[go: up one dir, main page]

CN108890630A - A kind of robot teaching system and method - Google Patents

A kind of robot teaching system and method Download PDF

Info

Publication number
CN108890630A
CN108890630A CN201810955423.7A CN201810955423A CN108890630A CN 108890630 A CN108890630 A CN 108890630A CN 201810955423 A CN201810955423 A CN 201810955423A CN 108890630 A CN108890630 A CN 108890630A
Authority
CN
China
Prior art keywords
robot
position information
spatial position
teaching
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810955423.7A
Other languages
Chinese (zh)
Inventor
杜文学
高洪兵
徐德俊
张慧
王钦若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201810955423.7A priority Critical patent/CN108890630A/en
Publication of CN108890630A publication Critical patent/CN108890630A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0081Programme-controlled manipulators with leader teach-in means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

本申请公开了一种机器人示教系统及方法,包括依次相连的机器人控制系统、示教器和三维手柄;三维手柄,用于接收用户输入的空间位置信息,并将空间位置信息发送至示教器;示教器,用于将空间位置信息发送至机器人控制系统;机器人控制系统,用于利用空间位置信息,得到机器人的运动参数;本申请利用三维手柄接收用户输入的空间位置信息,再由机器人控制系统完成对空间位置信息的转化,得到机器人的运动参数,令机器人能够按照用户通过三维手柄输入的空间位置信息运动,改变了用户的输入方式,使用户输入的空间位置信息更为准确和高效,便于用户输入大量的空间位置信息,提高了输入效率,使得整个示教过程便的更为高效,提高了示教效率。

The application discloses a robot teaching system and method, including a robot control system, a teaching device and a three-dimensional handle connected in sequence; the three-dimensional handle is used to receive the spatial position information input by the user, and send the spatial position information to the teaching device. device; teaching pendant, used to send the spatial position information to the robot control system; the robot control system, used to use the spatial position information to obtain the motion parameters of the robot; this application uses the three-dimensional handle to receive the spatial position information input by the user, and then the The robot control system completes the transformation of the spatial position information and obtains the motion parameters of the robot, so that the robot can move according to the spatial position information input by the user through the three-dimensional handle, which changes the user's input method and makes the spatial position information input by the user more accurate and accurate. Efficient, it is convenient for users to input a large amount of spatial position information, which improves the input efficiency, makes the whole teaching process more efficient and improves the teaching efficiency.

Description

一种机器人示教系统及方法A robot teaching system and method

技术领域technical field

本发明涉及机器人控制领域,特别涉及一种机器人示教系统及方法。The invention relates to the field of robot control, in particular to a robot teaching system and method.

背景技术Background technique

机器人在当今社会的各个领域早已司空见惯,特别是在工业4.0和中国智能制造2025的氛围下,越来越多的工厂都开始使用机器人来代替人。Robots have long been commonplace in various fields of today's society, especially in the atmosphere of Industry 4.0 and China's Smart Manufacturing 2025, more and more factories are beginning to use robots to replace humans.

然而在工业环境下使用的工业机器人,由于环境复杂、工艺不单一等各种不确定因素导致工业机器人需要按照不同批次的产品或者不同的生产环节重复进行编程完成不同的功能,现有技术有两种方法实现工业的这种需求,第一种是通过在场的操控人员,在工业机器人的控制软件上直接按照控制功能计算出机器人在每个时间段各空间的空间位置和姿态,并同时定义各个空间位置点的先后执行顺序,形成工业机器人的运行轨迹,但是这种方法计算量大,编程复杂,对机器人的误差调试困难,且对操作工人技术要求高;第二种实现方法是通过“示教再现”的形式来控制工业机器人完成不同功能,“示教再现”就是指先由操作者通过示教器逐点单步演示机器人将要完成任务时所走的路径,并把路径上所有的位置和姿态及顺序一一记录,然后通过控制器处理使工业机器人可以再现操作者的动作,完成既定的任务,然而这种方法必须依托示教盒进行逐点单步示教,复杂性高、示教时效率极低,示教过程复杂,示教局限性高,容易出现错误。However, for industrial robots used in industrial environments, due to various uncertain factors such as complex environments and different processes, industrial robots need to be programmed repeatedly to complete different functions according to different batches of products or different production links. The existing technology has There are two methods to meet this industrial demand. The first is to calculate the spatial position and attitude of the robot in each space and each space in each time period directly on the control software of the industrial robot through the operator present, and define the robot at the same time. The execution sequence of each spatial position point forms the running track of the industrial robot, but this method has a large amount of calculation, complex programming, difficulty in debugging the error of the robot, and high technical requirements for the operator; the second implementation method is through " "Teaching and reproduction" is used to control industrial robots to complete different functions. "Teaching and reproduction" means that the operator demonstrates the path that the robot is going to complete the task point by point and step by step through the teaching pendant, and transfers all the positions on the path. and posture and sequence are recorded one by one, and then processed by the controller so that the industrial robot can reproduce the operator's actions and complete the predetermined task. However, this method must rely on the teaching box for point-by-point single-step teaching. The teaching efficiency is extremely low, the teaching process is complicated, the teaching limitations are high, and errors are prone to occur.

因此,本发明在此提出一种机器人示教系统,提高示教效率。Therefore, the present invention proposes a robot teaching system to improve teaching efficiency.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种机器人示教系统及方法,以提高示教效率。其具体方案如下:In view of this, the purpose of the present invention is to provide a robot teaching system and method to improve teaching efficiency. The specific plan is as follows:

一种机器人示教系统,包括依次相连的机器人控制系统、示教器和三维手柄;A robot teaching system, comprising a robot control system, a teaching device and a three-dimensional handle connected in sequence;

所述三维手柄,用于接收用户输入的空间位置信息,并将所述空间位置信息发送至所述示教器;The three-dimensional handle is used to receive the spatial position information input by the user, and send the spatial position information to the teaching pendant;

所述示教器,用于将所述空间位置信息发送至所述机器人控制系统;The teaching pendant is used to send the spatial position information to the robot control system;

所述机器人控制系统,用于利用所述空间位置信息,得到机器人的运动参数。The robot control system is used to obtain motion parameters of the robot by using the spatial position information.

可选的,所述示教器,还包括:Optionally, the teaching pendant also includes:

显示模块,用于将所述空间位置信息通过显示器显示至所述用户。A display module, configured to display the spatial location information to the user through a display.

可选的,所述三维手柄,具体用于接收用户输入的基于笛卡尔坐标系包括三维空间坐标信息和三维坐标轴旋转角度的所述空间位置信息,并将所述空间位置信息发送至所述示教器。Optionally, the three-dimensional handle is specifically configured to receive the spatial position information based on the Cartesian coordinate system input by the user, including the three-dimensional spatial coordinate information and the rotation angle of the three-dimensional coordinate axis, and send the spatial position information to the teach pendant.

可选的,所述机器人控制系统,具体用于利用正交逆解算法将所述空间位置信息转化为机器人的关节坐标系信息。Optionally, the robot control system is specifically configured to convert the spatial position information into joint coordinate system information of the robot by using an orthogonal inverse solution algorithm.

可选的,所述机器人控制系统,还用于将所述运动参数发送至所述示教器;Optionally, the robot control system is further configured to send the motion parameters to the teaching pendant;

所述示教器,还用于保存所述运动参数;利用所述运动参数驱动所述机器人控制系统控制所述机器人按照所述运动参数运动。The teaching pendant is also used to save the motion parameters; use the motion parameters to drive the robot control system to control the robot to move according to the motion parameters.

本发明还公开了一种机器人示教方法,包括:The invention also discloses a robot teaching method, including:

利用三维手柄接收用户输入的空间位置信息,并通过所述三维手柄将所述空间位置信息发送至所述示教器;Using the three-dimensional handle to receive the spatial position information input by the user, and sending the spatial position information to the teaching pendant through the three-dimensional handle;

利用所述示教器将所述空间位置信息发送至机器人控制系统;sending the spatial position information to the robot control system by using the teaching pendant;

利用所述机器人控制系统对所述空间位置信息进行转化,得到机器人的运动参数。Using the robot control system to convert the spatial position information to obtain the motion parameters of the robot.

可选的,还包括:Optionally, also include:

利用所述示教器的显示器显示所述空间位置信息。The display of the teaching pendant is used to display the spatial position information.

可选的,所述利用三维手柄接收用户输入的空间位置信息的过程,包括:Optionally, the process of using the three-dimensional handle to receive the spatial position information input by the user includes:

利用所述三维手柄,接收用户输入的基于笛卡尔坐标系包括三维空间坐标信息和三维坐标轴旋转角度的所述空间位置信息。The three-dimensional handle is used to receive the spatial position information input by the user based on the Cartesian coordinate system, including the three-dimensional spatial coordinate information and the rotation angle of the three-dimensional coordinate axis.

可选的,所述利用所述机器人控制系统对所述空间位置信息进行转化,得到机器人的运动参数的过程,包括:Optionally, the process of using the robot control system to convert the spatial position information to obtain the motion parameters of the robot includes:

利用所述机器人控制系统通过正交逆解算法将所述空间位置信息转化为所述机器人的关节坐标系信息。Using the robot control system to convert the spatial position information into joint coordinate system information of the robot through an orthogonal inverse solution algorithm.

可选的,还包括:Optionally, also include:

利用所述机器人控制器将所述运动参数发送至所述示教器;sending the motion parameters to the teaching pendant by using the robot controller;

利用所述示教器保存所述运动参数,且利用所述运动参数驱动所述机器人控制系统控制所述机器人按照所述运动参数运动。The teaching pendant is used to save the movement parameters, and the movement parameters are used to drive the robot control system to control the robot to move according to the movement parameters.

本发明中,一种机器人示教系统,包括依次相连的机器人控制系统、示教器和三维手柄;三维手柄,用于接收用户输入的空间位置信息,并将空间位置信息发送至示教器;示教器,用于将空间位置信息发送至机器人控制系统;机器人控制系统,用于利用空间位置信息,得到机器人的运动参数。In the present invention, a robot teaching system includes a robot control system, a teaching pendant, and a three-dimensional handle connected in sequence; the three-dimensional handle is used to receive the spatial position information input by the user, and send the spatial position information to the teaching pendant; The teaching pendant is used to send the spatial position information to the robot control system; the robot control system is used to obtain the motion parameters of the robot by using the spatial position information.

本发明利用三维手柄接收用户输入的空间位置信息,再由机器人控制系统完成对空间位置信息的转化,得到机器人的运动参数,令机器人能够按照用户通过三维手柄输入的空间位置信息运动,改变了用户的输入方式,使用户输入的空间位置信息更为准确和高效,便于用户输入大量的空间位置信息,提高了输入效率,使得整个示教过程便的更为高效,提高了示教效率。The present invention uses the three-dimensional handle to receive the spatial position information input by the user, and then the robot control system completes the conversion of the spatial position information to obtain the motion parameters of the robot, so that the robot can move according to the spatial position information input by the user through the three-dimensional handle, changing the user's The advanced input method makes the spatial position information input by the user more accurate and efficient, facilitates the user to input a large amount of spatial position information, improves the input efficiency, makes the entire teaching process more efficient, and improves the teaching efficiency.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention, and those skilled in the art can also obtain other drawings according to the provided drawings without creative work.

图1为本发明实施里公开的一种机器人示教系统结构示意图;Fig. 1 is a schematic structural diagram of a robot teaching system disclosed in the implementation of the present invention;

图2为本发明实施里公开的一种机器人示教系统工作原理图;Fig. 2 is a working principle diagram of a robot teaching system disclosed in the implementation of the present invention;

图3为本发明实施里公开的一种六轴机器人示意图;Fig. 3 is a schematic diagram of a six-axis robot disclosed in the implementation of the present invention;

图4为本发明实施里公开的一种机器人示教方法流程示意图。Fig. 4 is a schematic flowchart of a robot teaching method disclosed in the implementation of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

本发明实施例公开了一种机器人示教系统,参见图1和图2所示,该系统包括依次相连的机器人控制系统3、示教器2和三维手柄1;The embodiment of the present invention discloses a robot teaching system, as shown in Fig. 1 and Fig. 2, the system includes a robot control system 3, a teaching device 2 and a three-dimensional handle 1 connected in sequence;

三维手柄1,用于接收用户输入的空间位置信息,并将空间位置信息发送至示教器2;The three-dimensional handle 1 is used to receive the spatial position information input by the user, and send the spatial position information to the teaching pendant 2;

示教器2,用于将空间位置信息发送至机器人控制系统3;The teaching pendant 2 is used to send the spatial position information to the robot control system 3;

机器人控制系统3,用于利用空间位置信息,得到机器人的运动参数。The robot control system 3 is used to obtain the motion parameters of the robot by using the spatial position information.

其中,三维手柄1能够输入三维坐标,因此,利用三维手柄1能够输入工业机器人使用的笛卡尔坐标系的相关参数,从而通过利用三维手柄1连续的输入空间位置信息,能够绘制出在笛卡尔坐标系中机器人的运动轨迹。Among them, the three-dimensional handle 1 can input three-dimensional coordinates. Therefore, the relevant parameters of the Cartesian coordinate system used by the industrial robot can be input by using the three-dimensional handle 1, so that by using the three-dimensional handle 1 to continuously input spatial position information, it is possible to draw a map in Cartesian coordinates. The trajectory of the robot in the system.

具体的,三维手柄1可以通过USB接口将用户输入的空间位置信息传输至示教器2,示教器2再将空间位置信息发送至机器人控制系统3,机器人控制系统3则利用预设的算法,对空间位置信息进行解析,得到机器人的运动参数。Specifically, the three-dimensional handle 1 can transmit the spatial position information input by the user to the teaching pendant 2 through the USB interface, and the teaching pendant 2 then sends the spatial position information to the robot control system 3, and the robot control system 3 uses the preset algorithm , analyze the spatial position information, and obtain the motion parameters of the robot.

其中,空间位置信息可以为基于笛卡尔坐标系包括三维空间坐标信息和三维坐标轴旋转角度的位置信息;利用笛卡尔坐标系反映工业机器人末端法兰部分所在位置和姿态,即六轴机器人目标端所在空间的位置和姿态,包括X轴、Y轴、Z轴、A、B和C共6个信息,X、Y和Z三个轴就是三维空间坐标轴,A是指六轴机器人目标端绕着X轴旋转的角度,同理B、C依次是指六轴机器人目标端绕着Y、Z轴旋转的角度。Among them, the spatial position information can be position information based on the Cartesian coordinate system including three-dimensional spatial coordinate information and the rotation angle of the three-dimensional coordinate axis; the position and posture of the flange part at the end of the industrial robot is reflected by the Cartesian coordinate system, that is, the target end of the six-axis robot The position and attitude of the space, including X-axis, Y-axis, Z-axis, A, B and C, a total of 6 information, X, Y and Z three axes are three-dimensional space coordinate axes, A refers to the six-axis robot target around The rotation angle of the X axis, similarly, B and C refer to the rotation angle of the six-axis robot target around the Y and Z axes.

其中,机器人的运动参数为机器人各关节的电机的驱动定量,参见图3所示,以工业六轴机器人为例,在关节坐标系中工业六轴机器人的六个轴依次对应为J1、J2、J3、J4、J5、J6六个关节,每个关节代表一个电机,通过将程序计算好的各关节的定量分别驱动给这六个电机就可令工业机器人移动到空间的一个确定的位置。Among them, the motion parameters of the robot are the driving quantities of the motors of each joint of the robot, as shown in Figure 3, taking the industrial six-axis robot as an example, the six axes of the industrial six-axis robot in the joint coordinate system correspond to J1, J2, There are six joints J3, J4, J5, and J6, and each joint represents a motor. The industrial robot can be moved to a certain position in space by driving these six motors with the quantity of each joint calculated by the program.

具体的,示教器2在接收空间位置信息后,可以按照空间位置信息中各信息输入的时间循序进行排序,生成空间位置信息的执行顺序,以令机器人控制系统3在对空间位置信息进行解析后,能够得到运动参数的执行顺序,在示教完成后,示教器2可以驱动机器人控制系统3执行解析后的运动参数,从而令机器人完成示教的动作;机器人控制系统3可以包括Imtime实时操作系统和Windows打印系统。Specifically, after receiving the spatial position information, the teaching pendant 2 can sort according to the time sequence of each information input in the spatial position information, and generate the execution order of the spatial position information, so that the robot control system 3 can analyze the spatial position information Finally, the execution sequence of the motion parameters can be obtained. After the teaching is completed, the teaching pendant 2 can drive the robot control system 3 to execute the analyzed motion parameters, so that the robot can complete the teaching action; the robot control system 3 can include Imtime real-time Operating system and Windows printing system.

进一步的,示教具体过程包括三维手柄1将用户示教得到的包括位置和姿态信息的空间位置信息传送至示教器2,示教器2在保存空间位置信息的同时通过Socket传送至Windows打印系统,Windows打印系统通过发送结构体将数据传送至机器人控制系统3的共享内存中,Intime实时操作系统通过接收结构体从共享内存中采集到数据信息后,通过预先存储在Imtime实时操作系统的运动学的正逆解算法程序将以笛卡尔坐标系数据为基础的空间位置信息转化为关节坐标系信息,并驱动给机器人的各轴,以产生相应动作。Further, the specific process of teaching includes that the 3D handle 1 transmits the spatial position information including the position and attitude information taught by the user to the teaching pendant 2, and the teaching pendant 2 transmits the spatial position information to Windows through the Socket for printing while saving the spatial position information. system, the Windows printing system transmits the data to the shared memory of the robot control system 3 by sending the structure, and the Intime real-time operating system collects the data information from the shared memory by receiving the The positive and negative solution algorithm program of the science transforms the spatial position information based on the Cartesian coordinate system data into the joint coordinate system information, and drives each axis of the robot to generate corresponding actions.

例如,需要机器人从A点到B点走一条避开AB之间特定障碍物的曲线,则按照工艺要求要走的特定曲线轨迹遥控三维手柄1,接着示教器2采集到三维手柄1的空间位置信息,示教器2将空间位置信息通过Socket传送至Windows,Windows通过发送结构共享至共享内存区域,然后,工艺函数利用Intime接收结构体从共享内存接收到自己所需的数据,通过运动学的正逆解算法将笛卡尔坐标系数据转化为关节坐标系信息驱动给六个轴运动,使机器人可以按照三维手柄1的示教内容进行移动。For example, if the robot is required to walk a curve from point A to point B to avoid a specific obstacle between A and B, the 3D handle 1 is remotely controlled according to the specific curve trajectory required by the process, and then the teach pendant 2 collects the space of the 3D handle 1 Position information, the teaching pendant 2 transmits the spatial position information to Windows through the Socket, and Windows shares the shared memory area by sending the structure, and then, the process function uses the Intime receiving structure to receive the data it needs from the shared memory, and through kinematics The positive and negative solution algorithm converts Cartesian coordinate system data into joint coordinate system information and drives the six axes to move, so that the robot can move according to the teaching content of the three-dimensional handle 1.

可见,本发明实施例中利用三维手柄1接收用户输入的空间位置信息,再由机器人控制系统3完成对空间位置信息的转化,得到机器人的运动参数,令机器人能够按照用户通过三维手柄1输入的空间位置信息运动,改变了用户的输入方式,使用户输入的空间位置信息更为准确和高效,便于用户输入大量的空间位置信息,提高了输入效率,使得整个示教过程便的更为高效,提高了示教效率。It can be seen that in the embodiment of the present invention, the three-dimensional handle 1 is used to receive the spatial position information input by the user, and then the robot control system 3 completes the conversion of the spatial position information to obtain the motion parameters of the robot, so that the robot can follow the user input through the three-dimensional handle 1. The movement of spatial position information changes the user's input method, makes the spatial position information input by the user more accurate and efficient, facilitates the user to input a large amount of spatial position information, improves the input efficiency, and makes the entire teaching process more efficient. Improved teaching efficiency.

需要说明的是,共享内存是Intime实时操作系统和Windows打印系统共享的一片内存区域,这片内存区域谁都可以采集,谁都可以改变,且是实时共享的,Windows打印系统和Intime实时操作系统均是通过发送结构体改变共享内存中的数据,均通过接收结构体采集共享内存中的数据。It should be noted that the shared memory is a memory area shared by the Intime real-time operating system and the Windows printing system. Anyone can collect and change this memory area, and it is shared in real time. The Windows printing system and the Intime real-time operating system Both change the data in the shared memory by sending the structure, and collect the data in the shared memory by receiving the structure.

其中,在对机器人示教前,用户可以利用三维手柄1输入空间位置信息,控制机器人复位,然后再通过示教器2开启示教模式。Among them, before teaching the robot, the user can use the three-dimensional handle 1 to input spatial position information, control the robot to reset, and then turn on the teaching mode through the teaching device 2 .

进一步的,机器人控制系统3,在转化出机器人的运动参数后,将运动参数发送至示教器2,示教器2,则保存运动参数,完成示教。Further, the robot control system 3, after converting the motion parameters of the robot, sends the motion parameters to the teaching pendant 2, and the teaching pendant 2 saves the motion parameters to complete the teaching.

具体的,机器人控制系统3通过工艺函数完成工艺要求,即,利用工艺函数驱动机械手利用运动参数完成工艺要求的动作,并把执行工艺流程期间产生的数据信息,即,机械人的运动轨迹,通过Intime实时操作系统的发送结构体共享至共享内存中,Windows打印系统通过接收结构体从共享内存采集执行后的数据进行打印,并将接收到的数据传给示教器2上,将所有的示教轨迹点在示教器2中保存,完成示教。Specifically, the robot control system 3 completes the process requirements through the process function, that is, uses the process function to drive the manipulator to use the motion parameters to complete the action required by the process, and uses the data information generated during the execution of the process flow, that is, the motion track of the robot, through The sending structure of the Intime real-time operating system is shared in the shared memory, and the Windows printing system collects and executes the data from the shared memory through the receiving structure to print, and transmits the received data to the teach pendant 2, and transfers all display The teaching track point is saved in the teaching pendant 2, and the teaching is completed.

进一步的,结束示教后,示教器2可以利用运动参数驱动机器人控制系统3控制机器人按照运动参数运动,实现示教再现。Further, after the teaching is finished, the teaching pendant 2 can use the motion parameters to drive the robot control system 3 to control the robot to move according to the motion parameters, so as to realize the teaching reproduction.

此外,为便于用户查看输入的空间位置信息,示教器2,还包括显示模块,用于将空间位置信息通过显示器显示至用户;用户可以通过示教器2上的显示器查看当前通过三维手柄1输入的空间位置信息在三维笛卡尔坐标系中的位置,使用户可以更好的掌握输入的空间位置信息是否正确。In addition, in order to facilitate the user to view the input spatial position information, the teaching pendant 2 also includes a display module, which is used to display the spatial position information to the user through the display; The position of the input spatial position information in the three-dimensional Cartesian coordinate system enables the user to better grasp whether the input spatial position information is correct.

其中,机器人的运动参数包括机器人各轴的关节坐标系信息,机器人利用工艺函数依序驱动机器人按照各轴的关节坐标系信息运动,绘制出机器人的运动轨迹。Among them, the motion parameters of the robot include the joint coordinate system information of each axis of the robot, and the robot uses the process function to sequentially drive the robot to move according to the joint coordinate system information of each axis, and draws the motion trajectory of the robot.

相应的,本发明实施例还公开了一种机器人示教方法,参见图4所示,该方法包括:Correspondingly, the embodiment of the present invention also discloses a robot teaching method, as shown in FIG. 4 , the method includes:

S1:利用三维手柄接收用户输入的空间位置信息,并通过三维手柄将空间位置信息发送至示教器;S1: Use the three-dimensional handle to receive the spatial position information input by the user, and send the spatial position information to the teach pendant through the three-dimensional handle;

S2:利用示教器将空间位置信息发送至机器人控制系统;S2: Use the teaching pendant to send the spatial position information to the robot control system;

S3:利用机器人控制系统对空间位置信息进行转化,得到机器人的运动参数。S3: Use the robot control system to convert the spatial position information to obtain the motion parameters of the robot.

可见,本发明实施例中利用三维手柄接收用户输入的空间位置信息,再由机器人控制系统完成对空间位置信息的转化,得到机器人的运动参数,令机器人能够按照用户通过三维手柄输入的空间位置信息运动,改变了用户的输入方式,使用户输入的空间位置信息更为准确和高效,便于用户输入大量的空间位置信息,提高了输入效率,使得整个示教过程便的更为高效,提高了示教效率。It can be seen that in the embodiment of the present invention, the three-dimensional handle is used to receive the spatial position information input by the user, and then the robot control system completes the conversion of the spatial position information to obtain the motion parameters of the robot, so that the robot can follow the spatial position information input by the user through the three-dimensional handle. Movement changes the user's input method, makes the spatial position information input by the user more accurate and efficient, facilitates the user to input a large amount of spatial position information, improves the input efficiency, makes the entire teaching process more efficient, and improves the display. Teach efficiency.

具体的,上述S1利用三维手柄接收用户输入的空间位置信息的过程,可以具体为利用三维手柄,接收用户输入的基于笛卡尔坐标系包括三维空间坐标信息和三维坐标轴旋转角度的空间位置信息。Specifically, the above S1 process of using the three-dimensional handle to receive the spatial position information input by the user may specifically be to use the three-dimensional handle to receive the spatial position information input by the user based on the Cartesian coordinate system, including the three-dimensional spatial coordinate information and the rotation angle of the three-dimensional coordinate axis.

具体的,上述S3利用机器人控制系统对空间位置信息进行转化,得到机器人的运动参数的过程,可以具体为利用机器人控制系统通过正交逆解算法将空间位置信息转化为机器人的关节坐标系信息。Specifically, the above S3 uses the robot control system to transform the spatial position information to obtain the motion parameters of the robot. It may be specifically to use the robot control system to convert the spatial position information into the joint coordinate system information of the robot through an orthogonal inverse solution algorithm.

本发明实施例中,还可以包括S21、S22和S23;其中,In the embodiment of the present invention, S21, S22 and S23 may also be included; wherein,

S21:利用机器人控制器将运动参数发送至示教器;S21: Use the robot controller to send motion parameters to the teaching pendant;

S22:利用示教器保存运动参数,且利用运动参数驱动机器人控制系统控制机器人按照运动参数运动。S22: Use the teaching pendant to save the motion parameters, and use the motion parameters to drive the robot control system to control the robot to move according to the motion parameters.

S23:利用示教器的显示器显示空间位置信息。S23: Display the spatial position information by using the display of the teaching pendant.

最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。Finally, it should also be noted that in this text, relational terms such as first and second etc. are only used to distinguish one entity or operation from another, and do not necessarily require or imply that these entities or operations, any such actual relationship or order exists. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or apparatus. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.

专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Professionals can further realize that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software or a combination of the two. In order to clearly illustrate the possible For interchangeability, in the above description, the composition and steps of each example have been generally described according to their functions. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.

以上对本发明所提供的一种机器人示教系统及方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。A robot teaching system and method provided by the present invention has been introduced in detail above. In this paper, specific examples are used to illustrate the principle and implementation of the present invention. The description of the above embodiments is only used to help understand the present invention. method and its core idea; at the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. Invention Limitations.

Claims (10)

1.一种机器人示教系统,其特征在于,包括依次相连的机器人控制系统、示教器和三维手柄;1. A robot teaching system, characterized in that, comprises a robot control system, a teaching device and a three-dimensional handle connected in sequence; 所述三维手柄,用于接收用户输入的空间位置信息,并将所述空间位置信息发送至所述示教器;The three-dimensional handle is used to receive the spatial position information input by the user, and send the spatial position information to the teaching pendant; 所述示教器,用于将所述空间位置信息发送至所述机器人控制系统;The teaching pendant is used to send the spatial position information to the robot control system; 所述机器人控制系统,用于利用所述空间位置信息,得到机器人的运动参数。The robot control system is used to obtain motion parameters of the robot by using the spatial position information. 2.根据权利要求1所述的机器人示教系统,其特征在于,所述示教器,还包括:2. The robot teaching system according to claim 1, wherein the teaching pendant further comprises: 显示模块,用于将所述空间位置信息通过显示器显示至所述用户。A display module, configured to display the spatial location information to the user through a display. 3.根据权利要求1所述的机器人示教系统,其特征在于,所述三维手柄,具体用于接收用户输入的基于笛卡尔坐标系包括三维空间坐标信息和三维坐标轴旋转角度的所述空间位置信息,并将所述空间位置信息发送至所述示教器。3. The robot teaching system according to claim 1, wherein the three-dimensional handle is specifically used to receive user input based on the Cartesian coordinate system including the three-dimensional space coordinate information and the three-dimensional coordinate axis rotation angle. position information, and send the spatial position information to the teaching pendant. 4.根据权利要求3所述的机器人示教系统,其特征在于,所述机器人控制系统,具体用于利用正交逆解算法将所述空间位置信息转化为机器人的关节坐标系信息。4 . The robot teaching system according to claim 3 , wherein the robot control system is specifically configured to convert the spatial position information into joint coordinate system information of the robot by using an orthogonal inverse solution algorithm. 5.根据权利要求1至4任一项所述的机器人示教系统,其特征在于,所述机器人控制系统,还用于将所述运动参数发送至所述示教器;5. The robot teaching system according to any one of claims 1 to 4, wherein the robot control system is further configured to send the motion parameters to the teaching pendant; 所述示教器,还用于保存所述运动参数;利用所述运动参数驱动所述机器人控制系统控制所述机器人按照所述运动参数运动。The teaching pendant is also used to save the motion parameters; use the motion parameters to drive the robot control system to control the robot to move according to the motion parameters. 6.一种机器人示教方法,其特征在于,包括:6. A robot teaching method, characterized in that, comprising: 利用三维手柄接收用户输入的空间位置信息,并通过所述三维手柄将所述空间位置信息发送至所述示教器;Using the three-dimensional handle to receive the spatial position information input by the user, and sending the spatial position information to the teaching pendant through the three-dimensional handle; 利用所述示教器将所述空间位置信息发送至机器人控制系统;sending the spatial position information to the robot control system by using the teaching pendant; 利用所述机器人控制系统对所述空间位置信息进行转化,得到机器人的运动参数。Using the robot control system to convert the spatial position information to obtain the motion parameters of the robot. 7.根据权利要求6所述的机器人示教方法,其特征在于,还包括:7. The robot teaching method according to claim 6, further comprising: 利用所述示教器的显示器显示所述空间位置信息。The display of the teaching pendant is used to display the spatial position information. 8.根据权利要求6所述的机器人示教系统,其特征在于,所述利用三维手柄接收用户输入的空间位置信息的过程,包括:8. The robot teaching system according to claim 6, wherein the process of using the three-dimensional handle to receive the spatial position information input by the user includes: 利用所述三维手柄,接收用户输入的基于笛卡尔坐标系包括三维空间坐标信息和三维坐标轴旋转角度的所述空间位置信息。The three-dimensional handle is used to receive the spatial position information input by the user based on the Cartesian coordinate system, including the three-dimensional spatial coordinate information and the rotation angle of the three-dimensional coordinate axis. 9.根据权利要求8所述的机器人示教系统,其特征在于,所述利用所述机器人控制系统对所述空间位置信息进行转化,得到机器人的运动参数的过程,包括:9. The robot teaching system according to claim 8, wherein the process of utilizing the robot control system to convert the spatial position information to obtain the motion parameters of the robot includes: 利用所述机器人控制系统通过正交逆解算法将所述空间位置信息转化为所述机器人的关节坐标系信息。Using the robot control system to convert the spatial position information into joint coordinate system information of the robot through an orthogonal inverse solution algorithm. 10.根据权利要求6至9任一项所述的机器人示教方法,其特征在于,还包括:10. The robot teaching method according to any one of claims 6 to 9, further comprising: 利用所述机器人控制器将所述运动参数发送至所述示教器;sending the motion parameters to the teaching pendant by using the robot controller; 利用所述示教器保存所述运动参数,且利用所述运动参数驱动所述机器人控制系统控制所述机器人按照所述运动参数运动。The teaching pendant is used to store the movement parameters, and the movement parameters are used to drive the robot control system to control the robot to move according to the movement parameters.
CN201810955423.7A 2018-08-21 2018-08-21 A kind of robot teaching system and method Pending CN108890630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810955423.7A CN108890630A (en) 2018-08-21 2018-08-21 A kind of robot teaching system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810955423.7A CN108890630A (en) 2018-08-21 2018-08-21 A kind of robot teaching system and method

Publications (1)

Publication Number Publication Date
CN108890630A true CN108890630A (en) 2018-11-27

Family

ID=64354892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810955423.7A Pending CN108890630A (en) 2018-08-21 2018-08-21 A kind of robot teaching system and method

Country Status (1)

Country Link
CN (1) CN108890630A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193816A (en) * 2019-05-09 2019-09-03 佛山市宸卡机器人科技有限公司 Industrial robot teaching method, handle and system
CN111515940A (en) * 2020-05-21 2020-08-11 阜阳职业技术学院 Reconfigurable modular robot system
CN114888809A (en) * 2022-05-30 2022-08-12 深圳市优必选科技股份有限公司 Robot control method, device, computer readable storage medium and robot

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581852A (en) * 2012-01-20 2012-07-18 上海交通大学 Attitude and position adjustment system for robot in heavy-duty assembly and handling
CN205704225U (en) * 2016-04-06 2016-11-23 济南锦兴液压科技有限公司 A kind of cartesian coordinate robot demonstrator
CN106914897A (en) * 2017-03-31 2017-07-04 长安大学 Inverse Solution For Manipulator Kinematics method based on RBF neural
CN106965199A (en) * 2017-05-08 2017-07-21 北京艾利特科技有限公司 A kind of body-sensing teaching terminal and teaching method
CN107088891A (en) * 2017-03-29 2017-08-25 山东开泰抛丸机械股份有限公司 A kind of intelligent sand blasting machine people based on crown platform
CN107263449A (en) * 2017-07-05 2017-10-20 中国科学院自动化研究所 Robot Remote Teaching System Based on Virtual Reality
CN207578415U (en) * 2017-07-06 2018-07-06 天津捷瑞博科技有限公司 Robot teaching handle
CN108340351A (en) * 2018-01-31 2018-07-31 广东工业大学 A kind of robot teaching apparatus, method and teaching robot

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581852A (en) * 2012-01-20 2012-07-18 上海交通大学 Attitude and position adjustment system for robot in heavy-duty assembly and handling
CN205704225U (en) * 2016-04-06 2016-11-23 济南锦兴液压科技有限公司 A kind of cartesian coordinate robot demonstrator
CN107088891A (en) * 2017-03-29 2017-08-25 山东开泰抛丸机械股份有限公司 A kind of intelligent sand blasting machine people based on crown platform
CN106914897A (en) * 2017-03-31 2017-07-04 长安大学 Inverse Solution For Manipulator Kinematics method based on RBF neural
CN106965199A (en) * 2017-05-08 2017-07-21 北京艾利特科技有限公司 A kind of body-sensing teaching terminal and teaching method
CN107263449A (en) * 2017-07-05 2017-10-20 中国科学院自动化研究所 Robot Remote Teaching System Based on Virtual Reality
CN207578415U (en) * 2017-07-06 2018-07-06 天津捷瑞博科技有限公司 Robot teaching handle
CN108340351A (en) * 2018-01-31 2018-07-31 广东工业大学 A kind of robot teaching apparatus, method and teaching robot

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
惠记庄等: "基于RBF神经网络的机械手逆运动学求解", 《制造业自动化》 *
李木国等: "基于INtime的EtherCAT实时采集系统主站设计", 《计算机测量与控制》 *
王锡俊: "INtime多核实时平台使得Sercos软主站能够运行在标准Windows PC上", 《国内外机电一体化技术》 *
祁忠等: "基于INtime实时扩展技术的数据集中器设计", 《电力自动化设备》 *
薛艳敏等: "用正交试验法选择BP网络参数研究机器人运动学逆解", 《应用科学学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193816A (en) * 2019-05-09 2019-09-03 佛山市宸卡机器人科技有限公司 Industrial robot teaching method, handle and system
CN110193816B (en) * 2019-05-09 2023-08-11 清能精控机器人技术(佛山)有限公司 Industrial robot teaching method, handle and system
CN111515940A (en) * 2020-05-21 2020-08-11 阜阳职业技术学院 Reconfigurable modular robot system
CN114888809A (en) * 2022-05-30 2022-08-12 深圳市优必选科技股份有限公司 Robot control method, device, computer readable storage medium and robot
CN114888809B (en) * 2022-05-30 2023-12-15 深圳市优必选科技股份有限公司 Robot control method and device, computer readable storage medium and robot

Similar Documents

Publication Publication Date Title
Safeea et al. Kuka sunrise toolbox: Interfacing collaborative robots with matlab
CN113379849B (en) Robot autonomous recognition intelligent grabbing method and system based on depth camera
CN105945946B (en) A kind of six axis robot motion control method based on G code programming
CN107932504A (en) PyQt-based mechanical arm operation control system
CN105014667A (en) Camera and robot relative pose calibration method based on pixel space optimization
CN103778301A (en) Mechanical arm simulation method based on virtual prototype technology
CN105014677A (en) Visual mechanical arm control device and method based on Camshift visual tracking and D-H modeling algorithms
CN111890353A (en) Robot teaching trajectory reproduction method, device and computer-readable storage medium
CN105382835A (en) Robot path planning method for passing through wrist singular point
CN115351780A (en) Method for controlling a robotic device
CN108890630A (en) A kind of robot teaching system and method
CN108340352A (en) The long-range real-time control method of industrial robot based on teaching joint arm
Ali et al. A lead through approach for programming a welding arm robot using machine vision
CN111421554A (en) Robotic arm intelligent control system, method and device based on edge computing
CN106041932A (en) Movement control method for UR robot
Zhang et al. Industrial robot programming by demonstration
CN106777876A (en) A kind of rotating the arc weld seam tracking system information processing method for robot
Zhou et al. A cooperative shared control scheme based on intention recognition for flexible assembly manufacturing
Baek et al. Pre-grasp manipulation planning to secure space for power grasping
CN116117826A (en) Robot task planning method and system based on affine transformation and behavior tree
Li et al. A new teaching system for arc welding robots with auxiliary path point generation module
Zieliński et al. RobotGraffiti: An AR tool for semi-automated construction of workcell models to optimize robot deployment
CN109664273A (en) A kind of industrial robot cursor dragging teaching method and system
Falahi et al. Using orthogonal basis functions and template matching to learn whiteboard cleaning task by imitation
CN115556102B (en) Robot sorting and planning method and planning equipment based on visual recognition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181127

RJ01 Rejection of invention patent application after publication