[go: up one dir, main page]

CN101944637A - 非平衡的锂离子微电池 - Google Patents

非平衡的锂离子微电池 Download PDF

Info

Publication number
CN101944637A
CN101944637A CN2010102197336A CN201010219733A CN101944637A CN 101944637 A CN101944637 A CN 101944637A CN 2010102197336 A CN2010102197336 A CN 2010102197336A CN 201010219733 A CN201010219733 A CN 201010219733A CN 101944637 A CN101944637 A CN 101944637A
Authority
CN
China
Prior art keywords
lithium
negative pole
micro cell
positive pole
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010102197336A
Other languages
English (en)
Inventor
萨米·奥卡希
弗雷德里克·勒克拉斯
史蒂夫·马丁
拉斐尔·萨洛特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of CN101944637A publication Critical patent/CN101944637A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及非平衡的锂离子微电池,其中,该锂离子微电池包括由第一锂嵌入材料制得的具有Li+离子存储容量C1和第一厚度(t1)的正极、电解质、以及由第二嵌入材料制得的具有存储容量C2和第二厚度(t2)的负极。厚度(t1和t2)使比率C1/C2大于或等于10并且小于或等于1000。在所述微电池的第一次充电期间,Li+离子嵌入到负极中并且使所述第二嵌入材料完全饱和。当继续初始充电时,它们通过电镀在所述电解质和锂饱和的负极之间形成金属锂层。在后续的充电和放电循环期间,只有所述金属锂层参与锂离子的传输。

Description

非平衡的锂离子微电池
技术领域
本发明涉及这样的锂离子微电池,其包括由第一锂嵌入材料制得的具有存储容量C1和第一厚度的正极、和由不同于所述第一材料的第二材料锂嵌入材料制得的具有存储容量C2和第二厚度的负极。
背景技术
薄膜锂微电池通常由以电解质分隔的两个电极(正极和负极)形成。这种微电池进一步包括由例如铂或钨制成的金属集电体。该微电池的所有层为通过PVD(物理气相沉积)或CVD(化学气相沉积)获得的薄膜形式。具有包装层的堆叠体的总厚度为约15μm。
正极通常由锂嵌入材料制成。一些嵌入材料(例如锂化金属氧化物(LiCoO2、LiNiO2、LiMn2O4等))需要热退火以增强所述膜的结晶和它们的Li+离子嵌入容量。其它材料(例如无定形材料)不需要这种处理并且已经得益于高的嵌入率,特别是被称作TiOS的氧硫化钛。电解质是具有高的离子传导性的电绝缘体(例如LiPON)。根据负极的性质,存在若干种涉及Li+离子的微电池。
包括金属锂负极的微电池构成称作锂金属的第一类。操作原理基于Li+离子在正极中的嵌入-脱出(或插入-脱插入)。这种嵌入-脱出方法通常特别是由于Li+离子在正极中不可逆的嵌入或者氧化(例如由于有缺陷的包装而导致的氧化)而产生Li+离子损失。损失的Li+离子不再参与电化学反应。在锂金属微电池中,金属锂(其通常过量)提供Li+离子的额外供应,这补偿了这些的损失。因此,充电和放电容量在整个充电/放电循环中保持在稳定的水平。
这种类型的微电池呈现出最佳的电化学性质,在电势以及充电和放电容量的稳定性方面尤其如此。然而,难以制造锂金属微电池。实际上,金属锂的存在使得不适于采用常规的微制造技术和一些包装步骤,特别是在比金属锂的熔融温度高的温度下进行的回流焊接过程。
与锂金属微电池的负极不同,锂离子(或Li离子)微电池的负极包括嵌入材料和锂。在微电池的每次充电和放电时,Li+阳离子在负极和正极之间来回移动。负极材料选自例如嵌入材料的氧化物(如LiNiO2、SnO、氧化铟和氧化铅)、或者晶体生长材料(Si、Ge、C等)。这种类型的微电池使得能够使用常规的微制造技术,但是通常在循环中呈现出较低的电化学性能。
文章“Characterization of tin oxide/LiMn2O2 thin-film cell”(Journal of Power Sources 88,第250-304页,254,2000)描述了具有分别由LiMn2O4和氧化锡(SnO2)制成的正极和负极的锂离子微电池的实例。该文章强调了:在第一次循环期间,在不可逆嵌入之后在不存在过量锂的情况下,这种微电池的容量损失。
因此,锂离子微电池经常需要对阳极和阴极材料进行平衡以限制这种容量损失(该容量损失可能是微小的)。平衡的意思是指在各个电极中具有相同的Li+离子存储容量或嵌入容量。
文章“Lithium-Free Thin Film Battery With In Situ Plated Li Anode”(Journal of The Electrochemical Society,147(2),第517-523页,2000)描述了通常称作无锂微电池的第三种类型的微电池。这种微电池包括作为负极的金属集电体。在第一次充电期间,Li+离子从正极迁出并且被由例如铜制成的集电体阻断。Li+离子通过电镀在所述集电体上形成金属锂层。然后,该电池以与在第一次循环中具有低容量损失的锂金属电池相同的方式运行。
然而,无锂微电池呈现出它们的电化学循环性能的下降。实际上,通过产生新的体积(volume),锂在每次循环时在集电体上的电镀促进了堆叠层的应力和疲劳。在电解质中形成削弱性(weakening)的穿透锂枝晶,导致微电池的短路。
文献WO00/60689描述了无锂微电池。在微电池的活化充电期间,通过电镀在锂饱和的碳集电体上原位形成金属锂阳极。
在这种类型的微电池中,嵌入到集电体中的锂和镀覆在集电体上的锂参与如下的充电和放电循环。这些重复的嵌入-脱出导致形成集电体的材料的机械疲劳。所述材料劣化导致微电池的性能(尤其是其充电和放电容量)逐渐下降。
发明内容
本发明的目的在于提供这样的锂离子微电池操作方法,该方法使得能够获得可与锂-金属微电池的电化学性能相比的优异的电化学性能,并同时具有化学稳定性。
根据本发明,通过如下事实实现该目的,其中,
锂离子微电池包括:
-正极,其由第一锂嵌入材料制得且具有锂离子存储容量C1和第一厚度,
-电解质,和
-负极,其由不同于所述第一材料的第二锂嵌入材料制得且具有锂离子存储容量C2和第二厚度,选择第一厚度和第二厚度,使得比率C1/C2大于或等于10并且小于或等于1000,
该微电池的操作方法包括如下步骤:
-对该微电池进行第一次充电,以从正极向负极传输第一量的锂直至负极达到饱和,以及从正极向负极传输第二量的锂直至在电解质和锂饱和的负极之间形成金属锂层,
-随后通过在正极和负极之间仅传输以金属锂层的形式沉积的第二量的锂来进行放电和充电。
附图说明
由本发明具体实施方式的下列描述,其它优点和特征将变得更加清晰,这些具体实施方式仅以非限制性实例的目的给出并示于附图中,其中:
-图1和图2分别表示LixTiOS正极的电势V+和Si负极的电势V-与根据现有技术操作的微电池的容量C的关系。
-图3和图4分别表示LixTiOS正极的电势V+和Si负极的电势V-与根据本发明的微电池的容量C的关系。
-图5~图7示意性地表示制造本发明锂电池的方法的步骤。
具体实施方式
微电池包括由第一锂嵌入材料制成的厚度为t1的正极和由不同于所述第一材料的第二锂嵌入材料制成的厚度为t2的负极。
此外,所述各电极在Li+离子存储容量方面非常不平衡,即与正极相比,负极可在其结构中存储明显较少量的Li+离子。因此,正极的Li+离子存储容量大于负极的存储容量C2
在这种微电池的第一次充电期间,Li+离子从正极迁移到负极以嵌入到该负极中直至发生饱和。这种饱和由于负极的低Li+离子嵌入容量而快速发生。当继续初始充电时,Li+离子可以不再嵌入到构成负极的材料中并因此在与电解质同一侧的负极表面上形成金属锂沉积物。当进行下一个循环时,由该金属锂沉积物形成的层像新的微电池负极一样发挥作用。
在示例性的实施方式中,正极由锂化的氧硫化钛(LixTiOS)制成。电解质常规地由锂磷氧氮(lithiated phosphate oxynitride)(LiPON)制成。负极最初包含硅层。下表给出相对于上述两种材料的电极的表面积(单位为cm2)和厚度(单位为μm)的标准化存储容量,并且该表还给出了相关的电势范围:
  嵌入材料 电势范围(V) 标准化容量(μAh·cm-2·μm-1)
  LixTiOS 1~3 80
  Si 0~1 400
如图1和图2所示,在常规的锂离子微电池构造中,各电极是平衡的,就是说它们的Li+离子存储容量是基本上相等的(C1≈C2)。例如,对于容量约120μAh·cm-2的微电池来说,LixTiOS正极和Si负极分别具有1.5μm和0.3μm的厚度。各电极的标准化容量和厚度的结果对应于Li+离子存储容量(C1或C2)并且由此对应于电池的容量。在这种情况下,我们得到C1=C2=120μAh·cm-2
在这种微电池的完全充电期间,各电极是平衡的,所有的Li+离子(量为X)从LixTiOS正极迁移到Si负极以嵌入该Si负极中:
LixTiOS→LixSi
与Li+/Li对的参比电势相比,图1中所示的正极的电势V+从1V提高到3V。以相反的方式,随着Li+离子逐渐嵌入负极中,与参比电势Li+/Li相比,图2中所示的负极的电势V-从1V降低到0V。
在微电池放电期间,X个Li+离子以与充电方向相反的方向迁移:
LixSi→LixTiOS
然后,与参比电势Li+/Li相比,正极的电势(图1)从3V降低到1V。以相反的方式,与参比电势Li+/Li相比,负极的电势(图2)从0V提高到1V。
根据本发明的微电池最初(在任何充电之前)包括:在存储容量方面不平衡的正极1和负极2;以及设置在电极1和2之间的电解质3(图5)。考虑到正极和负极各自的厚度和所用材料的性质(即它们各自的标准化容量),各电极的厚度t1和t2使得正极的容量C1大于负极的容量C2。因此,比率C1/C2大于1并且低于或等于1000。比率C1/C2优选大于或等于10并且低于或等于100。
对于非平衡的各电极,存储容量C1和C2是不相等的。例如,对于容量为约120μAh·cm-2的微电池来说,LixTiOS正极1和Si负极2分别具有2μm和0.1μm的厚度。于是,容量C1等于160μAh·cm-2并且容量C2等于40μAh·cm-2。因此,比率C1/C2等于4。
如图3、4和6所示,在非平衡微电池的充电期间,所有的Li+离子(其量X=X1+X2,且相当于160μAh·cm-2的存储容量C1)从LixTiOS正极1迁出。将一部分Li+离子(其量为X1,且相当于40μAh·cm-2的存储容量C2)嵌入硅负极2,直至硅负极2发生饱和(LiX1Si)。第二部分Li+离子(其量为X2,且相当于120μAh·cm-2的存储容量C1-C2)通过电镀在电解质3和负极2之间形成金属锂层4:
Li(X1+X2)TiOS→LiX1Si+X2Li
考虑到负极的低存储容量,量X1由此比X2低得多。与Li+/Li对的参比电势相比,正极的电势V+从1V提高到3V。以相反的方式,随着Li+离子逐渐嵌入直至发生饱和,与Li+/Li对的参比电势相比,负极的电势V-从1V降低到0V。
继续充电,直至所有的Li+离子从正极1转移到负极2,从而形成金属锂层4。
在微电池放电期间,只有以金属锂层4的形式沉积的Li+离子参与该过程并且以相反的方向迁移:
X2Li→LiX2TiOS
于是,与Li+/Li对的参比电势相比,正极的电势(图3)从3V降低到1.7V。该电势未回复到1,这是因为LiXTiOS未得到初始量X1+X2的Li+离子。此外,由于锂最后嵌入在硅中,因而,负极(LiX1Si)的电势没有改变。因此其仍然为0(图4)。
根据这种操作模式,与现有技术的无锂微电池不同,当发生放电时,LiX1Si负极中所含的锂从不脱出。因此,在该微电池已经第一次充电之后,其仅作为Li金属微电池发挥作用而不回复到其初始状态。因此,可以防止硅的机械疲劳。
可通过微电池的端子(terminals)处的电压来控制微电池放电的结束。电压一达到对应于开始从负极脱出锂的极限值就中止放电。从而,将锂的传输限定于金属锂层。根据各电极的性质(特别是它们的锂离子存储容量),预先设定该阈值。在图3和4的实例中,阈值为1.7V。
在图7所示的可选择的实施方式中,第一阶段的微电池包括由初始未锂化的材料(例如TiOS)制成的正极1。然后将金属锂层5沉积在负极2的自由外表面上(即顶面上)。该层5构成微电池的锂供应并且所沉积的锂的量等于正极1能够存储的锂的量。因此,该量等于TiOS正极的Li+离子嵌入容量。然后,使正极1和金属锂层5短路。然后,使该层5的Li+离子全部嵌入到最初构成正极1的嵌入材料(TiOS)中,以形成正极的锂化材料(LiTiOS)。以这种方式获得的微电池与图5的微电池相同并且准备好进行前述的初始充电。
应该注意,在上述文章“Characterization of tin oxide/LiMn2O2 thin-film cell”中,Park提出锂离子微电池的两个嵌入电极之间的不平衡通常不利于该装置的令人满意的操作。
然而,在上述不平衡条件下,锂微电池(其包括在锂饱和的负极上形成金属锂)呈现出良好的电化学性能(特别是在循环期间的容量的稳定性)。这些性能归因于金属锂在负极表面处的存在并且这些性能能够与锂金属微电池的那些性能相比。
负极的硅薄层在第一阶段中发挥嵌入层的作用,然后,当发生金属锂的电镀时发挥晶核化和生长层的作用。因此,生长看起来是均匀地进行的,从而防止了容易导致微电池发生故障的任何枝晶的形成。
此外,该构造类型的使用避免了任何可在负极中发生的嵌入的不可逆性。在第一次充电过程中嵌入负极的锂实际上在后续的充电-放电循环中不起任何作用。
该微电池的制造还避免了正极和负极的平衡步骤,在常规Li离子微电池的制造中,该平衡步骤是必不可少的且通常是关键性的。
所述微电池在形成金属锂层的第一次充电之前的初始结构能够使用通常的微制造技术进行制造。所用的嵌入材料(例如锂化的TiOS和Si)实际上与这些技术是相容的,特别是与在金属锂的熔融温度之上进行的热处理相容。
最后,这种微电池提供的电势以连续和单调的方式变化。从而,便于将该微电池集成到整个电子系统中并监控其电荷状态。
在前文中,出于示例的目的给出了各电极的容量、电势和厚度的数值。具体地说,正极材料可选自其它锂化嵌入材料,例如LiCoO2、LiMn2O4、LiV2O5等。负极材料可选自晶体生长材料Ge、SiGe、C等。对于正极来说,电极的厚度可由100nm到10μm变化,且对于负极来说,电极的厚度可由5nm到1μm变化。正极的厚度优选为1~5μm且负极的厚度优选为10nm~400nm。

Claims (3)

1.锂离子微电池的操作方法,所述锂离子微电池包括:
-正极(1),其由第一锂嵌入材料制得且具有锂离子存储容量C1和第一厚度(t1),
-电解质(3),和
-负极(2),其由不同于所述第一材料的第二锂嵌入材料制得且具有锂离子存储容量C2和第二厚度(t2),选择该第一厚度和第二厚度(t1、t2),使得比率C1/C2大于或等于10并且小于或等于1000,
所述方法包括下列步骤:
-对所述微电池进行第一次充电,以从所述正极(1)向所述负极(2)传输第一量(X1)的锂直至所述负极(2)达到饱和,以及从所述正极(1)向所述负极(2)传输第二量(X2)的锂直至在所述电解质(3)和所述锂饱和的负极(2)之间形成金属锂层(4),
-随后通过在所述正极(1)和所述负极(2)之间仅传输以所述金属锂层(4)的形式沉积的所述第二量(X2)的锂来进行放电和充电。
2.权利要求1的方法,特征在于当所述微电池的端子处的电压达到阈值时中断所述微电池的放电。
3.权利要求1的方法,特征在于所述正极(1)的初始材料为非锂化材料,所述方法最初包括对所述正极(1)和设置在所述负极(2)的自由外表面上的金属锂层(5)进行短路以形成所述正极的材料。
CN2010102197336A 2009-06-29 2010-06-29 非平衡的锂离子微电池 Pending CN101944637A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0903159A FR2947386B1 (fr) 2009-06-29 2009-06-29 Microbatterie lithium-ion non equilibree, procede de realisation d'une microbatterie au lithium et microbatterie au lithium
FR09/03159 2009-06-29

Publications (1)

Publication Number Publication Date
CN101944637A true CN101944637A (zh) 2011-01-12

Family

ID=41137636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102197336A Pending CN101944637A (zh) 2009-06-29 2010-06-29 非平衡的锂离子微电池

Country Status (8)

Country Link
US (1) US8389138B2 (zh)
EP (1) EP2270900B1 (zh)
JP (1) JP5539065B2 (zh)
KR (1) KR20110001934A (zh)
CN (1) CN101944637A (zh)
ES (1) ES2393956T3 (zh)
FR (1) FR2947386B1 (zh)
PL (1) PL2270900T3 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114556622A (zh) * 2020-05-08 2022-05-27 株式会社Lg新能源 无锂电池及其制备方法
US12278377B2 (en) 2020-05-08 2025-04-15 Lg Energy Solution Ltd. Lithium free battery and method for preparing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000843B1 (fr) * 2013-01-07 2015-02-27 Commissariat Energie Atomique Procede de fabrication de batteries de type lithium-ion.
WO2014130725A1 (en) * 2013-02-21 2014-08-28 Robert Bosch Gmbh Lithium battery with composite solid electrolyte
JP6335211B2 (ja) * 2015-05-05 2018-05-30 アイメック・ヴェーゼットウェーImec Vzw 薄膜固体電池の製造方法
US10581111B2 (en) 2017-01-31 2020-03-03 Keracel, Inc. Ceramic lithium retention device
US10971760B2 (en) 2018-01-31 2021-04-06 Keracel, Inc. Hybrid solid-state cell with a sealed anode structure
JP7333636B2 (ja) 2018-01-31 2023-08-25 サクウ コーポレーション 封止したアノード構造を備える、ハイブリッド型固体電池
WO2021225414A1 (ko) * 2020-05-08 2021-11-11 주식회사 엘지에너지솔루션 리튬 프리 전지 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060689A1 (en) * 1999-04-02 2000-10-12 Ut-Batelle, L.L.C. Battery with an in-situ activation plated lithium anode
US6884546B1 (en) * 1999-09-20 2005-04-26 Sony Corporation Secondary battery
CN101036251A (zh) * 2004-09-28 2007-09-12 塔迪兰电池有限公司 改进的锂电池及其形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771870B2 (en) * 2006-03-22 2010-08-10 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
EP1170816A2 (en) * 2000-07-06 2002-01-09 Japan Storage Battery Company Limited Non-aqueous electrolyte secondary battery and process for the preparation thereof
FR2831318B1 (fr) * 2001-10-22 2006-06-09 Commissariat Energie Atomique Dispositif de stockage d'energie a recharge rapide, sous forme de films minces
JP2004127743A (ja) * 2002-10-03 2004-04-22 Matsushita Electric Ind Co Ltd 薄膜電池
JP2005005117A (ja) * 2003-06-11 2005-01-06 Sony Corp 電池
WO2006078472A2 (en) * 2005-01-06 2006-07-27 Rutgers, The State University Electrochemically self assembled batteries
JP2009502011A (ja) * 2005-07-15 2009-01-22 シンベット・コーポレイション 軟質および硬質電解質層付き薄膜電池および方法
US8017263B2 (en) * 2006-01-24 2011-09-13 Sony Corporation Separator and battery
US20080032236A1 (en) * 2006-07-18 2008-02-07 Wallace Mark A Method and apparatus for solid-state microbattery photolithographic manufacture, singulation and passivation
FR2910721B1 (fr) * 2006-12-21 2009-03-27 Commissariat Energie Atomique Ensemble collecteur de courant-electrode avec des cavites d'expansion pour accumulateur au lithium sous forme de films minces.
JP2009043747A (ja) * 2007-08-06 2009-02-26 Sumitomo Metal Mining Co Ltd ハイブリットキャパシタおよびその製造方法
FR2925227B1 (fr) * 2007-12-12 2009-11-27 Commissariat Energie Atomique Dispositif electrochimique au lithium encaspule.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060689A1 (en) * 1999-04-02 2000-10-12 Ut-Batelle, L.L.C. Battery with an in-situ activation plated lithium anode
US6884546B1 (en) * 1999-09-20 2005-04-26 Sony Corporation Secondary battery
CN101036251A (zh) * 2004-09-28 2007-09-12 塔迪兰电池有限公司 改进的锂电池及其形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114556622A (zh) * 2020-05-08 2022-05-27 株式会社Lg新能源 无锂电池及其制备方法
CN114556622B (zh) * 2020-05-08 2024-12-31 株式会社Lg新能源 无锂电池及其制备方法
US12278377B2 (en) 2020-05-08 2025-04-15 Lg Energy Solution Ltd. Lithium free battery and method for preparing the same

Also Published As

Publication number Publication date
PL2270900T3 (pl) 2013-01-31
JP5539065B2 (ja) 2014-07-02
EP2270900A1 (fr) 2011-01-05
FR2947386B1 (fr) 2011-09-23
US20100330401A1 (en) 2010-12-30
JP2011009221A (ja) 2011-01-13
FR2947386A1 (fr) 2010-12-31
ES2393956T3 (es) 2013-01-02
KR20110001934A (ko) 2011-01-06
EP2270900B1 (fr) 2012-08-29
US8389138B2 (en) 2013-03-05

Similar Documents

Publication Publication Date Title
CN110710048B (zh) 原位集流体
US20200335756A1 (en) Solid-state battery separators and methods of fabrication
US20230155189A1 (en) Replenished negative electrodes for secondary batteries
CN101944637A (zh) 非平衡的锂离子微电池
CN109921097B (zh) 一种全固态电池的制备方法以及由此得到的全固态电池
US9337484B2 (en) Electrodes having a state of charge marker for battery systems
US10168389B2 (en) All-solid secondary battery, method of controlling all-solid secondary battery and method of evaluating all-solid secondary battery
CN100474664C (zh) 阳极及电池
KR20190042542A (ko) 고 에너지 밀도, 고 전력 밀도, 고 용량, 및 실온 대응 “무 애노드” 재충전 가능 배터리
US20170162860A1 (en) All-solid battery including a lithium phosphate solid electrolyte which is stable when in contact with the anode
KR20160002988A (ko) 고체 및 액체 전해질들을 갖는 전기화학 셀
CN105849964A (zh) 具有涂覆电解质的Li离子电池
EP2041827A2 (en) Method for the manufacture of a thin film electrochemical energy source and device
JP2015056349A (ja) リチウム電池
CN113594468B (zh) 一种集流体及其制备方法和应用
CN107750408B (zh) 控制锂离子电池组电池的再生过程的方法及装置
KR20210137291A (ko) 리튬 이차 전지용 음극, 이의 제조 방법 및 이를 이용한 리튬 이차 전지
CN105874326B (zh) 包括比较电极的电化学系统及其相应的制造方法
KR102682544B1 (ko) 리튬금속전지용 집전체, 이의 제조방법 및 이를 포함하는 리튬금속전지
US20210265613A1 (en) All-solid battery including a lithium phosphate solid electrolyte which is stable when in contact with the anode
US20240204242A1 (en) Removable binder for hot-pressed solid-state electrolyte separators
CN117913399A (zh) 一种电解液优化叠加阶梯充电抑制电池负极析钠方法
CN114335421A (zh) 三电极电池的参比电极、三电极电池、以及车辆
KR20150027246A (ko) 에너지 저장장치용 하이브리드 애노드

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20160316

C20 Patent right or utility model deemed to be abandoned or is abandoned