is S.
考虑水平方向:Consider the horizontal orientation:
第二级透镜中的透镜的成像圆的半径The radius of the imaging circle of the lens in the second stage lens
第二级透镜中的透镜成像圆的圆心距离S为The center distance S of the lens imaging circle in the second stage lens is
因而,第二级透镜排列位置要满足的四个条件,即为:Therefore, the four conditions to be met by the arrangement position of the second-level lenses are:
1.相邻透镜不重叠,即Lx>=d1. Adjacent lenses do not overlap, that is, L x >= d
2.所获取的传感器上的图像是第二级透镜的每个透镜的成像圆的内接正方形,所以,要传感器上获得的图像之间相互没有重叠影响,则即对Lx的要求为,2. The image acquired on the sensor is the inscribed square of the imaging circle of each lens of the second-level lens, so the images obtained on the sensor must not overlap with each other, then That is, the requirement for L x is,
所给的Lx必须满足两幅相邻图片的重合率R大于50%作为第二级透镜中两个透镜的像的两个圆,圆心的距离可以表示为:The given L x must satisfy the coincidence ratio R of two adjacent pictures greater than 50%. As the two circles of the images of the two lenses in the second-stage lens, the distance between the centers of the circles can be expressed as:
因而Lx最大,是使得公共区域R刚刚满足1/2的条件。Therefore, L x is the largest, so that the public area R just satisfies the 1/2 condition.
此时可以计算作为边缘透镜10201和中间透镜10202的像的两个圆,圆心的距离E应该是At this point, two circles that are images of the
因此要求此时有进而 therefore require At this time there is and then
以上三条在竖直方向也有相同的结论。The above three also have the same conclusion in the vertical direction.
所取的内接正方形,应该全部排列在传感器的范围内,不能超出传感器的范围因而有其中w是传感器的长,即The selected inscribed squares should all be arranged within the range of the sensor and cannot exceed the range of the sensor. where w is the length of the sensor, i.e.
3.如果考虑竖直方向,则需要将公式中的w替换成传感器的宽h。3. If you consider the vertical direction, you need to replace w in the formula with the width h of the sensor.
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的权利要求书的保护范围之内。The above is only a specific implementation mode in the present invention, but the scope of protection of the present invention is not limited thereto. Anyone familiar with the technology can understand the conceivable transformation or replacement within the technical scope disclosed in the present invention. All should be covered within the scope of protection of the claims of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102646710A CN101975994B (en) | 2010-08-27 | 2010-08-27 | Three-dimensional imaging system with multi-stage lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102646710A CN101975994B (en) | 2010-08-27 | 2010-08-27 | Three-dimensional imaging system with multi-stage lens |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101975994A CN101975994A (en) | 2011-02-16 |
CN101975994B true CN101975994B (en) | 2012-03-28 |
Family
ID=43575891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102646710A Active CN101975994B (en) | 2010-08-27 | 2010-08-27 | Three-dimensional imaging system with multi-stage lens |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101975994B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114125417B (en) * | 2020-08-25 | 2024-06-14 | 北京小米移动软件有限公司 | Image sensor, image pickup apparatus, image pickup method, image pickup apparatus, and storage medium |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5828913A (en) * | 1995-06-06 | 1998-10-27 | Zanen; Pieter O. | Method for three dimensional measurement and imaging having focus-related convergence compensation |
FR2748579B1 (en) * | 1996-05-09 | 1998-08-21 | Allio Pierre | AUTOSTEREOSCOPIC IMAGE FORMING DEVICE AND SYSTEM COMPRISING SAME |
AU3994799A (en) * | 1999-05-14 | 2000-12-05 | 3Dmetrics, Incorporated | Color structured light 3d-imaging system |
CN1181377C (en) * | 2000-04-10 | 2004-12-22 | 廖洪恩 | 3D full-figure technique |
DE10258215A1 (en) * | 2002-12-13 | 2004-07-22 | Hentze-Lissotschenko Patentverwaltungs Gmbh & Co.Kg | Arrangement for recording 3D object image information has lens arrangement with cylindrical lenses forming lens elements for forming image of light emanating from object on recording arrangement |
US6940645B2 (en) * | 2003-04-22 | 2005-09-06 | Eastman Kodak Company | Monocentric autostereoscopic optical apparatus with a spherical gradient-index ball lens |
US7122787B2 (en) * | 2003-05-09 | 2006-10-17 | Matsushita Electric Industrial Co., Ltd. | Imaging apparatus with three dimensional circuit board |
CN1558262A (en) * | 2004-01-12 | 2004-12-29 | 浙江大学 | 180° Large Field of View Ring Panoramic Staring Imaging Method |
-
2010
- 2010-08-27 CN CN2010102646710A patent/CN101975994B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN101975994A (en) | 2011-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI397317B (en) | Method for providing output image in either cylindrical mode or perspective mode | |
CN103426149B (en) | Correction processing method for distortion of large-view-angle image | |
CN104539832B (en) | Hybrid optical field imaging system | |
CN104778656B (en) | Fisheye image correcting method based on spherical perspective projection | |
CN101276415A (en) | Device and method for realizing multi-resolution image acquisition with multiple fixed-focus cameras | |
JP2022116089A (en) | Imaging system, method and application | |
CN105139332A (en) | Method for obtaining a composite image using rotationally symmetrical wide-angle lenses, imaging system for same, and cmos image sensor for image-processing | |
US9581787B2 (en) | Method of using a light-field camera to generate a three-dimensional image, and light field camera implementing the method | |
KR101759798B1 (en) | Method, device and system for generating an indoor two dimensional plan view image | |
TW201622403A (en) | Digital refocusing method | |
CN101272511A (en) | Method and device for acquiring image depth information and image pixel information | |
CN104007556A (en) | Low crosstalk integrated imaging three-dimensional display method based on microlens array group | |
Gurrieri et al. | Acquisition of omnidirectional stereoscopic images and videos of dynamic scenes: a review | |
CN108965678A (en) | A kind of multiple aperture becomes the bionical thermal imaging method of spatial resolution and device | |
CN107534731A (en) | Image processing device and image processing method | |
CN110879477B (en) | True three-dimensional imaging method based on super-surface micro-lens array | |
CN105139336B (en) | A kind of method of multichannel full-view image conversion ball curtain flake film | |
JP2020150427A (en) | Imaging device, imaging optical system and moving object | |
CN101975994B (en) | Three-dimensional imaging system with multi-stage lens | |
Takaki | Super multi-view display with 128 viewpoints and viewpoint formation | |
CN103873773A (en) | Primary-auxiliary synergy double light path design-based omnidirectional imaging method | |
CN107346530B (en) | Projection method and system for correcting fisheye image | |
CN105137606B (en) | Stereo vision imaging apparatus and method based on DMD | |
CN110708532B (en) | Universal light field unit image generation method and system | |
CN104834102B (en) | Optical system capable of changing single camera into stereo camera and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |