CN101957697A - Mutual capacitance touch screen and driving method thereof - Google Patents
Mutual capacitance touch screen and driving method thereof Download PDFInfo
- Publication number
- CN101957697A CN101957697A CN2009100576049A CN200910057604A CN101957697A CN 101957697 A CN101957697 A CN 101957697A CN 2009100576049 A CN2009100576049 A CN 2009100576049A CN 200910057604 A CN200910057604 A CN 200910057604A CN 101957697 A CN101957697 A CN 101957697A
- Authority
- CN
- China
- Prior art keywords
- waveform
- line
- constant current
- induced signal
- induction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Position Input By Displaying (AREA)
Abstract
本发明公开了一种互电容触摸屏及其驱动方法,所述互电容触摸屏相对于现有技术增加了驱动信号单元,其向驱动线提供驱动信号,在所述驱动信号的波形的上升阶段,向所述驱动线提供第一正向恒定电流;在所述驱动信号的波形的下降阶段,向所述驱动线提供第一反向恒定电流。本发明有效降低了RC延迟造成的波形变形,即使寄生电容很大,检测信号也较大并且更容易被检测到,从而提高了触摸屏的灵敏度。
The invention discloses a mutual capacitance touch screen and a driving method thereof. Compared with the prior art, the mutual capacitance touch screen adds a driving signal unit, which provides a driving signal to the driving line, and in the rising stage of the waveform of the driving signal, sends The driving line provides a first forward constant current; during the falling phase of the waveform of the driving signal, a first reverse constant current is supplied to the driving line. The invention effectively reduces the waveform deformation caused by RC delay, and even if the parasitic capacitance is large, the detection signal is relatively large and can be detected more easily, thereby improving the sensitivity of the touch screen.
Description
技术领域technical field
本发明涉及触摸屏领域,具体地讲,涉及一种提高了灵敏度的互电容触摸屏及其驱动方法。The invention relates to the field of touch screens, in particular to a mutual capacitance touch screen with improved sensitivity and a driving method thereof.
背景技术Background technique
在触摸屏技术中,电容式触摸屏相比电阻式触摸屏具有寿命长,透光率高,可以支持多点触摸等优点。而互电容感应触摸屏是电容式触摸屏中一种新兴的技术,它不但可以实现真正的多点触摸,还对噪声和对地寄生电容有很好的抑制作用,因此已经成为各电容式触摸屏芯片厂商主攻的方向。In the touch screen technology, compared with the resistive touch screen, the capacitive touch screen has the advantages of long life, high light transmittance, and can support multi-point touch. The mutual capacitance sensing touch screen is an emerging technology in the capacitive touch screen. It can not only realize the real multi-touch, but also has a good suppression effect on noise and ground parasitic capacitance. The direction of the main attack.
如图1和图2所示,传统的互电容触摸屏包括:下基板9,所述下基板9上形成有驱动线层(材料为氧化锡铟)10,所述驱动线层10包括至少一条驱动线2,所述驱动线2由若干相互平行的驱动电极2a,2b......2h组成,所述驱动电极层10上具有绝缘介质11,所述绝缘介质11的另一面上形成有感应线层12,所述感应线层12包括至少一条感应线5,所述感应线5由若干相互平行的感应电极5a,5b......5i组成,所述感应线层12上形成有保护层13,所述驱动电极2a,2b......2h和所述感应电极5a,5b......5i相互垂直,所述传统的互电容触摸屏还包括交流驱动电源1,所述交流驱动电源1用以向所述驱动线提供信号;如图2所示,每一根所述感应线5通过一个数字开关17连接到检测单元16。As shown in Figures 1 and 2, a traditional mutual capacitance touch screen includes: a
图3所示为所述传统的互电容触摸屏的等效电路。如图3所示,所述交流驱动电源1连接所述驱动线2,一定长度的所述驱动线2等效成一个电阻,所述驱动电极和所述感应电极在交叉点形成互电容4,当有触摸时,所述互电容4的值会发生变化,另外,所述驱动电极和所述感应电极也分别存在对地寄生电容3,由于感应线5上的感应信号比较小,所以一般还会在每条感应线5的一端连接一个放大器6用以放大信号,然后通过输出端8输出输出信号Vout。FIG. 3 shows an equivalent circuit of the conventional mutual capacitance touch screen. As shown in FIG. 3, the AC
所述传统的互电容触摸屏的检测方式为:依次扫描每一根驱动线2,即在每根驱动线2上依次施加驱动电压14,同时其余的驱动线接地15,而检测端每根感应线5都通过一个数字开关17接到检测单元16,由数字开关17控制每一根感应线5连接到检测单元16从而检测出每一根感应线5上的信号。The detection method of the traditional mutual-capacitance touch screen is: scan each
由于手指是一种导体,当手指触摸到触摸屏表面时,触摸位置处的互电容4就由于手指的电容感应效应发生了变化。这一变化可以被检测单元16检测出来,从而判断出是否有手指触摸以及在什么位置触摸。当对地寄生电容3比较大时,互电容4的变化仍然可以对检测电路6处的信号产生较大的影响,检测信号6由于互电容4变化所产生的变化并不受寄生电容3变大的影响。因此互电容检测原理对于对地寄生电容有较强抑制作用。同样,这一原理对于耦合的噪声也有较好的抑制作用。Since the finger is a kind of conductor, when the finger touches the surface of the touch screen, the
尽管互电容触摸屏对寄生电容3具有很强的抑制作用。但当寄生电容3很大时,驱动信号会发生严重的变形。驱动脉冲的变形会对检测信号产生两方面不利影响:首先是会使检测信号严重衰减,其次是若采用电荷采集的方式检测触摸信号,驱动脉冲的变形会使采集的电荷一直变化,从而难以进行检测。图4a至图6b说明了驱动脉冲的变形造成的上述不利影响。Although the mutual capacitance touch screen has a strong suppression effect on the parasitic capacitance 3 . But when the parasitic capacitance 3 is very large, the driving signal will be severely deformed. The deformation of the driving pulse will have two adverse effects on the detection signal: first, it will seriously attenuate the detection signal; detection. Figures 4a to 6b illustrate the aforementioned adverse effects caused by the deformation of the drive pulse.
脉冲变形主要是由电阻电容的时间延迟(RC延迟)造成的,在图4a和图4b中,从所述驱动线2上的驱动信号节点18测得驱动信号,在图5a和图5b中,从所述感应线5上的感应信号节点19测得感应信号。由于RC(R表示电阻,C表示电容)延迟不同,交流驱动电源1施加的驱动电压14分别为驱动方波1a和1b时,在驱动线2的驱动信号节点18处会分别变形成为波形18a和18b。当驱动线2和感应线5上的电阻均为1千欧姆、驱动线2上的寄生电容为300pF、感应线5上的寄生电容为40pF、互电容为1.4pF的情况,驱动信号节点18处的波形由驱动方波1a变形为波形18a;当驱动线2上的电阻为10千欧姆、感应线5上的电阻为15千欧姆、驱动线2上的寄生电容为900pF、感应线5上的寄生电容为40pF、互电容为1.4pF的情况,驱动信号节点18处的波形由驱动方波1b变形为波形18b。其中,图4a和图4b中,各个波形的周期均为16微秒(μs),所述驱动方波1a,1b的峰值为正负18伏(V)。波形18a和18b上升到各自幅值的0.632倍所需的时间就是RC的乘积。图4a显示了RC延迟较小的情况,而图4b显示了RC延迟较大的情况,从图4a和图4b可知,当寄生电容较大时,RC延迟较大,波形18a和18b上升速度较慢。在图4b中,可以看出,由于RC延迟,驱动信号节点18处的波形18b还没有上升到最大值,就因为驱动方波1b的下降沿到来从而开始下降。因此驱动线2上的波形18b无法达到最大值,从而降低了输出端8输出的输出信号Vout。此时波形18a的峰值仍为正负18伏,而波形18b稳定后的峰值约8伏。The pulse deformation is mainly caused by the time delay (RC delay) of the resistance and capacitance. In FIGS. 4a and 4b, the drive signal is measured from the
图5a和图5b示出了感应线5上感应信号节点19处两种情况的波形19a和19b,其中,图5a对应图4a所示的情况,图5b对应图4b所示的情况。图5a和图5b各个波形周期也均为16微秒。驱动线2上的驱动信号的波形18a和18b经过了互电容4的高通作用,在感应线5上产生了感应信号,所述感应信号的波形为波形19a和19b,感应信号的波形的强弱同驱动线上的波形18a和18b有关,驱动信号节点处的波形18a和18b的减小同样也会导致感应信号节点19a和19b的减小。图5a中,波形19a显示了RC延迟较小的情况,而图5b中,波形19b显示了RC延迟较大的情况。波形19a的峰值约为正负350毫伏(mV),波形19b的峰值约为50毫伏。Fig. 5a and Fig. 5b show the waveforms 19a and 19b of two situations at the
图6a和图6b示出了波形19a和19b经过放大器6之后的输出端8输出的输出信号Vout的波形8a和8b。其中,图6a对应图4a所示的情况,图6b对应图4b所示的情况。图6a和图6b各个波形周期也均为16微秒。事实上,这一输出电压实际上就是感应线信号的波形19a、19b的积分信号。因此,由于RC延迟造成的信号减小现象同样在输出电压上体现出来。图6a中,波形8a显示了RC延迟较小的情况,而图6b中,波形8b显示了RC延迟较大的情况。波形8a的峰值为0到-1伏,峰峰值1伏,波形8b的峰值为约-300毫伏到-700毫伏,峰峰值约为400毫伏。所述峰峰值是指波形最大正相值与最大负向值之间的差值。FIGS. 6 a and 6
另外由于各个波形18b、19b的变形,波形8b的幅值一直在改变,因此相比波形8a,波形8b更加难以被检测出来,也就是说,触摸以及触摸的位置较难被检测。In addition, due to the deformation of each
发明内容Contents of the invention
本发明的目的是解决由于RC延迟造成的波形变形,尤其是在寄生电容很大的情况下,感应信号的波形较小而且不稳定,从而波形不容易被检测到,触摸屏的灵敏度低的问题。The purpose of the present invention is to solve the waveform distortion caused by RC delay, especially in the case of large parasitic capacitance, the waveform of the induction signal is small and unstable, so the waveform is not easy to be detected, and the sensitivity of the touch screen is low.
为达到本发明的上述目的,本发明提供了一种互电容触摸屏,所述互电容触摸屏包括:In order to achieve the above object of the present invention, the present invention provides a mutual capacitance touch screen, the mutual capacitance touch screen includes:
绝缘层;Insulation;
驱动线层,位于所述绝缘层的第一表面,所述驱动线层包括至少两条驱动线;a driving line layer located on the first surface of the insulating layer, the driving line layer including at least two driving lines;
感应线层,位于所述绝缘层的第二表面,所述感应线层包括至少两条感应线;an induction line layer located on the second surface of the insulating layer, the induction line layer comprising at least two induction lines;
其特征在于,还包括:驱动信号单元,向所述驱动线提供驱动信号,在所述驱动信号的波形的上升阶段,向所述驱动线提供第一正向恒定电流;在所述驱动信号的波形的下降阶段,向所述驱动线提供第一反向恒定电流。It is characterized in that it also includes: a drive signal unit, which provides a drive signal to the drive line, and provides a first positive constant current to the drive line during the rising phase of the waveform of the drive signal; In the falling phase of the waveform, a first reverse constant current is supplied to the driving line.
可选的,所述驱动信号单元通过第一开关单元向所述驱动线提供驱动信号。Optionally, the driving signal unit provides the driving signal to the driving line through the first switch unit.
可选的,所述第一开关单元为单刀多掷开关。Optionally, the first switch unit is a single-pole multi-throw switch.
可选的,所述驱动信号单元还包括第一正电压源和第二正电压源,或第一负电压源和第二负电压源。Optionally, the driving signal unit further includes a first positive voltage source and a second positive voltage source, or a first negative voltage source and a second negative voltage source.
可选的,所述的互电容触摸屏还包括:感应信号单元,所述感应信号单元向所述感应线提供感应信号,在所述感应信号的波形的正向下降阶段,向所述感应线提供第二正向恒定电流;在所述感应信号的波形的反向上升阶段,向所述感应线提供第二反向恒定电流。Optionally, the mutual-capacitance touch screen further includes: a sensing signal unit, which provides a sensing signal to the sensing line, and provides A second positive constant current: during the reverse rising phase of the waveform of the sensing signal, providing a second reverse constant current to the sensing line.
可选的,所述感应线包括第一感应信号输入端和第二感应信号输入端。Optionally, the sensing line includes a first sensing signal input end and a second sensing signal input end.
可选的,所述第二正向恒定电流源包括两个连接端,向所述感应线提供第二正向恒定电流时,所述第二正向恒定电流源的两个连接端分别连接所述第一感应信号输入端和第二感应信号输入端。Optionally, the second forward constant current source includes two connection terminals, and when the second forward constant current is supplied to the induction line, the two connection terminals of the second forward constant current source are respectively connected to the The first sensing signal input end and the second sensing signal input end are described above.
可选的,所述第二反向恒定电流源包括两个连接端,向所述感应线提供第二反向恒定电流时,所述第二反向恒定电流源的两个连接端分别连接所述第一感应信号输入端和第二感应信号输入端。Optionally, the second reverse constant current source includes two connection terminals, and when the second reverse constant current is provided to the induction line, the two connection terminals of the second reverse constant current source are respectively connected to the The first sensing signal input end and the second sensing signal input end are described above.
可选的,所述感应信号单元还包括第三正向恒定电流源和第三反向恒定电流源,在所述感应信号的波形的正向下降阶段,向所述感应线提供第三正向恒定电流;在所述感应信号的波形的反向上升阶段,向所述感应线提供第三反向恒定电流。Optionally, the sensing signal unit further includes a third forward constant current source and a third reverse constant current source, which provide a third forward constant current source to the sensing line during the forward falling phase of the waveform of the sensing signal. Constant current: providing a third reverse constant current to the sensing line during the reverse rising phase of the waveform of the sensing signal.
可选的,所述感应线还包括第三感应信号输入端和第四感应信号输入端,所述第三感应信号输入端通过开关和所述第一感应信号输入端连接,所述第四感应信号输入端通过另一开关和所述第二感应信号输入端连接。Optionally, the sensing line further includes a third sensing signal input end and a fourth sensing signal input end, the third sensing signal input end is connected to the first sensing signal input end through a switch, and the fourth sensing signal input end is connected to the first sensing signal input end through a switch. The signal input end is connected to the second sensing signal input end through another switch.
可选的,所述第二正向恒定电流和所述第三正向恒定电流相同,所述第二反向恒定电流和所述第三反向恒定电流相同。Optionally, the second forward constant current is the same as the third forward constant current, and the second reverse constant current is the same as the third reverse constant current.
可选的,所述第二正向恒定电流和所述第二反向恒定电流幅值大小相等。Optionally, the magnitudes of the second forward constant current and the second reverse constant current are equal.
可选的,所述第二正向恒定电流源、所述第二反向恒定电流源、所述第三正向恒定电流源和所述第三反向恒定电流源各包括一个连接端,通过开关和所述第一感应信号输入端或所述第二感应信号输入端连接。Optionally, each of the second forward constant current source, the second reverse constant current source, the third forward constant current source and the third reverse constant current source includes a connection terminal, through The switch is connected to the first sensing signal input end or the second sensing signal input end.
本发明还提供了一种互电容触摸屏的驱动方法,包括步骤:The present invention also provides a driving method for a mutual capacitance touch screen, comprising the steps of:
S1:所述驱动信号单元向至少一条所述驱动线提供驱动信号,在所述驱动信号的波形的上升阶段,所述驱动线获得第一正向恒定电流,在所述驱动信号的波形的下降阶段,所述驱动线获得第一反向恒定电流;S1: The drive signal unit provides a drive signal to at least one of the drive lines, and in the rising phase of the waveform of the drive signal, the drive line obtains a first positive constant current, and in the falling phase of the waveform of the drive signal stage, the drive line obtains a first reverse constant current;
S2:接收所述感应线上的感应信号。S2: Receive a sensing signal on the sensing line.
优选的,在所述步骤S1还包括:由感应信号单元向所述感应线提供感应信号,在所述感应信号的波形的正向下降阶段,向所述感应线提供第二正向恒定电流,在所述感应信号的波形的反向上升阶段,向所述感应线提供第二反向恒定电流。Preferably, the step S1 further includes: providing a sensing signal to the sensing line by the sensing signal unit, and providing a second forward constant current to the sensing line during the positive falling phase of the waveform of the sensing signal, In the reverse rising phase of the waveform of the sensing signal, a second reverse constant current is supplied to the sensing line.
本发明的所述互电容触摸屏以及互电容触摸屏的驱动方法,由于所述驱动信号单元,向所述驱动线提供驱动信号,在所述驱动信号的波形的上升阶段,向所述驱动线提供第一正向恒定电流;在所述驱动信号的波形的下降阶段,向所述驱动线提供第一反向恒定电流。因此能够降低由于RC延迟造成的波形变形,使得即使寄生电容很大,仍能得到较大的检测信号并且使检测信号较稳定从而使它更容易被检测到,提高触摸屏的灵敏度。According to the mutual capacitance touch screen and the driving method of the mutual capacitance touch screen of the present invention, the driving signal unit provides the driving signal to the driving line, and in the rising stage of the waveform of the driving signal, the second driving signal is provided to the driving line. A positive constant current; during the falling phase of the waveform of the driving signal, a first reverse constant current is provided to the driving line. Therefore, the waveform deformation caused by RC delay can be reduced, so that even if the parasitic capacitance is large, a larger detection signal can be obtained and the detection signal is more stable so that it is easier to be detected and the sensitivity of the touch screen is improved.
附图说明Description of drawings
图1示出了传统的互电容触摸屏的截面结构示意图。FIG. 1 shows a schematic cross-sectional structure diagram of a traditional mutual capacitance touch screen.
图2示出了传统的互电容触摸屏的驱动线层和感应线层的平面结构及连接方式示意图。FIG. 2 shows a schematic diagram of the planar structure and connection method of the driving line layer and the sensing line layer of the traditional mutual capacitance touch screen.
图3示出了传统的互电容触摸屏的等效电路原理图。FIG. 3 shows a schematic diagram of an equivalent circuit of a conventional mutual capacitance touch screen.
图4a和图4b示出了传统的互电容触摸屏中驱动信号节点的波形。4a and 4b show waveforms of driving signal nodes in a conventional mutual-capacitance touch screen.
图5a和图5b示出了传统的互电容触摸屏中感应信号节点的波形。5a and 5b show waveforms of sensing signal nodes in a conventional mutual-capacitance touch screen.
图6a和图6b示出了传统的互电容触摸屏中输出端输出的输出信号Vout的波形。6a and 6b show the waveform of the output signal Vout output from the output terminal in the traditional mutual capacitance touch screen.
图7a和图7b进一步示出了传统的互电容触摸屏中驱动线和感应线上信号变形。Fig. 7a and Fig. 7b further illustrate the signal deformation of the driving line and the sensing line in the traditional mutual capacitance touch screen.
图8是根据本发明的互电容触摸屏一优选实施例的电路原理图。FIG. 8 is a circuit schematic diagram of a preferred embodiment of a mutual capacitance touch screen according to the present invention.
图9是根据本发明的互电容触摸屏另一优选实施例的电路原理图。Fig. 9 is a circuit schematic diagram of another preferred embodiment of the mutual capacitance touch screen according to the present invention.
图10示出了本发明互电容触摸屏较佳实施例的驱动线、感应线和输出端的电压波形。FIG. 10 shows the voltage waveforms of the driving line, the sensing line and the output terminals of the preferred embodiment of the mutual capacitance touch screen of the present invention.
具体实施方式Detailed ways
为了使本发明的技术内容以及解决的技术问题和技术效果更加清楚易懂,下面结合附图对本发明的具体实施方式做详细的说明,但是本发明并不限于附图和所描述的实施方式。In order to make the technical content of the present invention and the technical problems and technical effects to be solved clearer and easier to understand, the specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings, but the present invention is not limited to the accompanying drawings and the described embodiments.
为了说明本发明实施方式的工作原理,将传统互电容模型(图3)中的驱动线电压18和感应线电压19作一次说明。图7a和图7b为一般情况下驱动线电压18和感应线电压19的波形示意图。在图7a和图7b中,横轴为时间,纵轴为电压。结合图3所示,当驱动电源1向驱动线2输入方波时,驱动线2上的波形由于RC延迟而变形,驱动信号节点18处的驱动信号的波形如图7a所示,从而使感应信号节点19处的感应信号的波形变成如图7b所示。图7b中感应信号的波形的正向阶段可以分为两个阶段:正向上升阶段20和正向下降阶段21。正向上升阶段20主要由图7a中波形的上升速度决定,而正向下降阶段21主要由感应线5上的电阻及寄生电容决定。由图7b可知,感应线5上的信号衰减很严重,不利于触摸信号的检测。为了解决现有技术中的感应线5上的信号严重衰减的问题,需要将驱动线2上的电压迅速升高到驱动脉冲的高电平,而为了解决现有技术中的检测信号不稳定导致难以检测的问题,需要将感应线5上的信号迅速从高电平拉低到接近零,从而使积分的结果(输出电压)可以较长时间保持在一个电位上。对此本发明的互电容触摸屏以及互电容触摸屏的驱动方法,由于具有驱动信号单元,向所述驱动线提供驱动信号,在所述驱动信号的波形的上升阶段,向所述驱动线提供第一正向恒定电流;在所述驱动信号的波形的下降阶段,向所述驱动线提供第一反向恒定电流。因此能够降低由于RC延迟造成的波形变形,使得即使寄生电容很大,仍能得到较大的检测信号并且使检测信号较稳定从而使它更容易被检测到,提高触摸屏的灵敏度。In order to illustrate the working principle of the embodiment of the present invention, the driving
根据本发明的互电容触摸屏包括:绝缘层(未图示);驱动线层(未图示),位于所述绝缘层的第一表面,所述驱动线层包括至少两条驱动线;感应线层(未图示),位于所述绝缘层的第二表面,所述感应线层包括至少两条感应线;以及:驱动信号单元,向所述驱动线提供驱动信号,在所述驱动信号的波形的上升阶段,向所述驱动线提供第一正向恒定电流;在所述驱动信号的波形的下降阶段,向所述驱动线提供第一反向恒定电流。其中,所述绝缘层、驱动线层、感应线层可以与现有技术的位置、形状、材料等相同,也可以和其他现有的互电容触摸屏相同。The mutual capacitance touch screen according to the present invention includes: an insulating layer (not shown); a driving line layer (not shown), located on the first surface of the insulating layer, and the driving line layer includes at least two driving lines; a sensing line layer (not shown), located on the second surface of the insulating layer, the sensing line layer includes at least two sensing lines; and: a driving signal unit that provides a driving signal to the driving line, and the driving signal In a rising phase of the waveform, a first forward constant current is supplied to the driving line; in a falling phase of the waveform of the driving signal, a first reverse constant current is supplied to the driving line. Wherein, the insulating layer, the driving line layer, and the sensing line layer may be the same in position, shape, material, etc. as those of the prior art, or may be the same as other existing mutual-capacitance touch screens.
在所述驱动信号的波形的上升阶段和下降阶段分别提供第一正向恒定电流和第一反向恒定电流可以使驱动信号的波形迅速升高到驱动脉冲的高电平,从而减少感应信号的衰减问题。Providing the first forward constant current and the first reverse constant current in the rising phase and falling phase of the waveform of the driving signal respectively can make the waveform of the driving signal rise rapidly to the high level of the driving pulse, thereby reducing the induction signal Attenuation problem.
实施例一Embodiment one
图8示出了根据本发明的互电容触摸屏一个优选实施例的电路原理图。如图8所示,本实施例的驱动信号单元20通过第一开关单元26向所述驱动线2提供驱动信号,所述感应线5包括第一感应信号输入端501和第二感应信号输入端502、以及第三感应信号输入端503和第四感应信号输入端504,所述感应信号单元50通过所述第一感应信号输入端501和所述第二感应信号输入端502向所述感应线5输入信号;所述驱动信号单元20包括:第一正向恒定电流源22、第一反向恒定电流源23、第一正电压源Vd 24、第二正电压源25,其中,所述第一正电压源Vd24和第二正电压源25可以用第一负电压源和第二负电压源代替;所述感应信号单元50包括:第二正向恒定电流源29、第二反向恒定电流源30、第三正向恒定电流源30、第三反向恒定电流源40。FIG. 8 shows a schematic circuit diagram of a preferred embodiment of a mutual capacitance touch screen according to the present invention. As shown in FIG. 8 , the driving
所述驱动线2通过第一开关单元26选择性地与第一正向恒定电流源22、第一反向恒定电流源23、第一正电压源Vd 24、第二正电压源25接通;所述第一感应信号输入端501可以选择性的与所述第二正向恒定电流源29、第二反向恒定电流源30以及第三感应信号输入端503接通;所述第二感应信号输入端502可以选择性的与所述第三正向恒定电流源39、第三反向恒定电流源40以及第四感应信号输入504端接通。The
在图8、图9中所示的互电容触摸屏中,参数取值为:驱动信号单元20的一个周期为6微秒(μs)、驱动线2上的电阻为25千欧、驱动线2上的寄生电容为3000pF、感应线5上的电阻为30千欧、感应线5上寄生电容为30pF、未触摸时互电容4为0.6pF、触摸时互电容4为0.4pF、检测放大器34的电容为50pF、第一正向恒定电流和第一反向恒定电流的幅值均为44毫安、第二正向恒定电流和第二反向恒定电流以及第三正向恒定电流和第三反向恒定电流的幅值均为6.1微安、检测信号放大器的输出的最大幅值为75毫伏((mV))、第一正电压为15伏(V)、第二正电压为0伏.In the mutual-capacitance touch screen shown in Fig. 8 and Fig. 9, the parameter values are: one cycle of the driving
如图10所示,在驱动电压14的一个周期中,可以将驱动线2上的驱动信号节点21处的波形221划分为101~106六个时段,相应的,感应线5上的感应信号节点51处的波形以及输出端35处的输出电压波形也被划分成相应的六个时段:As shown in Figure 10, in one cycle of the driving
在时段101,对应驱动信号的波形的上升阶段,也即感应信号波形的正向上升阶段,所述第一开关单元26连接到第一正向恒定电流源22,所述第一感应信号输入端501连接所述第三感应信号输入端503,所述第二感应信号输入端502连接所述第四感应信号输入端504,从而使所述感应线5和检测放大器34连通;优选的,所述检测放大器34为电荷放大器。In
在时段102,对应感应信号的波形的正向下降阶段,所述第一开关单元26连接到所述第一正电压源Vd 24,所述第一感应信号输入端501连接所述第二正向恒定电流源29,所述第二感应信号输入端502连接所述第三正向恒定电流源39;In
在时段103,所述第一开关单元26连接到所述第一正向恒定电流源22,所述第一感应信号输入端501连接所述第三感应信号输入端503,所述第二感应信号输入端502连接所述第四感应信号输入端504,从而使所述感应线5和所述检测放大器34连通;In
在时段104,对应驱动信号的波形的下降阶段,也即感应信号的波形的反向上升阶段,所述第一开关单元26连接到所述第一反向恒定电流源23,所述第一感应信号输入端501连接所述第三感应信号输入端503,所述第二感应信号输入端502连接所述第四感应信号输入端504,从而使所述感应线5和所述检测放大器34连通;In
在时段105,对应感应信号的波形的反向下降阶段,所述第一开关单元26连接到所述第二正电压源25,所述第一感应信号输入端501连接所述第二反向恒定电流源30,所述第二感应信号输入端502连接所述第三反向恒定电流源40;In
在时段106,所述第一开关单元26仍然连接到所述第一反向恒定电流源23,所述第一感应信号输入端501连接所述第三感应信号输入端503,所述第二感应信号输入端502连接所述第四感应信号输入端504,从而使所述感应线5和所述检测放大器34连通;In
对应以上六个时段,所述感应线5上的感应信号节点51处的波形551、输出端35处的输出电压波形如图10所示。Corresponding to the above six periods, the
以上实施例为本发明的较佳实施例,可选的,在时段102和时段105,可以用第一负电压源代替第一正电压源,用第二负电压源代替第二正电压源。The above embodiments are preferred embodiments of the present invention. Optionally, in
如前所述,图7b中的波形的上升阶段20主要由图7a中波形的上升速度决定,即感应线5上感应信号的波形的上升阶段的速度由驱动线2上驱动信号的波形的上升速度决定,所以,在时段101和时段104,使驱动线2分别连接第一正向恒定电流源22和第一反向恒定电流源23,有利于感应线上感应信号的波形的上升。这样,可以有效降低感应线5上的信号衰减,有利于触摸信号的检测。As previously mentioned, the rising
优选的,第一正向恒定电流源22提供第一正向恒定电流,第一反向恒定定电流源23提供第一反向恒定电流,所述第一正向恒定电流和所述第一反向恒定电流的幅值相等。这样,驱动信号的波形的上升等于驱动信号的波形的下降,从而,使驱动信号对感应信号的影响也是对称的,即驱动信号的波形的上升引起的感应信号的波形的正向上升、和驱动信号的波形的下降引起的感应信号的波形的反向上升是等效的。Preferably, the first forward constant
如前所述,图7b中的波形的下降阶段21主要由感应线5上的电容及电阻决定,因此,在时段102和时段105,分别使驱动线2连接恒定电压源(第一正电压源和第二正电压源,或第一负电压源和第二负电压源),而使感应线5连接恒定电流源(具体连接见时段102和时段105所述),从而使感应线5上的信号迅速从高电平下降到零。这样,可以使输出端35的电压可以较长时间的保持在一个电位上,有利于触摸信号的检测。As mentioned above, the falling
优选的,所述第二正向恒定电流源29和所述第三正向恒定电流源相同39,所述第二反向恒定电流源30和所述第三反向恒定电流源相同40,所述第二正向恒定电流源29提供的第二正向恒定电流与所述第二反向恒定电流源提供的第二反向恒定电流的幅值相等,所述第三正向恒定电流源39提供的第三正向恒定电流和所述第三反向恒定电流源40提供的第三反向恒定电流的幅值相等。这样,所述驱动线2上的驱动信号节点21处的波形221、所述感应线5上的感应信号节点51处的波形551、输出端35处的输出电压波形,在各自前半周期的变化和后各自半周期的变化是对称的。Preferably, the second forward constant
如图10所示,其中关于波形221,横轴为时间以微秒为单位,纵轴为电压以伏为单位;关于波形551,横轴为时间以微秒为单位,纵轴为电压以微伏为单位;关于输出端35处的输出电压波形,横轴为时间以微秒为单位,纵轴为电压以微伏为单位。所述波形221、551以及输出端波形的周期均为6微秒,波形221峰值15伏,波形551峰值约100毫伏,输出端波形峰值约50毫伏。As shown in FIG. 10 , regarding the
实施例二Embodiment two
在时段101,所述第一开关单元26连接到第一正向恒定电流源22,所述第一感应信号输入端501连接所述第三感应信号输入端503,所述第二感应信号输入端502连接所述第四感应信号输入端504;In
在时段102,所述第一开关单元26连接到所述第一正电压源Vd 24,所述第一感应信号输入端501连接所述第三感应信号输入端503,所述第二感应信号输入端502连接所述第四感应信号输入端504;In
在时段103,所述第一开关单元26连接到所述第一正向恒定电流源22,所述第一感应信号输入端501连接所述第三感应信号输入端503,所述第二感应信号输入端502连接所述第四感应信号输入端504;In
在时段104,所述第一开关单元26连接到所述第一反向恒定电流源23,所述第一感应信号输入端501连接所述第三感应信号输入端503,所述第二感应信号输入端502连接所述第四感应信号输入端504;In
在时段105,所述第一开关单元26连接到所述第二正电压源25,所述第一感应信号输入端501连接所述第三感应信号输入端503,所述第二感应信号输入端502连接所述第四感应信号输入端504;In
在时段106,所述第一开关单元26仍然连接到所述第一反向恒定电流源23,所述第一感应信号输入端501连接所述第三感应信号输入端503,所述第二感应信号输入端502连接所述第四感应信号输入端504;In
本实施例中,所述感应信号单元50向所述感应线5提供的感应信号是零,而所述驱动信号单元20向所述驱动线2提供的驱动信号同实施例一,各个信号的作用也同实施例一相同。In this embodiment, the sensing signal provided by the
实施例三Embodiment three
在本实施例中,所述感应信号单元50向所述感应线5提供的感应信号同实施例一,而所述驱动信号单元20向所述驱动线2提供的驱动信号同现有技术的驱动电压14,各个信号的作用也与实施例一相同。In this embodiment, the sensing signal provided by the
实施例四Embodiment Four
如图9所示,本实施例与实施例一的不同主要是:所述感应信号单元50与所述感应线5的连接方式,其他方面,如各个时段中,所述驱动信号单元20与所述感应信号单元分别施加给所述驱动线2和感应线5的信号是相同的,各个信号的作用也是相同的。As shown in FIG. 9 , the difference between this embodiment and the first embodiment is mainly: the connection mode between the
本实施例的所述第二正向恒定电流源29和第二反向恒定电流源30均包括两个连接端,所述两个连接端对应第一感应信号输入端501和第二感应信号输入端502。The second forward constant
本实施例中的所述第一感应信号输入端501和第二感应信号输入端502可以彼此连接。In this embodiment, the first sensing
实施例五Embodiment five
本发明还提供了一种互电容触摸屏的驱动方法,包括步骤:The present invention also provides a driving method for a mutual capacitance touch screen, comprising the steps of:
S1:所述驱动信号单元向至少一条所述驱动线提供驱动信号,在所述驱动信号的波形的上升阶段,所述驱动线获得第一正向恒定电流,在所述驱动信号的波形的下降阶段,所述驱动线获得第一反向恒定电流;S1: The drive signal unit provides a drive signal to at least one of the drive lines, and in the rising phase of the waveform of the drive signal, the drive line obtains a first positive constant current, and in the falling phase of the waveform of the drive signal stage, the drive line obtains a first reverse constant current;
S2:接收所述感应线上的感应信号。S2: Receive a sensing signal on the sensing line.
优选的,在所述步骤S1还包括:由感应信号单元向所述感应线提供感应信号,在所述感应信号的波形的正向下降阶段,向所述感应线提供第二正向恒定电流,在所述感应信号的波形的反向上升阶段,向所述感应线提供第二反向恒定电流。Preferably, the step S1 further includes: providing a sensing signal to the sensing line by the sensing signal unit, and providing a second forward constant current to the sensing line during the positive falling phase of the waveform of the sensing signal, In the reverse rising phase of the waveform of the sensing signal, a second reverse constant current is supplied to the sensing line.
下面参照图10进一步描述根据本发明的互电容触摸屏的驱动方法及所实现的效果。The driving method of the mutual capacitance touch screen according to the present invention and the achieved effects will be further described below with reference to FIG. 10 .
从图10中可以看出,通过利用本发明的驱动信号单元20和感应信号单元50,最后的输出端35的输出电压不会因为较大的寄生电容而发生变形,仍然可以达到最大电压值以及拥有一段较平缓的波形从而便于检测。这样就降低了寄生电容造成的驱动脉冲波形的变形,解决了信号检测困难的问题。It can be seen from FIG. 10 that by using the
本发明的驱动信号单元20和感应信号单元50主要利用了电流源,从而通过电流源像泵一样抽放电荷使由于寄生电容影响的电压上升和下降速度提高,从而改善了波形的变形,克服了驱动信号变形对信号检测所产生的不利影响,提高了触摸屏的灵敏度。The driving
本发明的互电容触摸屏可以应用于液晶显示器,也可以应用于有机发光二极管显示器,或者电子纸等现,只要满足触摸时与未触摸时互电容发生变化即可。The mutual-capacitance touch screen of the present invention can be applied to liquid crystal displays, organic light-emitting diode displays, or electronic paper, as long as the mutual capacitance changes between touch and non-touch.
本说明书中所描述的只是本发明的优选实施例,其仅用以说明本发明的技术方案而非对本发明的限制。凡本领域普通技术人员依本发明所公开的内容通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在本发明的范围之内。What is described in this specification is only a preferred embodiment of the present invention, which is only used to illustrate the technical solution of the present invention rather than limit the present invention. All technical solutions that can be obtained by persons of ordinary skill in the art through logical analysis, reasoning or limited experiments based on the content disclosed in the present invention shall fall within the scope of the present invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910057604 CN101957697B (en) | 2009-07-16 | 2009-07-16 | Mutual capacitance touch screen and driving method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910057604 CN101957697B (en) | 2009-07-16 | 2009-07-16 | Mutual capacitance touch screen and driving method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101957697A true CN101957697A (en) | 2011-01-26 |
CN101957697B CN101957697B (en) | 2013-05-22 |
Family
ID=43485054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910057604 Expired - Fee Related CN101957697B (en) | 2009-07-16 | 2009-07-16 | Mutual capacitance touch screen and driving method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101957697B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103823587A (en) * | 2012-11-16 | 2014-05-28 | 乐金显示有限公司 | Touch sensing system and method for driving the same |
CN103886281A (en) * | 2014-01-14 | 2014-06-25 | 敦泰科技有限公司 | Electric field type fingerprint identification device, state control method thereof and prosthesis identification method |
CN105183222A (en) * | 2015-08-27 | 2015-12-23 | 京东方科技集团股份有限公司 | Touch display screen and driving method thereof |
CN105718124A (en) * | 2014-12-05 | 2016-06-29 | 宸鸿科技(厦门)有限公司 | Touch module and control circuit thereof and touch sensing method |
CN106933399A (en) * | 2015-12-31 | 2017-07-07 | 瑞尼斯股份有限公司 | Capacitance touch input unit with stray capacitance compensation section |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1166214A (en) * | 1994-09-02 | 1997-11-26 | 辛纳普蒂克斯有限公司 | Object position detector with edge motion feature |
US20010015711A1 (en) * | 1999-12-10 | 2001-08-23 | Toru Aoki | Driving method for electro-optical device, image processing circuit, electro-optical device, and electronic equipment |
CN101221328A (en) * | 2007-01-11 | 2008-07-16 | 上海天马微电子有限公司 | Liquid crystal display device and method for manufacturing the same |
-
2009
- 2009-07-16 CN CN 200910057604 patent/CN101957697B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1166214A (en) * | 1994-09-02 | 1997-11-26 | 辛纳普蒂克斯有限公司 | Object position detector with edge motion feature |
US20010015711A1 (en) * | 1999-12-10 | 2001-08-23 | Toru Aoki | Driving method for electro-optical device, image processing circuit, electro-optical device, and electronic equipment |
CN101221328A (en) * | 2007-01-11 | 2008-07-16 | 上海天马微电子有限公司 | Liquid crystal display device and method for manufacturing the same |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103823587A (en) * | 2012-11-16 | 2014-05-28 | 乐金显示有限公司 | Touch sensing system and method for driving the same |
CN103823587B (en) * | 2012-11-16 | 2017-04-12 | 乐金显示有限公司 | Touch sensing system and method for driving the same |
US9766755B2 (en) | 2012-11-16 | 2017-09-19 | Lg Display Co., Ltd. | Touch sensing system adjusting voltage of driving signal based on a distance from a touch sensing circuit and method for driving the same |
CN103886281A (en) * | 2014-01-14 | 2014-06-25 | 敦泰科技有限公司 | Electric field type fingerprint identification device, state control method thereof and prosthesis identification method |
CN103886281B (en) * | 2014-01-14 | 2017-08-29 | 敦泰电子有限公司 | Electric field type fingerprint identification device, state control method thereof and prosthesis identification method |
CN105718124A (en) * | 2014-12-05 | 2016-06-29 | 宸鸿科技(厦门)有限公司 | Touch module and control circuit thereof and touch sensing method |
CN105718124B (en) * | 2014-12-05 | 2019-04-12 | 宸鸿科技(厦门)有限公司 | Touch-control module and its control circuit and sensing method of touch control |
CN105183222A (en) * | 2015-08-27 | 2015-12-23 | 京东方科技集团股份有限公司 | Touch display screen and driving method thereof |
CN106933399A (en) * | 2015-12-31 | 2017-07-07 | 瑞尼斯股份有限公司 | Capacitance touch input unit with stray capacitance compensation section |
Also Published As
Publication number | Publication date |
---|---|
CN101957697B (en) | 2013-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101866228B (en) | Touch screen, liquid crystal display device and driving method of touch screen | |
TWI433022B (en) | Demodulated method and system of differential sensing capacitive touch panel with low power | |
TWI436263B (en) | Low power driving and sensing method and apparatus for capacitive touch panel | |
KR101461157B1 (en) | touch screen system and driving method thereof | |
CN201218943Y (en) | Condenser type touch screen | |
CN103988157B (en) | Sensing device | |
JP5481740B2 (en) | Touch display that can eliminate the effects of touch on the display | |
JP5876304B2 (en) | Capacitive touch input device | |
TWI472979B (en) | Touch panel device with reconfigurable sensing points and its sensing method | |
TWI447625B (en) | Capacitive touch detection system and detection signal receiving and waveform shaping module | |
TWI470523B (en) | Noise reduction method and system for capacitive multi-touch panel | |
CN103018994B (en) | Embedded multi-touch LCD panel system | |
CN104793819B (en) | Self-capacitance touch screen structure, In-cell touch panel and liquid crystal display | |
CN101957697A (en) | Mutual capacitance touch screen and driving method thereof | |
CN102455812A (en) | Touch display device | |
KR20130056081A (en) | Device and method for sensing touch input | |
WO2016106886A1 (en) | Touch screen drive circuit, touch screen and electronic terminal | |
CN103186298B (en) | Low standby power consumption driving method and device for capacitive multi-touch | |
CN205068346U (en) | Touch display panel and touch display device | |
TW202109270A (en) | Touch panel device, touch panel device control method, program, and non-transitory tangible computer-readable storage medium having the program stored therein | |
CN105786273A (en) | Capacitive touch screen, detection circuit of capacitive touch screen and electronic device | |
CN103455195A (en) | Touch screen device | |
US20150022493A1 (en) | Touch pen | |
TW201640296A (en) | In-cell touch screen and a method of driving the same | |
WO2011156953A1 (en) | Signal processing scheme for touch control screen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130522 |