CN101808819A - 作为用于锂二次电池的阳极材料的硅改性纳米纤维纸 - Google Patents
作为用于锂二次电池的阳极材料的硅改性纳米纤维纸 Download PDFInfo
- Publication number
- CN101808819A CN101808819A CN200880109348A CN200880109348A CN101808819A CN 101808819 A CN101808819 A CN 101808819A CN 200880109348 A CN200880109348 A CN 200880109348A CN 200880109348 A CN200880109348 A CN 200880109348A CN 101808819 A CN101808819 A CN 101808819A
- Authority
- CN
- China
- Prior art keywords
- paper
- silicon
- carbon nano
- coating
- nanofiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/36—Inorganic fibres or flakes
- D21H13/46—Non-siliceous fibres, e.g. from metal oxides
- D21H13/50—Carbon fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H15/00—Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
- D21H15/02—Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
- D21H15/10—Composite fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249962—Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
- Y10T428/249964—Fibers of defined composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
包含涂覆硅的碳纳米纤维网的纸。
Description
本申请要求2007年9月7日提交的美国申请No.60/970,567的权益,通过引用将其内容并入本文。
背景技术
本公开涉及涂覆硅的碳纳米纤维纸和具有高储能的改良负电极的锂二次电池,特别涉及其中改良负电极可同时充当储能材料和集流体的锂离子电池。本公开还涉及“混合”电化学电容器,其中所公开的阳极与具有高的电容或赝电容的阴极配对(mate)。
发明概述
本发明的一个实施方案是导电且多孔的涂覆硅的碳纳米纤维纸,以及由其制成的具有良好循环特征和高储能的电极。涂覆纸和由其制成的电极适合同时用作储能材料和集流体。
附图简要描述
图1A是用于本发明一个实施方案的具有叠杯(stacked cup)结构的碳纤维的示意图。
图1B是用于本发明一个实施方案的碳纳米纤维的扫描电子显微图。
图2是用于本发明一个实施方案的由碳纳米纤维形成的纸的扫描电子显微图。
图3A是在较少孔的碳纳米纤维纸中沉积硅并随后纳入锂离子的效果的示意图,图3B是使用较多孔的纸时类似效果的图解。
图4是对于纳入硅颗粒的纳米纤维纸所获得的循环数据的坐标图。
图5A和5B分别是实施例1的纸的放电循环和电压曲线的坐标图。
图6A和6B分别是实施例2的纸的放电循环和电压曲线的坐标图。
图7A和7B分别是实施例3的纸的放电循环和电压曲线的坐标图。
图8是实施例4的纸的电容作为循环数目函数的坐标图,其中坐标图中的黑色点对应于可逆容量,而灰色点对应于不可逆容量和可逆容量的总和。
发明详述
如专利申请11/586,358(Carbon Nanofiber Paper andApplications,其公开内容通过引用并入本文)所描述,纳米纤维纸是柔性、多孔、导电的片材。在一个实施方案中,如图1中所示并且如上述申请中所描述和说明的,构成所述纸的碳纳米纤维具有“叠杯”形态。当所述纸由这种类型的纳米纤维(例如来自Cedarville Ohio的Applied Sciences的60nm PR-25纳米纤维)形成时,其具有约40m2/g的高表面积。这样的纸可通过上述申请中引用的工序以高孔隙率(约50-95体积%)、低密度的形式制成,从而产生具有高度开放结构的非织造材料。图2是用于本公开的一个实施方案的纳米纤维纸的扫描电子显微照片。
在一个实施方案中,碳纳米纤维纸基材的特征在于下面中的一种或其组合:具有小于约100nm(例如约10-100nm)的直径的纤维;大于约10m2/g(例如通过BET氮气吸附法测定)的表面积;约50-95体积%的孔隙率;约0.05-0.8g/cc的密度;和约0.01至100.0Ω-1-cm-1的导电率。
高表面积纳米纤维的这种导电纸形式可通过许多气相沉积技术例如化学气相沉积、脉冲激光沉积、等离子体化学气相沉积、物理气相沉积、电子束或磁控溅射而涂覆以硅薄层。作为替代,用于沉积遍及多孔纳米纤维结构的硅薄层的化学方法可以包括非挥发性含硅化合物或聚合物的热分解,或者基于有机溶剂的电沉积。使用硅源气体例如四氯硅烷、三氯硅烷或一甲基三氯硅烷的气相沉积特别是化学气相沉积是施加硅的一种方法。
在一个实施方案中,使用硅沉积技术遍及纳米纤维纸施加均匀的薄硅涂层。然而,涂覆硅的纳米纤维纸是在本发明的范围内,该涂覆硅的纳米纤维纸具有以多种深度进入纳米纤维纸表面的不同水平的硅,认为沉积技术通常在接近多孔体表面处比在内部产生更厚的涂层。
通过使用低密度纳米纤维纸作为基材,能够产生具有高硅含量且因而具有高储能容量的电极作为锂离子电池中的阳极材料。例如,如果由单独具有1.6g/cc密度的60nm直径纳米纤维构成的纸被均匀涂覆以10nm的硅层,则所得纸将含有49重量%的Si,并因该硅含量而具有高达2058mAh/g的理论储能容量(硅具有~4200mAh/g的理论锂离子阳极储能)。根据本发明一个实施方案的纳米纤维纸基材具有以薄膜形式容纳高硅含量的能力,其促进循环稳定性而不损失储存容量。根据本发明的一个实施方案,硅改性的纸包括约2-200nm厚且更特别约2-50nm厚的硅涂层,并且相对于所涂覆纸的总重量具有约10-90%且更特别约15-50%的硅含量。
认为硅对其导电碳纤维承载体的附着性是一种有助于重复循环的实用电极的因素。在一个实施方案中,纳米纤维纸由特定纤维类型(叠杯结构)制成。这种纤维类型具有覆盖纤维表面的碳边缘面,该面是用于化学结合的位置。这与大多数纳米管种类的结构形成对比,所述结构表现出不具有用于化学连接的价键(valence)的基面外部。虽然不希望受到限制,但认为叠杯纤维的使用促进了硅和碳之间的化学结合,并且特别良好地适合于在升高的温度下的化学气相沉积。认为也有效的其它碳纳米纤维结构包括叠置板片(platelet)、同轴管(concentrictube)、鲱骨形结构(herringbone)、螺旋片(spiral-sheet)管状结构,以及具有无定形或乱层的碳表面的纤维。
纳米纤维纸基材可按低密度形式制备。例如,来自AppliedSciences的60nm直径的PR-25纳米纤维具有1.6g/cc的密度。由它制成的纸可具有0.16g/cc的密度,从而使其具有90%孔隙率。出于下面三种原因所述纳米纤维纸基质中的空隙体积是所希望的:第一,其允许气相沉积技术在多孔结构内深入地沉积硅,因此可容纳大量的硅。第二,当它们嵌入锂时,孔隙率适应硅沉积物的体积膨胀(当硅纳入和释放锂时,已知其经历高达250%的大的可逆体积改变)。第三,其为填充这些孔穴的含锂电解质液体提供了空隙空间并且使电池起作用。这在图3中示意性地进行了显示。
纸的空隙体积是许多因素的函数,所述因素包括纤维的长度或纳米纤维的长径比、纤维形态(例如叠杯、鲱骨形结构等)以及制造期间纸的压缩程度。在一个实施方案中,纳米纤维的长径比大于100且更特别地大于500。
这样的低密度纳米纤维纸的另一个优点在于它是柔性的。例如,柔性是有用的从而使得可将电池电极围绕小直径心轴进行卷绕,从而可按“卷绕体(jelly roll)”设计制造电池。可将低密度纳米纤维纸(在用硅涂覆之前)围绕心轴卷绕成薄至约0.25英寸而不开裂。如果向其加入聚合物粘合剂,则可以将其卷绕得甚至更加紧密。
硅施加技术是提供深入到材料内的沉积的技术,并且这些技术产生薄的附着性硅层。在低于约500℃的温度下进行沉积促进了非晶态硅而不是晶态硅的形成。非晶态硅在反复的锂嵌入/脱嵌时不太倾向于失去结构附着力。高于500℃的温度还倾向于使纸越来越脆且柔性较低,因为碳纳米纤维开始彼此结合并形成较刚性的基质。
硅改性的纳米纤维纸可同时用作储能材料和集流体。这是可行的,因为:1)可将纳米纤维纸制成适合于电池用途的、一定厚度范围(例如约2-20密耳)的自立式基材;2)当纳米纤维纸由合适的纳米纤维构成时,该纳米纤维纸具有足够的导电率(约0.01至约100Ω-1-cm-1)以使其有效地用作集流体;和3)可通过加入少量促成纳米纤维的更多连接性基质的可碳化添加剂进一步增强纳米纤维纸的导电率。
掺杂有其它元素的硅沉积物(与纯硅相反)也是在本发明范围内。例如,由含氯的硅化合物的热分解或光辅助分解构成的沉积方法可以将少量氯纳入到沉积层中。出于改良循环稳定性、消除不希望的相(例如晶态Li4Si15)的形成或者改良硅层导电率的目的,可以纳入其它掺杂元素例如锡或硼。这些改性对于本领域技术人员是公知的。
可碳化添加剂可由在碳化条件下不挥发但是将热解从而留下导电性碳质残余物的任何有机材料构成,所述残余物将纸内的单个纳米纤维电连接。这些可包括如下材料,例如但不限于,聚丙烯腈、糠醇、沥青和焦油、柠檬酸以及酚醛树脂。可以将它们加入使得碳质残余物在纸中位于纳米纤维的接合点附近,而不是涂覆所述纤维或形成网状沉积物。虽然不希望受到限制,但是可以通过用它们的溶液或它们的分散体将纸浸渍并然后除去载体溶剂来加入可碳化添加剂。在一个实施方案中,使用最小量的可碳化添加剂,这提供有益的导电率增强,这是因为较高的量可能提高纸的刚度并且使其柔性较低。推荐使用小于约2重量%的该添加剂,基于碳化后纸的重量测定。在硅沉积之前将可碳化添加剂加入到纸中并且将其碳化。
还可通过将金属纳米纤丝纳入到纸中使纳米纤维纸更导电。优选的方法是使纳米纤维纸具有足够的金属纳米纤丝含量,使得可在纸结构中形成金属的接触性导电网络。当使用来自Metal Matrix Corp.的镍纳米纤丝时,大于约20重量%含量的纳米纤丝含量足以产生这样的网络。在一个实施方案中,通过在还原性气氛例如氢气中于超过375℃的温度下加热纳米纤维/纳米纤丝纸,使纸中的镍纳米纤丝在它们的接合点处熔合。使用相对低的温度(例如约375-475℃)和还原性气氛允许所得纸保持柔性,并同时为发生低温金属/金属结合提供足够的热,这是因为在这种环境中金属性表面是无氧化物的。除了镍,其它金属纳米纤维例如金和铜也是可用的。
使用涂覆硅的纳米纤维纸作为储能材料和集流体可通过消除金属集流体而允许显著降低电池的重量,相应地在重量基础上改良电池的储能。碳纳米纤维纸的硅改性不仅产生储能材料,其还产生电极。
可通过将所公开的电极的循环稳定性与容纳有颗粒形式的硅的类似纳米纤维电极对比来说明所公开的电极,所述颗粒掺入纳米纤维纸结构内。对后者电极类型进行的测试给出了初始高的容量,该容量在最初几次充电/放电循环期间急剧下降。含有50重量%硅颗粒(硅颗粒尺寸低于5微米)的纳米纤维纸在最初几个循环期间显示出下面结果:1600mAh/g、1100mAh/g、740mAh/g、475mAh/g等,最后处在约225mAh/g的水平(即为其自身碳组分的值)。在图1中显示了用这种类型电极所获得的循环数据的坐标图。
在一个实施方案中,在硅沉积步骤后将该材料的聚合物粘合剂加入到纸中以改良硅涂覆的纳米纤维纸电极的韧性和柔性。这可以通过如下方式实现:使用聚合物或弹性体的有机或水性溶液或者用聚合物(弹性体)的细颗粒乳液或分散体浸渍硅改性的纸,接着去除溶剂。作为替代方案,可通过静电喷涂、溶剂喷涂、热喷涂或等离子体喷涂技术来施加聚合物。这些聚合物的例子包括聚偏二氟乙烯(PVDF)、乙烯丙烯二烯三元共聚物以及偏二氟乙烯和六氟聚丙烯的共聚合物。可以将这些以约0.5-15重量%且更特别约0.5-5.0重量%的量纳入到纸中,基于涂覆硅的纸的重量计。
所公开的电极适合作为用于二次锂离子电池的阳极,并且其还适合作为称作“混合”或“非对称”电化学电容器的储能装置中的阳极材料。相对于高储能的电池功能,这是为强调高功率而设计的可再充电的储能装置。其由与阴极配对的所述电池阳极(例如通过双层效应储能的高表面积碳)构成,所述阴极表现出高的电容或赝电容。这种类型的电化学电容器对于本领域技术人员是公知的。
实施例1
根据专利申请No.11/586,358(Carbon Nanofiber Paper andApplications)中所描述的工序制备9-密耳厚的纳米纤维纸片材。该纸由Cedarville Ohio的Applied Sciences制造的PR-25纳米纤维制成,其具有1.6g/cc的单个密度。所述纸的密度为0.16g/cc,从而使其具有90%孔隙率。首先使该纸的样品经受高于300℃的真空处理以改良其导电率。在冷却后,用可碳化粘合剂的稀溶液(吡啶中0.15%重量/重量的中间相沥青)浸渍所述纸。在空气干燥后,于氩气氛中将所述样品加热至475℃以使沥青转变成部分碳化的粘合剂,这增强纸的导电率。利用该工序加入的碳化粘合剂的量为纸总重量的约0.5%。
接着,使用四氯硅烷气体在400-500℃的温度下对纳米纤维纸样品进行硅化学气相沉积(紫外光辅助)处理。对该沉积处理进行设计以遍及多孔纳米纤维纸的全部厚度沉积硅。在沉积后,经处理的纸的硅含量为约25重量%。然后将该纸样品作为锂离子半电池中的阳极进行检测。测试显示最初4个循环的可逆储能容量为1100mAh/g、1400mAh/g、1300mAh/g和1250mAh/g。在图2A和2B中显示了首个循环的充电/放电电压曲线,和容量与循环数目的函数关系。
实施例2
对实施例1中所描述的相同纳米纤维纸基材样品进行与实施例1中所使用的类似化学气相沉积处理。沉积了类似于实施例1的量的硅,即约20-25%。所得样品对于最初4个循环显示出1000mAh/g、950mAh/g、950mAh/g和925mAh/g的可逆储能容量。在图3A和3B中分别显示了首个循环的充电/放电电压曲线,和容量与循环数目的函数关系。
实施例3
对实施例1中所描述的相同纳米纤维纸基材样品进行与实施例1中所使用的类似化学气相沉积方法。使用气态硅烷试剂,沉积条件为保持样品于400-500℃。在这种处理后,样品为约29重量%硅。如图7中所示,在约C/15倍率下的电化学测试显示出接近1000mAh/g并具有良好的循环稳定性。在图4A和4B中分别显示了首个循环的充电/放电电压曲线,和容量与循环数目的函数关系。
实施例4
根据专利申请No.11/586,358(Carbon Nanofiber Paper andApplications)中所描述的工序制备6-密耳厚的纳米纤维纸片材。所述纸由92%的Cedarville Ohio的Applied Sciences制造的PR-25纳米纤维(其具有1.6g/cc的单个密度)和8%的Nanoblack II即Marietta Georgia的Columbian Chemicals生产的纳米纤维产品(10nm直径)制成。所述纸的密度为0.24g/cc,从而使其具有85%孔隙率。首先使该纸样品经受高于300℃的真空处理。接着在还原性气氛中将其加热至475℃以增强其导电率。与上面实施例1、2和3不同,没有向该样品中纳入可碳化粘合剂。
接着,使用四氯硅烷气体在400-500℃的温度下对该纳米纤维纸样品进行紫外线辅助的硅化学气相沉积处理。对该沉积处理进行设计以遍及多孔纳米纤维纸的全部厚度沉积硅。在沉积后,经处理的纸的硅含量为约25重量%。然后将该纸样品作为锂离子半电池中的阳极进行检测。相比于实施例1、2和3,用于该样品的测试规范(protocol)不同。在测试期间,在其充电/放电循环期间将该样品充电至仅65mV(相对于锂),与实施例1、2和3中将样品充电至接近0伏(相对于锂)形成对比。这种测试程序产生~800mAh/g的实测储能并且具有非常稳定的循环(即在循环时没有显著的储能损失)。在图5中显示了该样品的容量与循环数目的函数关系,其中在C/20的充电/放电倍率下进行最初3个循环,在C/10下进行随后的循环。黑色点对应于可逆容量,而灰色点对应于不可逆容量和可逆容量的总和。在5个循环后,黑色点和灰色点基本重叠。
通过参考特定实施例详细地描述了本发明,应当清楚的是,很多变化和修改是可行的而不背离由下面权利要求所限定的本发明。
Claims (24)
1.一种纸,其包含涂覆硅的碳纳米纤维网。
2.权利要求1的纸,其中所述碳纳米纤维包括具有叠杯形态的碳纳米纤维。
3.权利要求的2的纸,其中所述碳纳米纤维具有小于约100nm的直径。
4.权利要求1的纸,其中所述碳纳米纤维网在用硅涂覆之前测得的孔隙率大于约50%。
5.权利要求1的纸,其中所述纸具有约10-90重量%的硅含量。
6.权利要求1的纸,其中所述纸的硅内含物为非晶态、晶态或它们的组合。
7.权利要求1的纸,其中配置所述纸使其用作储能材料、或者用作储能材料和集流体。
8.权利要求1的纸,其中通过气相沉积、化学气相沉积、紫外线辅助化学气相沉积或溅射施加硅涂层。
9.权利要求8的纸,其中通过紫外线辅助化学气相沉积产生所述硅涂层。
10.权利要求1的纸,其中所述纸包括聚合物粘合剂。
11.权利要求1的纸,其中所述碳纳米纤维网含有碳化添加剂。
12.权利要求1的纸,其中所述碳纳米纤维网含有金属性纳米纤丝。
13.权利要求6的纸,其中所述硅涂层为非晶态。
14.权利要求1的纸,其中所述硅涂层为约2-200nm厚。
15.权利要求14的纸,其中所述硅涂层为约2-50nm厚。
16.权利要求14的纸,其中所述纸的硅含量为约15-50%。
17.权利要求11的纸,其中所述碳化添加剂源自于选自聚丙烯腈、糠醇、沥青和焦油、柠檬酸及酚醛树脂的可碳化添加剂。
18.权利要求17的纸,其中在用硅涂覆之前,基于所述网的重量计,碳化添加剂以小于2重量%的量存在。
19.权利要求1的纸,其中在用硅涂覆之前,所述网具有约0.05-0.8g/cc的密度。
20.权利要求1的纸,其中所述纸具有约0.01至100Ω-1-cm-1的导电率。
21.权利要求1的纸,其中掺杂硅。
22.一种电池,其含有权利要求1的涂覆硅的纳米纤维纸。
23.权利要求22的电池,其中所述纸为约2-20密耳厚。
24.一种非对称电化学电容器,其含有权利要求1的涂覆硅的纳米纤维纸。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US97056707P | 2007-09-07 | 2007-09-07 | |
US60/970,567 | 2007-09-07 | ||
PCT/US2008/075390 WO2009033015A1 (en) | 2007-09-07 | 2008-09-05 | Silicon modified nanofiber paper as an anode material for a lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101808819A true CN101808819A (zh) | 2010-08-18 |
Family
ID=40429362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200880109348A Pending CN101808819A (zh) | 2007-09-07 | 2008-09-05 | 作为用于锂二次电池的阳极材料的硅改性纳米纤维纸 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20090068553A1 (zh) |
EP (1) | EP2185356A4 (zh) |
JP (1) | JP2010538444A (zh) |
CN (1) | CN101808819A (zh) |
CA (1) | CA2697846A1 (zh) |
WO (1) | WO2009033015A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102479939A (zh) * | 2010-11-25 | 2012-05-30 | 上海交通大学 | 用于锂离子电池的电极及其制造方法 |
CN103222093A (zh) * | 2010-11-26 | 2013-07-24 | 罗伯特·博世有限公司 | 用于锂离子电池的包含纳米纤维的阳极材料 |
CN103797619A (zh) * | 2011-03-15 | 2014-05-14 | 新纳米有限公司 | 电池 |
CN104662726A (zh) * | 2012-07-03 | 2015-05-27 | 触媒能源技术公司 | 包含支撑丝的混合式能量存储装置 |
CN106463680A (zh) * | 2014-06-12 | 2017-02-22 | 戴姆勒股份公司 | 电化学储能器和电池组 |
CN106910869A (zh) * | 2011-12-21 | 2017-06-30 | 罗纳德·罗杰斯基 | 能量存储装置 |
CN111919313A (zh) * | 2018-02-26 | 2020-11-10 | 格拉芬尼克斯开发公司 | 用于锂基储能装置的阳极 |
US11127948B2 (en) | 2008-02-25 | 2021-09-21 | Cf Traverse Llc | Energy storage devices |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8828481B2 (en) * | 2007-04-23 | 2014-09-09 | Applied Sciences, Inc. | Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries |
US8119288B2 (en) * | 2007-11-05 | 2012-02-21 | Nanotek Instruments, Inc. | Hybrid anode compositions for lithium ion batteries |
US7745047B2 (en) * | 2007-11-05 | 2010-06-29 | Nanotek Instruments, Inc. | Nano graphene platelet-base composite anode compositions for lithium ion batteries |
US9564629B2 (en) * | 2008-01-02 | 2017-02-07 | Nanotek Instruments, Inc. | Hybrid nano-filament anode compositions for lithium ion batteries |
US20090186276A1 (en) * | 2008-01-18 | 2009-07-23 | Aruna Zhamu | Hybrid nano-filament cathode compositions for lithium metal or lithium ion batteries |
US9966197B2 (en) | 2009-02-25 | 2018-05-08 | Cf Traverse Llc | Energy storage devices including support filaments |
US9941709B2 (en) | 2009-02-25 | 2018-04-10 | Cf Traverse Llc | Hybrid energy storage device charging |
US9412998B2 (en) * | 2009-02-25 | 2016-08-09 | Ronald A. Rojeski | Energy storage devices |
US10205166B2 (en) | 2008-02-25 | 2019-02-12 | Cf Traverse Llc | Energy storage devices including stabilized silicon |
US9431181B2 (en) | 2009-02-25 | 2016-08-30 | Catalyst Power Technologies | Energy storage devices including silicon and graphite |
US10193142B2 (en) | 2008-02-25 | 2019-01-29 | Cf Traverse Llc | Lithium-ion battery anode including preloaded lithium |
US9362549B2 (en) * | 2011-12-21 | 2016-06-07 | Cpt Ip Holdings, Llc | Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers |
US9979017B2 (en) | 2009-02-25 | 2018-05-22 | Cf Traverse Llc | Energy storage devices |
US9349544B2 (en) | 2009-02-25 | 2016-05-24 | Ronald A Rojeski | Hybrid energy storage devices including support filaments |
JP5765942B2 (ja) | 2008-02-25 | 2015-08-19 | ロナルド エイ ロジェスキー | 高容量電極 |
US11233234B2 (en) | 2008-02-25 | 2022-01-25 | Cf Traverse Llc | Energy storage devices |
US10056602B2 (en) | 2009-02-25 | 2018-08-21 | Cf Traverse Llc | Hybrid energy storage device production |
US9705136B2 (en) * | 2008-02-25 | 2017-07-11 | Traverse Technologies Corp. | High capacity energy storage |
US9917300B2 (en) | 2009-02-25 | 2018-03-13 | Cf Traverse Llc | Hybrid energy storage devices including surface effect dominant sites |
US8968820B2 (en) * | 2008-04-25 | 2015-03-03 | Nanotek Instruments, Inc. | Process for producing hybrid nano-filament electrodes for lithium batteries |
US20100062338A1 (en) * | 2008-09-11 | 2010-03-11 | Lockheed Martin Corporation | Nanostructured anode for high capacity rechargeable batteries |
US11996550B2 (en) | 2009-05-07 | 2024-05-28 | Amprius Technologies, Inc. | Template electrode structures for depositing active materials |
US8257866B2 (en) | 2009-05-07 | 2012-09-04 | Amprius, Inc. | Template electrode structures for depositing active materials |
US20100285358A1 (en) | 2009-05-07 | 2010-11-11 | Amprius, Inc. | Electrode Including Nanostructures for Rechargeable Cells |
US20140370380A9 (en) * | 2009-05-07 | 2014-12-18 | Yi Cui | Core-shell high capacity nanowires for battery electrodes |
DK2433475T3 (da) * | 2009-05-19 | 2021-05-10 | Oned Mat Inc | Nanostrukturerede materialer til batterianvendelser |
US8450012B2 (en) | 2009-05-27 | 2013-05-28 | Amprius, Inc. | Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries |
JP5752696B2 (ja) * | 2009-09-29 | 2015-07-22 | ジョージア テック リサーチ コーポレイション | 電極、リチウムイオン電池ならびにこれらを作製する方法および使用する方法 |
US8236452B2 (en) * | 2009-11-02 | 2012-08-07 | Nanotek Instruments, Inc. | Nano-structured anode compositions for lithium metal and lithium metal-air secondary batteries |
WO2011068911A2 (en) * | 2009-12-02 | 2011-06-09 | Cq Energy, Inc. | High capacity electrode materials enhanced by amorphous silicon |
US9061902B2 (en) | 2009-12-18 | 2015-06-23 | The Board Of Trustees Of The Leland Stanford Junior University | Crystalline-amorphous nanowires for battery electrodes |
US9112240B2 (en) * | 2010-01-04 | 2015-08-18 | Nanotek Instruments, Inc. | Lithium metal-sulfur and lithium ion-sulfur secondary batteries containing a nano-structured cathode and processes for producing same |
US8962188B2 (en) * | 2010-01-07 | 2015-02-24 | Nanotek Instruments, Inc. | Anode compositions for lithium secondary batteries |
JP2013516746A (ja) * | 2010-01-11 | 2013-05-13 | アンプリウス、インコーポレイテッド | 可変容量電池アセンブリ |
US20110189510A1 (en) * | 2010-01-29 | 2011-08-04 | Illuminex Corporation | Nano-Composite Anode for High Capacity Batteries and Methods of Forming Same |
US9172088B2 (en) | 2010-05-24 | 2015-10-27 | Amprius, Inc. | Multidimensional electrochemically active structures for battery electrodes |
US9780365B2 (en) | 2010-03-03 | 2017-10-03 | Amprius, Inc. | High-capacity electrodes with active material coatings on multilayered nanostructured templates |
KR20130012021A (ko) * | 2010-03-22 | 2013-01-30 | 암프리우스, 인코포레이티드 | 전기화학적 활물질 나노구조체 상호연결 |
WO2012067943A1 (en) | 2010-11-15 | 2012-05-24 | Amprius, Inc. | Electrolytes for rechargeable batteries |
JP5376530B2 (ja) * | 2010-11-29 | 2013-12-25 | テックワン株式会社 | 負極活物質、負極製造方法、負極、及び二次電池 |
DE102011008814A1 (de) * | 2011-01-19 | 2012-07-19 | Volkswagen Ag | Verfahren zur Herstellung von einem Kohlenstoffträger mit auf der Oberfläche befindlichen nanoskaligen Siliciumpartikeln sowie ein entsprechender Kohlenstoffträger insbesondere für den Einsatz in Akkumulatoren |
WO2013003846A2 (en) * | 2011-06-30 | 2013-01-03 | The Regents Of The University Of California | Surface insulated porous current collectors as dendrite free electrodeposition electrodes |
KR20140051928A (ko) | 2011-07-01 | 2014-05-02 | 암프리우스, 인코포레이티드 | 향상된 접착 특성을 가진 템플레이트 전극 구조체 |
KR20130056668A (ko) * | 2011-11-22 | 2013-05-30 | 삼성전자주식회사 | 복합 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 |
EP3644413A1 (en) * | 2012-02-27 | 2020-04-29 | Ronald Anthony Rojeski | Hybrid energy storage devices |
WO2013187452A1 (ja) | 2012-06-13 | 2013-12-19 | 株式会社三五 | リチウム二次電池用負極及びその製造方法 |
HK1211563A1 (zh) | 2012-10-12 | 2016-05-27 | 宾夕法尼亚州研究基金会 | 微米尺寸的互連si-c複合材料的合成 |
CN105264654A (zh) * | 2013-01-07 | 2016-01-20 | 威廉马歇莱思大学 | 用于制备多孔硅微粒的电化学和化学蚀刻的组合方法 |
US9640332B2 (en) * | 2013-12-20 | 2017-05-02 | Intel Corporation | Hybrid electrochemical capacitor |
DE102014208274A1 (de) * | 2014-05-02 | 2015-11-05 | Robert Bosch Gmbh | Poröses Silizium-Kohlenstoff-Verbundmaterial |
US9923201B2 (en) | 2014-05-12 | 2018-03-20 | Amprius, Inc. | Structurally controlled deposition of silicon onto nanowires |
DE102014008739A1 (de) * | 2014-06-12 | 2015-12-17 | Daimler Ag | Elektrodenmaterial für einen elektrochemischen Speicher, Verfahren zur Herstellung eines Elektrodenmaterials sowie elektrochemischer Energiespeicher |
US10128496B2 (en) | 2014-08-14 | 2018-11-13 | Giner, Inc. | Three-dimensional, porous anode for use in lithium-ion batteries and method of fabrication thereof |
US10782014B2 (en) | 2016-11-11 | 2020-09-22 | Habib Technologies LLC | Plasmonic energy conversion device for vapor generation |
US10581082B2 (en) * | 2016-11-15 | 2020-03-03 | Nanocomp Technologies, Inc. | Systems and methods for making structures defined by CNT pulp networks |
US10559826B2 (en) | 2017-03-20 | 2020-02-11 | Global Graphene Group, Inc. | Multivalent metal ion battery having a cathode of recompressed graphite worms and manufacturing method |
US11791449B2 (en) * | 2017-03-20 | 2023-10-17 | Global Graphene Group, Inc. | Multivalent metal ion battery and manufacturing method |
US10411291B2 (en) | 2017-03-22 | 2019-09-10 | Nanotek Instruments, Inc. | Multivalent metal ion battery having a cathode layer of protected graphitic carbon and manufacturing method |
KR20210126747A (ko) | 2019-02-22 | 2021-10-20 | 암프리우스, 인코포레이티드 | 리튬 이온 배터리 애노드에서 사용하기 위한 조성적으로 변성된 실리콘 코팅 |
Family Cites Families (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6375917B1 (en) * | 1984-12-06 | 2002-04-23 | Hyperion Catalysis International, Inc. | Apparatus for the production of carbon fibrils by catalysis and methods thereof |
US5165909A (en) * | 1984-12-06 | 1992-11-24 | Hyperion Catalysis Int'l., Inc. | Carbon fibrils and method for producing same |
US4663230A (en) * | 1984-12-06 | 1987-05-05 | Hyperion Catalysis International, Inc. | Carbon fibrils, method for producing same and compositions containing same |
US5171560A (en) * | 1984-12-06 | 1992-12-15 | Hyperion Catalysis International | Carbon fibrils, method for producing same, and encapsulated catalyst |
US5024818A (en) * | 1990-10-09 | 1991-06-18 | General Motors Corporation | Apparatus for forming carbon fibers |
US5374415A (en) * | 1993-02-03 | 1994-12-20 | General Motors Corporation | Method for forming carbon fibers |
WO1994018714A1 (en) * | 1993-02-12 | 1994-08-18 | Valence Technology, Inc. | Electrodes for rechargeable lithium batteries |
US5837081A (en) * | 1993-04-07 | 1998-11-17 | Applied Sciences, Inc. | Method for making a carbon-carbon composite |
CA2127621C (en) * | 1994-07-08 | 1999-12-07 | Alfred Macdonald Wilson | Carbonaceous insertion compounds and use as anodes in rechargeable batteries |
US6203814B1 (en) * | 1994-12-08 | 2001-03-20 | Hyperion Catalysis International, Inc. | Method of making functionalized nanotubes |
US20040202603A1 (en) * | 1994-12-08 | 2004-10-14 | Hyperion Catalysis International, Inc. | Functionalized nanotubes |
JP3581474B2 (ja) * | 1995-03-17 | 2004-10-27 | キヤノン株式会社 | リチウムを利用する二次電池 |
US5846509A (en) * | 1995-09-11 | 1998-12-08 | Applied Sciences, Inc. | Method of producing vapor grown carbon fibers using coal |
US5753387A (en) * | 1995-11-24 | 1998-05-19 | Kabushiki Kaisha Toshiba | Lithium secondary battery |
RU98120524A (ru) * | 1996-05-15 | 2000-10-10 | Хайперион Каталайзис Интернэшнл | Графитовые нановолокна в электрохимических конденсаторах |
US6051096A (en) * | 1996-07-11 | 2000-04-18 | Nagle; Dennis C. | Carbonized wood and materials formed therefrom |
DE69728410T2 (de) * | 1996-08-08 | 2005-05-04 | William Marsh Rice University, Houston | Makroskopisch manipulierbare, aus nanoröhrenanordnungen hergestellte vorrichtungen |
US6683783B1 (en) * | 1997-03-07 | 2004-01-27 | William Marsh Rice University | Carbon fibers formed from single-wall carbon nanotubes |
US6479030B1 (en) * | 1997-09-16 | 2002-11-12 | Inorganic Specialists, Inc. | Carbon electrode material |
JP4393610B2 (ja) * | 1999-01-26 | 2010-01-06 | 日本コークス工業株式会社 | リチウム二次電池用負極材料、リチウム二次電池、及び同二次電池の充電方法 |
US20050181209A1 (en) * | 1999-08-20 | 2005-08-18 | Karandikar Prashant G. | Nanotube-containing composite bodies, and methods for making same |
GB9919807D0 (en) * | 1999-08-21 | 1999-10-27 | Aea Technology Plc | Anode for rechargeable lithium cell |
US6395427B1 (en) * | 1999-11-04 | 2002-05-28 | Samsung Sdi Co., Ltd. | Negative active material for rechargeable lithium battery and method of preparing same |
GB0009319D0 (en) * | 2000-04-17 | 2000-05-31 | Technical Fibre Products Limit | Conductive sheet material |
WO2002016257A2 (en) * | 2000-08-24 | 2002-02-28 | William Marsh Rice University | Polymer-wrapped single wall carbon nanotubes |
US6682677B2 (en) * | 2000-11-03 | 2004-01-27 | Honeywell International Inc. | Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns |
JP2004192808A (ja) * | 2001-01-18 | 2004-07-08 | Sony Corp | プロトン伝導体及びその製造方法、並びに電気化学デバイス |
JP3520921B2 (ja) * | 2001-03-27 | 2004-04-19 | 日本電気株式会社 | 二次電池用負極およびそれを用いた二次電池 |
US6689835B2 (en) * | 2001-04-27 | 2004-02-10 | General Electric Company | Conductive plastic compositions and method of manufacture thereof |
JP4207398B2 (ja) * | 2001-05-21 | 2009-01-14 | 富士ゼロックス株式会社 | カーボンナノチューブ構造体の配線の製造方法、並びに、カーボンナノチューブ構造体の配線およびそれを用いたカーボンナノチューブデバイス |
US6988304B2 (en) * | 2001-06-14 | 2006-01-24 | Aircraft Braking Systems Corporation | Method of containing a phase change material in a porous carbon material and articles produced thereby |
JP2003086022A (ja) * | 2001-06-29 | 2003-03-20 | Sony Corp | プロトン伝導体及びこれを用いた電気化学デバイス |
US6835591B2 (en) * | 2001-07-25 | 2004-12-28 | Nantero, Inc. | Methods of nanotube films and articles |
US6706402B2 (en) * | 2001-07-25 | 2004-03-16 | Nantero, Inc. | Nanotube films and articles |
US6680016B2 (en) * | 2001-08-17 | 2004-01-20 | University Of Dayton | Method of forming conductive polymeric nanocomposite materials |
US6713519B2 (en) * | 2001-12-21 | 2004-03-30 | Battelle Memorial Institute | Carbon nanotube-containing catalysts, methods of making, and reactions catalyzed over nanotube catalysts |
KR20040096630A (ko) * | 2002-03-01 | 2004-11-16 | 이 아이 듀폰 디 네모아 앤드 캄파니 | 첨가제를 함유하는 유기 전도성 중합체의 인쇄 |
US20040038251A1 (en) * | 2002-03-04 | 2004-02-26 | Smalley Richard E. | Single-wall carbon nanotubes of precisely defined type and use thereof |
US6899945B2 (en) * | 2002-03-19 | 2005-05-31 | William Marsh Rice University | Entangled single-wall carbon nanotube solid material and methods for making same |
US6905667B1 (en) * | 2002-05-02 | 2005-06-14 | Zyvex Corporation | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
WO2004109837A2 (en) * | 2002-10-31 | 2004-12-16 | Carbon Nanotechnologies, Inc. | Fuel cell electrode comprising carbon nanotubes |
JP2006505483A (ja) * | 2002-11-26 | 2006-02-16 | カーボン ナノテクノロジーズ インコーポレーテッド | カーボンナノチューブ微粒子、組成物及びその使用法 |
JP4345308B2 (ja) * | 2003-01-15 | 2009-10-14 | 富士ゼロックス株式会社 | ポリマーコンポジットおよびその製造方法 |
US6918284B2 (en) * | 2003-03-24 | 2005-07-19 | The United States Of America As Represented By The Secretary Of The Navy | Interconnected networks of single-walled carbon nanotubes |
US7972616B2 (en) * | 2003-04-17 | 2011-07-05 | Nanosys, Inc. | Medical device applications of nanostructured surfaces |
CA2526946A1 (en) * | 2003-05-14 | 2005-04-07 | Nantero, Inc. | Sensor platform using a non-horizontally oriented nanotube element |
US6837511B1 (en) * | 2003-06-04 | 2005-01-04 | Johnson, Iii G. Cliff | Cam locking removable hitch assembly apparatus and system |
US20050112450A1 (en) * | 2003-09-08 | 2005-05-26 | Intematix Corporation | Low platinum fuel cell catalysts and method for preparing the same |
US20050136321A1 (en) * | 2003-11-26 | 2005-06-23 | Bailey John C. | Fluid consuming battery with fluid regulating system |
US7374977B2 (en) * | 2003-12-17 | 2008-05-20 | Semiconductor Energy Laboratory Co., Ltd. | Droplet discharge device, and method for forming pattern, and method for manufacturing display device |
KR101128351B1 (ko) * | 2004-02-19 | 2012-03-26 | 도레이 카부시키가이샤 | 나노섬유 배합용액, 유액 및 겔상물 및 그 제조방법 및나노섬유 합성지 및 그 제조방법 |
US20060062985A1 (en) * | 2004-04-26 | 2006-03-23 | Karandikar Prashant G | Nanotube-containing composite bodies, and methods for making same |
JP2006134630A (ja) * | 2004-11-04 | 2006-05-25 | Honda Motor Co Ltd | 固体高分子型燃料電池の電極構造体 |
US7351360B2 (en) * | 2004-11-12 | 2008-04-01 | International Business Machines Corporation | Self orienting micro plates of thermally conducting material as component in thermal paste or adhesive |
EP1829141B1 (en) * | 2004-12-09 | 2013-05-29 | Nanosys, Inc. | Nanowire-based membrane electrode assemblies for fuel cells |
KR100901048B1 (ko) * | 2005-12-28 | 2009-06-04 | 파나소닉 주식회사 | 비수 전해질 이차 전지 |
US8828481B2 (en) * | 2007-04-23 | 2014-09-09 | Applied Sciences, Inc. | Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries |
-
2008
- 2008-09-05 CN CN200880109348A patent/CN101808819A/zh active Pending
- 2008-09-05 JP JP2010524177A patent/JP2010538444A/ja active Pending
- 2008-09-05 CA CA2697846A patent/CA2697846A1/en not_active Abandoned
- 2008-09-05 WO PCT/US2008/075390 patent/WO2009033015A1/en active Application Filing
- 2008-09-05 EP EP08799230A patent/EP2185356A4/en not_active Withdrawn
- 2008-09-08 US US12/206,009 patent/US20090068553A1/en not_active Abandoned
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11127948B2 (en) | 2008-02-25 | 2021-09-21 | Cf Traverse Llc | Energy storage devices |
CN102479939A (zh) * | 2010-11-25 | 2012-05-30 | 上海交通大学 | 用于锂离子电池的电极及其制造方法 |
CN102479939B (zh) * | 2010-11-25 | 2016-08-03 | 上海交通大学 | 用于锂离子电池的电极及其制造方法 |
CN103222093A (zh) * | 2010-11-26 | 2013-07-24 | 罗伯特·博世有限公司 | 用于锂离子电池的包含纳米纤维的阳极材料 |
US9293762B2 (en) | 2010-11-26 | 2016-03-22 | Robert Bosch Gmbh | Anode material including nanofibers for a lithium ion cell |
CN103222093B (zh) * | 2010-11-26 | 2016-09-14 | 罗伯特·博世有限公司 | 用于锂离子电池的包含纳米纤维的阳极材料 |
CN103797619A (zh) * | 2011-03-15 | 2014-05-14 | 新纳米有限公司 | 电池 |
CN106910869A (zh) * | 2011-12-21 | 2017-06-30 | 罗纳德·罗杰斯基 | 能量存储装置 |
CN104662726B (zh) * | 2012-07-03 | 2017-11-10 | 触媒能源技术公司 | 包含支撑丝的混合式能量存储装置 |
CN108123099A (zh) * | 2012-07-03 | 2018-06-05 | 触媒能源技术公司 | 包含支撑丝的混合式能量存储装置 |
CN112349879A (zh) * | 2012-07-03 | 2021-02-09 | 触媒能源技术公司 | 包含支撑丝的混合式能量存储装置 |
CN108123099B (zh) * | 2012-07-03 | 2021-06-08 | 触媒能源技术公司 | 包含支撑丝的混合式能量存储装置 |
CN104662726A (zh) * | 2012-07-03 | 2015-05-27 | 触媒能源技术公司 | 包含支撑丝的混合式能量存储装置 |
CN106463680A (zh) * | 2014-06-12 | 2017-02-22 | 戴姆勒股份公司 | 电化学储能器和电池组 |
US10490819B2 (en) | 2014-06-12 | 2019-11-26 | Daimler Ag | Electrochemical energy storage system and battery |
CN106463680B (zh) * | 2014-06-12 | 2020-05-15 | 戴姆勒股份公司 | 电化学储能器和电池组 |
CN111919313A (zh) * | 2018-02-26 | 2020-11-10 | 格拉芬尼克斯开发公司 | 用于锂基储能装置的阳极 |
CN111919313B (zh) * | 2018-02-26 | 2024-06-04 | 格拉芬尼克斯开发公司 | 用于锂基储能装置的阳极 |
Also Published As
Publication number | Publication date |
---|---|
US20090068553A1 (en) | 2009-03-12 |
EP2185356A4 (en) | 2012-09-12 |
WO2009033015A1 (en) | 2009-03-12 |
EP2185356A1 (en) | 2010-05-19 |
CA2697846A1 (en) | 2009-03-12 |
JP2010538444A (ja) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101808819A (zh) | 作为用于锂二次电池的阳极材料的硅改性纳米纤维纸 | |
An et al. | 2D metal Zn nanostructure electrodes for high‐performance Zn ion supercapacitors | |
CN101438360B (zh) | 具有碳纳米管电极的高功率密度超电容器 | |
Zhu et al. | Highly conductive three-dimensional MnO 2–carbon nanotube–graphene–Ni hybrid foam as a binder-free supercapacitor electrode | |
Wang et al. | Well-designed sophisticated structure of sandwich-like CC@ NiAl-LDH@ GO@ NiCo-LDH material with unique advantages for high performance and practicality hybrid quasi-solid-state supercapacitors | |
Du et al. | High power density supercapacitor electrodes of carbon nanotube films by electrophoreticdeposition | |
KR101653019B1 (ko) | 도전성 시트 및 전극 | |
Nwanya et al. | Facile synthesis of nanosheet-like CuO film and its potential application as a high-performance pseudocapacitor electrode | |
Xia et al. | Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance | |
Ovhal et al. | Asymmetric supercapacitor featuring carbon nanotubes and nickel hydroxide grown on carbon fabric: A study of self-discharging characteristics | |
Zhang et al. | High-performance all-solid-state flexible supercapacitors based on manganese dioxide/carbon fibers | |
US8213157B2 (en) | Single-wall carbon nanotube supercapacitor | |
JP2007527099A (ja) | 硫黄または金属ナノ粒子を接着剤として含む炭素ナノチューブまたは炭素ナノファイバ電極及びこの電極の製造方法 | |
JP2010080419A (ja) | 導電性シートおよび電極用シート | |
Liu et al. | Heterogeneous cobalt polysulfide leaf-like array/carbon nanofiber composites derived from zeolite imidazole framework for advanced asymmetric supercapacitors | |
Huang et al. | MnO2/carbon nanotube-embedded carbon nanofibers as core–shell cables for high performing asymmetric flexible supercapacitors | |
KR102448549B1 (ko) | 직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법 | |
Xi et al. | Direct synthesis of MnO2 nanorods on carbon cloth as flexible supercapacitor electrode | |
Zhou et al. | Three‐dimensional NiMoO4 nanosheets supported on a carbon fibers@ pre‐treated Ni Foam (CF@ PNF) substrate as advanced electrodes for asymmetric supercapacitors | |
Yadav et al. | Crystalline flower-like nickel cobaltite nanosheets coated with amorphous titanium nitride layer as binder-free electrodes for supercapacitor application | |
Zhang et al. | Nickel oxide grown on carbon nanotubes/carbon fiber paper by electrodeposition as flexible electrode for high-performance supercapacitors | |
Abreu et al. | Direct laser writing of MnOx decorated laser-induced graphene on paper for sustainable microsupercapacitor fabrication | |
CN113488343A (zh) | 一种基于MOFs多孔碳的多组分柔性电极、制备方法及应用 | |
CN108028139A (zh) | 含碳复合材料和电极 | |
Kang et al. | Enhancing the cycling stability of commercial silicon nanoparticles by carbon coating and thin layered single-walled carbon nanotube webbing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20100818 |