CN101913149B - Embedded light mechanical arm controller and control method thereof - Google Patents
Embedded light mechanical arm controller and control method thereof Download PDFInfo
- Publication number
- CN101913149B CN101913149B CN2010102346788A CN201010234678A CN101913149B CN 101913149 B CN101913149 B CN 101913149B CN 2010102346788 A CN2010102346788 A CN 2010102346788A CN 201010234678 A CN201010234678 A CN 201010234678A CN 101913149 B CN101913149 B CN 101913149B
- Authority
- CN
- China
- Prior art keywords
- microprocessor
- control chip
- motion control
- coordinate system
- motion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000009466 transformation Effects 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000004891 communication Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 abstract description 8
- 238000012545 processing Methods 0.000 abstract description 6
- 230000001133 acceleration Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 9
- 238000002955 isolation Methods 0.000 description 7
- 239000004973 liquid crystal related substance Substances 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 101150051106 SWEET11 gene Proteins 0.000 description 1
- 229920000535 Tan II Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Numerical Control (AREA)
Abstract
本发明涉及一种嵌入式轻型机械臂控制器,包括相连接的示教盒控制器和嵌入式主从DSP控制器,所述示教盒控制器包括微处理器I,微处理器I分别与人机接口单元和嵌入式主从DSP控制器相连;所述嵌入式主从DSP控制器包括微处理器II和微处理器III,所述微处理器II分别与微处理器I和双口RAM连接,双口RAM与微处理器III相连,微处理器III分别与运动控制芯片I和运动控制芯片II相连,运动控制芯片I和运动控制芯片II分别与电机驱动器、原点开关和限位开关相连,电机驱动器与电机相连,电机输出轴与机械臂相连。本发明同时公开了一种嵌入式轻型机械臂的控制方法。本发明重量轻、处理速度快、成本低、稳定性好、功能易扩展。
The present invention relates to an embedded light-duty mechanical arm controller, comprising a connected teaching box controller and an embedded master-slave DSP controller, wherein the teaching box controller includes a microprocessor 1, and the microprocessor 1 communicates with the Man-machine interface unit links to each other with embedded master-slave DSP controller; Described embedded master-slave DSP controller comprises microprocessor II and microprocessor III, and described microprocessor II is connected with microprocessor I and dual-port RAM respectively Connection, the dual-port RAM is connected to the microprocessor III, the microprocessor III is connected to the motion control chip I and the motion control chip II respectively, and the motion control chip I and the motion control chip II are respectively connected to the motor driver, the origin switch and the limit switch , the motor driver is connected with the motor, and the output shaft of the motor is connected with the mechanical arm. The invention also discloses a control method of an embedded light mechanical arm. The invention has the advantages of light weight, fast processing speed, low cost, good stability and easy expansion of functions.
Description
技术领域 technical field
本发明涉及一种机器人技术,尤其是一种嵌入式轻型机械臂控制器及其控制方法。The invention relates to a robot technology, in particular to an embedded light mechanical arm controller and a control method thereof.
背景技术 Background technique
机械臂是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种新型装置。机械臂能代替人类完成危险、重复枯燥的工作,减轻人类劳动强度,提高劳动生产率。机械臂越来越广泛地得到了应用,在机械行业中它可用于零部件组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更普遍。The robotic arm is an automatic device with the function of grabbing and moving workpieces used in the automated production process. It is a new type of device developed in the mechanized and automated production process. Robotic arms can replace humans to complete dangerous, repetitive and boring tasks, reduce human labor intensity, and improve labor productivity. The mechanical arm has been used more and more widely. In the machinery industry, it can be used for parts assembly, handling, loading and unloading of workpieces, especially in automatic CNC machine tools and combined machine tools.
目前机械臂控制系统一般分为两类:一类采用工控机和控制卡,使用WINDOWS操作系统,控制系统重量较重,机械臂算法处理速度慢,价格较高且系统不稳定;另一类采用80系列单片机,控制系统硬件过于简单,功能难以扩展。At present, the manipulator control system is generally divided into two categories: one type uses industrial computer and control card, uses WINDOWS operating system, the control system is heavy, the processing speed of the manipulator algorithm is slow, the price is high, and the system is unstable; the other type uses 80 series single-chip microcomputer, the control system hardware is too simple, and the function is difficult to expand.
发明内容 Contents of the invention
本发明的目的是为克服上述现有技术的不足,提供一种重量轻、处理速度快、成本低、稳定性好、功能易扩展的嵌入式轻型机械臂控制器及其控制方法。The object of the present invention is to overcome the shortcomings of the above-mentioned prior art, and provide an embedded light-duty robotic arm controller and its control method that are light in weight, fast in processing speed, low in cost, good in stability, and easily expandable in function.
为实现上述目的,本发明采用下述技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种嵌入式轻型机械臂控制器,其特征在于:包括相连接的示教盒控制器和嵌入式主从DSP(数字信号处理器)控制器,所述示教盒控制器包括微处理器I,微处理器I分别与人机接口单元和嵌入式主从DSP(数字信号处理器)控制器相连;所述嵌入式主从DSP(数字信号处理器)控制器包括微处理器II和微处理器III,所述微处理器II分别与微处理器I和双口RAM连接,双口RAM与微处理器III相连,微处理器III分别与运动控制芯片I和运动控制芯片II相连,运动控制芯片I和运动控制芯片II分别与电机驱动器、原点开关和限位开关相连,电机驱动器与电机相连,电机输出轴与机械臂相连。A kind of embedded light mechanical arm controller is characterized in that: comprise the connected teaching box controller and embedded master-slave DSP (digital signal processor) controller, described teaching box controller comprises
所述人机接口单元包括显示器和键盘。The man-machine interface unit includes a display and a keyboard.
所述微处理器I与微处理器II通过串口通信连接。The microprocessor I and the microprocessor II are connected through a serial port communication.
所述微处理器I、微处理器II和微处理器III均采用TMS320F2812芯片。Described microprocessor I, microprocessor II and microprocessor III all adopt TMS320F2812 chip.
所述微处理器II的数据总线、地址总线、控制总线与双口RAM的左数据总线、地址总线、控制总线相连,微处理器III的数据总线、地址总线、控制总线与双口RAM的右数据总线、地址总线、控制总线相连。The data bus, address bus, and control bus of the microprocessor II are connected to the left data bus, address bus, and control bus of the dual-port RAM, and the data bus, address bus, and control bus of the microprocessor III are connected to the right side of the dual-port RAM. Data bus, address bus, and control bus are connected.
所述微处理器III的数据总线、地址总线、控制总线分别与运动控制芯片I和运动控制芯片II的数据总线、地址总线、控制总线相连。The data bus, address bus, and control bus of the microprocessor III are respectively connected to the data bus, address bus, and control bus of the motion control chip I and the motion control chip II.
所述运动控制芯片I、运动控制芯片II均采用MCX314芯片。Both the motion control chip I and the motion control chip II are MCX314 chips.
所述运动控制芯片I的脉冲输出口1-4与步进电机驱动器的输入口1-4相连,运动控制芯片I原点信号采集口与原点开关的输出口1-4相连,运动控制芯片I限位开关采集口与限位开关的输出口1-8相连;运动控制芯片II的脉冲输出口1-3与步进电机驱动器的输入口5-7相连,运动控制芯片II原点信号采集口与原点开关的输出口5-7相连,运动控制芯片II限位开关采集口与限位开关输出口9-12相连。The pulse output port 1-4 of described
所述电机驱动器的输出采用正负脉冲形式,电机采用两相混合式步进电机。The output of the motor driver is in the form of positive and negative pulses, and the motor is a two-phase hybrid stepping motor.
一种嵌入式轻型机械臂控制方法,其特征在于,包括如下步骤:A method for controlling an embedded light-duty mechanical arm, comprising the steps of:
1).对每个杆件在关节轴处可建立一个正规的笛卡儿坐标系(xi,yi,zi)(i是1到6之间的所有正整数,6为自由度数目),再加上基座坐标系(x0,y0,z0)(在机座上的位置和方向可任选,只要z0轴沿着第一关节运动轴即可);1). For each member, a normal Cartesian coordinate system (xi , y , zi ) can be established at the joint axis (i is all positive integers between 1 and 6, and 6 is the number of degrees of freedom ), plus the base coordinate system (x 0 , y 0 , z 0 ) (the position and direction on the machine base are optional, as long as the z 0 axis is along the first joint motion axis);
2).为每个关节处的杆件坐标系建立4×4奇次变换矩阵,表示与前一个杆件坐标系的关系;2). Establish a 4×4 odd-order transformation matrix for the member coordinate system at each joint, indicating the relationship with the previous member coordinate system;
3).采用“边算边走”的定时插补算法,计算插补点的位置和姿态;“边算边走”是指将各插补点进行逆运动学变换后得到的关节位置不用存储,而直接再按这些关节位置开始运动;3). Use the timing interpolation algorithm of "calculate while walking" to calculate the position and attitude of the interpolation point; "calculate while walking" means that the joint position obtained after inverse kinematic transformation of each interpolation point does not need to be stored , and start to move directly according to these joint positions;
4).采用公式法计算每个轴的运动学反解(运动学反解是指已知末端位置和姿态求每个关节的角度),得出插补周期内的每个轴的运动角度;4).Using the formula method to calculate the kinematic inverse solution of each axis (kinematic inverse solution refers to the known end position and attitude to find the angle of each joint), and obtain the motion angle of each axis in the interpolation cycle;
5).得出的每个轴的运动角度输出到微处理器III,微处理器III的位置指令输出到运动控制芯片I和运动控制芯片II,来控制每个轴的插补运动。5). The obtained motion angle of each axis is output to the microprocessor III, and the position command of the microprocessor III is output to the motion control chip I and the motion control chip II to control the interpolation motion of each axis.
所述步骤中1)确定和建立每个坐标系应采用下面三条规则:每个关节i(i是1到6之间的所有正整数,6为自由度数目)的运动都绕着zi轴运动;xi轴垂直zi-1轴并指向离开zi-1轴的方向;yi轴按右手坐标系得要求建立。In the said steps 1) the following three rules should be adopted for determining and establishing each coordinate system: the motion of each joint i (i is all positive integers between 1 and 6, and 6 is the number of degrees of freedom) revolves around the z axis Movement; the x i axis is perpendicular to the z i-1 axis and points to the direction away from the z i-1 axis; the y i axis is established according to the requirements of the right-handed coordinate system.
本发明的机械臂控制系统的结构采用主从式微处理器进行控制,微处理器II作为主机,它担当系统管理、机械臂语言编译和人机接口功能,同时也利用它的运算能力完成坐标变换、轨迹插补、运动学正解、运动学反解,并定时地把运算结果作为关节运动的增量送到公共内存,供微处理器III读取它。微处理器III完成全部关节位置数字控制。它从公共内存读给定值,也把各关节实际位置送回公共内存中,微处理器II使用。公共内存是由容量为8KB的双口RAM。这类系统的控制速率快,一般可达10ms。The structure of the manipulator control system of the present invention is controlled by a master-slave microprocessor, and the microprocessor II is used as the host computer, which is responsible for system management, manipulator language compilation and man-machine interface functions, and also utilizes its computing power to complete coordinate transformation , track interpolation, kinematics positive solution, kinematics inverse solution, and regularly send the calculation results as joint movement increments to the public memory for the microprocessor III to read it. Microprocessor III completes digital control of all joint positions. It reads the given value from the common memory, and also sends the actual position of each joint back to the common memory, which is used by the microprocessor II. The public memory is a dual-port RAM with a capacity of 8KB. The control rate of this type of system is fast, generally up to 10ms.
采用上述方案,本发明具有以下优点,一是自行设计的机械臂运动控器经实验验证,可以满足机械臂控制要求,运行可靠、成本低廉可以作为机械臂运动控制器应用和销售;二是嵌入式轻型机械臂自重轻、尺寸小、控制系统功耗低和尺寸小,适合移动操作操作机器人的应用需要。三是嵌入式轻型机械臂可以实现复杂的直线插补、圆弧插补运动;四是系统采用模块化设计,具有开放性、可读性、可扩展性、可维护性,以便持续开发。五是机械臂运动控制器采用主从式微处理器,微处理器II实现运动学正反解、插补算法,微处理器III实现运动控制,处理速度快。六是控制器带有驱动器控制接口、原点开关采集口,功能齐全,位置精度高。By adopting the above scheme, the present invention has the following advantages. One is that the self-designed mechanical arm motion controller can meet the control requirements of the mechanical arm through experimental verification. It is reliable in operation and low in cost and can be used and sold as a mechanical arm motion controller; The lightweight mechanical arm has light weight, small size, low power consumption and small size of the control system, and is suitable for the application needs of mobile operation and operation of robots. The third is that the embedded light-duty robotic arm can realize complex linear interpolation and circular interpolation movements; the fourth is that the system adopts a modular design, which is open, readable, expandable, and maintainable for continuous development. Fifth, the motion controller of the manipulator adopts a master-slave microprocessor. The microprocessor II realizes kinematics positive and negative solution and interpolation algorithm, and the microprocessor III realizes motion control, and the processing speed is fast. Sixth, the controller has a driver control interface and an origin switch acquisition port, with complete functions and high position accuracy.
附图说明 Description of drawings
图1是本发明总框图;Fig. 1 is a general block diagram of the present invention;
图2是本发明示教盒硬件电路接口连接图;Fig. 2 is a connection diagram of the hardware circuit interface of the teaching box of the present invention;
图3是本发明机械臂主控制板硬件接口连接图;Fig. 3 is a hardware interface connection diagram of the main control board of the mechanical arm of the present invention;
图4是本发明机械臂从控制板硬件接口连接图;Fig. 4 is the connection diagram of the hardware interface of the mechanical arm of the present invention from the control board;
图5是本发明键盘示意图;Fig. 5 is a schematic diagram of the keyboard of the present invention;
图6是本发明机械臂示意图;Fig. 6 is a schematic diagram of the mechanical arm of the present invention;
图7是本发明原点搜索程序流程图;Fig. 7 is a flow chart of the origin search program of the present invention;
图8是本发明关节坐标系运动程序流程图;Fig. 8 is a flow chart of the motion program of the joint coordinate system of the present invention;
图9是本发明单轴运动子程序流程图;Fig. 9 is a flow chart of the single-axis motion subroutine of the present invention;
图10是本发明直角坐标系运动程序流程图;Fig. 10 is a flow chart of the Cartesian coordinate system motion program of the present invention;
图11是本发明定时直角插补运动示意图;Fig. 11 is a schematic diagram of timing rectangular interpolation motion of the present invention;
图12是本发明工具坐标系运动程序流程图;Fig. 12 is a flow chart of the tool coordinate system motion program of the present invention;
图13是本发明圆柱坐标系运动程序流程图;Fig. 13 is a flowchart of the motion program of the cylindrical coordinate system of the present invention;
图14是本发明运动学反解示意图。Fig. 14 is a schematic diagram of kinematic inverse solution of the present invention.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
参见图1,一种嵌入式轻型机械臂的控制器,包括示教盒控制器和嵌入式主从DSP控制器两部分。示教盒控制器由键盘模块、液晶显示模块、串口通信模块、微处理器I组成。控制键盘的输出接微处理器I的输入,微处理器I的输入输出接液晶显示的输入输出,微处理器I的串口与机械臂微处理器II的串口通信。嵌入式主从DSP控制器由微处理器II、双口RAM、微处理器III、运动控制芯片I、运动控制芯片II、光电开关处理电路、限位开关处理电路、步进电机驱动模块、抱闸松开控制等组成。微处理器II的数据总线、地址总线、控制总线与双口RAM的左数据总线、地址总线、控制总线相连,双口RAM的右数据总线、地址总线、控制总线与微处理器III相连,微处理器III的数据总线、地址总线、控制总线与运动控制芯片I、运动控制芯片II的数据总线、地址总线、控制总线相连,运动控制芯片I的脉冲输出口1-4与步进电机驱动器的输入口1-4相连,运动控制芯片I原点信号采集口与原点开关的输出口1-4相连,运动控制芯片I限位开关采集口与限位开关的输出口1-8相连,运动控制芯片II的脉冲输出口1-3与步进电机驱动器的输入口5-7相连,运动控制芯片II原点信号采集口与原点开关的输出口5-7相连,运动控制芯片II限位开关采集口与限位开关输出口9-12相连。See Figure 1, a controller for an embedded light-duty robotic arm, including a teaching box controller and an embedded master-slave DSP controller. The teaching box controller is composed of a keyboard module, a liquid crystal display module, a serial port communication module and a
人机接口单元包括键盘和液晶显示,它们分别与微处理器I连接。The man-machine interface unit includes a keyboard and a liquid crystal display, which are connected with the
微处理器I与微处理器II通过串口通信。Microprocessor I communicates with microprocessor II through the serial port.
微处理器I、微处理器II和微处理器III均采用TMS320F2812芯片。Microprocessor I, microprocessor II and microprocessor III all use TMS320F2812 chip.
微处理器I采集键盘的数据指令,通过串口通信下发给微处理器II,运动速度、下发指令、机械臂的位置通过液压模块显示。Microprocessor I collects data commands from the keyboard and sends them to microprocessor II through serial port communication. The movement speed, issued commands, and the position of the mechanical arm are displayed through the hydraulic module.
微处理器II与微处理器III通过双口RAM进行数据交互。微处理器II的数据总线、地址总线、控制总线与双口RAM的左数据总线、地址总线、控制总线相连,微处理器III的数据总线、地址总线、控制总线与双口RAM的右数据总线、地址总线、控制总线相连。Microprocessor II and microprocessor III carry out data exchange through dual-port RAM. The data bus, address bus, and control bus of the microprocessor II are connected to the left data bus, address bus, and control bus of the dual-port RAM, and the data bus, address bus, and control bus of the microprocessor III are connected to the right data bus of the dual-port RAM , Address bus, and control bus are connected.
微处理器III的数据总线、地址总线、控制总线与运动控制芯片I、运动控制芯片II的数据总线、地址总线、控制总线相连。The data bus, address bus and control bus of the microprocessor III are connected with the data bus, address bus and control bus of the motion control chip I and the motion control chip II.
运动控制芯片I、运动控制芯片II均采用MCX314芯片。Both motion control chip I and motion control chip II use MCX314 chip.
运动控制芯片I输出的正、负脉冲信号控制步进电机驱动器1-4,运动控制芯片I原点信号采集口与原点开关的输出口1-4相连,运动控制芯片I限位开关采集口与限位开关的输出口1-8相连。运动控制芯片II输出的正、负脉冲信号控制步进电机驱动器5-7,运动控制芯片II原点信号采集口与原点开关的输出口5-7相连,运动控制芯片II限位开关采集口与限位开关输出口9-12相连。The positive and negative pulse signals of the
驱动器的输出采用正负脉冲形式,电机采用两相混合式步进电机。The output of the driver is in the form of positive and negative pulses, and the motor is a two-phase hybrid stepping motor.
机械臂控制系统的结构采用主从式微处理器进行控制,微处理器II作为主机,它担当系统管理、机械臂语言编译和人机接口功能,同时也利用它的运算能力完成坐标变换、轨迹插补、运动学正解、运动学反解,并定时地把运算结果作为关节运动的增量送到公共内存,供微处理器III读取它。微处理器III完成全部关节位置数字控制。它从公共内存读给定值,也把各关节实际位置送回公共内存中,微处理器II使用。公共内存是由容量为8KB的双口RAM。这类系统的控制速率快,一般可达10ms。The structure of the manipulator control system is controlled by a master-slave microprocessor, and the microprocessor II is the host computer, which is responsible for system management, manipulator language compilation and human-machine interface functions, and also uses its computing power to complete coordinate transformation and trajectory insertion. Complement, kinematics positive solution, kinematics inverse solution, and regularly send the operation result as the increment of joint movement to the public memory for the microprocessor III to read it. Microprocessor III completes digital control of all joint positions. It reads the given value from the common memory, and also sends the actual position of each joint back to the common memory, which is used by the microprocessor II. The public memory is a dual-port RAM with a capacity of 8KB. The control rate of this type of system is fast, generally up to 10ms.
参见图2,示教盒控制器由微处理器I、液晶模块、逻辑电平转换器、键盘管理模块、键盘、稳压芯片I、稳压芯片II、串口接收发送器、串口组成。稳压芯片I、稳压芯片I给微处理器I供电。微处理器的GIPIOB1与ADG3308的2脚连接,GPIOB5与5脚连接,XINT2与6脚连接。GPIOA0-7与液晶模块的DB0-7连接,GPIOB0与REQ连接,GPIOB2与CS连接,液晶模块5V供电。ADG3308的16脚与HD7279的DATA脚连接,15与KEY脚连接。微处理器I的GPIOB3与HD7279的CS脚连接,GPIOB4与CLK脚连接。键盘的输出接HD7279的DIG0-7、DP-SG。微处理器I的SCITXDA接MAX3232的11脚,SCIRXDA接12脚,MAX3232的13、14脚接到串口。参见图3,嵌入式主控制器包括双口RAM、微处理器II、串口接收发送器、串口、从控制器接口。微处理器II的XD0-15接双口RAM的IO0-15L、/XRD接/OEL、/XWE接R//WL、/XZCS2接/CEL、XA0-11接A0-11L。双口RAM的M//S接3.3V,设置成主模式。双口RAM的IO0-15R、/OER、R//WR、/CER、A0-11R接从控制器接口。微处理器II的SCITXDA接MAX3232的11脚,SCIRXDA接12脚,MAX3232的13、14脚接到串口。Referring to Figure 2, the teaching box controller is composed of a microprocessor I, a liquid crystal module, a logic level converter, a keyboard management module, a keyboard, a voltage regulator chip I, a voltage regulator chip II, a serial port receiver transmitter, and a serial port. The
参见图4,嵌入式从控制板包括双口RAM接口、微处理器III、16M有源晶振、运动控制芯片1、运动控制芯片2、光耦隔离、驱动器接口、原点开关接口、限位开关接口。双口RAM接口的IO0-15R、/OER、R//WR、/CER、A0-11R接微处理器III的XD0-15、/XRD、/XWE、/XZCS2、XA0-11。微处理器III的XD0-15、/XRD、/XWE、XA14、XA0-2分别接运动控制芯片I的D0-15、RDN、WRN、CSN、A0-2。微处理器III的XD0-15、/XRD、/XWE、XA13、XA0-2分别接运动控制芯片II的D0-15、RDN、WRN、CSN、A0-2。16M有源晶振的输出口接运动控制芯片I、II的53脚。正限位开关1-4的输出接口经过光耦隔离分别接运动控制芯片I的69、87、97、116脚;负限位开关5-8的输出接口经过光耦隔离分别接运动控制芯片I的70、88、98、117脚;原点开关1、2、3、4的输出口经过光耦隔离分别接运动控制芯片I的73、93、101、120脚;运动控制芯片I的35、36脚分别接驱动器1的正脉冲、负脉冲输入口;运动控制芯片I的38、39脚分别接驱动器2的正脉冲、负脉冲输入口;运动控制芯片I的40、41脚分别接驱动器3的正脉冲、负脉冲输入口;运动控制芯片I的42、43脚分别接驱动器4的正脉冲、负脉冲输入口。原点开关5、6、7的输出口经过光耦隔离分别接运动控制芯片II的73、93、101脚;正限位开关9-10的输出接口经过光耦隔离分别接运动控制芯片I的69、87脚;负限位开关11-12的输出接口经过光耦隔离分别接运动控制芯片I的70、88脚;运动控制芯片II的35、36脚分别接驱动器5的正脉冲、负脉冲输入口;运动控制芯片II的38、39脚分别接驱动器6的正脉冲、负脉冲输入口;运动控制芯片II的40、41脚分别接驱动器7的正脉冲、负脉冲输入口。See Figure 4, the embedded slave control board includes dual-port RAM interface, microprocessor III, 16M active crystal oscillator,
参见图5,键盘示意图,S+表示机械臂关节坐标系第一轴的正运动、直角坐标系X+运动、工具坐标系X+运动、圆柱坐标系θ+运动,S-表示关节坐标系第一轴的负运动、直角坐标系X-运动、工具坐标系X-运动、圆柱坐标系θ-运动;L+表示机械臂关节坐标系第二轴的正运动、直角坐标系Y+运动、工具坐标系Y+运动、圆柱坐标系r+运动,L-表示关节坐标系第二轴的负运动、直角坐标系Y-运动、工具坐标系Y-运动、圆柱坐标系r-运动;U+表示关节坐标系第三轴的正运动、直角坐标系Z+运动、工具坐标系Z+运动、圆柱坐标系Z+运动,U-表示关节坐标系第三轴的负运动、直角坐标系Z-运动、工具坐标系Z-运动、圆柱坐标系Z-运动;R+表示关节坐标系第四轴的正运动,R-表示关节坐标系第四轴的负运动;B+表示关节坐标系第五轴的正运动,B-表示关节坐标系第五轴的负运动;T+表示关节坐标系第六轴的正运动,T-表示关节坐标系第六轴的负运动;M+表示手爪的开,M-表示手爪的合;V+表示增加速度,V-表示减小速度;按下原点搜索键执行原点搜索运动;按坐标系切换键时,坐标系以下列顺序变化:关节-直角-工具-圆柱。See Figure 5, the schematic diagram of the keyboard, S+ indicates the positive movement of the first axis of the joint coordinate system of the manipulator, the X+ movement of the Cartesian coordinate system, the X+ movement of the tool coordinate system, and the θ+ movement of the cylindrical coordinate system, and S- indicates the movement of the first axis of the joint coordinate system Negative movement, Cartesian coordinate system X-movement, tool coordinate system X-movement, cylindrical coordinate system θ-movement; L+ indicates the positive movement of the second axis of the manipulator joint coordinate system, Cartesian coordinate system Y+ movement, tool coordinate system Y+ movement, Cylindrical coordinate system r+ motion, L- represents the negative motion of the second axis of the joint coordinate system, Y- motion of the Cartesian coordinate system, Y- motion of the tool coordinate system, r- motion of the cylindrical coordinate system; U+ represents the positive motion of the third axis of the joint coordinate system Movement, Cartesian coordinate system Z+ movement, tool coordinate system Z+ movement, cylindrical coordinate system Z+ movement, U- indicates the negative movement of the third axis of the joint coordinate system, Cartesian coordinate system Z-movement, tool coordinate system Z-movement, cylindrical coordinate system Z-movement; R+ indicates the positive movement of the fourth axis of the joint coordinate system, R- indicates the negative movement of the fourth axis of the joint coordinate system; B+ indicates the positive movement of the fifth axis of the joint coordinate system, B- indicates the fifth axis of the joint coordinate system T+ indicates the positive movement of the sixth axis of the joint coordinate system, T- indicates the negative movement of the sixth axis of the joint coordinate system; M+ indicates the opening of the gripper, M- indicates the closing of the gripper; V+ indicates the increase in speed, V - means to reduce the speed; press the origin search key to execute the origin search movement; when the coordinate system switching key is pressed, the coordinate system changes in the following order: joint-right angle-tool-cylindrical.
一种嵌入式轻型机械臂控制方法,包括如下步骤:A method for controlling an embedded light-duty mechanical arm, comprising the steps of:
1)对每个杆件在关节轴处可建立一个正规的笛卡儿坐标系(xi,yi,zi)(i是1到6之间的所有正整数,6为自由度数目),再加上基座坐标系(x0,y0,z0)(在机座上的位置和方向可任选,只要z0轴沿着第一关节运动轴即可);1) A regular Cartesian coordinate system (x i , y i , z i ) can be established for each member at the joint axis (i is all positive integers between 1 and 6, and 6 is the number of degrees of freedom) , plus the base coordinate system (x 0 , y 0 , z 0 ) (the position and direction on the machine base are optional, as long as the z 0 axis is along the first joint motion axis);
2).为每个关节处的杆件坐标系建立4×4奇次变换矩阵,表示与前一个杆件坐标系的关系;2). Establish a 4×4 odd-order transformation matrix for the member coordinate system at each joint, indicating the relationship with the previous member coordinate system;
3).采用“边算边走”(“边算边走”是指将各插补点进行逆运动学变换后得到的关节位置不用存储,而直接再按这些关节位置开始运动)的定时插补算法,计算插补点的位置和姿态;3). Use the timing interpolation of "walking while calculating" ("walking while calculating" means that the joint positions obtained after the inverse kinematics transformation of each interpolation point do not need to be stored, but directly start to move according to these joint positions) Complementary algorithm to calculate the position and attitude of the interpolation point;
4).采用公式法计算每个轴的运动学反解(运动学反解是指已知末端位置和姿态求每个关节的角度),得出插补周期内的每个轴的运动角度;4).Using the formula method to calculate the kinematic inverse solution of each axis (kinematic inverse solution refers to the known end position and attitude to find the angle of each joint), and obtain the motion angle of each axis in the interpolation cycle;
5).得出的每个轴的运动角度输出到微处理器III,微处理器III的位置指令输出到运动控制芯片I和运动控制芯片II,来控制每个轴的插补运动。5). The obtained motion angle of each axis is output to the microprocessor III, and the position command of the microprocessor III is output to the motion control chip I and the motion control chip II to control the interpolation motion of each axis.
参见图6,对每个杆件在关节轴处可建立一个正规的笛卡儿坐标系(xi,yi,zi)(i是1到6之间的所有正整数,6为自由度数目),再加上基座坐标系(x0,y0,z0)(在机座上的位置和方向可任选,只要z0轴沿着第一关节运动轴即可)。该发明确定和建立每个坐标系应根据下面三条规则:每个关节i(i是1到6之间的所有正整数,6为自由度数目)的运动都绕着zi轴运动;xi轴垂直zi-1轴并指向离开zi-1轴的方向;yi轴按右手坐标系得要求建立。Referring to Figure 6, a normal Cartesian coordinate system (xi , y , zi ) can be established for each member at the joint axis (i is all positive integers between 1 and 6, and 6 is the degree of freedom number), plus the base coordinate system (x 0 , y 0 , z 0 ) (the position and direction on the machine base are optional, as long as the z 0 axis is along the first joint motion axis). The invention determines and establishes each coordinate system according to the following three rules: the motion of each joint i ( i is all positive integers between 1 and 6, and 6 is the number of degrees of freedom) moves around the z axis; The axis is perpendicular to the z i-1 axis and points away from the z i-1 axis; the y i axis is established according to the requirements of the right-handed coordinate system.
参见图7,回机械原点的过程是:设置加减速度、速度等参数;关闭原点开关采集口;各轴正方向运动活动空间的一半;打开原点开关采集口;执行反方向运动;直到搜索到原点开关,执行相应轴的减速停止子程序。Referring to Figure 7, the process of returning to the mechanical origin is: set acceleration and deceleration, speed and other parameters; close the origin switch acquisition port; move half of the active space of each axis in the positive direction; open the origin switch acquisition port; Origin switch, execute the deceleration stop subroutine of the corresponding axis.
参见图8、9,关节坐标系运动,首先输入运动的加减速度、速度值,通过读取端口的状态判断特定键的按下或松开,特定键按下后,系统对指定轴按照设定的参数进行加速连续驱动;当按键松开时,系统发出减速停止命令。Refer to Figures 8 and 9, joint coordinate system movement, first input the acceleration and deceleration and speed values of the movement, and judge whether a specific key is pressed or released by reading the state of the port. Accelerate and drive continuously with the specified parameters; when the button is released, the system issues a deceleration and stop command.
参见图10、11、12、13,直角坐标系运动,首先输入运动的加减速度、速度值,通过读取端口的状态判断特定键的按下或松开,特定键按下后,系统对指定轴进行正反解算法、直线插补或圆弧插补运动;当按键松开时,系统发出减速停止命令。Refer to Figures 10, 11, 12, and 13, Cartesian coordinate system movement, first input the acceleration and deceleration and speed values of the movement, and judge the pressing or release of a specific key by reading the state of the port. After the specific key is pressed, the system will The specified axis performs positive and negative solution algorithm, linear interpolation or circular interpolation; when the key is released, the system sends a deceleration stop command.
该发明空间直线插补可分为以下几步完成:The space linear interpolation of this invention can be divided into the following steps to complete:
输入机器人运动的初始点P0(x0,y0,z0)和终点Pf(xf,yf,zf)(f是final的缩写)运动速度Pv,加减速时间Ta和插补周期Tc,运行时间T;Input the initial point P 0 (x 0 , y 0 , z 0 ) and end point P f (x f , y f , z f ) (f is the abbreviation of final) of the robot movement, the velocity P v , the acceleration and deceleration time T a and Interpolation cycle T c , running time T;
基本参数的确定和插补点的求解方法。由于机器人空间直线运动需经过加减速和匀速运动段,因此在进行插补运动前,应确定Pv是否满足加减速要求。方法如下:The determination of basic parameters and the solution method of interpolation points. Since the linear motion of the robot in space needs to go through the acceleration and deceleration and uniform motion segments, it should be determined whether P v meets the acceleration and deceleration requirements before interpolation motion. Methods as below:
由P0(x0,y0,z0)和Pf(xf,yf,zf)得到实际运动距离Pd=|P0Pf|;由Pv和Ta可计算出加减速段所需距离若Cd≥Pd,则实际运动速度否则Cv=Pv;由时间Ta和插补时间Tc得出加速步数Sa。由P0(x0,y0,z0)和Pf(xf,yf,zf),可得空间直线参数方程From P 0 (x 0 , y 0 , z 0 ) and P f (x f , y f , z f ), the actual moving distance P d = |P 0 P f |; from P v and T a can be calculated Required distance for deceleration section If C d ≥ P d , the actual movement speed Otherwise C v =P v ; the number of acceleration steps S a is obtained from the time T a and the interpolation time T c . From P 0 (x 0 , y 0 , z 0 ) and P f (x f , y f , z f ), the parametric equation of the space line can be obtained
因此由式(1),可得各插补点Pi(xi,yi,zi)(i为各插补点的步号,在0与之间的所有正整数)到P0的距离为Therefore, from formula (1), each interpolation point P i (xi , y i , zi ) can be obtained (i is the step number of each interpolation point, between 0 and All positive integers between ) to P 0 distance is
Pd=|P0Pf|) (2)P d =|P 0 P f |) (2)
令第n插补段运动距离为Sd(n)(n=1,...,i)(n是1到i的所有正整数),(i为各插补点的步号,在0与之间的所有正整数)可得点Pi到P0的距离(CSd(i-1)表示Pi-1(xi-1,yi-1,zi-1)到P0的距离,Sd(i)是第i插补段运动距离),故由式(1)和(2)得到各插补点比例因子k的计算公式如下:Let the movement distance of the nth interpolation segment be S d(n) (n=1,...,i) (n is all positive integers from 1 to i), (i is the step number of each interpolation point, at 0 and All positive integers between) can get the distance from point P i to P 0 (C Sd(i-1) represents the distance from P i-1 (xi -1 , y i-1 , zi -1 ) to P 0 , S d(i) is the movement distance of the i-th interpolation segment), Therefore, the calculation formula of the scale factor k of each interpolation point obtained from formulas (1) and (2) is as follows:
由式(3)就可求出k,并得到插补点直角坐标。因此空间直线插补算法关键在于确定各插补段运动距离Sd(i)。下面介绍运动各段求取Sd(i)方法:From formula (3), k can be obtained, and the Cartesian coordinates of the interpolation points can be obtained. Therefore, the key to the spatial linear interpolation algorithm is to determine the movement distance S d(i) of each interpolation segment. The following introduces the method of calculating S d(i) in each segment of the movement:
加速运动段。由于本文设计的机器人加速段为匀加速运动,故由实际运动速度Cv和加减速时间Ta求得加速度(单位是m/s^2),因此加速度段上第i个插补点的速度Scv(i)=iTc·a,可得到Accelerate the motion segment. Since the acceleration section of the robot designed in this paper is a uniform acceleration motion, the acceleration can be obtained from the actual motion speed C v and the acceleration and deceleration time T a (the unit is m/s^2), so the speed S cv(i) of the i-th interpolation point on the acceleration section =iT c ·a, can be obtained
匀速运动段。由于本文设计的机器人要求必须经过减速段,而且插补运算为“边算边走”,故每次进行匀速运动段开始前,必须计算所剩距离能否满足系统减速要求。匀速段各插补段运动距离Sd(i)=Cv·Tc uniform motion segment. Since the robot designed in this paper must go through the deceleration section, and the interpolation operation is "walking while calculating", so it is necessary to calculate whether the remaining distance can meet the deceleration requirements of the system before the start of the uniform motion section. The moving distance of each interpolation segment in the constant speed segment S d(i) = C v T c
减速运动段。由于在求取加速步数Sa时进行取整计算,因此不能简单的将加速段加速度取反后规划加速段,这样会引入误差,故减速段加速度应重新计算。经过前面i-1个插补点后,可得所剩距离Ld(i)=Pd-CSd(i-1),因此可得减速段加速度则减速度段上第m个插补点的速度Scv(m)=Cv+mTc·a,即可得到Deceleration segment. Since the rounding calculation is performed when calculating the number of acceleration steps S a , it is not possible to simply invert the acceleration of the acceleration section and then plan the acceleration section. This will introduce errors, so the acceleration of the deceleration section should be recalculated. After passing through the previous i-1 interpolation points, the remaining distance L d(i) = P d -C Sd(i-1) can be obtained, so the acceleration of the deceleration section can be obtained Then the speed S cv(m) of the mth interpolation point on the deceleration section = C v +mT c ·a, can be obtained
该发明采用公式法进行运动学反解(运动学反解是指已知末端位置和姿态求每个关节的角度,如图14所示):This invention adopts the formula method to carry out kinematics inverse solution (kinematics inverse solution refers to knowing the end position and posture to find the angle of each joint, as shown in Figure 14):
px x
py p y
Pz------表示机械臂末端在世界坐标系中的位置;P z ------ indicates the position of the end of the robot arm in the world coordinate system;
nx ox ax n x o x a x
ny oy ay n y o y a y
nz oz az------表示机械臂末端在世界坐标系中的姿态;n z o z a z ------ Indicates the attitude of the end of the robot arm in the world coordinate system;
θ1,...,θ6------表示每个轴运动的角度;θ 1 ,..., θ 6 ------ indicates the angle of movement of each axis;
Ai∈R4×4(i=1,2,…,6)------是根据D-H坐标系建立的各连杆上坐标系间的转换矩阵。A i ∈ R 4×4 (i=1, 2,..., 6)------is the conversion matrix between the coordinate systems on each connecting rod established according to the DH coordinate system.
si-----表示sinθi;s i ----- means sinθ i ;
ci------表示cosθi;c i ------ means cosθ i ;
sij------表示sin(θi+θj);s ij ------ means sin(θ i +θ j );
cij-------表示cos(θi+θj)
n-手的法向矢量n - the normal vector of the hand
s-手的滑动矢量s-hand swipe vector
a-手的接近矢量a - the approach vector of the hand
p-手的位置矢量 (6)p-hand position vector (6)
坐标系Oi(i是正整数i=0,1,......,6)则是在操作臂上建立的D-H坐标系;a2,d4∈R分别表示机械臂对应连杆的长度。可以将操作臂末端坐标系O6在基座坐标系O0下的位姿写成如下表达式:0T6=A1A2A3A4A5A6。求解运动方程时,从0T6开始求解关节位置。使0T6的符号表达式的各元素等于0T6的一般形式,并据此确定θ1。一旦求得θ1之后,可由A1 -1左乘0T6的一般形式,得The coordinate system O i (i is a positive integer i=0, 1, ..., 6) is the DH coordinate system established on the manipulator arm; a 2 , d 4 ∈ R respectively represent the length. The pose of the manipulator end coordinate system O 6 in the base coordinate system O 0 can be written as the following expression: 0 T 6 =A 1 A 2 A 3 A 4 A 5 A 6 . When solving the equation of motion, start to solve the joint position from 0 T 6 . Make each element of the symbolic expression of 0 T 6 equal to the general form of 0 T 6 , and determine θ 1 accordingly. Once θ 1 is obtained, the general form of A 1 -1 can be multiplied by 0 T 6 to the left to get
A-1 1 0T6=1T6 (7)A -1 1 0 T 6 = 1 T 6 (7)
此式可用来求解其他各关节变量。不断地用A的逆矩阵左乘(7),可得下列另四个矩阵方程式:This formula can be used to solve other joint variables. Constantly multiplying (7) by the inverse matrix of A to the left, the following four other matrix equations can be obtained:
A2 -1A1 -10T6=2T6 (8)A 2 -1 A 1 -10 T 6 = 2 T 6 (8)
A3 -1A2 -1A1 -10T6=3T6 (9)A 3 -1 A 2 -1 A 1 -10 T 6 = 3 T 6 (9)
A4 -1A3 -1A2 -1A1 -10T6=4T6 (10)A 4 -1 A 3 -1 A 2 -1 A 1 -10 T 6 = 4 T 6 (10)
A5 -1A4 -1A3 -1A2 -1A1 -10T6=5T6 (11)A 5 -1 A 4 -1 A 3 -1 A 2 -1 A 1 -10 T 6 = 5 T 6 (11)
上式各方程的左式为0T6和前(i-1)个关节变量的函数,可用这些方程来确定各关节的位置:The left equations of the above equations are functions of 0 T 6 and the first (i-1) joint variables, and these equations can be used to determine the position of each joint:
θ1=atan2(py,px)(-3.1415≤θ1≤3.1415) (12)θ 1 =atan2(p y , p x )(-3.1415≤θ 1 ≤3.1415) (12)
注意:式中,正、负号对应θ3的两种可能解。Note: In the formula, the positive and negative signs correspond to two possible solutions of θ 3 .
θ2=atan2(s23,c23)-θ3(-1.5707≤θ1≤1.5707) (14)θ 2 =atan2(s 23 , c 23 )-θ 3 (-1.5707≤θ 1 ≤1.5707) (14)
θ4=atan2(-axs1+ayc1,-axc1c23-ays1c23+azs23)(-3.1415≤θ1≤3.1415) (15)θ 4 =atan2(-a x s 1 +a y c 1 ,-a x c 1 c 23 -a y s 1 c 23 +a z s 23 )(-3.1415≤θ1≤3.1415) (15)
注意:当s5=0时,机械臂处于奇异形位。此时,关节轴4和6重合,只能解出θ4与θ6的和或差。奇异形位可以由式(15)中atan2的两个变量是否都接近零来判断。Note: when s 5 =0, the manipulator is in a singular position. At this time, joint axes 4 and 6 coincide, and only the sum or difference of θ 4 and θ 6 can be solved. The singular shape can be judged by whether the two variables of atan2 in formula (15) are close to zero.
θ5=atan2(-ax(c1c23c4+s1s4)-ay(s1c23c4-c1s4)+azs23c4,-axc1s23-ays23s1-azc23)(-3.9268≤θ1≤0.7853) (16)θ 5 =atan2(-a x (c 1 c 23 c 4 +s 1 s 4 )-a y (s 1 c 23 c 4 -c 1 s 4 )+a z s 23 c 4 ,-a x c 1 s 23 -a y s 23 s 1 -a z c 23 )(-3.9268≤θ 1 ≤0.7853) (16)
k1=-nx(c1c23s4-s1c4)-ny(s1c23s4+c1c4)+nzs23s4 k 1 =-n x (c 1 c 23 s 4 -s 1 c 4 )-n y (s 1 c 23 s 4 +c 1 c 4 )+ nz s 23 s 4
k2=nx((c1c23c4+s1s4)c5-c1s23s5)+ny((s1c23c4-c1s4)c5-s1s23s5)-nz(s23c4c5+c23s5)k 2 =n x ((c 1 c 23 c 4 +s 1 s 4 )c 5 -c 1 s 23 s 5 )+n y ((s 1 c 23 c 4 -c 1 s 4 )c 5 -s 1 s 23 s 5 )-n z (s 23 c 4 c 5 +c 23 s 5 )
θ6=atan2(k1,k2)(-3.1415≤θ1≤3.1415) (17)。θ 6 =atan2(k 1 , k 2 )(-3.1415≦θ 1 ≦3.1415) (17).
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102346788A CN101913149B (en) | 2010-07-23 | 2010-07-23 | Embedded light mechanical arm controller and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102346788A CN101913149B (en) | 2010-07-23 | 2010-07-23 | Embedded light mechanical arm controller and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101913149A CN101913149A (en) | 2010-12-15 |
CN101913149B true CN101913149B (en) | 2012-04-04 |
Family
ID=43320865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102346788A Active CN101913149B (en) | 2010-07-23 | 2010-07-23 | Embedded light mechanical arm controller and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101913149B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102324206B (en) * | 2011-05-20 | 2014-05-28 | 广州数控设备有限公司 | Robot teaching box with bus communication function and control method thereof |
CN102615638B (en) * | 2012-04-01 | 2014-08-06 | 山东鲁能智能技术有限公司 | Master-slave hydraulic mechanical arm system of high-voltage hot-line operation robot |
JP5774223B2 (en) * | 2012-06-29 | 2015-09-09 | 三菱電機株式会社 | Robot control apparatus and robot control method |
CN103802115A (en) * | 2012-12-21 | 2014-05-21 | 常州先进制造技术研究所 | Hand-held controller system of mechanical arm of injection molding machine |
CN103085055B (en) * | 2013-01-29 | 2016-06-22 | 山东电力集团公司电力科学研究院 | Position Feedback Master Hand System of Live Repair Robot |
CN104626165A (en) * | 2014-12-18 | 2015-05-20 | 南京熊猫电子股份有限公司 | Demonstrator key reaction sensitivity optimization method |
CN104965517B (en) * | 2015-07-07 | 2018-01-26 | 张耀伦 | A kind of planing method of robot cartesian space track |
CN105234942B (en) * | 2015-11-02 | 2018-08-10 | 国网山东省电力公司电力科学研究院 | The control system and its control method of the big prudent small arm of hydraulic pressure |
DE102018200864B3 (en) * | 2018-01-19 | 2019-02-07 | Kuka Deutschland Gmbh | Method and system for controlling a robot |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4068156A (en) * | 1977-03-01 | 1978-01-10 | Martin Marietta Corporation | Rate control system for manipulator arms |
EP0107968A1 (en) * | 1982-10-29 | 1984-05-09 | Kabushiki Kaisha Toshiba | Control system of multi-joint arm robot apparatus |
CN1418762A (en) * | 2002-12-16 | 2003-05-21 | 北京航空航天大学 | Multiple axes servo motion control device |
CN1730135A (en) * | 2005-06-16 | 2006-02-08 | 上海交通大学 | Control system of intelligent performing robot based on multi-processor cooperation |
CN101045298A (en) * | 2007-04-12 | 2007-10-03 | 武汉科技大学 | Apparatus for controlling movement programming of multi-freedom robot |
CN201244813Y (en) * | 2008-08-08 | 2009-05-27 | 安徽工程科技学院 | Robot control system for precision forging |
CN201728656U (en) * | 2010-07-23 | 2011-02-02 | 山东电力研究院 | Embedded light mechanical arm controller |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8082064B2 (en) * | 2007-08-24 | 2011-12-20 | Elite Engineering Corporation | Robotic arm and control system |
-
2010
- 2010-07-23 CN CN2010102346788A patent/CN101913149B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4068156A (en) * | 1977-03-01 | 1978-01-10 | Martin Marietta Corporation | Rate control system for manipulator arms |
EP0107968A1 (en) * | 1982-10-29 | 1984-05-09 | Kabushiki Kaisha Toshiba | Control system of multi-joint arm robot apparatus |
CN1418762A (en) * | 2002-12-16 | 2003-05-21 | 北京航空航天大学 | Multiple axes servo motion control device |
CN1730135A (en) * | 2005-06-16 | 2006-02-08 | 上海交通大学 | Control system of intelligent performing robot based on multi-processor cooperation |
CN101045298A (en) * | 2007-04-12 | 2007-10-03 | 武汉科技大学 | Apparatus for controlling movement programming of multi-freedom robot |
CN201244813Y (en) * | 2008-08-08 | 2009-05-27 | 安徽工程科技学院 | Robot control system for precision forging |
CN201728656U (en) * | 2010-07-23 | 2011-02-02 | 山东电力研究院 | Embedded light mechanical arm controller |
Also Published As
Publication number | Publication date |
---|---|
CN101913149A (en) | 2010-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101913149B (en) | Embedded light mechanical arm controller and control method thereof | |
CN101739865B (en) | A PLC-based two-dimensional motion teaching platform for teaching and its realization method | |
CN103753534B (en) | A kind of Movement Controller of Mobile Robot and control method thereof | |
CN104339354B (en) | A kind of special motion controller hardware platform for 6DOF parallel robot | |
CN103085054B (en) | Hot-line repair robot master-slave mode hydraulic coupling feedback mechanical arm control system and method | |
CN100401218C (en) | Open motion control card and control method for parallel equipment based on two-level DSP | |
CN101138843A (en) | An intelligent autonomous robot core controller | |
CN105643589A (en) | Autonomous obstacle removal type intelligent vehicle system | |
CN204308953U (en) | A kind of special motion controller hardware platform for six-degree-of-freedom parallel robot | |
CN103576614A (en) | Multi-axis motion control system | |
CN201728656U (en) | Embedded light mechanical arm controller | |
CN204832853U (en) | Many interfaces motion control ware | |
CN201625982U (en) | Intelligent Mobile Manipulator Control System | |
CN104240263B (en) | A kind of motion subtree system for Delta parallel manipulators | |
CN103543677B (en) | A kind of implementation method of back to zero control system of the robot that makes up a prescription | |
CN106003051A (en) | FPGA-based seven-freedom-degree force feedback master manipulator control system | |
CN211699471U (en) | Intelligent robot teaching and scientific research platform based on ROS development | |
CN102841558B (en) | Five-axis full-automatic high speed dispensing robot servo-control system | |
CN103085055B (en) | Position Feedback Master Hand System of Live Repair Robot | |
CN108890630A (en) | A kind of robot teaching system and method | |
CN201945835U (en) | Embedded control system used for carton proofing machine | |
CN204883256U (en) | High real -time control system of robot framework | |
CN203380892U (en) | Manipulator control system based on FPGA platform | |
Xiao et al. | Waterbomb Origami Mechanism Pneumatic Manipulator Design Based on DH Parameter Method and Symmetric Folding Hypothesis | |
CN203031597U (en) | Electrification repair robot position feedback master manipulator system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: STATE ELECTRIC NET CROP. Effective date: 20130105 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20130105 Address after: 250002 Ji'nan City Central District, Shandong, No. 2 South Road, No. 500 Patentee after: Shandong Research Inst. of Electric Power Patentee after: State Grid Corporation of China Address before: 250002 Ji'nan City Central District, Shandong, No. 2 South Road, No. 500 Patentee before: Shandong Research Inst. of Electric Power |
|
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 250002 Ji'nan City Central District, Shandong, No. 2 South Road, No. 500 Co-patentee after: State Grid Corporation of China Patentee after: Shandong Research Inst. of Electric Power Address before: 250002 Ji'nan City Central District, Shandong, No. 2 South Road, No. 500 Co-patentee before: State Grid Corporation of China Patentee before: Shandong Research Inst. of Electric Power |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20101215 Assignee: National Network Intelligent Technology Co., Ltd. Assignor: Shandong Research Inst. of Electric Power Contract record no.: X2019370000007 Denomination of invention: Embedded light mechanical arm controller and control method thereof Granted publication date: 20120404 License type: Exclusive License Record date: 20191014 |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201028 Address after: 250101 Electric Power Intelligent Robot Production Project 101 in Jinan City, Shandong Province, South of Feiyue Avenue and East of No. 26 Road (ICT Industrial Park) Patentee after: National Network Intelligent Technology Co.,Ltd. Address before: 250002 Ji'nan City Central District, Shandong, No. 2 South Road, No. 500 Patentee before: Shandong Electric Power Research Institute Patentee before: STATE GRID CORPORATION OF CHINA |
|
EC01 | Cancellation of recordation of patent licensing contract | ||
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: National Network Intelligent Technology Co.,Ltd. Assignor: Shandong Electric Power Research Institute Contract record no.: X2019370000007 Date of cancellation: 20210324 |