CN101949871B - Device for measuring thermal power of nonlinear crystal - Google Patents
Device for measuring thermal power of nonlinear crystal Download PDFInfo
- Publication number
- CN101949871B CN101949871B CN 201010257008 CN201010257008A CN101949871B CN 101949871 B CN101949871 B CN 101949871B CN 201010257008 CN201010257008 CN 201010257008 CN 201010257008 A CN201010257008 A CN 201010257008A CN 101949871 B CN101949871 B CN 101949871B
- Authority
- CN
- China
- Prior art keywords
- temperature control
- nonlinear crystal
- temperature
- furnace
- control furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种测量非线性晶体热功率大小的装置,包括非线性晶体、温度传感器、智能模块、控温电源、控温炉和示波器。非线性晶体放置于控温炉内部,工作于某一设定的温度T1条件下,起到激光变频的作用;温度传感器用于测量非线性晶体的实际工作温度T0,并将该值反馈给智能模块;智能模块用于将温度传感器测量到的非线性晶体的实际工作温度T0与设定的温度T1比较,据此调节控温电源向控温炉输出的加热电压,将非线性晶体控制于设定的工作温度T1下;控温炉采用加热丝作为加热元件;温度传感器、智能模块、控温电源和控温炉构成控温系统,示波器实时测量控温电源向控温炉输出的加热电压的波形W。利用本发明,实现了非线性晶体热功率大小的测量。
The invention discloses a device for measuring the thermal power of a nonlinear crystal, which comprises a nonlinear crystal, a temperature sensor, an intelligent module, a temperature control power supply, a temperature control furnace and an oscilloscope. The nonlinear crystal is placed inside the temperature control furnace and works at a certain set temperature T 1 to play the role of laser frequency conversion; the temperature sensor is used to measure the actual working temperature T 0 of the nonlinear crystal and feed back the value For the intelligent module; the intelligent module is used to compare the actual working temperature T 0 of the nonlinear crystal measured by the temperature sensor with the set temperature T 1 , and adjust the heating voltage output by the temperature control power supply to the temperature control furnace accordingly, and convert the nonlinear crystal to the temperature control furnace. The crystal is controlled at the set working temperature T 1 ; the temperature control furnace uses heating wire as the heating element; the temperature sensor, the intelligent module, the temperature control power supply and the temperature control furnace constitute the temperature control system, and the oscilloscope measures the temperature control power supply to the temperature control furnace in real time. The waveform W of the output heating voltage. Utilizing the invention, the measurement of the thermal power of the nonlinear crystal is realized.
Description
技术领域 technical field
本发明涉及激光技术领域,尤其涉及一种测量非线性晶体热功率大小的装置,该热功率是非线性晶体因吸收激光而产生的。The invention relates to the field of laser technology, in particular to a device for measuring the thermal power of a nonlinear crystal, which is generated by the nonlinear crystal due to the absorption of laser light.
背景技术 Background technique
非线性晶体可以将某一波长的基频光转换为其他波长的激光,极大地扩展了激光的波长范围,从而扩展了激光的应用范围。例如,LBO晶体可以将波长为1064nm的红外激光倍频为532nm的绿光,PPLN晶体可以将1064nm激光转换为波长可调谐的中红外激光等。因此,非线性晶体在激光系统中有非常重要的地位。工作时,非线性晶体对通过其中的激光的吸收系数很小,对激光基本不吸收。Nonlinear crystals can convert fundamental frequency light of a certain wavelength into laser light of other wavelengths, which greatly expands the wavelength range of laser light, thereby expanding the application range of laser light. For example, LBO crystal can double the frequency of 1064nm infrared laser to 532nm green light, and PPLN crystal can convert 1064nm laser into mid-infrared laser with tunable wavelength. Therefore, nonlinear crystals play a very important role in laser systems. When working, the nonlinear crystal has a very small absorption coefficient for the laser light passing through it, and basically does not absorb the laser light.
但是,在高功率工作条件下,如LBO晶体倍频1064nm激光产生高功率绿光时,基频泵浦光的功率很高,LBO晶体吸收基频光会产生一定的热功率,导致晶体温度升高,从而导致相位失配,降低转换效率;又如,在1064nm激光泵浦的基于周期极化掺杂氧化镁的铌酸锂的光参量振荡器(PPMgLN-OPO)中,为了降低泵浦光的阈值功率,OPO腔镜的输入镜和输出镜都对振荡光(如信号光)高反,因而腔内循环的振荡光功率很高。PPMgLN晶体会因为吸收腔内的振荡光而产生热功率,导致晶体温度升高产生热效应,从而降低参量转换效率和输出激光的光束质量。However, under high-power working conditions, such as when the LBO crystal doubles the frequency of 1064nm laser to produce high-power green light, the power of the fundamental-frequency pump light is very high, and the LBO crystal absorbs the fundamental-frequency light to generate a certain amount of thermal power, which causes the temperature of the crystal to rise. high, resulting in phase mismatch and lower conversion efficiency; another example, in the 1064nm laser-pumped optical parametric oscillator based on periodically polarized magnesium oxide-doped lithium niobate (PPMgLN-OPO), in order to reduce the pump light The threshold power of the OPO cavity mirror, the input mirror and the output mirror of the OPO cavity mirror are highly reflective to the oscillating light (such as signal light), so the power of the oscillating light circulating in the cavity is very high. The PPMgLN crystal will generate thermal power due to the absorption of oscillating light in the cavity, which will cause the temperature of the crystal to rise and cause a thermal effect, thereby reducing the parametric conversion efficiency and the beam quality of the output laser.
由此可见,非线性晶体吸收激光而产生热功率的现象对非线性转换过程具有很大的影响,详细研究这一现象是非常重要的。测量非线性晶体吸收激光而产生的热功率大小,可以判断非线性过程中晶体产生热效应的程度,进而可以进一步优化实验设计,是一项十分重要的研究课题。It can be seen that the phenomenon that nonlinear crystals absorb laser light and generate thermal power has a great influence on the nonlinear conversion process, and it is very important to study this phenomenon in detail. Measuring the thermal power generated by nonlinear crystals absorbing laser light can determine the degree of thermal effects generated by crystals in the nonlinear process, and further optimize the experimental design, which is a very important research topic.
目前测量非线性晶体吸收激光而产生热功率的大小的方法不多。A.Henderson等(Appl.Phys.B,vol(85),2006:181-184)在PPLN-OPO实验中,首先通过实验测量OPO腔镜在信号光(振荡光)波长处的透射率,再根据OPO腔输出的信号光功率计算出腔内循环信号光的功率,然后根据所用的PPLN晶体在该波长信号光的吸收系数,计算出晶体吸收信号光产生的热功率。该方法过程较繁琐,而且一次只能得到晶体吸收某一特定波长信号光的功率。如果OPO进行调谐而改变信号光波长,那么又必须重新测量OPO腔镜在该波长处的透射率等。另外,如果PPLN晶体对OPO输出的泵浦光、闲频光也有一定的吸收,使用该方法便不容易测量其吸收激光而产生的热功率大小。At present, there are not many methods for measuring the thermal power generated by nonlinear crystals absorbing laser light. A.Henderson et al. (Appl.Phys.B, vol(85), 2006: 181-184) in the PPLN-OPO experiment, first measured the transmittance of the OPO cavity mirror at the wavelength of the signal light (oscillating light) through experiments, and then Calculate the power of the circulating signal light in the cavity according to the signal light power output by the OPO cavity, and then calculate the thermal power generated by the crystal absorbing the signal light according to the absorption coefficient of the PPLN crystal used for the signal light at this wavelength. The process of this method is cumbersome, and only the power of the crystal absorbing signal light of a specific wavelength can be obtained at one time. If the OPO is tuned to change the wavelength of the signal light, then the transmittance of the OPO cavity mirror at this wavelength must be re-measured. In addition, if the PPLN crystal also absorbs the pump light and idler light output by the OPO, it is not easy to measure the thermal power generated by the laser absorption by using this method.
发明内容 Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
有鉴于此,本发明的主要目的在于提供一种测量非线性晶体热功率大小的装置。In view of this, the main purpose of the present invention is to provide a device for measuring the thermal power of a nonlinear crystal.
(二)技术方案(2) Technical solution
为达到上述目的,本发明提供了一种测量非线性晶体热功率大小的装置,该装置包括非线性晶体101、温度传感器102、智能模块103、控温电源104、控温炉105和示波器106,其中:In order to achieve the above object, the present invention provides a device for measuring the thermal power of a nonlinear crystal, which includes a
非线性晶体101,放置于控温炉105内部,工作于某一设定的温度T1条件下,起到激光变频的作用;The
温度传感器102,用于测量非线性晶体101的实际工作温度T0,并将该值反馈给智能模块103;The
智能模块103,用于将温度传感器102测量到的非线性晶体101的实际工作温度T0与设定的温度T1比较,据此调节控温电源104向控温炉105输出的加热电压,将非线性晶体101控制于设定的工作温度T1下;The
控温炉105,采用加热丝作为加热元件;The
温度传感器102、智能模块103、控温电源104和控温炉105构成控温系统001,示波器106实时测量控温电源104向控温炉105输出的加热电压的波形W。The
上述方案中,所述非线性晶体101在未进行激光变频的时候,为了将非线性晶体101维持在设定的工作温度T1条件下,控温电源104需要向控温炉105输出一定的加热电压,示波器106记录下一段时间t内控温电源104向控温炉105输出的加热电压波形W1,根据加热电压波形W1和控温炉105内部加热电阻丝的电阻值可以计算出控温炉105产生的加热电功率大小P1;所述非线性晶体101在进行激光变频的时候,为了将非线性晶体101仍然维持在设定的工作温度T1条件下,控温电源104需要向控温炉105输出不同的加热电压,示波器106记录下此种情况下一段时间t内控温电源104向控温炉105输出的电压波形W2,根据电压波形W2和控温炉105内部加热电阻丝的电阻值计算出控温炉105产生的加热电功率大小P2。In the above scheme, when the
上述方案中,所述控温炉105产生的加热电功率大小P1和P2之间存在差异,此差异值P1-P2即为非线性晶体101在进行激光变频的过程中因吸收激光而产生的热功率的大小。In the above scheme, there is a difference between the heating electric power P 1 and P 2 generated by the
上述方案中,所述非线性晶体101包括PPLN、PPKTP、PPLT、KTP、LBO或BBO晶体。In the above solutions, the
上述方案中,所述非线性晶体101进行的激光变频过程包括光参量振荡、倍频以及和频。In the above solution, the laser frequency conversion process performed by the
上述方案中,所述非线性晶体101进行激光变频过程中吸收的激光是基频光,或者是变频光。In the above solution, the laser light absorbed by the
(三)有益效果(3) Beneficial effects
本发明与现有技术相比具有以下优点和积极效果:Compared with the prior art, the present invention has the following advantages and positive effects:
1、本发明提供的这种测量非线性晶体吸收激光而产生热功率的大小的方法,只需要在原有控温系统的基础上加上一台示波器即可完成测量,具有操作方便的优点。1. The method for measuring the thermal power produced by nonlinear crystals absorbing laser light provided by the present invention only needs to add an oscilloscope on the basis of the original temperature control system to complete the measurement, which has the advantage of convenient operation.
2、本发明提供的这种测量非线性晶体吸收激光而产生热功率的大小的方法,只需要计算出非线性晶体分别在未进行激光变频和进行激光变频时控温炉产生的加热电功率大小P1和P2,即可得到非线性晶体吸收激光而产生热功率的大小(P1-P2),具有计算简单的优点。2. The method for measuring the thermal power generated by the nonlinear crystal absorbing laser light provided by the present invention only needs to calculate the heating electric power P1 generated by the temperature control furnace when the nonlinear crystal is not subjected to laser frequency conversion and laser frequency conversion is performed respectively. and P2, the thermal power (P1-P2) generated by the nonlinear crystal absorbing the laser can be obtained, which has the advantage of simple calculation.
3、本发明提供的这种测量非线性晶体吸收激光而产生热功率的大小的方法,不论非线性晶体在激光变频过程中吸收的激光波长为多少,或者非线性晶体对于激光的吸收吸收系数为多少,或者非线性晶体对基频光或者变频光有吸收,采用该种方法都能够便捷地测量出非线性晶体吸收激光而产生的热功率的大小,具有适用范围广的优点。3. The method for measuring the thermal power generated by the nonlinear crystal absorbing laser light provided by the present invention, no matter how much the wavelength of the laser light absorbed by the nonlinear crystal during the laser frequency conversion process is, or the absorption coefficient of the nonlinear crystal for laser light is How much, or the nonlinear crystal absorbs the fundamental frequency light or the frequency conversion light, using this method can easily measure the thermal power generated by the nonlinear crystal absorbing laser light, and has the advantage of a wide range of applications.
附图说明 Description of drawings
为进一步说明本发明的具体技术内容,以下结合实施例及附图详细说明如后,其中:In order to further illustrate the specific technical content of the present invention, below in conjunction with embodiment and accompanying drawing detailed description as follows, wherein:
图1是本发明提供的测量非线性晶体因吸收激光而产生热功率的大小的装置的示意图;Fig. 1 is the schematic diagram of the device for measuring the size of the thermal power generated by the nonlinear crystal due to the absorption of laser light provided by the present invention;
图2是使用本发明提供的测量非线性晶体因吸收激光而产生热功率的大小的装置来测量PPMgLN-OPO实验中非线性晶体PPMgLN吸收激光而产生的热功率的大小的示意图;Fig. 2 is a schematic diagram of measuring the thermal power generated by the nonlinear crystal PPMgLN absorbing laser light in the PPMgLN-OPO experiment using the device for measuring the thermal power generated by the nonlinear crystal absorbing the laser light provided by the present invention;
图3是PPMgLN晶体未进行激光变频时,使用示波器206记录下控温电源204向控温炉205输出的加热电压波形W1的示意图;3 is a schematic diagram of the heating voltage waveform W1 output by the temperature control power supply 204 to the temperature control furnace 205 using an oscilloscope 206 when the PPMgLN crystal is not subjected to laser frequency conversion;
图4是PPMgLN晶体进行激光变频时,使用示波器206记录下控温电源204向控温炉205输出的加热电压波形W2的示意图;4 is a schematic diagram of the heating voltage waveform W2 output by the temperature control power supply 204 to the temperature control furnace 205 using an oscilloscope 206 when the PPMgLN crystal is subjected to laser frequency conversion;
图5是不同泵浦功率条件下PPMgLN晶体吸收激光而产生热功率的大小的测量结果示意图。Fig. 5 is a schematic diagram of measurement results of thermal power generated by PPMgLN crystals absorbing laser light under different pump power conditions.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
如图1所示,图1是本发明提供的测量非线性晶体因吸收激光而产生热功率的大小的装置的示意图,该装置包括:非线性晶体101、温度传感器102、智能模块103、控温电源104、控温炉105和示波器106。所述的非线性晶体101放置于控温炉105的内部,工作于某一设定的温度T1条件下,起到激光变频的作用。所述的温度传感器102用于测量非线性晶体101的实际工作温度T0条件下,并将该值反馈给智能模块103。所述的智能模块103将温度传感器102测量到的非线性晶体101的实际工作温度T0与设定的温度T1比较,据此调节控温电源104向控温炉105输出的加热电压,由此达到将非线性晶体101控制于设定的工作温度T1条件下的作用。所述的温度传感器102、智能模块103、控温电源104和控温炉105组成控温系统001。所述的示波器106实时测量控温电源104向控温炉105输出的加热电压的波形W。控温电源104向控温炉105输出的加热电压的有效值U=24V,控温炉105内部采用电阻值R=34Ω的康铜丝作为加热丝,温度传感器102使用Pt100热敏电阻,智能模块103采用AI-708型智能模块。As shown in Figure 1, Figure 1 is a schematic diagram of a device for measuring the thermal power generated by a nonlinear crystal due to the absorption of laser light provided by the present invention. The device includes: a
其中,非线性晶体分别在未进行激光变频和进行激光变频的时候,为了将非线性晶体101维持在设定的工作温度T1条件下,控温电源104需要向控温炉105输出不同的加热电压。示波器106分别测量未进行激光变频和进行激光变频的时候控温电源104向控温炉105输出的加热电压的波形W1和W2,由此可以计算出控温炉105产生的加热电功率大小P1和P2。由于非线性晶体101在进行激光变频的过程中吸收激光会产生一定的热功率,所以控温炉105产生的加热电功率大小P1和P2之间存在差异,此差异值(P1-P2)即为非线性晶体101在进行激光变频的过程中吸收激光而产生的热功率的大小。Wherein, when the nonlinear crystal is not subjected to laser frequency conversion and laser frequency conversion is performed, in order to maintain the
非线性晶体101在未进行激光变频的时候,为了将非线性晶体101维持在设定的工作温度T1下,控温电源104需要向控温炉105输出一定的加热电压,示波器106记录下一段时间t内控温电源104向控温炉105输出的加热电压波形W1,根据加热电压波形W1、加热有效电压值24V和控温炉105内部加热丝的电阻值34Ω可以计算出控温炉105产生的加热电功率大小P1,其计算公式为:When the
其中,U为加热电压有效值,R为加热丝的电阻值,t0为控温电源104工作时间,t为总测量时间(t0,t均可由加热电压波形W1得出)。非线性晶体101在进行激光变频的时候,为了将非线性晶体101仍然维持在设定的工作温度T1条件下,控温电源104需要向控温炉105输出不同的加热电压,示波器106记录下此种情况下一段时间t内控温电源104向控温炉105输出的电压波形W2,同样根据加热电压波形W2、加热电压有效值24V和控温炉105内部加热电阻丝的电阻值34Ω可以计算出控温炉105产生的加热电功率大小P2。由于非线性晶体101在进行激光变频的过程中吸收激光会产生一定的热功率,所以控温炉105产生的加热电功率大小P1和P2之间存在差异,此差异值(P1-P2)即为非线性晶体101在进行激光变频的过程中吸收激光而产生的热功率的大小。Among them, U is the effective value of the heating voltage, R is the resistance value of the heating wire, t 0 is the working time of the temperature
不论非线性晶体101在激光变频过程中吸收的激光波长为多少,或者非线性晶体101对于激光的吸收吸收系数为多少,或者非线性晶体101对基频光或者变频光有吸收,采用该种方法都能够便捷地测量出非线性晶体吸收激光而产生的热功率的大小。Regardless of the wavelength of the laser light absorbed by the
实施例:Example:
本发明的目的、特征及优点通过附图和实例对本发明进一步说明,但本发明不限于这些实例。The purpose, features and advantages of the present invention are further illustrated by the accompanying drawings and examples, but the present invention is not limited to these examples.
本实施例将使用本发明提供的这种测量非线性晶体吸收激光而产生热功率的大小的装置来测量PPMgLN-OPO实验中非线性晶体PPMgLN吸收激光而产生的热功率的大小。请参见图2、图3、图4和图5所示。In this embodiment, the device for measuring the thermal power generated by the nonlinear crystal absorbing laser light provided by the present invention is used to measure the thermal power generated by the nonlinear crystal PPMgLN absorbing laser light in the PPMgLN-OPO experiment. Please refer to Figure 2, Figure 3, Figure 4 and Figure 5.
在图2中,201为非线性晶体,202为温度传感器,203为智能模块,204为控温电源,205为控温炉,206为示波器,207为1064nm脉冲泵浦光源,208为激光光路,209为光学隔离器,210为会聚透镜,211为OPO输入镜,212为OPO输出镜,213为45°滤镜,214为功率计,215为垃圾桶。In Fig. 2, 201 is a nonlinear crystal, 202 is a temperature sensor, 203 is an intelligent module, 204 is a temperature control power supply, 205 is a temperature control furnace, 206 is an oscilloscope, 207 is a 1064nm pulse pumping light source, 208 is a laser light path, 209 is an optical isolator, 210 is a converging lens, 211 is an OPO input mirror, 212 is an OPO output mirror, 213 is a 45° filter, 214 is a power meter, and 215 is a trash can.
温度传感器202、智能模块203、控温电源204和控温炉205构成控温系统002。控温系统002控制非线性晶体201的工作温度,示波器206测量控温系统002中的控温电源204向控温炉205输出的加热电压。控温电源204向控温炉205输出的加热电压的有效值为24V,控温炉205内部采用电阻值为34Ω的康铜丝作为加热丝,温度传感器202为Pt100热敏电阻,智能模块203采用AI-708型智能模块。A temperature sensor 202 , an intelligent module 203 , a temperature control power supply 204 and a temperature control furnace 205 constitute a temperature control system 002 . The temperature control system 002 controls the working temperature of the nonlinear crystal 201 , and the oscilloscope 206 measures the heating voltage output from the temperature control power supply 204 in the temperature control system 002 to the temperature control furnace 205 . The effective value of the heating voltage output by the temperature control power supply 204 to the temperature control furnace 205 is 24V. The temperature control furnace 205 uses a constantan wire with a resistance value of 34Ω as the heating wire, the temperature sensor 202 is a Pt100 thermistor, and the intelligent module 203 uses AI-708 intelligent module.
1064nm脉冲泵浦光源207、光学隔离器209、会聚透镜210、OPO输入镜211、非线性晶体201、OPO输出镜212、45°滤镜213和功率计214依次放于同一光路上。1064nm脉冲泵浦光源207输出近基模光束,脉冲重频为10kHz,脉宽60ns,最高输出功率为22W。1064nm脉冲泵浦光源207输出的激光经会聚透镜210后,聚焦在非线性晶体201的中心,聚焦直径为0.6mm。非线性晶体201为PPMgLN晶体,尺寸为30×12×2mm3,极化周期为29.35μm,两端面镀对信号光、闲频光、泵浦光高透射率膜(R<1%1.3--1.5μm,R<1.5%3.6--4.7μm,R<2%1.064μm),晶体工作在设定的温度T1=80℃条件下。OPO输入镜211为平面镜,材料为石英,表面镀对泵浦光高透射率,对信号光和闲频光高反射率薄膜(T=99.0%1.064μm,R>99.9%1.3--1.5μm,R>99.0%3.6--4.7μm);OPO输出镜212为平面镜,材料为CaF2,表面镀对泵浦光和信号光高反射率,对闲频光高透射率薄膜(R=98.0%1.064μm,R>99.5%1.3--1.5μm,T>98.0%3.6--4.7μm)。OPO输入镜211和OPO输出镜212空间距离为65mm,组成对信号光单共振的谐振腔。45°滤镜213表面镀对泵浦光和信号光高反射率,对闲频光高透射率薄膜(R=98.0%1.064μm,R>99.5%1.3--1.5μm,T>98.0%3.6--4.7μm,45°入射条件)。功率计214测量透过45°滤镜213的闲频光功率,垃圾桶215接收45°滤镜213反射出来的泵浦光和信号光。1064nm pulse pumping light source 207, optical isolator 209, converging lens 210, OPO input mirror 211, nonlinear crystal 201, OPO output mirror 212, 45° filter 213 and power meter 214 are sequentially placed on the same optical path. The 1064nm pulsed pumping light source 207 outputs near-fundamental mode light beams, with a pulse repetition frequency of 10kHz, a pulse width of 60ns, and a maximum output power of 22W. The laser light output by the 1064nm pulsed pumping light source 207 is focused on the center of the nonlinear crystal 201 after passing through the converging lens 210, and the focusing diameter is 0.6mm. The nonlinear crystal 201 is a PPMgLN crystal with a size of 30×12×2mm 3 and a polarization period of 29.35 μm. Both ends are coated with high transmittance films for signal light, idler light and pump light (R<1% 1.3-- 1.5 μm, R<1.5% 3.6--4.7 μm, R<2% 1.064 μm), the crystal works at the set temperature T 1 =80°C. The OPO input mirror 211 is a plane mirror, the material is quartz, and the surface is coated with a film with high transmittance for pump light and high reflectivity for signal light and idler light (T=99.0% 1.064 μm, R>99.9% 1.3--1.5 μm, R>99.0%3.6--4.7μm); OPO output mirror 212 is a plane mirror, the material is CaF 2 , the surface is coated with a high reflectivity film for pump light and signal light, and a high transmittance film for idler light (R=98.0%1.064 μm, R>99.5% 1.3--1.5 μm, T>98.0% 3.6--4.7 μm). The spatial distance between the OPO input mirror 211 and the OPO output mirror 212 is 65 mm, forming a resonant cavity for single resonance of the signal light. The surface of the 45° filter 213 is coated with a high reflectivity film for pump light and signal light, and a high transmittance film for idler light (R=98.0% 1.064 μm, R>99.5% 1.3--1.5 μm, T>98.0% 3.6- -4.7 μm, 45° incident condition). The power meter 214 measures the power of the idler light passing through the 45° filter 213 , and the dustbin 215 receives the pump light and the signal light reflected by the 45° filter 213 .
实验时,非线性晶体201设定的温度T1始终保持为80℃。当非线性晶体201未进行激光变频时,即1064nm脉冲泵浦光源207输出的激光功率为0W时,使用示波器206记录下控温电源204向控温炉205输出的加热电压波形W1(记录时间为50s),记录结果如图3所示。由波形W1、加热有效电压值24V和控温炉205中加热丝电阻值为34Ω这些数据,可以计算出控温炉205产生的加热电功率大小P1值为1.5W。当1064nm脉冲泵浦光源207输出的激光功率为最大值22W时,功率计214测量得到闲频光功率为3.4W。同样使用示波器206记录下控温电源204向控温炉205输出的加热电压波形W2(记录时间为50s),记录结果如图4所示。可以看到,加热电压波形W2与W1之间具有明显差别。同理可以计算出控温炉205产生的加热电功率大小P2值为6.3W。因此,非线性晶体201在22W脉冲激光泵浦条件下,由于吸收激光而产生热功率的大小值为(P1-P2)=6.3W-1.5W=4.8W。采用相同的方法,可以测量不同泵浦功率条件下非线性晶体201吸收激光而产生热功率的大小,测量结果参见图5所示。During the experiment, the temperature T 1 set by the nonlinear crystal 201 was always kept at 80°C. When the nonlinear crystal 201 does not carry out laser frequency conversion, that is, when the laser power output by the 1064nm pulsed pumping light source 207 is 0W, use the oscilloscope 206 to record the heating voltage waveform W 1 (recording time 50s), the recording result is shown in Figure 3. From the data of the waveform W 1 , the effective heating voltage value of 24V and the resistance value of the heating wire in the temperature control furnace 205 of 34Ω, it can be calculated that the heating electric power P 1 generated by the temperature control furnace 205 is 1.5W. When the laser power output by the 1064nm pulsed pumping light source 207 is a maximum value of 22W, the power meter 214 measures that the idler frequency light power is 3.4W. Also use the oscilloscope 206 to record the heating voltage waveform W 2 output from the temperature control power supply 204 to the temperature control furnace 205 (recording time is 50s), and the recording result is shown in FIG. 4 . It can be seen that there is a clear difference between the heating voltage waveforms W2 and W1 . Similarly, it can be calculated that the heating electric power P 2 generated by the temperature control furnace 205 is 6.3W. Therefore, when the nonlinear crystal 201 is pumped by a 22W pulsed laser, the thermal power generated by absorbing laser light is (P 1 -P 2 )=6.3W−1.5W=4.8W. Using the same method, the thermal power generated by the nonlinear crystal 201 absorbing laser light under different pump power conditions can be measured, and the measurement results are shown in FIG. 5 .
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010257008 CN101949871B (en) | 2010-08-18 | 2010-08-18 | Device for measuring thermal power of nonlinear crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010257008 CN101949871B (en) | 2010-08-18 | 2010-08-18 | Device for measuring thermal power of nonlinear crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101949871A CN101949871A (en) | 2011-01-19 |
CN101949871B true CN101949871B (en) | 2012-12-05 |
Family
ID=43453446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010257008 Expired - Fee Related CN101949871B (en) | 2010-08-18 | 2010-08-18 | Device for measuring thermal power of nonlinear crystal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101949871B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104538833B (en) * | 2015-01-19 | 2019-07-02 | 中国工程物理研究院激光聚变研究中心 | A kind of laser of quadruple final-optics system |
CN106959317B (en) * | 2017-05-05 | 2023-05-23 | 海南大学 | An automatic temperature-controllable near-infrared photothermal conversion tester |
CN107702976A (en) * | 2017-09-20 | 2018-02-16 | 兰州大学 | A kind of multi-functional digesting |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1782681A (en) * | 2004-12-03 | 2006-06-07 | 中国电子科技集团公司第十八研究所 | Thermoelectric heat power meter |
CN101576520A (en) * | 2009-06-03 | 2009-11-11 | 中国科学院化学研究所 | Thermal power measurement device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1184649A1 (en) * | 2000-09-04 | 2002-03-06 | Eidgenössische Technische Hochschule Zürich | Calorimeter |
-
2010
- 2010-08-18 CN CN 201010257008 patent/CN101949871B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1782681A (en) * | 2004-12-03 | 2006-06-07 | 中国电子科技集团公司第十八研究所 | Thermoelectric heat power meter |
CN101576520A (en) * | 2009-06-03 | 2009-11-11 | 中国科学院化学研究所 | Thermal power measurement device |
Non-Patent Citations (1)
Title |
---|
A.Henderson et. al..Intra-cavity power effects in singly resonant cw OPOs.《Applied Physics B》.2006,第85卷181-184. * |
Also Published As
Publication number | Publication date |
---|---|
CN101949871A (en) | 2011-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Myers et al. | Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 | |
Petrov et al. | Femtosecond nonlinear frequency conversion based on BiB3O6 | |
CN103698025B (en) | Based on domain wall nonlinear pulse autocorrelation measurement method and measurement apparatus | |
Nakazato et al. | Phase-matched frequency conversion below 150 nm in KBe2BO3F2 | |
CN103605248B (en) | Based on the Enhancement Method of the frequency multiplication of periodic polarized lithium niobate | |
CN102338966B (en) | Polarization-independent quasi-phase-matching frequency multiplier and manufacturing method thereof | |
CN105973573B (en) | The measuring method of all solid state laser intracavitary linear impairments | |
Koichi et al. | Dual-frequency picosecond optical parametric generator pumped by a Nd-doped vanadate bounce laser | |
CN100428042C (en) | Optical Parametric Amplification Wavelength Tuning Device Based on Periodically Polarized Crystals | |
CN101949871B (en) | Device for measuring thermal power of nonlinear crystal | |
CN105159008B (en) | The application of niobic acid gallium lanthanum crystal device for non-linear optical of infrared band as in | |
Zhai et al. | Characterization of CsB3O5 crystal for high-average-power third harmonic generation | |
WO2008017214A1 (en) | A method for generating a fourth harmonic solid laser | |
Cui et al. | 70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP | |
Arun et al. | Investigations on the nonlinear optical properties of glycinium oxalate single crystals | |
Wen-Le et al. | Temperature-dependent Sellmeier equation for 1.0 mol% Mg-doped stoichiometric lithium tantalate | |
Shoji et al. | Accurate measurements of second-order nonlinear-optical coefficients of a UV-generating wavelength-conversion material: LaBGeO5 | |
CN101572382B (en) | Laser I-type phase matching nonlinear sum frequency device | |
CN115857247A (en) | Method for generating nonlinear optical effect | |
Miller et al. | Polarization-dependent nonlinear refractive index of BiB3O6 | |
Zukauskas et al. | Periodically poled KTiOAsO4 for highly efficient midinfrared optical parametric devices | |
CN105529608A (en) | Electronically controlled wavelength tunable frequency conversion device | |
Yang et al. | Optimization of 1.03 μm femtosecond pulse laser tripling efficiency based on temporal walk-off compensation | |
CN201063089Y (en) | Optical Parametric Amplification Wavelength Tuning Device Based on Periodically Polarized Crystals | |
US20060098698A1 (en) | Frequency-converting lasers with non-linear materials optimized for high power operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121205 |
|
CF01 | Termination of patent right due to non-payment of annual fee |