CN101852818B - Accelerometer error calibration and compensation method based on rotary mechanism - Google Patents
Accelerometer error calibration and compensation method based on rotary mechanism Download PDFInfo
- Publication number
- CN101852818B CN101852818B CN2010101970238A CN201010197023A CN101852818B CN 101852818 B CN101852818 B CN 101852818B CN 2010101970238 A CN2010101970238 A CN 2010101970238A CN 201010197023 A CN201010197023 A CN 201010197023A CN 101852818 B CN101852818 B CN 101852818B
- Authority
- CN
- China
- Prior art keywords
- accelerometer
- error
- output
- grating
- rotating mechanism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
一种基于旋转机构的加速度计误差标定与补偿方法,是指将加速度计按照一定的要求安装于旋转机构上,通过旋转机构的旋转得到加速度计的动态连续输出与旋转机构旋转角之间的关系,并利用最小二乘法估计得到加速度计的零偏、比例系数、比例系数的非线性误差系数、交叉耦合误差系数等。本发明利用旋转机构估计出加速度计的所有误差系数,具有准确、高效、易操作、高通用性等特点。通过本方法估计出误差系数并进行相应的误差补偿后,加速度计的输出精度可大大提高。该方法同样适用于陀螺仪的标定,可大幅提高陀螺的测速精度。
An accelerometer error calibration and compensation method based on a rotating mechanism refers to installing the accelerometer on the rotating mechanism according to certain requirements, and obtaining the relationship between the dynamic continuous output of the accelerometer and the rotation angle of the rotating mechanism through the rotation of the rotating mechanism , and use the least squares method to estimate the zero bias of the accelerometer, the proportional coefficient, the nonlinear error coefficient of the proportional coefficient, the cross-coupling error coefficient, etc. The invention uses the rotating mechanism to estimate all the error coefficients of the accelerometer, and has the characteristics of accuracy, high efficiency, easy operation, high versatility and the like. After the error coefficient is estimated by this method and the corresponding error compensation is performed, the output accuracy of the accelerometer can be greatly improved. This method is also applicable to the calibration of the gyroscope, which can greatly improve the speed measurement accuracy of the gyroscope.
Description
技术领域technical field
本发明涉及一种加速度计误差标定与补偿方法,可应用于陀螺仪等其他惯性器件的误差标定与补偿,属于惯性器件测试、惯性导航领域。The invention relates to an accelerometer error calibration and compensation method, which can be applied to the error calibration and compensation of other inertial devices such as gyroscopes, and belongs to the fields of inertial device testing and inertial navigation.
技术背景technical background
惯性导航系统具有全自主、高隐蔽性、高带宽、连续输出等特点,在国防上具有战略意义,是航空、航天、航海等领域中最重要的设备之一。The inertial navigation system has the characteristics of full autonomy, high concealment, high bandwidth, and continuous output. It has strategic significance in national defense and is one of the most important equipment in the fields of aviation, aerospace, and navigation.
惯性器件(陀螺和加速度计)的性能是影响惯导系统精度的最为主要的因素,惯导系统误差的80%由器件误差引起,因此,提高惯性器件的精度是惯性技术发展过程中最为主要的研究内容。提高惯性器件的精度往往有两条途径:(1)通过改变惯性器件的工作原理或改进器件的加工工艺来提高器件的性能;(2)通过先进的测试手段对器件进行误差建模与标定,通过误差补偿的方法来提高器件性能。一般情况下,途径(1)所述的改进惯性器件的加工工艺往往需要付出较大的代价,器件的成本也将大大提高。途径(2)所述的先进的测试方法往往需要先进的测试设备为基础,一般情况下,惯性器件的测试设备往往比较昂贵,而且测试过程繁琐,需要投入大量的实验时间。The performance of inertial devices (gyroscopes and accelerometers) is the most important factor affecting the accuracy of inertial navigation systems. 80% of inertial navigation system errors are caused by device errors. Therefore, improving the accuracy of inertial devices is the most important factor in the development of inertial technology. research content. There are often two ways to improve the accuracy of inertial devices: (1) improve the performance of the device by changing the working principle of the inertial device or improving the processing technology of the device; (2) perform error modeling and calibration on the device through advanced testing methods, Improve device performance by means of error compensation. In general, the improvement of the processing technology of the inertial device mentioned in the route (1) often requires a relatively large price, and the cost of the device will also be greatly increased. The advanced test method described in approach (2) often requires advanced test equipment as the basis. Generally, the test equipment for inertial devices is often expensive, and the test process is cumbersome, requiring a lot of experimental time.
发明内容Contents of the invention
本发明的技术解决问题是:克服现有技术的不足,提供一种基于小型旋转机构的加速度计误差标定与补偿方法,该方法能准确标定出加速度计的零偏、比例系数、比例系数的非线性误差系数、交叉耦合误差系数等,具有准确、高效、易操作、高通用性等优点。The technical problem of the present invention is: to overcome the deficiencies of the prior art, and to provide a method for calibrating and compensating the accelerometer error based on a small rotating mechanism. Linear error coefficient, cross-coupling error coefficient, etc., have the advantages of accuracy, high efficiency, easy operation, and high versatility.
本发明的技术解决方案是:一种基于旋转机构的加速度计误差标定与补偿方法,其实现步骤如下:The technical solution of the present invention is: an accelerometer error calibration and compensation method based on a rotating mechanism, and its realization steps are as follows:
第一步,制作旋转机构,所述的旋转机构由力矩电机、光栅、旋转轴、加速度计信号采集系统、光栅测角信号采集系统、加速度计安装平台和电机控制系统组成;力矩电机的转子与旋转轴固连;光栅安装于旋转轴上,并随旋转轴的旋转而旋转;加速度计安装于加速度计安装平台上,加速度计安装平台位于旋转轴顶部且与旋转轴固连,并随旋转轴的旋转而旋转;电机控制系统控制力矩电机旋转,加速度计信号采集系统用于实时采样加速度计的输出信号,光栅转角信号采集系统用于实时采集光栅的转角输出信号;The first step is to make a rotating mechanism. The rotating mechanism is composed of a torque motor, a grating, a rotating shaft, an accelerometer signal acquisition system, a grating angle measurement signal acquisition system, an accelerometer mounting platform and a motor control system; the rotor of the torque motor is connected to the The rotating shaft is fixed; the grating is installed on the rotating shaft and rotates with the rotation of the rotating shaft; the accelerometer is installed on the accelerometer mounting platform, and the accelerometer mounting platform is located on the top of the rotating shaft and is fixedly connected with the rotating shaft, and rotates with the rotating shaft The motor control system controls the rotation of the torque motor, the accelerometer signal acquisition system is used to sample the output signal of the accelerometer in real time, and the grating rotation angle signal acquisition system is used to collect the rotation angle output signal of the grating in real time;
第二步,建立加速度计的通用输出模型,其中输出误差包括零偏、比例系数误差、比例系数非线性误差和交叉耦合误差;The second step is to establish a general output model of the accelerometer, in which the output error includes zero bias, proportional coefficient error, proportional coefficient non-linear error and cross-coupling error;
第三步,将两个加速度计按照要求安装于旋转机构的加速度计安装平台上,其安装要求为:两加速度计敏感轴和旋转机构的旋转轴两两互相垂直,且旋转轴与水平面保持平行;The third step is to install the two accelerometers on the accelerometer installation platform of the rotating mechanism according to the requirements. The installation requirements are: the sensitive axes of the two accelerometers and the rotating axis of the rotating mechanism are perpendicular to each other, and the rotating axes are kept parallel to the horizontal plane ;
第四步,根据第三步所述的加速度计的安装方式,得到加速度计输入与旋转角之间的关系式,并将该关系式代入加速度计的通用输出模型,可得到加速度计相对于旋转角的输出模型;In the fourth step, according to the installation method of the accelerometer described in the third step, the relational expression between the input of the accelerometer and the rotation angle is obtained, and the relational expression is substituted into the general output model of the accelerometer, and the relative rotation angle of the accelerometer can be obtained Angular output model;
第五步,电机控制系统控制力矩电机旋转,加速度计信号采集系统实时采集两个加速度计的输出信息,光栅转角信号采集系统实时采集光栅的转角输出信息;In the fifth step, the motor control system controls the rotation of the torque motor, the accelerometer signal acquisition system collects the output information of the two accelerometers in real time, and the grating rotation angle signal acquisition system collects the grating rotation angle output information in real time;
第六步,根据第四步得到的加速度计相对于旋转角的输出模型,将第五步实时采集的光栅转角信息作为参数估计模型的输入,两个加速度计的采样值作为参数估计模型的输出,利用最小二乘法估计得到加速度计输出模型中的部分误差项系数;In the sixth step, according to the output model of the accelerometer relative to the rotation angle obtained in the fourth step, the grating rotation angle information collected in real time in the fifth step is used as the input of the parameter estimation model, and the sampling values of the two accelerometers are used as the output of the parameter estimation model , using the least squares method to estimate part of the error term coefficients in the accelerometer output model;
第七步,将两个加速度计绕各自的敏感轴在第三步所述的安装平面内旋转90°,重复步骤第五步和第六步,即可得到加速度计输出模型中剩余误差项系数;The seventh step is to rotate the two accelerometers around their respective sensitive axes by 90° in the installation plane described in the third step, and repeat the fifth and sixth steps to obtain the remaining error term coefficient in the accelerometer output model ;
第八步,根据第六步及第七步估计得到的加速度计输出模型的误差项系数,对加速度计进行误差补偿,并检验模型的补偿精度。In the eighth step, according to the error term coefficient of the accelerometer output model estimated in the sixth and seventh steps, error compensation is performed on the accelerometer, and the compensation accuracy of the model is checked.
上述第五步中旋转机构按以下的运动规律旋转:旋转角速率为ω,并在0-360°范围内正反整周旋转,即以旋转角速率ω从0°运动到360°,然后再以-ω的旋转角速率从360°运动到0°,这样既确保系统有完整的频率分量输入,使得误差估计准确,同时也可以避免使用导电滑环,降低了成本低,提高了可靠性。In the fifth step above, the rotating mechanism rotates according to the following motion law: the rotation angular rate is ω, and it rotates positively and negatively within the range of 0-360°, that is, it moves from 0° to 360° at the rotation angular rate ω, and then It moves from 360° to 0° at the rotational angular rate of -ω, which not only ensures that the system has a complete frequency component input, but also makes the error estimation accurate, and also avoids the use of conductive slip rings, which reduces the cost and improves reliability.
本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:
(1)传统的加速度计误差标定需要通过多组实验,同时也需要借助离心机、位置台等设备,本发明所设计的加速度计标定方法仅需要通过2组实验便可标定出所有的误差系数,大大简化了误差系数的标定过程,通过将加速度计输出与输入加速度之间的关系转换为与旋转角之间的关系,提高了误差系数的估计精度,且标定过程不需要借助其他昂贵的辅助设备。该标定方法同时还适用于陀螺仪误差系数的标定,具有一定的通用性。(1) The traditional accelerometer error calibration requires multiple sets of experiments, and also requires the use of centrifuges, position tables and other equipment. The accelerometer calibration method designed in the present invention only needs to pass 2 sets of experiments to calibrate all the error coefficients , which greatly simplifies the calibration process of the error coefficient. By converting the relationship between the output of the accelerometer and the input acceleration into the relationship with the rotation angle, the estimation accuracy of the error coefficient is improved, and the calibration process does not require other expensive assistance. equipment. The calibration method is also applicable to the calibration of the error coefficient of the gyroscope, and has certain versatility.
(2)本发明的旋转机构具有小型、低成本的优点,因此本发明,因此采用这种旋转机构,通过机构的旋转激发惯性器件的各项误差,只需进行2组实验并结合相应的估计算法便可估计器件的完整的误差系数,经误差补偿后可大大提高器件的性能。本发明方法具准确、高效、易操作、设备简单、低成本等特点。(2) the rotary mechanism of the present invention has the advantages of small size and low cost, so the present invention adopts this rotary mechanism to excite various errors of the inertial device through the rotation of the mechanism, and only needs to carry out 2 groups of experiments and combine corresponding estimates The algorithm can estimate the complete error coefficient of the device, and the performance of the device can be greatly improved after error compensation. The method of the invention has the characteristics of accuracy, high efficiency, easy operation, simple equipment, low cost and the like.
(3)本发明的旋转机构按照一定的旋转规律,即旋转角速率ω在0-360°范围内正反整周旋转,这样既确保系统有完整的频率分量输入,使得误差估计准确,同时也可以避免使用导电滑环,进一步降低了成本低,提高了可靠性。(3) The rotating mechanism of the present invention follows a certain rotation law, that is, the rotation angular rate ω rotates positively and negatively within the range of 0-360°, so as to ensure that the system has a complete frequency component input, so that the error estimation is accurate, and at the same time The use of conductive slip rings can be avoided, further reducing costs and improving reliability.
附图说明Description of drawings
图1为本发明方法的实现流程图;Fig. 1 is the realization flowchart of the inventive method;
图2为本发明中的旋转机构结构示意图;Fig. 2 is a structural schematic diagram of a rotating mechanism in the present invention;
图3为本发明实施例中加速度计测量系与载体系之间的坐标关系图;Fig. 3 is a coordinate relationship diagram between the accelerometer measurement system and the carrier system in the embodiment of the present invention;
图4为本发明实施例中x加速度计在旋转过程中的输出曲线;Fig. 4 is the output curve of x accelerometer in the rotation process in the embodiment of the present invention;
图5为本发明实施例中未经非线性误差补偿的加速度计误差曲线;Fig. 5 is the accelerometer error curve without nonlinear error compensation in the embodiment of the present invention;
图6为本发明实施例中加速度计输出模型参数估计曲线;Fig. 6 is the accelerometer output model parameter estimation curve in the embodiment of the present invention;
图7为本发明实施例中经误差标定和补偿后的加速度计误差曲线。Fig. 7 is the error curve of the accelerometer after error calibration and compensation in the embodiment of the present invention.
具体实施方式Detailed ways
下面以瑞士colibrys公司MS8002加速度的标定过程为例来阐述本发明的具体实施过程。The specific implementation process of the present invention is described below by taking the calibration process of the MS8002 acceleration of the Swiss colibrys company as an example.
图1为本发明所指的加速度计误差标定方法流程图,其具体实现过程如下:Fig. 1 is the flow chart of accelerometer error calibration method that the present invention refers, and its specific implementation process is as follows:
1、制备旋转机构。图2为用于加速度计标定的旋转机构示意图。1. Prepare the rotating mechanism. Figure 2 is a schematic diagram of the rotation mechanism used for accelerometer calibration.
旋转机构由力矩电机5、旋转轴4、光栅3、加速度计安装平台6、电机控制系统7、加速度计信号采集系统8、光栅转角信号采集系统9组成,加速度计1和加速度计2安装于平台6上,加速度计安装平台6、光栅3与旋转轴4固连并随旋转轴4的旋转而旋转,旋转轴4与力矩电机5的转子固连,电机控制系统7可以控制力矩电机5按照一定的规律旋转,加速度计信号采集系统8可以实时采样加速度计的输出值,光栅转角信号采集系统9可以实时采样光栅的转角输出信息。The rotating mechanism is composed of a
旋转机构的力矩电机采用PWM控制,电机控制系统由DSP和功放电路组成,DSP通过计算后输出一定占空比的PWM波,功放电路对PWM波进行功率放大后驱动电机旋转,从而实现电机按照设计规律运动。光栅采用英国renishow公司的圆光栅,由光栅尺和读数头组成,当光栅尺随电机轴旋转时,读数头输出正交脉冲,光栅转角信号采集系统由DSP的QEP模块电路实现,该模块电路对正交脉冲解码,得到与转角对应的脉冲数。加速度计信号采集系统由ADS1258芯片实现,该AD转换芯片能实现对加速度计输出模拟信号的高速采样并转换输出与模拟信号对应的数字信号。The torque motor of the rotating mechanism is controlled by PWM. The motor control system is composed of DSP and power amplifier circuit. After calculation, the DSP outputs a PWM wave with a certain duty ratio. Exercise regularly. The grating adopts the circular grating of the British Renishow company, which is composed of the grating ruler and the reading head. When the grating ruler rotates with the motor shaft, the reading head outputs orthogonal pulses. The grating rotation angle signal acquisition system is realized by the QEP module circuit of DSP. Orthogonal pulse decoding to obtain the number of pulses corresponding to the rotation angle. Accelerometer signal acquisition system is realized by ADS1258 chip, which can realize high-speed sampling of accelerometer output analog signal and convert and output digital signal corresponding to analog signal.
2.以x方向的加速度计为例,其通用输出模型表示为:2. Taking the accelerometer in the x direction as an example, its general output model is expressed as:
上式(1)中,ax,ay,az分别代表x,y,z三个方向的输入加速度,k0为加速度计零偏,k1为比例系数,k2为比例系数的二次非线性误差系数,k3为比例系数的三次非线性误差系数,k4为与ay相关的交叉耦合误差系数,k5为与az相关的交叉耦合误差系数,k6为与ax和ay乘积相关的交叉耦合误差系数,k7为与ax和az乘积相关的交叉耦合误差系数。In the above formula (1), a x , a y , a z represent the input acceleration in the three directions of x, y, and z respectively, k 0 is the zero bias of the accelerometer, k 1 is the proportional coefficient, and k 2 is the two of the proportional coefficient The second nonlinear error coefficient, k 3 is the cubic nonlinear error coefficient of the proportional coefficient, k 4 is the cross-coupling error coefficient related to a y , k 5 is the cross-coupling error coefficient related to a z , k 6 is the cross-coupling error coefficient related to a x and the cross-coupling error coefficient related to the product of a y , k 7 is the cross-coupling error coefficient related to the product of a x and a z .
同理,可以得到z方向的加速度计和y方向加速度计的通用输出模型。Similarly, a general output model of the z-direction accelerometer and the y-direction accelerometer can be obtained.
3、将两个加速度计(x与z加速度计)安装于旋转机构上,其中x加速度计敏感轴、z加速度计敏感轴、旋转机构旋转轴两两互相垂直,且旋转轴与水平面保持平行,如图2所示,该旋转机构需要安装在一机箱中进行测量使用。旋转过程中,x、z加速度计测量坐标系与机箱壳体坐标系之间的关系如图3所示,其中o-xbybzb表示机箱壳体坐标系,o-xmymzm表示加速度计测量坐标系。假设机箱壳体坐标系的输入加速度abx、aby、abz分别代表机箱壳体坐标系的输入加速度在x、y、z三方向的分量,结合图3便可以得出在旋转过程中加速度计测量系的输入加速度表达式为:3. Install two accelerometers (x and z accelerometers) on the rotating mechanism, where the sensitive axis of the x accelerometer, the sensitive axis of the z accelerometer, and the rotating axis of the rotating mechanism are perpendicular to each other, and the rotating axis is kept parallel to the horizontal plane. As shown in Figure 2, the rotating mechanism needs to be installed in a case for measurement. During the rotation process, the relationship between the x, z accelerometer measurement coordinate system and the chassis shell coordinate system is shown in Figure 3, where ox b y b z b represents the chassis shell coordinate system, and ox m y m z m represents the acceleration Measuring coordinate system. Assuming the input acceleration of the chassis shell coordinate system a bx , a by , a bz respectively represent the components of the input acceleration in the x, y, and z directions of the chassis shell coordinate system. Combining with Figure 3, it can be obtained that the input acceleration expression of the accelerometer measurement system during the rotation process is :
其中ax,az为x,z方向加速度计测量系的输入加速度,δz为旋转机构相对于机箱壳体坐标系Z轴的偏角,δx为旋转机构相对于机箱壳体坐标系X轴的偏角,θ为旋转机构的旋转角,θ0为旋转机构的初始相位角。把旋转机构安装于水平面上,得到[abx,aby,abz]′=[0,0,-g]′,g为当地的重力加速度,代入上式(2)可得:Where a x , a z are the input accelerations of the accelerometer measurement system in the x and z directions, δ z is the deflection angle of the rotating mechanism relative to the Z-axis of the chassis shell coordinate system, and δ x is the rotation mechanism relative to the chassis shell coordinate system X The deflection angle of the shaft, θ is the rotation angle of the rotary mechanism, and θ 0 is the initial phase angle of the rotary mechanism. Install the rotating mechanism on the horizontal plane, get [a bx , a by , a bz ]'=[0, 0, -g]', g is the local acceleration of gravity, substituting the above formula (2) to get:
4、将上式(3)表示的加速度计的输入信息代入式(1)所表示的加速度计的输出模型,得到加速度计相对于旋转角的输出模型如下式所示:4. Substitute the input information of the accelerometer represented by the above formula (3) into the output model of the accelerometer represented by formula (1), and obtain the output model of the accelerometer relative to the rotation angle as shown in the following formula:
Ax=a+bsinθ′+ccosθ′+dsin2θ′+ecos2θ′+fsin3θ′(4)A x =a+bsinθ'+ccosθ'+dsin2θ'+ecos2θ'+fsin3θ'(4)
其中:in:
5、利用实时采样得到的转角信息θi作为输入,加速度计的采样值Axi作为输出,并利用最小二乘拟合的方法估计得到加速度计输出模型中与ax,az相关的误差系数项,其中估计方法为:5. Use the rotation angle information θ i obtained by real-time sampling as input, and the sampling value A xi of the accelerometer as the output, and use the method of least square fitting to estimate the error coefficient related to a x and a z in the accelerometer output model item, where the estimation method is:
上式(5)中,Axi为加速度计的实时输出值,θ′i=(θi+θ0)为光栅实时输出值,其中θ0可提前估计得到,其估计方法见步骤6。得到a,b,c,d,e,f值后,可得到加速度计的模型参数k0,k1,k2,k3,k5,k7如下:In the above formula (5), A xi is the real-time output value of the accelerometer, θ′ i = (θ i + θ 0 ) is the real-time output value of the grating, where θ 0 can be estimated in advance, and the estimation method is shown in
k0=a+ek 0 =a+e
k1=(b+3f)/gk 1 =(b+3f)/g
k2=-2e/g2 k 2 =-2e/g 2
k3=-4f/g3 (6)k 3 =-4f/g 3 (6)
k5=-c/gk 5 =-c/g
k7=-2d/g2 k 7 =-2d/g 2
6、步骤5提到的θ0的估计方法如下:6. The estimation method of θ 0 mentioned in
上式(1)所表示的加速度计的输出模型中的k2-k7均为小量,忽略小量后,x加速度计的输出可简化为:The k 2 -k 7 in the output model of the accelerometer represented by the above formula (1) are small quantities, after ignoring the small quantities, the output of the x accelerometer can be simplified as:
Ax=k0+k1ax A x =k 0 +k 1 a x
=k0+k1gsin(θ+θ0) (7)=k 0 +k 1 gsin(θ+θ 0 ) (7)
=k0+k1gcosθ0sinθ+k1gsinθ0cosθ=k 0 +k 1 gcosθ 0 sinθ+k 1 gsinθ 0 cosθ
控制旋转机构旋转,分别使θ=0°,45°,90°Control the rotation of the rotating mechanism so that θ=0°, 45°, 90° respectively
上式(8)中, 分别为旋转机构的旋转角为0°,45°,90°时x加速度计的输出值。联立以上方程组(8),便可以解得θ0。In the above formula (8), are the output values of the x accelerometer when the rotation angle of the rotating mechanism is 0°, 45°, and 90° respectively. By combining the above equations (8), θ 0 can be solved.
7、将两个加速度计绕各自敏感轴在步骤3指定的安装平面内旋转90°,重复步骤3-6,可得到加速度计误差模型中与ay相关的误差系数项k4及k6。7. Rotate the two accelerometers 90° around their respective sensitive axes in the installation plane specified in
8、根据步骤5及步骤7估计得到的加速度计输出模型参数k0,k1,k2,k3,k4,k5,k6,k7,可对加速度计进行误差补偿。8. According to the accelerometer output model parameters k 0 , k 1 , k 2 , k 3 , k 4 , k 5 , k 6 , and k 7 estimated in
如图4所示,旋转机构旋转过程中x向加速度计的输出为幅值为1000mg,周期为5s的正弦分量;As shown in Figure 4, the output of the x-direction accelerometer during the rotation of the rotating mechanism is a sinusoidal component with an amplitude of 1000mg and a period of 5s;
如图5所示,若不补偿非线性误差和交叉耦合误差,对图4所示的输出曲线进行线性拟合,则得到旋转过程中加速度计的输出误差为输入信号的2倍频和3倍频分量,且最大幅值达到3mg;As shown in Figure 5, if the nonlinear error and cross-coupling error are not compensated, and the output curve shown in Figure 4 is linearly fitted, the output error of the accelerometer during the rotation process is twice the frequency and three times the input signal Frequency components, and the maximum amplitude reaches 3mg;
如图6所示,本发明步骤5提到的加速度计输出模型参数估计方法可以很方便地估计出模型参数,其中参数估计算法的收敛时间小于100s;As shown in Figure 6, the accelerometer output model parameter estimation method mentioned in
如图7所示,利用本发明估计出加速度计的输出模型参数并进行误差补偿后,加速度计的输出信号中不再含有旋转周期的2倍频及3倍频分量,说明本发明估计的模型参数准确,误差补偿达到较好效果;As shown in Figure 7, after using the present invention to estimate the output model parameters of the accelerometer and performing error compensation, the output signal of the accelerometer no longer contains the 2 times frequency and 3 times frequency components of the rotation period, illustrating the model estimated by the present invention The parameters are accurate, and the error compensation achieves better results;
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。The contents not described in detail in the description of the present invention belong to the prior art known to those skilled in the art.
最后所应说明的是:以上实施实例仅用以说明而非限制本发明的技术方案,所有的不脱离本发明的精神和范围的修改或局部替换,均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that: the above implementation examples are only used to illustrate rather than limit the technical solutions of the present invention, and all modifications or partial replacements that do not depart from the spirit and scope of the present invention should be included in the claims of the present invention .
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101970238A CN101852818B (en) | 2010-06-02 | 2010-06-02 | Accelerometer error calibration and compensation method based on rotary mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101970238A CN101852818B (en) | 2010-06-02 | 2010-06-02 | Accelerometer error calibration and compensation method based on rotary mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101852818A CN101852818A (en) | 2010-10-06 |
CN101852818B true CN101852818B (en) | 2011-08-17 |
Family
ID=42804397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101970238A Expired - Fee Related CN101852818B (en) | 2010-06-02 | 2010-06-02 | Accelerometer error calibration and compensation method based on rotary mechanism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101852818B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102252692A (en) * | 2011-04-29 | 2011-11-23 | 北京星网宇达科技开发有限公司 | Gyro and acceleration-related drift calibration and compensation method based on rotating mechanism |
CN102662083B (en) * | 2012-03-28 | 2014-04-02 | 北京航空航天大学 | Accelerometer calibration method based on GPS velocity information |
CN102735874B (en) * | 2012-04-18 | 2014-04-02 | 中国工程物理研究院总体工程研究所 | Method for eliminating influence of dynamic and static misalignment angle of precise centrifugal machine on calibration of accelerometer |
CN104075902B (en) * | 2014-06-06 | 2017-04-19 | 南京市计量监督检测院 | Calibrating device for elevator speed governor testing instrument |
CN104569495B (en) * | 2014-12-23 | 2017-05-10 | 北京航天控制仪器研究所 | High-precision calibration and test system for gyro accelerometers |
CN105043412B (en) * | 2015-06-05 | 2017-11-24 | 北京信息科技大学 | A kind of Inertial Measurement Unit error compensating method |
CN105938149B (en) * | 2016-06-24 | 2019-04-16 | 南京理工大学 | A kind of accelerograph calibrating installation and method based on acceleration transducer |
CN107576334B (en) * | 2016-07-04 | 2020-03-31 | 北京合众思壮科技股份有限公司 | Calibration method and device of inertia measurement unit |
CN106767929B (en) * | 2017-01-19 | 2019-11-05 | 浙江大学 | A method of for correcting inertial sensor coordinate axle offset |
CN107883981B (en) * | 2017-05-16 | 2021-02-12 | 西北工业大学 | Rotary strapdown inertial navigation system angle measurement synchronous compensation method based on double reading devices |
CN107270902B (en) * | 2017-06-06 | 2020-06-12 | 东南大学 | MEMS inertial measurement unit with cross-axis coupling error compensation |
CN109000836A (en) * | 2017-06-07 | 2018-12-14 | 北京信息科技大学 | A kind of high dynamic carrier environment force measuring method |
CN108036756B (en) * | 2017-12-05 | 2020-02-18 | 中国船舶重工集团公司第七0七研究所 | Method for detecting perpendicularity of adjacent axes of biaxial rotation inertia measurement device by using accelerometer |
CN109406826A (en) * | 2018-08-30 | 2019-03-01 | 南京理工大学 | Accelerometer installation method based on rotary motion body |
CN111103440B (en) * | 2018-10-26 | 2022-05-31 | 航天科工惯性技术有限公司 | Testing device, system and method for accelerometer core |
CN109470888B (en) * | 2018-12-05 | 2020-10-27 | 西北工业大学 | Calibration system and calibration method of high g-value accelerometer based on deep learning |
CN109782023B (en) * | 2019-01-25 | 2020-05-19 | 华中科技大学 | Method for measuring high-order term coefficient of accelerometer through rotation modulation method |
CN110186480B (en) * | 2019-05-30 | 2021-03-26 | 北京航天控制仪器研究所 | Method for determining error coefficient of linear system of inertial device |
CN110501520B (en) * | 2019-08-29 | 2021-06-29 | 北京云庐科技有限公司 | Method and device for acquiring axial acceleration of triaxial acceleration sensor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101105503B (en) * | 2007-06-02 | 2010-10-27 | 中北大学 | Scalar Correction Method of Accelerometer Assembly Error in Strapdown Inertial Navigation Measurement Combination |
CN100491204C (en) * | 2007-12-26 | 2009-05-27 | 北京控制工程研究所 | A Method of Calibrating Accelerometer Using Orbit Determination Data |
CN101290326B (en) * | 2008-06-13 | 2010-07-07 | 哈尔滨工程大学 | Parameter Identification and Calibration Method for Measurement Components of Quartz Flexible Accelerometer |
CN101561292B (en) * | 2009-05-12 | 2011-11-16 | 北京航空航天大学 | Method and device for calibrating size effect error of accelerometer |
-
2010
- 2010-06-02 CN CN2010101970238A patent/CN101852818B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101852818A (en) | 2010-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101852818B (en) | Accelerometer error calibration and compensation method based on rotary mechanism | |
CN102279084B (en) | Transmission line oscillation positioning method based on micro inertial measurement combination | |
CN106052595B (en) | Three-axle table axis verticality detection method based on laser gyro strap down inertial navigation | |
CN101709975B (en) | Estimation and compensation method for unbalanced moment of aerial remote sensing inertially stabilized platform | |
CN101719752B (en) | Method and device for detecting rotor position of brushless motor | |
CN105007016B (en) | A kind of permagnetic synchronous motor speed-measuring method based on rotary transformer | |
CN104898176B (en) | A kind of rotating accelerometer gravity gradiometer gravity gradient demodulation method | |
CN104165638B (en) | Multi-position self-calibration method for biaxial rotating inertial navigation system | |
CN101271007A (en) | A Calibration Compensation Method for Angle Measurement Error of Resolver Based on Rate Turntable | |
CN102636183B (en) | Quadratic overload term test method for flexible gyroscope based on optical fiber monitoring and centrifuge with two-axis turntable | |
CN102095431B (en) | Digital converter of magnetic encoder | |
CN112859942B (en) | High-precision position identification method for gyro frame servo system | |
CN109709628B (en) | A calibration method of a rotary accelerometer gravity gradiometer | |
CN105915127A (en) | Motor rotor position redundant measuring method and system and electronic device | |
CN105044798A (en) | Rotating accelerometer gravity gradiometer accelerometer scale factor feedback adjustment method | |
CN104316081A (en) | Turntable index error detection method based on laser gyroscope | |
CN111624671B (en) | Method and device for determining gravity gradient demodulation phase angle of gravity gradiometer of rotating accelerometer | |
CN111650664B (en) | Real-time gravity gradient demodulation method and device for aviation gravity gradiometer | |
CN102636184A (en) | Specific force-sensitive term calibration method for flexible gyroscope based on centrifuge in environment without angular movement | |
CN105716595B (en) | A kind of rotor deflection modulation error compensation method of suspension class gyroscope | |
CN108931824B (en) | A method for calibrating error gain coefficient of gravity gradiometer of moving base rotary accelerometer | |
CN102252692A (en) | Gyro and acceleration-related drift calibration and compensation method based on rotating mechanism | |
CN102032867A (en) | Method for measuring relative rotation angle and relative rotation speed of two rotors of coaxial dual rotor motor and sensor for implementing same | |
CN102636185B (en) | Non-linear specific force sensitive item measuring method for flexible gyroscope based on centrifugal machine with uniaxial reverse truntable | |
CN107132375A (en) | Motor rotating speed obtaining method, device, equipment and computer readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110817 Termination date: 20130602 |