CN101840240A - Adjustable multi-value output reference voltage source - Google Patents
Adjustable multi-value output reference voltage source Download PDFInfo
- Publication number
- CN101840240A CN101840240A CN 201010134831 CN201010134831A CN101840240A CN 101840240 A CN101840240 A CN 101840240A CN 201010134831 CN201010134831 CN 201010134831 CN 201010134831 A CN201010134831 A CN 201010134831A CN 101840240 A CN101840240 A CN 101840240A
- Authority
- CN
- China
- Prior art keywords
- reference voltage
- circuit
- source
- output
- feedback loop
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Electrical Variables (AREA)
Abstract
本发明公开了一种可调式多值输出的基准电压源,包括基准产生电路和基准电压输出电路,在基准产生电路和基准电压输出电路之间连接有启动电路和镜像电流源负反馈环路,所述的启动电路一端与基准产生电路连接,另一端与镜像电流源负反馈环路连接,镜像电流源负反馈环路的另一端与基准电压输出电路连接。本发明可调式多值输出的基准电压源具有电路功耗小、温漂小、电源抑制能力强的优点。本发明可调式多值输出的基准电压源使用镜像电流源负反馈环路取代高电压增益运放,使电路结构更简单,将由镜像电流源负反馈环路输出端接的源极跟随器提供双极型晶体管偏置电压的同时产生带隙基准电压,同时可以获得较小温度系数的输出电压值。
The invention discloses an adjustable multi-valued output reference voltage source, which comprises a reference generation circuit and a reference voltage output circuit, and a starting circuit and a mirror current source negative feedback loop are connected between the reference generation circuit and the reference voltage output circuit. One end of the start-up circuit is connected to the reference generating circuit, the other end is connected to the mirror current source negative feedback loop, and the other end of the mirror current source negative feedback loop is connected to the reference voltage output circuit. The adjustable multi-valued output reference voltage source of the invention has the advantages of low circuit power consumption, small temperature drift and strong power supply suppression capability. The reference voltage source of the adjustable multi-valued output of the present invention uses a mirror current source negative feedback loop instead of a high voltage gain operational amplifier to make the circuit structure simpler, and the source follower connected to the output terminal of the mirror current source negative feedback loop provides dual A bandgap reference voltage is generated simultaneously with the polar transistor bias voltage, and an output voltage value with a small temperature coefficient can be obtained at the same time.
Description
技术领域technical field
本发明涉及集成电路所用的基准电压源,具体是指一种带隙(bandgap)基准电压电压源。The invention relates to a reference voltage source used in an integrated circuit, in particular to a bandgap reference voltage source.
背景技术Background technique
基准电压源通常是指在电路中用作基准的高稳定的电压源。随着集成电路的高速发展,系统结构进一步复杂,对模拟电路得基本模块,如A/D、D/A转换器、电压检测比较电路等提出了更高的要求,高精度、高稳定性、低功耗是设计的主流。对这些模块而言,电压基准是相当重要的模块,基准电压源的稳定性直接关系到电路的工作状态和电路的工作性能。一个好的电压基准要求温度系数小、电源抑制能力强。A reference voltage source usually refers to a highly stable voltage source used as a reference in a circuit. With the rapid development of integrated circuits, the system structure is further complicated, and higher requirements are put forward for the basic modules of analog circuits, such as A/D, D/A converters, voltage detection and comparison circuits, etc., high precision, high stability, Low power consumption is the mainstream of the design. For these modules, the voltage reference is a very important module, and the stability of the reference voltage source is directly related to the working state and performance of the circuit. A good voltage reference requires a small temperature coefficient and strong power supply rejection.
带隙基准的工作原理是根据硅材料的带隙电压与电源电压和温度无关的特性,利用VBE的正温度系数与双极型晶体管VBE的负温度系数相互抵消,实现低温漂、高精度的基准电压。双极型晶体管提供发射极偏置电压VBE,由两个晶体管之间的VBE产生VT,通过电阻网络将VT放大几倍,将两个电压相加即选择适当的倍数,使得两个电压的温漂系数相互抵消,从而得到在某一温度下的零温度系数的电压基准,典型值为1.25V。The working principle of the bandgap reference is based on the fact that the bandgap voltage of the silicon material is independent of the power supply voltage and temperature, and uses the positive temperature coefficient of V BE to offset the negative temperature coefficient of V BE of the bipolar transistor to achieve low temperature drift and high precision. the reference voltage. Bipolar transistors provide emitter bias voltage V BE , V T is generated by V BE between the two transistors, V T is amplified several times through a resistor network, and the two voltages are summed as Select an appropriate multiple so that the temperature drift coefficients of the two voltages cancel each other out, thereby obtaining a voltage reference with zero temperature coefficient at a certain temperature, with a typical value of 1.25V.
在BUCK型的LED驱动电路中,电流检测电阻反馈的电压是个极低的电压值,我们通过比较电流检测电阻反馈的电压值来确定驱动电路的POWERMOS的开关状态。用于比较的基准电压的稳定性很重要。一般的带隙基准电压源不能直接满足这个要求,需要设计其他的电压转换电路以降低输出基准电压值,这也使设计难度大大增加。In the BUCK type LED drive circuit, the voltage fed back by the current detection resistor is an extremely low voltage value, and we determine the switching state of the POWERMOS of the drive circuit by comparing the voltage value fed back by the current detection resistor. The stability of the reference voltage used for comparison is important. The general bandgap reference voltage source cannot directly meet this requirement, and other voltage conversion circuits need to be designed to reduce the output reference voltage value, which also greatly increases the difficulty of design.
公开号是CN101470458A、申请号是200710303891.8的中国发明专利公开了一种带隙基准电压参考电路,它包括:VBE电压产生器,该VBE电压产生器包括一个用于产生两支路参考电路的自偏置电流源,以及耦合于该自偏置电流源的用于产生两路VBE电压的偏置发生器;基准电压调节器,该基准电压调节器包括运算跨导放大器和基准电压调节单元,用于产生一个恒定的基准电压。上述方案需要使用运算跨导放大器,使得电路较复杂,成本较高。The Chinese invention patent with publication number CN101470458A and application number 200710303891.8 discloses a bandgap reference voltage reference circuit, which includes: a VBE voltage generator, which includes a self-bias for generating two-branch reference circuits A current source, and a bias generator coupled to the self-bias current source for generating two VBE voltages; a reference voltage regulator, the reference voltage regulator includes an operational transconductance amplifier and a reference voltage adjustment unit for generate a constant reference voltage. The above solution needs to use an operational transconductance amplifier, which makes the circuit more complicated and the cost is higher.
授权公告号是CN100459197C、专利号是ZL200510120849.3的中国发明专利公开了一种低温度系数带隙基准参考电压源,它包括以下电路:PTAT电流产生电路,用于产生PTAT电流IPTAT;基准电压启动电路,与所述PTAT电流产生电路相连,用于克服PTAT电流产生电路的零电流工作点,确保PTAT电流IPTAT能够产生;基准电压合成电路,与所述PTAT电流产生电路输出端相连,用于产生基准电压;基极电流抵消电路,与所述基准电压合成电路相连,用于抵消该基准电压合成电路中晶体管产生额外基极电流,保证基准电压的正确产生;第一电流镜像电路,用于将所述PTAT电流产生电路所生成PTAT电流镜像复制,并分别输出至所述PTAT电流产生电路、基准电压启动电路、基准电压合成电路及基极电流抵消电路,该低温度系数带隙基准参考电压源还包括二阶温度补偿电流产生电路,与所述第一电流镜像电路、基准电压合成电路相连,输入IPTAT电流、带隙基准电压,通过利用MOS管漏源电流与栅源压差的平方关系,产生二阶补偿电流并输出至基准电压合成电路产生二阶补偿电压,补偿基准电压的二阶温度系数,产生极低温度系数的基准电压。上述方案一方面不能实现多值输出方式;另一方面产生带隙基准电压的方式较为复杂,功耗、温漂和电源抑制能力并不太理想,它是通过MN1、MN2和MP1、MP2组成的电流镜使流过MN1和MN2的电流相同从而使MN1、MN2的源极电压相同,进而在R1的两端得到这个正温度系数的电压,从而得到流过R1的PTAT电流,经电路镜像在电阻R2上得到正温度系数的电压VR2,而负温度系数电压是双极性晶体管P3、P4的Vbe相加构成,从附图可以看出,其带隙基准电压为其中,M为双极性晶体管P2、P1的基区面积比。Authorized announcement number is CN100459197C, patent number is ZL200510120849.3 Chinese invention patent discloses a low temperature coefficient bandgap reference voltage source, which includes the following circuit: PTAT current generation circuit, used to generate PTAT current IPTAT; reference voltage start The circuit is connected with the PTAT current generating circuit, and is used to overcome the zero current operating point of the PTAT current generating circuit, so as to ensure that the PTAT current IPTAT can be generated; the reference voltage synthesis circuit is connected with the output terminal of the PTAT current generating circuit, and is used to generate A reference voltage; a base current offset circuit, connected to the reference voltage synthesis circuit, used to offset the extra base current generated by the transistor in the reference voltage synthesis circuit, to ensure the correct generation of the reference voltage; a first current mirror circuit, used to The PTAT current mirror copy generated by the PTAT current generation circuit is output to the PTAT current generation circuit, the reference voltage starting circuit, the reference voltage synthesis circuit and the base current offset circuit respectively. The low temperature coefficient bandgap reference voltage source It also includes a second-order temperature compensation current generation circuit, connected to the first current mirror circuit and the reference voltage synthesis circuit, inputting the IPTAT current and the bandgap reference voltage, and utilizing the square relationship between the drain-source current of the MOS tube and the gate-source voltage difference, The second-order compensation current is generated and output to the reference voltage synthesis circuit to generate the second-order compensation voltage, and the second-order temperature coefficient of the reference voltage is compensated to generate a reference voltage with an extremely low temperature coefficient. On the one hand, the above scheme cannot realize the multi-value output mode; on the other hand, the way to generate the bandgap reference voltage is relatively complicated, and the power consumption, temperature drift and power supply suppression ability are not ideal. It is composed of MN1, MN2, MP1, and MP2. The current mirror makes the current flowing through MN1 and MN2 the same so that the source voltages of MN1 and MN2 are the same, and then the two ends of R1 are obtained This positive temperature coefficient voltage, thus obtaining the PTAT current flowing through R1, is mirrored in the circuit to obtain the positive temperature coefficient voltage V R2 on the resistor R2, and the negative temperature coefficient voltage is the sum of the V be of the bipolar transistors P3 and P4 Composition, as can be seen from the attached figure, its bandgap reference voltage is in, M is the base area ratio of the bipolar transistors P2 and P1.
发明内容Contents of the invention
本发明需解决的问题是提供一种具有电路功耗小、温漂小、电源抑制能力强的可调式多值输出的基准电压源。The problem to be solved by the present invention is to provide an adjustable multi-value output reference voltage source with low circuit power consumption, small temperature drift and strong power supply suppression capability.
为了实现上述目的,本发明设计出一种可调式多值输出的基准电压源,可调式多值输出的基准电压源,包括基准产生电路和基准电压输出电路,在基准产生电路和基准电压输出电路之间连接有启动电路和镜像电流源负反馈环路,所述的启动电路一端与基准产生电路连接,另一端与镜像电流源负反馈环路连接,镜像电流源负反馈环路的另一端与基准电压输出电路连接。In order to achieve the above object, the present invention designs a reference voltage source of adjustable multi-valued output. The reference voltage source of adjustable multi-valued output includes a reference generating circuit and a reference voltage output circuit. In the reference generating circuit and the reference voltage output circuit A start-up circuit and a mirror current source negative feedback loop are connected between them, one end of the start-up circuit is connected to the reference generating circuit, the other end is connected to the mirror current source negative feedback loop, and the other end of the mirror current source negative feedback loop is connected to the Reference voltage output circuit connection.
所述的镜像电流源负反馈环路包括PMOS管MP5、MP6、NMOS管MN1、MN2,PMOS管MP5的栅极与基准产生电路连接,MP5的源极接VDD,MP5的漏极接到NMOS管MN2的漏极,NMOS管MN2的源极接地,NMOS管MN2的栅极接NMOS管MN1的栅极,NMOS管MN1的漏极接PMOS管MP6的漏极,PMOS管MP6的栅极与基准产生电路连接,PMOS管MP6源极接VDD,PMOS管MP6漏极与基准电压输出电路连接。The mirror image current source negative feedback loop includes PMOS transistors MP5, MP6, NMOS transistors MN1, MN2, the gate of PMOS transistor MP5 is connected to the reference generation circuit, the source of MP5 is connected to VDD, and the drain of MP5 is connected to NMOS transistor The drain of MN2, the source of NMOS transistor MN2 are grounded, the gate of NMOS transistor MN2 is connected to the gate of NMOS transistor MN1, the drain of NMOS transistor MN1 is connected to the drain of PMOS transistor MP6, and the gate of PMOS transistor MP6 is connected to the reference. Circuit connection, the source of the PMOS transistor MP6 is connected to VDD, and the drain of the PMOS transistor MP6 is connected to the reference voltage output circuit.
所述的启动电路包括PMOS管MP3、MP4和双极型晶体管Q3、Q4,PMOS管MP3的源端接VDD,漏端和PMOS管MP4的源端相接,PMOS管MP3和MP4的栅极相接后接地,PMOS管MP4的漏端接到双极型晶体管Q4的集电极,双极型晶体管Q4的发射极接地,其集电极和基极短接同时接双极型晶体管Q3的基极,双极型晶体管Q3的发射极和集电极分别与基准产生电路连接。The start-up circuit includes PMOS transistors MP3, MP4 and bipolar transistors Q3, Q4, the source terminal of the PMOS transistor MP3 is connected to VDD, the drain terminal is connected to the source terminal of the PMOS transistor MP4, and the gates of the PMOS transistors MP3 and MP4 are connected to each other. After being connected to ground, the drain of PMOS transistor MP4 is connected to the collector of bipolar transistor Q4, the emitter of bipolar transistor Q4 is grounded, its collector and base are short-circuited and simultaneously connected to the base of bipolar transistor Q3, The emitter and collector of the bipolar transistor Q3 are respectively connected to the reference generating circuit.
所述的基准电压输出电路为多值基准电压输出电路,它包括源极跟随器Q5、分压电阻R4、R5、R6,源极跟随器Q5的基极与镜像电流源负反馈环路中的PMOS管MP6的漏极连接,Q5的集电极接VDD,发射极接电阻R6并引出基准电压V2输出端,电阻R6的另一端与电阻R5和基准产生电路连接,并在电阻R6与R5之间引出带隙基准电压VREF输出端,电阻R5的另一端与电阻R4连接,并在电阻R5与R4之间引出基准电压V1输出端,电阻R4的另一端接地。The reference voltage output circuit is a multi-valued reference voltage output circuit, which includes a source follower Q5, voltage dividing resistors R4, R5, R6, the base of the source follower Q5 and the mirror current source negative feedback loop The drain of the PMOS transistor MP6 is connected, the collector of Q5 is connected to VDD, the emitter is connected to the resistor R6 and leads to the output terminal of the reference voltage V2, the other end of the resistor R6 is connected to the resistor R5 and the reference generating circuit, and is between the resistors R6 and R5 The output end of the bandgap reference voltage VREF is drawn out, the other end of the resistor R5 is connected to the resistor R4, and the output end of the reference voltage V1 is drawn between the resistors R5 and R4, and the other end of the resistor R4 is grounded.
所述的基准产生电路包括PMOS管MP1、MP2、双极型晶体管Q1、Q2、电阻R1、R2、R3,PMOS管MP1和MP2的源极接VDD,PMOS管MP1和MP2的栅极短接,PMOS管MP1的漏极与双极型晶体管Q1的集电极和镜像电流源负反馈环路中的PMOS管MP5的栅极连接,PMOS管MP2的漏极与双极型晶体管Q2的集电极和镜像电流源负反馈环路中的PMOS管MP6的栅极连接,电阻R3一端与双极型晶体管Q2的基极连接,另一端与双极型晶体管Q1的基极和基准电压输出电路中的电阻R6连接,电阻R2连接在双极型晶体管Q2的发射极,电阻R1连接在双极型晶体管Q1、Q2发射极共点与地之间。The reference generation circuit includes PMOS transistors MP1, MP2, bipolar transistors Q1, Q2, resistors R1, R2, R3, the sources of the PMOS transistors MP1 and MP2 are connected to VDD, the gates of the PMOS transistors MP1 and MP2 are short-circuited, The drain of the PMOS transistor MP1 is connected to the collector of the bipolar transistor Q1 and the gate of the PMOS transistor MP5 in the negative feedback loop of the mirror current source, and the drain of the PMOS transistor MP2 is connected to the collector of the bipolar transistor Q2 and the mirror image The gate of the PMOS transistor MP6 in the negative feedback loop of the current source is connected, one end of the resistor R3 is connected to the base of the bipolar transistor Q2, and the other end is connected to the base of the bipolar transistor Q1 and the resistor R6 in the reference voltage output circuit The resistor R2 is connected to the emitter of the bipolar transistor Q2, and the resistor R1 is connected between the common point of the emitters of the bipolar transistors Q1 and Q2 and the ground.
本发明可调式多值输出的基准电压源使用镜像电流源负反馈环路取代高电压增益运放,使电路结构更简单,将由镜像电流源负反馈环路输出端接的源极跟随器提供双极型晶体管偏置电压的同时产生带隙基准电压,并优化电路的连接,从而在工作时,可以获得较小温度系数的输出电压值。同时根据系统的需要,可以同时获得多路基准电压输出。本发明的可调式多值输出的基准电压源具有电路功耗小、温漂小、电源抑制能力强的特点。The reference voltage source of the adjustable multi-valued output of the present invention uses a mirror current source negative feedback loop instead of a high voltage gain operational amplifier to make the circuit structure simpler, and the source follower connected to the output terminal of the mirror current source negative feedback loop provides dual The polar transistor bias voltage is simultaneously generated with a bandgap reference voltage, and the connection of the circuit is optimized, so that an output voltage value with a small temperature coefficient can be obtained during operation. At the same time, according to the needs of the system, multiple reference voltage outputs can be obtained at the same time. The adjustable multi-value output reference voltage source of the present invention has the characteristics of low circuit power consumption, small temperature drift and strong power supply suppression capability.
附图说明:Description of drawings:
图1为本发明可调式多值输出的基准电压源原理方框图;Fig. 1 is the principle block diagram of the reference voltage source of adjustable multi-valued output of the present invention;
图2为本发明可调式多值输出的基准电压源电路图。Fig. 2 is a circuit diagram of the reference voltage source of the adjustable multi-valued output of the present invention.
具体实施方式Detailed ways
为了便于本领域技术人员的理解,下面将结合具体实施例及附图对本发明的结构原理作进一步的详细描述:In order to facilitate the understanding of those skilled in the art, the structural principle of the present invention will be further described in detail below in conjunction with specific embodiments and accompanying drawings:
如图1所示,一种可调式多值输出的基准电压源,可调式多值输出的基准电压源,可调式多值输出的基准电压源,包括基准产生电路和基准电压输出电路,在基准产生电路和基准电压输出电路之间连接有启动电路和镜像电流源负反馈环路,所述的启动电路一端与基准产生电路连接,另一端与镜像电流源负反馈环路连接,镜像电流源负反馈环路的另一端与基准电压输出电路连接。As shown in Figure 1, a reference voltage source for adjustable multi-value output, a reference voltage source for adjustable multi-value output, a reference voltage source for adjustable multi-value output, including a reference generation circuit and a reference voltage output circuit, in the reference A start-up circuit and a mirror current source negative feedback loop are connected between the generating circuit and the reference voltage output circuit. One end of the start-up circuit is connected to the reference generating circuit, and the other end is connected to the mirror current source negative feedback loop. The other end of the feedback loop is connected with the reference voltage output circuit.
如图2所示,所述的镜像电流源负反馈环路包括PMOS管MP5、MP6、NMOS管MN1、MN2,PMOS管MP5的栅极与基准产生电路连接,MP5的源极接VDD,MP5的漏极接到NMOS管MN2的漏极,NMOS管MN2的源极接地,NMOS管MN2的栅极接NMOS管MN1的栅极,NMOS管MN1的漏极接PMOS管MP6的漏极,PMOS管MP6的栅极与基准产生电路连接,PMOS管MP6源极接VDD,PMOS管MP6漏极与基准电压输出电路连接。As shown in Figure 2, the negative feedback loop of the mirror image current source includes PMOS transistors MP5, MP6, NMOS transistors MN1, MN2, the gate of PMOS transistor MP5 is connected with the reference generation circuit, the source of MP5 is connected to VDD, and the gate of MP5 is connected to VDD. The drain is connected to the drain of the NMOS transistor MN2, the source of the NMOS transistor MN2 is grounded, the gate of the NMOS transistor MN2 is connected to the gate of the NMOS transistor MN1, the drain of the NMOS transistor MN1 is connected to the drain of the PMOS transistor MP6, and the PMOS transistor MP6 The grid of the PMOS transistor MP6 is connected to the reference generating circuit, the source of the PMOS transistor MP6 is connected to VDD, and the drain of the PMOS transistor MP6 is connected to the reference voltage output circuit.
所述的启动电路包括PMOS管MP3、MP4和双极型晶体管Q3、Q4,PMOS管MP3的源端接VDD,漏端和PMOS管MP4的源端相接,PMOS管MP3和MP4的栅极相接后接地,PMOS管MP4的漏端接到双极型晶体管Q4的集电极,双极型晶体管Q4的发射极接地,其集电极和基极短接同时接双极型晶体管Q3的基极,双极型晶体管Q3的发射极和集电极分别与基准产生电路连接。The start-up circuit includes PMOS transistors MP3, MP4 and bipolar transistors Q3, Q4, the source terminal of the PMOS transistor MP3 is connected to VDD, the drain terminal is connected to the source terminal of the PMOS transistor MP4, and the gates of the PMOS transistors MP3 and MP4 are connected to each other. After being connected to ground, the drain of PMOS transistor MP4 is connected to the collector of bipolar transistor Q4, the emitter of bipolar transistor Q4 is grounded, its collector and base are short-circuited and simultaneously connected to the base of bipolar transistor Q3, The emitter and collector of the bipolar transistor Q3 are respectively connected to the reference generating circuit.
所述的基准电压输出电路为多值基准电压输出电路,它包括源极跟随器Q5、分压电阻R4、R5、R6,源极跟随器Q5的基极与镜像电流源负反馈环路中的PMOS管MP6的漏极连接,Q5的集电极接VDD,发射极接电阻R6并引出基准电压V2输出端,电阻R6的另一端与电阻R5和基准产生电路连接,并在电阻R6与R5之间引出带隙基准电压VREF输出端,电阻R5的另一端与电阻R4连接,并在电阻R5与R4之间引出基准电压V1输出端,电阻R4的另一端接地。The reference voltage output circuit is a multi-valued reference voltage output circuit, which includes a source follower Q5, voltage dividing resistors R4, R5, R6, the base of the source follower Q5 and the mirror current source negative feedback loop The drain of the PMOS transistor MP6 is connected, the collector of Q5 is connected to VDD, the emitter is connected to the resistor R6 and leads to the output terminal of the reference voltage V2, the other end of the resistor R6 is connected to the resistor R5 and the reference generating circuit, and is between the resistors R6 and R5 The output end of the bandgap reference voltage VREF is drawn out, the other end of the resistor R5 is connected to the resistor R4, and the output end of the reference voltage V1 is drawn between the resistors R5 and R4, and the other end of the resistor R4 is grounded.
所述的基准产生电路包括PMOS管MP1、MP2、双极型晶体管Q1、Q2、电阻R1、R2、R3,PMOS管MP1和MP2的源极接VDD,PMOS管MP1和MP2的栅极短接,PMOS管MP1的漏极与双极型晶体管Q1的集电极和镜像电流源负反馈环路中的PMOS管MP5的栅极连接,PMOS管MP2的漏极与双极型晶体管Q2的集电极和镜像电流源负反馈环路中的PMOS管MP6的栅极连接,电阻R3一端与双极型晶体管Q2的基极连接,另一端与双极型晶体管Q1的基极和基准电压输出电路中的电阻R6连接,电阻R2连接在双极型晶体管Q2的发射极,电阻R1连接在双极型晶体管Q1、Q2发射极共点与地之间。The reference generating circuit includes PMOS transistors MP1, MP2, bipolar transistors Q1, Q2, resistors R1, R2, R3, the sources of the PMOS transistors MP1 and MP2 are connected to VDD, the gates of the PMOS transistors MP1 and MP2 are short-circuited, The drain of the PMOS transistor MP1 is connected to the collector of the bipolar transistor Q1 and the gate of the PMOS transistor MP5 in the negative feedback loop of the mirror current source, and the drain of the PMOS transistor MP2 is connected to the collector of the bipolar transistor Q2 and the mirror image The gate of the PMOS transistor MP6 in the current source negative feedback loop is connected, one end of the resistor R3 is connected to the base of the bipolar transistor Q2, and the other end is connected to the base of the bipolar transistor Q1 and the resistor R6 in the reference voltage output circuit The resistor R2 is connected to the emitter of the bipolar transistor Q2, and the resistor R1 is connected between the common point of the emitters of the bipolar transistors Q1 and Q2 and the ground.
本发明通过镜像电流源负反馈环路的输出端与基准电压输出电路连接,该基准电压输出电路为多值基准电压输出电路,该基准电压输出电路包含的源极跟随器一方面给双极型晶体管提供基极偏置,一方面通过分压电阻输出多个基准电压。The present invention connects the output terminal of the mirror current source negative feedback loop with the reference voltage output circuit, the reference voltage output circuit is a multi-valued reference voltage output circuit, and the source follower included in the reference voltage output circuit provides bipolar type The transistor provides base bias, and on the one hand outputs multiple reference voltages through voltage dividing resistors.
本发明的使用镜像电流源负反馈环路取代高电压增益运放,使电路结构更简单。具体如附图2所示。在图2中,所有的NMOS管都是一样的宽长比,所有的PMOS也都是一样的宽长比。通过MP1、MP5、MN2、MN1的镜像,MP1、Q1支路上的电流被镜像到MN1、MP6支路上,同时通过MP1、MP2镜像对,MP2上流过的饱和电流等于MP1上流过的饱和电流,当输出带隙基准电压时,MP1、MP2、MP6和MN1都工作在饱和区,流经MP1、MP2、MP6的电流相等,VGSMP1=VGSMP6即VDSMP1=VDSMP2,消除了MOSFET二级效应带来的镜像电流失匹,确保了PMOS管MP2的源极接VDD,栅极和PMOS管MP1短接,漏极接到PMOS管MP5的栅极,PMOS管MP5的源极接到VDD,漏极接到NMOS管MN2的漏极,NMOS管MN2的源极接地,栅极接NMOS管MN1的栅极,NMOS管MN1的漏极接PMOS管MP6的漏极。PMOS管MP1的源端接VDD,其栅漏短接接入PMOS管MP6的栅极,PMOS管MP6源极接VDD。源极跟随器双极型晶体管Q5作为源极跟随器,其集电极接VDD,其基极接PMOS管MP6的漏端,其发射极接电阻R6的电流输入端并在此输出基准电压V2。电阻R6的电流输出端接电阻R5的电流输入端并为双极型晶体管Q1、Q2提供基极偏置,产生带隙基准电压VREF。电阻R5的电流输出端接电阻R4的电流输入端并产生基准电压V1。电阻R4的电流输出端接地。The present invention uses mirror image current source negative feedback loop to replace high voltage gain operational amplifier, so that the circuit structure is simpler. The details are shown in Figure 2. In Figure 2, all NMOS transistors have the same width-to-length ratio, and all PMOS transistors have the same width-to-length ratio. Through the mirroring of MP1, MP5, MN2 and MN1, the currents on MP1 and Q1 branches are mirrored to the MN1 and MP6 branches. At the same time, through the mirror pair of MP1 and MP2, the saturation current flowing on MP2 is equal to the saturation current flowing on MP1. When outputting the bandgap reference voltage, MP1, MP2, MP6 and MN1 are all working in the saturation region, and the currents flowing through MP1, MP2 and MP6 are equal, VGSMP1=VGSMP6, that is, VDSMP1=VDSMP2, which eliminates the mirror image caused by the secondary effect of the MOSFET lost horses, ensured The source of the PMOS transistor MP2 is connected to VDD, the gate is short-circuited to the PMOS transistor MP1, the drain is connected to the gate of the PMOS transistor MP5, the source of the PMOS transistor MP5 is connected to VDD, and the drain is connected to the drain of the NMOS transistor MN2. The source of the NMOS transistor MN2 is grounded, the gate is connected to the gate of the NMOS transistor MN1, and the drain of the NMOS transistor MN1 is connected to the drain of the PMOS transistor MP6. The source terminal of the PMOS transistor MP1 is connected to VDD, the gate and drain thereof are short-circuited to the gate of the PMOS transistor MP6, and the source of the PMOS transistor MP6 is connected to VDD. Source follower bipolar transistor Q5 is used as a source follower, its collector is connected to VDD, its base is connected to the drain of PMOS transistor MP6, its emitter is connected to the current input terminal of resistor R6 and the reference voltage V2 is output here. The current output terminal of the resistor R6 is connected to the current input terminal of the resistor R5 and provides base bias for the bipolar transistors Q1 and Q2 to generate a bandgap reference voltage VREF. The current output terminal of the resistor R5 is connected to the current input terminal of the resistor R4 to generate a reference voltage V1. The current output terminal of resistor R4 is grounded.
本发明电路中,PMOS管MP3、MP4和双极型晶体管Q3、Q4构成启动电路。PMOS管MP3的源端接VDD,漏端和PMOS管MP4的源端相接,PMOS管MP3和MP4相接接到地。PMOS管MP4的漏端接到双极型晶体管Q4的集电极。双极型晶体管Q4的发射极接地,其集电极和基极短接同时接双极型晶体管Q3的基极。双极型晶体管Q3的发射极接入电阻R1的电流输入端,其集电极接到MP2的漏端。电路上电时,双极型晶体管Q3、Q4的基极-发射极电压差在电阻R1上产生电流启动电路。In the circuit of the present invention, the PMOS transistors MP3 and MP4 and the bipolar transistors Q3 and Q4 constitute a starting circuit. The source end of the PMOS transistor MP3 is connected to VDD, the drain end is connected to the source end of the PMOS transistor MP4, and the PMOS transistors MP3 and MP4 are connected to the ground. The drain terminal of the PMOS transistor MP4 is connected to the collector of the bipolar transistor Q4. The emitter of the bipolar transistor Q4 is grounded, its collector and base are short-circuited and simultaneously connected to the base of the bipolar transistor Q3. The emitter of the bipolar transistor Q3 is connected to the current input terminal of the resistor R1, and its collector is connected to the drain terminal of MP2. When the circuit is powered on, the base-emitter voltage difference of the bipolar transistors Q3 and Q4 generates a current in the resistor R1 to start the circuit.
在本发明中,正温度系数由双极型晶体管Q1、Q2的产生。双极型晶体管Q1的集电极接PMOS管MP1的漏端,基极接电阻R6的电流输出端,发射极接电阻R1电流输入端。双极型晶体管Q2的集电极接PMOS管MP2的漏端,基极接电阻R3的电流输出端,电阻R3的电流输入端接电阻R6的电流输出端,发射极接电阻R2电流输入端,电阻R2电流输出端接电阻R1电流输入端,电阻R1电流输出端接地。In the present invention, the positive temperature coefficient is determined by the bipolar transistors Q1, Q2 produce. The collector of the bipolar transistor Q1 is connected to the drain of the PMOS transistor MP1, the base is connected to the current output terminal of the resistor R6, and the emitter is connected to the current input terminal of the resistor R1. The collector of the bipolar transistor Q2 is connected to the drain of the PMOS transistor MP2, the base is connected to the current output terminal of the resistor R3, the current input terminal of the resistor R3 is connected to the current output terminal of the resistor R6, the emitter is connected to the current input terminal of the resistor R2, and the resistor The current output terminal of R2 is connected to the current input terminal of the resistor R1, and the current output terminal of the resistor R1 is grounded.
由公式看出,电阻R3可以修正正温系数电压,可以将电阻R3折算到R2中。下面详细推导基准电压的温度系数。由附图2我们可以得到:It can be seen from the formula that the resistor R3 can correct the positive temperature coefficient voltage, and the resistor R3 can be converted into R2. The temperature coefficient of the reference voltage is deduced in detail below. From Figure 2 we can get:
其中,VBE1与温度的关系式如下:Among them, the relationship between V BE1 and temperature is as follows:
结合式(1)(2)(3)可得到Combining formula (1) (2) (3) can get
根据(4)式的表达式,可以得到,合理地设置双极型晶体管Q1、Q2的发射极面积比和电阻R1、R2的比值,可以在特定温度T0处获得零温度系数。双极型晶体管Q2的基极电流流入电阻R2,对产生正温度系数的电压有贡献。因为流过双极型晶体管Q1、Q2的集电极电流很小,β随温度增加而增加,结合公式(2)可知在温度较高时可以对基准电压的二阶项进行补偿。According to the expression of (4), it can be obtained that the ratio of the emitter area of the bipolar transistors Q1 and Q2 and the ratio of the resistors R1 and R2 can be reasonably set to obtain a zero temperature coefficient at a specific temperature T 0 . The base current of bipolar transistor Q2 flows into resistor R2 and contributes to the development of a voltage with a positive temperature coefficient. Because the collector current flowing through the bipolar transistors Q1 and Q2 is very small, β increases with the increase of temperature, combined with the formula (2), it can be seen that the second-order term of the reference voltage can be compensated when the temperature is high.
如附图1和附图2所示,镜像电流源负反馈环路输出端接的源极跟随器的输出端经分压,一方面给双极型晶体管提供基极偏置,一方面通过分压电阻输出多个基准电压。其中As shown in Figure 1 and Figure 2, the output terminal of the source follower connected to the output terminal of the negative feedback loop of the mirror current source is divided by voltage, on the one hand, it provides base bias for the bipolar transistor, on the other hand, through the division The piezoresistor outputs multiple reference voltages. in
由公式我们可以看出,通过设置电阻之间的比值,我们可以得到一个宽范围的基准电压值。在R1、R2、R3所在的支路上,我们可以将这三个电阻阻值细分下去,即由多个电阻实现同一串联阻值,那么在电阻之间我们可以得到另一个基准电压。如:我们取在R11和R12之间就可以输出一个基准电压。We can see from the formula that by setting the ratio between the resistors, we can get a wide range of reference voltage values. On the branch where R1, R2, and R3 are located, we can subdivide the resistance values of these three resistors, that is, realize the same series resistance value by multiple resistors, then we can get another reference voltage between the resistors. Such as: we take A reference voltage can be output between R11 and R12.
因为流过电阻R3的电流有一部分作为双极性晶体管Q1、Q2的基极电流,故而该电流与基准电压V2的精度之间有个折衷考虑。Because part of the current flowing through the resistor R3 is used as the base current of the bipolar transistors Q1 and Q2, there is a compromise between the current and the accuracy of the reference voltage V2 .
综上所述,本发明可以输出多个基准电压。在-40℃~+125℃内输出200mV的基准电压时,温漂低于0.5mVIn summary, the present invention can output multiple reference voltages. When outputting a reference voltage of 200mV within -40℃~+125℃, the temperature drift is less than 0.5mV
本发明可调式多值输出的基准电压源通过有电流镜的负反馈环路(由MP1、MP2、MP5、MP6、MN1、MN2以及Q5、R6、R3、Q1、Q2组成,该环路是多值输出的结构基础)使流过双极性晶体管Q1、Q2的集电极电流相等,进而在电阻R2上产生正温系数电压,负温系数电压是双极型晶体管Q1的Vbe构成,从附图可以看出,其带隙基准电压为其中,M为双极性晶体管Q2、Q1的基区面积比。Q1、Q2、MP1、MP2、R2支路产生了PTAT电流,同时带隙基准电压在Q1的基极生成。The reference voltage source of the adjustable multi-valued output of the present invention passes through the negative feedback loop of current mirror (by MP1, MP2, MP5, MP6, MN1, MN2 and Q5, R6, R3, Q1, Q2, this loop is multiple Structural basis of value output) Make the collector currents flowing through the bipolar transistors Q1 and Q2 equal, and then generate a positive temperature coefficient voltage on the resistor R2 , the negative temperature coefficient voltage is composed of the V be of the bipolar transistor Q1, as can be seen from the attached figure, its bandgap reference voltage is in, M is the base area ratio of the bipolar transistors Q2 and Q1. The Q1, Q2, MP1, MP2, R2 branches generate PTAT currents, while the bandgap reference voltage is generated at the base of Q1.
上述内容,仅为本发明的较佳实施例,并非用于限制本发明的实施方案,本领域技术人员根据本发明的构思,所做出的适当变通或修改,都应在本发明的保护范围之内。The above content is only a preferred embodiment of the present invention, and is not intended to limit the implementation of the present invention. Appropriate modifications or modifications made by those skilled in the art according to the concept of the present invention should be within the protection scope of the present invention. within.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010134831 CN101840240B (en) | 2010-03-26 | 2010-03-26 | Adjustable multi-value output reference voltage source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010134831 CN101840240B (en) | 2010-03-26 | 2010-03-26 | Adjustable multi-value output reference voltage source |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101840240A true CN101840240A (en) | 2010-09-22 |
CN101840240B CN101840240B (en) | 2012-11-21 |
Family
ID=42743656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010134831 Expired - Fee Related CN101840240B (en) | 2010-03-26 | 2010-03-26 | Adjustable multi-value output reference voltage source |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101840240B (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102609031A (en) * | 2012-03-09 | 2012-07-25 | 深圳创维-Rgb电子有限公司 | Highly integrated low-power reference source |
CN102866721A (en) * | 2012-10-11 | 2013-01-09 | 上海新进半导体制造有限公司 | Reference voltage source circuit |
CN102882482A (en) * | 2012-10-12 | 2013-01-16 | 西安三馀半导体有限公司 | Ultralow power consumption error amplifier |
CN103001634A (en) * | 2012-11-02 | 2013-03-27 | 长沙景嘉微电子股份有限公司 | Correcting circuit for internal bias voltage of chip |
CN103267548A (en) * | 2013-04-03 | 2013-08-28 | 上海晨思电子科技有限公司 | Voltage device |
CN103455075A (en) * | 2013-08-30 | 2013-12-18 | 江苏物联网研究发展中心 | MEMS (Micro Electro Mechanical Systems) sensor-based voltage reference general start-up circuit |
CN103647543A (en) * | 2013-11-26 | 2014-03-19 | 苏州贝克微电子有限公司 | High-speed data transceiver |
CN103760944A (en) * | 2014-02-10 | 2014-04-30 | 绍兴光大芯业微电子有限公司 | Operational-amplifier-free internal power supply structure capable of allowing base electrode current compensation to be achieved |
CN106483366A (en) * | 2015-12-31 | 2017-03-08 | 无锡华润矽科微电子有限公司 | A kind of current detection circuit eliminating offset voltage |
CN106647916A (en) * | 2017-02-28 | 2017-05-10 | 中国电子科技集团公司第五十八研究所 | High-order temperature compensation band-gap reference voltage source |
CN106843350A (en) * | 2016-12-20 | 2017-06-13 | 宁波芯路通讯科技有限公司 | Band-gap reference circuit |
CN106855586A (en) * | 2016-12-20 | 2017-06-16 | 宁波芯路通讯科技有限公司 | Low-voltage testing circuit |
CN107168442A (en) * | 2017-06-21 | 2017-09-15 | 西安电子科技大学 | Band gap reference voltage source circuit |
CN107291136A (en) * | 2016-04-11 | 2017-10-24 | 成都锐成芯微科技股份有限公司 | Low-power dissipation power supply power supply circuit |
CN107967020A (en) * | 2017-12-29 | 2018-04-27 | 成都信息工程大学 | A kind of low voltage reference circuit |
CN107967022A (en) * | 2018-01-19 | 2018-04-27 | 桂林电子科技大学 | A Dual Output Low Temperature Drift Reference Voltage Source |
CN107992159A (en) * | 2018-01-19 | 2018-05-04 | 桂林电子科技大学 | A three-output reference voltage source with low temperature drift and low power consumption |
CN108279733A (en) * | 2018-02-11 | 2018-07-13 | 成都英特格灵微电子技术有限公司 | A kind of electric current limit reference generating circuit and initialization circuit |
CN108469862A (en) * | 2018-03-13 | 2018-08-31 | 中国电子科技集团公司第二十四研究所 | Low Drift Temperature current source reference circuit |
CN109144165A (en) * | 2017-06-19 | 2019-01-04 | 深圳市威益德科技有限公司 | A reference source and its integrated circuit |
CN109917842A (en) * | 2019-04-16 | 2019-06-21 | 卓捷创芯科技(深圳)有限公司 | A kind of metastable clamper feedback start-up circuit of elimination automatic biasing band-gap reference degeneracy |
CN110347203A (en) * | 2019-06-19 | 2019-10-18 | 成都华微电子科技有限公司 | The band-gap reference circuit of broadband low-power consumption |
CN110703842A (en) * | 2019-03-06 | 2020-01-17 | 深圳市芯天下技术有限公司 | High-speed electrification overshoot-prevention circuit for band-gap reference voltage |
CN113672022A (en) * | 2021-09-24 | 2021-11-19 | 广东华芯微特集成电路有限公司 | Low-power-consumption high-precision reference source |
CN114020085A (en) * | 2021-10-18 | 2022-02-08 | 杭州中科微电子有限公司 | Multi-output reference voltage generating circuit |
CN119396245A (en) * | 2025-01-02 | 2025-02-07 | 江苏长晶科技股份有限公司 | Zero temperature coefficient reference circuit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101226413A (en) * | 2008-01-22 | 2008-07-23 | 无锡硅动力微电子股份有限公司 | Reference circuit for restraining misadjusted CMOS energy gap |
CN101226414A (en) * | 2008-01-30 | 2008-07-23 | 北京中星微电子有限公司 | Method for dynamic compensation of reference voltage and band-gap reference voltage source |
CN101644938A (en) * | 2008-08-06 | 2010-02-10 | 上海华虹Nec电子有限公司 | Safety starter circuit of low-voltage bandgap reference source |
US20100045367A1 (en) * | 2008-08-20 | 2010-02-25 | Sanyo Electric Co., Ltd. | Low-voltage operation constant-voltage circuit |
-
2010
- 2010-03-26 CN CN 201010134831 patent/CN101840240B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101226413A (en) * | 2008-01-22 | 2008-07-23 | 无锡硅动力微电子股份有限公司 | Reference circuit for restraining misadjusted CMOS energy gap |
CN101226414A (en) * | 2008-01-30 | 2008-07-23 | 北京中星微电子有限公司 | Method for dynamic compensation of reference voltage and band-gap reference voltage source |
CN101644938A (en) * | 2008-08-06 | 2010-02-10 | 上海华虹Nec电子有限公司 | Safety starter circuit of low-voltage bandgap reference source |
US20100045367A1 (en) * | 2008-08-20 | 2010-02-25 | Sanyo Electric Co., Ltd. | Low-voltage operation constant-voltage circuit |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102609031A (en) * | 2012-03-09 | 2012-07-25 | 深圳创维-Rgb电子有限公司 | Highly integrated low-power reference source |
CN102609031B (en) * | 2012-03-09 | 2014-05-07 | 深圳创维-Rgb电子有限公司 | Highly integrated low-power reference source |
CN102866721A (en) * | 2012-10-11 | 2013-01-09 | 上海新进半导体制造有限公司 | Reference voltage source circuit |
CN102866721B (en) * | 2012-10-11 | 2014-12-17 | 上海新进半导体制造有限公司 | Reference voltage source circuit |
US9196318B2 (en) | 2012-10-11 | 2015-11-24 | Shanghai Sim-Bcd Semiconductor Manufacturing Co., Ltd. | Low temperature drift voltage reference circuit |
CN102882482B (en) * | 2012-10-12 | 2016-01-13 | 西安三馀半导体有限公司 | Ultralow power consumption error amplifier |
CN102882482A (en) * | 2012-10-12 | 2013-01-16 | 西安三馀半导体有限公司 | Ultralow power consumption error amplifier |
CN103001634A (en) * | 2012-11-02 | 2013-03-27 | 长沙景嘉微电子股份有限公司 | Correcting circuit for internal bias voltage of chip |
CN103267548A (en) * | 2013-04-03 | 2013-08-28 | 上海晨思电子科技有限公司 | Voltage device |
CN103455075A (en) * | 2013-08-30 | 2013-12-18 | 江苏物联网研究发展中心 | MEMS (Micro Electro Mechanical Systems) sensor-based voltage reference general start-up circuit |
CN103647543A (en) * | 2013-11-26 | 2014-03-19 | 苏州贝克微电子有限公司 | High-speed data transceiver |
CN103760944B (en) * | 2014-02-10 | 2016-04-06 | 绍兴光大芯业微电子有限公司 | Realize base current compensation without amplifier internal electric source structure |
CN103760944A (en) * | 2014-02-10 | 2014-04-30 | 绍兴光大芯业微电子有限公司 | Operational-amplifier-free internal power supply structure capable of allowing base electrode current compensation to be achieved |
CN106483366A (en) * | 2015-12-31 | 2017-03-08 | 无锡华润矽科微电子有限公司 | A kind of current detection circuit eliminating offset voltage |
CN106483366B (en) * | 2015-12-31 | 2018-06-29 | 无锡华润矽科微电子有限公司 | A kind of current detection circuit for eliminating offset voltage |
CN107291136A (en) * | 2016-04-11 | 2017-10-24 | 成都锐成芯微科技股份有限公司 | Low-power dissipation power supply power supply circuit |
CN106843350A (en) * | 2016-12-20 | 2017-06-13 | 宁波芯路通讯科技有限公司 | Band-gap reference circuit |
CN106855586A (en) * | 2016-12-20 | 2017-06-16 | 宁波芯路通讯科技有限公司 | Low-voltage testing circuit |
CN106855586B (en) * | 2016-12-20 | 2020-04-21 | 宁波芯路通讯科技有限公司 | Low-voltage detection circuit |
CN106647916A (en) * | 2017-02-28 | 2017-05-10 | 中国电子科技集团公司第五十八研究所 | High-order temperature compensation band-gap reference voltage source |
CN106647916B (en) * | 2017-02-28 | 2018-03-30 | 中国电子科技集团公司第五十八研究所 | High-order temperature compensation bandgap reference voltage source |
CN109144165A (en) * | 2017-06-19 | 2019-01-04 | 深圳市威益德科技有限公司 | A reference source and its integrated circuit |
CN107168442A (en) * | 2017-06-21 | 2017-09-15 | 西安电子科技大学 | Band gap reference voltage source circuit |
CN107168442B (en) * | 2017-06-21 | 2019-02-19 | 西安电子科技大学 | Bandgap Reference Circuit |
CN107967020A (en) * | 2017-12-29 | 2018-04-27 | 成都信息工程大学 | A kind of low voltage reference circuit |
CN107967022A (en) * | 2018-01-19 | 2018-04-27 | 桂林电子科技大学 | A Dual Output Low Temperature Drift Reference Voltage Source |
CN107992159A (en) * | 2018-01-19 | 2018-05-04 | 桂林电子科技大学 | A three-output reference voltage source with low temperature drift and low power consumption |
CN107967022B (en) * | 2018-01-19 | 2023-11-03 | 桂林电子科技大学 | Dual-output low-temperature drift reference voltage source |
CN107992159B (en) * | 2018-01-19 | 2023-11-03 | 桂林电子科技大学 | Three-output low-temperature drift low-power consumption reference voltage source |
CN108279733A (en) * | 2018-02-11 | 2018-07-13 | 成都英特格灵微电子技术有限公司 | A kind of electric current limit reference generating circuit and initialization circuit |
CN108279733B (en) * | 2018-02-11 | 2023-12-05 | 四川易冲科技有限公司 | Current limit reference generation circuit and setting circuit |
CN108469862B (en) * | 2018-03-13 | 2019-09-03 | 中国电子科技集团公司第二十四研究所 | Low Drift Temperature current source reference circuit |
CN108469862A (en) * | 2018-03-13 | 2018-08-31 | 中国电子科技集团公司第二十四研究所 | Low Drift Temperature current source reference circuit |
CN110703842A (en) * | 2019-03-06 | 2020-01-17 | 深圳市芯天下技术有限公司 | High-speed electrification overshoot-prevention circuit for band-gap reference voltage |
CN110703842B (en) * | 2019-03-06 | 2020-08-14 | 深圳市芯天下技术有限公司 | High-speed electrification overshoot-prevention circuit for band-gap reference voltage |
CN109917842A (en) * | 2019-04-16 | 2019-06-21 | 卓捷创芯科技(深圳)有限公司 | A kind of metastable clamper feedback start-up circuit of elimination automatic biasing band-gap reference degeneracy |
CN110347203A (en) * | 2019-06-19 | 2019-10-18 | 成都华微电子科技有限公司 | The band-gap reference circuit of broadband low-power consumption |
CN113672022A (en) * | 2021-09-24 | 2021-11-19 | 广东华芯微特集成电路有限公司 | Low-power-consumption high-precision reference source |
CN114020085A (en) * | 2021-10-18 | 2022-02-08 | 杭州中科微电子有限公司 | Multi-output reference voltage generating circuit |
CN114020085B (en) * | 2021-10-18 | 2023-10-27 | 杭州中科微电子有限公司 | Reference voltage generating circuit with multiple outputs |
CN119396245A (en) * | 2025-01-02 | 2025-02-07 | 江苏长晶科技股份有限公司 | Zero temperature coefficient reference circuit |
CN119396245B (en) * | 2025-01-02 | 2025-03-18 | 江苏长晶科技股份有限公司 | Zero temperature coefficient reference circuit |
Also Published As
Publication number | Publication date |
---|---|
CN101840240B (en) | 2012-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101840240B (en) | Adjustable multi-value output reference voltage source | |
CN106125811B (en) | A kind of ultra-low temperature drift high PSRR bandgap voltage reference | |
JP4817825B2 (en) | Reference voltage generator | |
CN106959723B (en) | A kind of bandgap voltage reference of wide input range high PSRR | |
CN103529897B (en) | Pure metal oxide semiconductor (MOS) structure voltage reference source with high power supply rejection ratio | |
CN103064457B (en) | A kind of based on degenerative CMOS band-gap reference circuit | |
CN102270008B (en) | Band-gap reference voltage source with wide input belt point curvature compensation | |
CN102622031B (en) | Low-voltage high-precision band-gap reference voltage source | |
US7612606B2 (en) | Low voltage current and voltage generator | |
JP2008108009A (en) | Reference voltage generation circuit | |
KR20020053188A (en) | Current mirror type bandgap reference voltage generator | |
CN106406410A (en) | Band-gap reference source circuit with self-biased structure | |
CN107992146B (en) | A kind of no amplifier band-gap reference circuit | |
CN102279611A (en) | Variable-curvature compensated bandgap voltage reference source | |
CN109164867B (en) | Full MOS reference current generation circuit | |
CN107992156A (en) | A Subthreshold Low Power Resistorless Reference Circuit | |
CN114995583A (en) | Sub-band gap compensation reference voltage generation circuit | |
CN104460799B (en) | CMOS reference voltage source circuit | |
CN103246311B (en) | Non-resistor band-gap reference voltage source with high-order curvature compensation | |
KR20190049551A (en) | Bandgap reference circuitry | |
CN109343641A (en) | A High Precision Current Reference Circuit | |
CN103926966B (en) | Low Voltage Bandgap Reference Circuit | |
CN103412608A (en) | Band-gap reference circuit | |
CN105739596B (en) | A High-precision Reference Voltage Source Circuit Using Quadratic Positive Temperature Coefficient Compensation | |
CN117170452A (en) | Low-power consumption band-gap reference voltage source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: HU NAN QIU ZEYOU PATENT STRATEGIC PLANNING CO., LT Free format text: FORMER OWNER: QIU ZEYOU Effective date: 20101101 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 410005 28/F, SHUNTIANCHENG, NO.185, FURONG MIDDLE ROAD, CHANGSHA CITY, HU NAN PROVINCE TO: 410205 JUXING INDUSTRY BASE, NO.8, LUJING ROAD, CHANGSHA HIGH-TECH. DEVELOPMENT ZONE, YUELU DISTRICT, CHANGSHA CITY, HU NAN PROVINCE |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20101109 Address after: 523000, No. two, No. 17, Songshan Lake Science and Technology Industrial Park, Guangdong, Dongguan Applicant after: Institute of Electronic and Information Engineering In Dongguan, UESTC Co-applicant after: University of Electronic Science and Technology of China Address before: 523000 building B3, room 104, Songshan administrative office area, Dongguan, Guangdong Applicant before: Institute of Electronic and Information Engineering In Dongguan, UESTC |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121121 Termination date: 20150326 |
|
EXPY | Termination of patent right or utility model |