CN101808071A - Synchronizing method of OFDM (Orthogonal Frequency Division Multiplexing) system - Google Patents
Synchronizing method of OFDM (Orthogonal Frequency Division Multiplexing) system Download PDFInfo
- Publication number
- CN101808071A CN101808071A CN 201010169388 CN201010169388A CN101808071A CN 101808071 A CN101808071 A CN 101808071A CN 201010169388 CN201010169388 CN 201010169388 CN 201010169388 A CN201010169388 A CN 201010169388A CN 101808071 A CN101808071 A CN 101808071A
- Authority
- CN
- China
- Prior art keywords
- ofdm symbol
- sample point
- ofdm
- frequency deviation
- corrected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及的是一种通信技术领域的方法,具体是一种OFDM(Orthogonal Frequency DivisionMultiplexing,正交频分复用)系统的同步方法。The present invention relates to a method in the technical field of communication, in particular to a synchronization method for an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) system.
背景技术Background technique
OFDM是一种无线环境下的高速传输技术,无线信道由于其复杂性,其信道条件比较复杂,其信道的频率响应大多非平坦的,针对这一特点,OFDM技术的主要技术要点就是将频域中将信道分为多个正交的子信道,每个子信道为一个子载波进行调制。这样尽管整个信道上体现出频率选择性,但是对于每个子信道而言,其频率响应是平坦的,对于每个子信道,信号的带宽小于信道的相干带宽,因此可以大大抑制信号波形之间的干扰。在OFDM系统中,同时由于各个子载波之间的相互正交性,可以达到较高的频谱利用率。OFDM is a high-speed transmission technology in a wireless environment. Due to the complexity of the wireless channel, the channel conditions are more complicated, and the frequency response of the channel is mostly non-flat. In view of this feature, the main technical point of OFDM technology is to convert the frequency domain The channel is divided into multiple orthogonal sub-channels, and each sub-channel modulates a sub-carrier. In this way, although the frequency selectivity is reflected on the entire channel, for each sub-channel, its frequency response is flat, and for each sub-channel, the bandwidth of the signal is smaller than the coherent bandwidth of the channel, so the interference between signal waveforms can be greatly suppressed . In the OFDM system, at the same time, due to the mutual orthogonality between each subcarrier, a higher spectrum utilization rate can be achieved.
OFDM对于无线系统有明显的优点,因此得到了广泛的应用,例如IEEE802.11a/b/g/n无线局域网(Wi-Fi),IEEE802.16无线城域网(Wi-MAX),数字音频广播(DAB),数字电视广播(DVB),以及3GPP的长期演进计划(LTE)以及LTE_Advanced,同时OFDM技术与MIMO技术的结合已经成为下一代移动通信的关键技术,OFDM技术会在将来的通信系统中起到更加重要的作用。OFDM has obvious advantages for wireless systems, so it has been widely used, such as IEEE802.11a/b/g/n wireless local area network (Wi-Fi), IEEE802.16 wireless metropolitan area network (Wi-MAX), digital audio broadcasting (DAB), digital television broadcasting (DVB), and 3GPP's long-term evolution plan (LTE) and LTE_Advanced. At the same time, the combination of OFDM technology and MIMO technology has become a key technology for next-generation mobile communications. OFDM technology will be used in future communication systems play a more important role.
但是,OFDM技术也有其缺陷和不足,就是OFDM系统各个子载波之间的正交性是其工作重要基础,就必须要有良好的同步技术确保系统中的各个子载波有良好的正交性。那么对于OFDM系统,就要提供更加精确的同步性能。OFDM系统的同步主要包括两个方面:一是符号定时估计(下面简称定时同步),若定时同步与实际位置不一致,就会带来频域的相位偏移,加重符号间干扰(ISI);二是载波频率偏移估计(下面简称载波同步),载波偏移产生的原因主要是,发端(TX)与收端(RX)之间的晶振频率不匹配、收发设备的本地载频之间的偏差、信道的多普勒频移等。由于OFDM系统中要求各个子载波之间的正交性,而频率偏移会破坏子载波之间的正交性,因此其存在导致子载波间的干扰(ICI)。However, OFDM technology also has its defects and shortcomings, that is, the orthogonality between subcarriers of OFDM system is an important basis for its work, and good synchronization technology is necessary to ensure that each subcarrier in the system has good orthogonality. Then for the OFDM system, it is necessary to provide more accurate synchronization performance. The synchronization of the OFDM system mainly includes two aspects: one is the symbol timing estimation (hereinafter referred to as timing synchronization), if the timing synchronization is inconsistent with the actual position, it will bring a phase shift in the frequency domain and aggravate the inter-symbol interference (ISI); two It is the estimation of carrier frequency offset (hereinafter referred to as carrier synchronization). The main reason for carrier offset is that the frequency of the crystal oscillator between the transmitting end (TX) and the receiving end (RX) does not match, and the deviation between the local carrier frequencies of the transceiver equipment , channel Doppler shift, etc. Since the OFDM system requires the orthogonality between subcarriers, the frequency offset will destroy the orthogonality between subcarriers, so its existence causes inter-subcarrier interference (ICI).
到目前为止,已经有大量的OFDM系统同步方法被提出来,包括使用训练序列和循环前缀(CP),训练序列时在传输数据之前发送一段已知的序列,一般有良好的自相关性,能够用于定时同步和载波同步。采用循环前缀可以进行同步,但是一般来说其性能不如使用训练序列,但是正是其不需要附加的训练序列,因而可以得到更高的频谱利用率。So far, a large number of OFDM system synchronization methods have been proposed, including the use of training sequences and cyclic prefixes (CP). When training sequences, a known sequence is sent before data transmission. Generally, it has good autocorrelation and can Used for timing synchronization and carrier synchronization. Synchronization can be performed by using a cyclic prefix, but generally speaking, its performance is not as good as using a training sequence, but it does not require an additional training sequence, so higher spectrum utilization can be obtained.
经对现有文献检索发现,中国的专利申请号为:200510040501.3,名称为:一种循环前缀OFDM系统同步方法,该技术提出仅利用OFDM符号的循环前缀进行定时和频偏估计。但是该技术在进行定时同步时仅仅利用最大循环前缀能量进行定时判决,未能对数据进行归一化,不利于判决门限的设定,在定时同步频偏估计过程中仅仅采用当前OFDM符号的频偏估计值作为频偏估计结果,没有进行循环迭代与合并,在信噪比较低的情况下会影响估计的稳定性和精确程度;未考虑信道条件的影响,导致同步时间较长。After searching the existing literature, it is found that the Chinese patent application number is: 200510040501.3, and the name is: a cyclic prefix OFDM system synchronization method. This technology proposes to use only the cyclic prefix of OFDM symbols for timing and frequency offset estimation. However, this technology only uses the maximum cyclic prefix energy for timing judgment during timing synchronization, and fails to normalize the data, which is not conducive to the setting of the judgment threshold. In the timing synchronization frequency offset estimation process, only the frequency of the current OFDM symbol is used. The offset estimate is used as the result of frequency offset estimation, without cyclic iteration and combination, which will affect the stability and accuracy of the estimation when the signal-to-noise ratio is low; the influence of channel conditions is not considered, resulting in a longer synchronization time.
发明内容Contents of the invention
本发明的目的在于克服现有技术的上述不足,提供一种OFDM系统的同步方法。本发明在信道性能良好条件下减少同步的时间;同时通过迭代提高定时同步和频偏估计的精度和稳定性。The object of the present invention is to overcome the above-mentioned shortcomings of the prior art, and provide a synchronization method for an OFDM system. The invention reduces the time of synchronization under the condition of good channel performance; at the same time, it improves the accuracy and stability of timing synchronization and frequency offset estimation through iteration.
本发明是通过以下技术方案实现的,本发明包括以下步骤:The present invention is achieved through the following technical solutions, and the present invention comprises the following steps:
第一步,对接收到的数据进行定时同步估计处理,得到第一个OFDM符号的起始样点是第θ1个 样点,提取第一个OFDM符号中第θ1个样点的相关峰值P1。The first step is to perform timing synchronization estimation processing on the received data, obtain the starting sample point of the first OFDM symbol is the θ 1st sample point, and extract the correlation peak value of the θ 1st sample point in the first OFDM symbol P1 .
所述的定时同步估计处理,包括以下步骤:The timing synchronization estimation process includes the following steps:
1)得到接收数据每个OFDM符号中每个样点的相关值,具体是:1) Obtain the correlation value of each sample point in each OFDM symbol of the received data, specifically:
其中:Cori(k)为第i个OFDM符号中第k个样点的相关值,ri(k)为第i个OFDM符号中第k个样点的接收数据,N为每个OFDM符号的FFT长度,B代表估计时的退回长度,*代表共轭,1≤i。Among them: Cor i (k) is the correlation value of the k-th sample point in the i-th OFDM symbol, ri (k) is the received data of the k-th sample point in the i-th OFDM symbol, and N is each OFDM symbol The FFT length of , B represents the back-off length in estimation, * represents the conjugate, 1≤i.
2)对每个样点的相关值进行归一化,具体是:2) Normalize the correlation value of each sample point, specifically:
Mi=2n+1,n∈N+, M i =2n+1, n∈N + ,
其中:为第i个OFDM符号中第k个样点的归一化相关值,Mi为第i个OFDM符号平滑窗的长度,Cori(k+l)是第i个OFDM符号中第(k+l)个样点的相关值。in: is the normalized correlation value of the kth sample point in the ith OFDM symbol, M i is the length of the smoothing window of the ith OFDM symbol, Cor i (k+l) is the (k+l) of the ith OFDM symbol l) Correlation value of sample points.
3)当接收数据中最早出现的OFDM符号中最大的归一化相关值大于判决门限Thr,则该OFDM符号就是第一个OFDM符号,OFDM符号中最大的归一化相关值所对应的样点就是该OFDM符号的起始样点。3) When the largest normalized correlation value in the earliest OFDM symbol in the received data is greater than the decision threshold Thr, the OFDM symbol is the first OFDM symbol, and the sample point corresponding to the largest normalized correlation value in the OFDM symbol is the starting sample point of the OFDM symbol.
第二步,对第一个OFDM符号进行频偏估计处理,得到第一个OFDM符号的频率偏差f1。In the second step, frequency offset estimation processing is performed on the first OFDM symbol to obtain the frequency offset f 1 of the first OFDM symbol.
所述的频偏估计处理,具体是:The frequency offset estimation process is specifically:
fi=εi□Δ,f i =ε i □Δ,
其中:
fi是第i个OFDM符号的频率偏差,ΔF为OFDM系统的子载波间隔,N为OFDM符号的FFT(快速傅里叶变换)长度,L为OFDM符号循环前缀的长度,θi是第i个OFDM符号的起始样点的位置,εi是第i个OFDM符号的归一化偏差,1≤i,i=1时r1(k)为第一个OFDM符号的第k个样点的数据,i>1时ri(k)是第i个OFDM符号第k个样点纠正后的数据。f i is the frequency deviation of the i-th OFDM symbol, ΔF is the subcarrier spacing of the OFDM system, N is the FFT (Fast Fourier Transform) length of the OFDM symbol, L is the length of the cyclic prefix of the OFDM symbol, and θ i is the i-th The position of the starting sample point of each OFDM symbol, ε i is the normalized deviation of the i-th OFDM symbol, 1≤i, when i=1, r 1 (k) is the k-th sample point of the first OFDM symbol When i>1, r i (k) is the corrected data of the kth sample point of the ith OFDM symbol.
第三步,根据第一个OFDM符号中起始样点的相关峰值P1的大小,通过查表设定OFDM系统的同步迭代次数T和频偏修正参数K,并对第二个OFDM符号进行频偏纠正,得到纠正后的第二个OFDM符号中每个样点的数据以及第二个OFDM符号纠正后的频率偏差。In the third step, according to the size of the correlation peak value P1 of the initial sample point in the first OFDM symbol, the number of synchronization iterations T and the frequency offset correction parameter K of the OFDM system are set by looking up the table, and the second OFDM symbol is performed For frequency offset correction, the corrected data of each sample point in the second OFDM symbol and the corrected frequency offset of the second OFDM symbol are obtained.
所述的频偏纠正,具体是:The frequency offset correction is specifically:
f′i=f′i-1+Kfi-1,3≤i≤T,f' i =f' i-1 +Kf i-1 , 3≤i≤T,
其中:f′2=f1,Where: f′ 2 =f 1 ,
r′j(k)是第j个OFDM符号中第k个样点纠正后的数据,rj(k)是第j个OFDM符号中第k个样点纠正前的数据,θj-1是第j-1个OFDM符号的起始样点的位置,N为OFDM符号的FFT长度,B是纠正时退回的样点数目,f′i是第i个OFDM符号纠正后的频率偏差,f′i-1是第i-1个OFDM符号纠正后的频率偏差,fi-1是第i-1个OFDM符号的频率偏差,f′2是第二个OFDM符号纠正后的频率偏差,f1是第一个OFDM符号的频率偏差,K是频偏修正参数,2≤j≤T。r′ j (k) is the corrected data of the k-th sample point in the j-th OFDM symbol, r j (k) is the data before correction of the k-th sample point in the j-th OFDM symbol, θ j-1 is The position of the starting sample point of the j-1th OFDM symbol, N is the FFT length of the OFDM symbol, B is the number of samples returned during correction, f′ i is the corrected frequency deviation of the i-th OFDM symbol, f′ i-1 is the corrected frequency deviation of the i-1th OFDM symbol, f i-1 is the frequency deviation of the i-1th OFDM symbol, f′ 2 is the corrected frequency deviation of the second OFDM symbol, f 1 is the frequency offset of the first OFDM symbol, K is the frequency offset correction parameter, 2≤j≤T.
第四步,采用前三步的方法,得到纠正后的第i个OFDM符号的起始样点是θi,提取第i个OFDM符号中第θi个样点的相关峰值Pi,得到第i个OFDM符号的频率偏差fi,并且得到第i+1个OFDM符号纠正后的频率偏差f′i+1,2≤i≤T+1,T是同步迭代次数。In the fourth step, using the method of the first three steps, the corrected starting sample point of the ith OFDM symbol is θ i , and the correlation peak value P i of the θ i sample point in the ith OFDM symbol is extracted to obtain the first The frequency offset f i of i OFDM symbols, and the corrected frequency offset f′ i +1 of the i+1th OFDM symbol is obtained, 2≤i≤T+1, where T is the number of synchronization iterations.
第五步,对第一个到第T+1个OFDM符号的起始样点和频率偏差进行合并处理,得到整个OFDM系统的起始样点是θ,系统的频率偏差是f。In the fifth step, the initial sampling point and frequency deviation of the first to T+1th OFDM symbols are combined to obtain the initial sampling point of the entire OFDM system is θ, and the frequency deviation of the system is f.
所述的合并处理,是:The merge process is:
f=f′T+1,f=f' T+1 ,
其中:f′j+1=f′j+Kfj,2≤j≤T,Among them: f′ j+1 =f′ j +Kf j , 2≤j≤T,
f′2=f1,f' 2 =f 1 ,
Pi是第i个OFDM符号起始样点的相关峰值,N是OFDM符号的FFT长度,θi是第i个OFDM符号的起始位置,f′T+1是第T+1个OFDM符号纠正后的频率偏差,f′j+1是第j+1个OFDM符号纠正后的频率偏差,f′j是第j个OFDM符号纠正后的频率偏差,fj是第j个OFDM符号的频率偏差,f′2是第二个OFDM符号纠正后的频率偏差,f1是第一个OFDM符号的频率偏差,K是频偏修正参数,T是同步迭代次数。P i is the correlation peak value of the starting sample point of the ith OFDM symbol, N is the FFT length of the OFDM symbol, θ i is the starting position of the ith OFDM symbol, f′ T+1 is the T+1th OFDM symbol The corrected frequency deviation, f′ j+1 is the corrected frequency deviation of the j+1th OFDM symbol, f′ j is the corrected frequency deviation of the jth OFDM symbol, and f j is the frequency of the jth OFDM symbol deviation, f′ 2 is the corrected frequency deviation of the second OFDM symbol, f 1 is the frequency deviation of the first OFDM symbol, K is the frequency deviation correction parameter, and T is the number of synchronization iterations.
与现有技术相比,本发明的有益效果是:定时判决前对数据进行了归一化处理,便于在各种信道和信噪比条件下设定稳定的判决门限Thr,可以提高定时同步和频偏估计的性能结果;与单个OFDM符号相比,利用多个符号的结果进行综合估计,并且结合信道条件(反映为相关峰值的大小)进行考虑,大大提高了估计的稳定性和准确性;方法简单,仅仅利用OFDM符号及其循环前缀,不需要多余的信息,可以在基本不改变同步性能的条件下减少同步的时间消耗,同时仅仅利用OFDM符号本身的性质,不需要辅助导频,可以提高信道利用率。Compared with the prior art, the beneficial effect of the present invention is: the data is normalized before the timing decision, which is convenient to set a stable decision threshold Thr under various channel and signal-to-noise ratio conditions, and can improve timing synchronization and The performance results of frequency offset estimation; compared with a single OFDM symbol, the results of multiple symbols are used for comprehensive estimation, and combined with channel conditions (reflected as the size of the correlation peak), the stability and accuracy of the estimation are greatly improved; The method is simple, only using the OFDM symbol and its cyclic prefix, no redundant information is required, and the time consumption of synchronization can be reduced without changing the synchronization performance. Improve channel utilization.
附图说明Description of drawings
图1是分别采用现有技术和实施例方法得到的频偏估计稳定度比较示意图;FIG. 1 is a schematic diagram of comparison of frequency offset estimation stability obtained by using the prior art and the method of the embodiment respectively;
图2是分别采用现有技术和实施例方法得到的频偏估计性能比较示意图。Fig. 2 is a schematic diagram of frequency offset estimation performance comparison obtained by using the prior art and the method of the embodiment respectively.
具体实施方式Detailed ways
以下结合附图对本发明的方法进一步描述:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。Below in conjunction with accompanying drawing, the method of the present invention is further described: present embodiment is carried out under the premise of technical solution of the present invention, has provided detailed implementation and specific operation process, but protection scope of the present invention is not limited to following Example.
实施例Example
本实施例中的OFDM系统的信道条件是SCM(副载波调制)信道,信噪比是5dB,每个OFDM符号的循环前缀的长度是72,FFT的长度是1024,OFDM系统的子载波间隔是15kHz,归一化偏差是0.3,具体包括以下步骤:The channel condition of the OFDM system in the present embodiment is SCM (subcarrier modulation) channel, and SNR is 5dB, and the length of the cyclic prefix of each OFDM symbol is 72, and the length of FFT is 1024, and the subcarrier spacing of OFDM system is 15kHz, the normalized deviation is 0.3, which specifically includes the following steps:
第一步,对接收到的数据进行定时同步估计处理,得到第一个OFDM符号的起始样点是第θ1个样点,提取第一个OFDM符号中第θ1个样点的相关峰值P1。The first step is to perform timing synchronization estimation processing on the received data, and obtain that the starting sample point of the first OFDM symbol is the θ 1st sample point, and extract the correlation peak value of the θ 1st sample point in the first OFDM symbol P1 .
所述的定时同步估计处理,包括以下步骤:The timing synchronization estimation process includes the following steps:
1)得到接收数据每个OFDM符号中每个样点的相关值,具体是:1) Obtain the correlation value of each sample point in each OFDM symbol of the received data, specifically:
其中:Cori(k)为第i个OFDM符号中第k个样点的相关值,ri(k)为第i个OFDM符号中第k个样点的接收数据,N为每个OFDM符号的FFT长度,B代表估计时的退回长度,*代表共轭,1≤i。Among them: Cor i (k) is the correlation value of the k-th sample point in the i-th OFDM symbol, ri (k) is the received data of the k-th sample point in the i-th OFDM symbol, and N is each OFDM symbol The FFT length of , B represents the back-off length in estimation, * represents the conjugate, 1≤i.
2)对每个样点的相关值进行归一化,具体是:2) Normalize the correlation value of each sample point, specifically:
Mi=2n+1,n∈N+, M i =2n+1, n∈N + ,
其中:为第i个OFDM符号中第k个样点的归一化相关值,Mi为第i个OFDM符号平滑窗的长度,Cori(k+l)是第i个OFDM符号中第(k+l)个样点的相关值。in: is the normalized correlation value of the kth sample point in the ith OFDM symbol, M i is the length of the smoothing window of the ith OFDM symbol, Cor i (k+l) is the (k+l) of the ith OFDM symbol l) Correlation value of sample points.
3)当接收数据中最早出现的OFDM符号中最大的归一化相关值大于判决门限Thr,则该OFDM符号就是第一个OFDM符号,OFDM符号中最大的归一化相关值所对应的样点就是该OFDM符号的起始样点。3) When the largest normalized correlation value in the earliest OFDM symbol in the received data is greater than the decision threshold Thr, the OFDM symbol is the first OFDM symbol, and the sample point corresponding to the largest normalized correlation value in the OFDM symbol is the starting sample point of the OFDM symbol.
本实施例中判决门限Thr是0.55。In this embodiment, the decision threshold Thr is 0.55.
第二步,对第一个OFDM符号进行频偏估计处理,得到第一个OFDM符号的频率偏差f1。In the second step, frequency offset estimation processing is performed on the first OFDM symbol to obtain the frequency offset f 1 of the first OFDM symbol.
所述的频偏估计处理,具体是:The frequency offset estimation process is specifically:
fi=εi□ΔF,f i =ε i □ΔF,
其中:
fi是第i个OFDM符号的频率偏差,ΔF为OFDM系统的子载波间隔,N为OFDM符号的FFT长度,L为OFDM符号循环前缀的长度,θi是第i个OFDM符号的起始样点的位置,εi是第i个OFDM符号的归一化偏差,1≤i,i=1时r1(k)为第一个OFDM符号的第k个样点的数据,i>1时ri(k)是第i个OFDM符号第k个样点纠正后的数据。f i is the frequency deviation of the ith OFDM symbol, ΔF is the subcarrier spacing of the OFDM system, N is the FFT length of the OFDM symbol, L is the length of the cyclic prefix of the OFDM symbol, θ i is the initial sample of the ith OFDM symbol The position of the point, ε i is the normalized deviation of the i-th OFDM symbol, 1≤i, when i=1, r 1 (k) is the data of the k-th sample point of the first OFDM symbol, when i>1 r i (k) is the corrected data of the kth sample point of the ith OFDM symbol.
第三步,根据第一个OFDM符号中起始样点的相关峰值P1的大小,通过查表设定OFDM系统的同步迭代次数T和频偏修正参数K,并对第二个OFDM符号进行频偏纠正,得到纠正后的第二个OFDM符号中每个样点的数据以及第二个OFDM符号纠正后的频率偏差。In the third step, according to the size of the correlation peak value P1 of the initial sample point in the first OFDM symbol, the number of synchronization iterations T and the frequency offset correction parameter K of the OFDM system are set by looking up the table, and the second OFDM symbol is performed For frequency offset correction, the corrected data of each sample point in the second OFDM symbol and the corrected frequency offset of the second OFDM symbol are obtained.
本实施例选用的相关峰值P1、同步迭代次数T和频偏修正参数K的关系如表1所示。Table 1 shows the relationship between the correlation peak value P 1 , the number of synchronization iterations T and the frequency offset correction parameter K selected in this embodiment.
表1Table 1
所述的频偏纠正,具体是:The frequency offset correction is specifically:
f′i=f′i-1+Kfi-1,3≤i≤T,f' i =f' i-1 +Kf i-1 , 3≤i≤T,
其中:f′2=f1,Where: f′ 2 =f 1 ,
r′j(k)是第j个OFDM符号中第k个样点纠正后的数据,rj(k)是第j个OFDM符号中第k个样点纠正前的数据,θj-1是第j-1个OFDM符号的起始样点的位置,N为OFDM符号的FFT长度,B是纠正时退回的样点数目,f′i是第i个OFDM符号纠正后的频率偏差,f′i-1是第i-1个OFDM符号纠正后的频率偏差,fi-1是第i-1个OFDM符号的频率偏差,f′2是第二个OFDM符号纠正后的频率偏差,f1是第一个OFDM符号的频率偏差,K是频偏修正参数,2≤j≤T。r′ j (k) is the corrected data of the k-th sample point in the j-th OFDM symbol, r j (k) is the data before correction of the k-th sample point in the j-th OFDM symbol, θ j-1 is The position of the starting sample point of the j-1th OFDM symbol, N is the FFT length of the OFDM symbol, B is the number of samples returned during correction, f′ i is the corrected frequency deviation of the i-th OFDM symbol, f′ i-1 is the corrected frequency deviation of the i-1th OFDM symbol, f i-1 is the frequency deviation of the i-1th OFDM symbol, f′ 2 is the corrected frequency deviation of the second OFDM symbol, f 1 is the frequency offset of the first OFDM symbol, K is the frequency offset correction parameter, 2≤j≤T.
第四步,采用前三步的方法,得到纠正后的第i个OFDM符号的起始样点是θi,提取第i个OFDM符号中第θi个样点的相关峰值Pi,得到第i个OFDM符号的频率偏差fi,并且得到第i+1个OFDM符号纠正后的频率偏差f′i+1,2≤i≤T+1,T是同步迭代次数。In the fourth step, using the method of the first three steps, the corrected starting sample point of the ith OFDM symbol is θ i , and the correlation peak value P i of the θ i sample point in the ith OFDM symbol is extracted to obtain the first The frequency offset f i of i OFDM symbols, and the corrected frequency offset f′ i +1 of the i+1th OFDM symbol is obtained, 2≤i≤T+1, where T is the number of synchronization iterations.
第五步,对第一个到第T+1个OFDM符号的起始样点和频率偏差进行合并处理,得到整个OFDM系统的起始样点是θ,系统的频率偏差是f。In the fifth step, the initial sampling point and frequency deviation of the first to T+1th OFDM symbols are combined to obtain the initial sampling point of the entire OFDM system is θ, and the frequency deviation of the system is f.
所述的合并处理,是:The merge process is:
f=f′T+1,f=f' T+1 ,
其中:f′j+1=f′j+Kfj,2≤j≤T,Among them: f′ j+1 =f′ j +Kf j , 2≤j≤T,
f′2=f1,f' 2 =f 1 ,
Pi是第i个OFDM符号起始样点的相关峰值,N是OFDM符号的FFT长度,θi是第i个OFDM符号的起始位置,f′T+1是第T+1个OFDM符号纠正后的频率偏差,f′j+1是第j+1个OFDM符号纠正后的频率偏差,f′j是第j个OFDM符号纠正后的频率偏差,fj是第j个OFDM符号的频率偏差,f′2是第二个OFDM符号纠正后的频率偏差,f1是第一个OFDM符号的频率偏差,K是频偏修正参数,T是同步迭代次数。P i is the correlation peak value of the starting sample point of the ith OFDM symbol, N is the FFT length of the OFDM symbol, θ i is the starting position of the ith OFDM symbol, f′ T+1 is the T+1th OFDM symbol The corrected frequency deviation, f′ j+1 is the corrected frequency deviation of the j+1th OFDM symbol, f′ j is the corrected frequency deviation of the jth OFDM symbol, and f j is the frequency of the jth OFDM symbol deviation, f′ 2 is the corrected frequency deviation of the second OFDM symbol, f 1 is the frequency deviation of the first OFDM symbol, K is the frequency deviation correction parameter, and T is the number of synchronization iterations.
分别采用现有技术方法和本实施例方法得到的频率估计稳定度如图1所示,其横坐标是OFDM符号数目,纵坐标是残余频偏,从该图中可以看出,本实施例由于采用了循环迭代的频偏估计方法,频偏估计值相对于现有方法更稳定。The frequency estimation stability obtained by adopting the method of the prior art and the method of this embodiment respectively is shown in Fig. 1, and its abscissa is the number of OFDM symbols, and the ordinate is the residual frequency offset. It can be seen from the figure that the present embodiment is due to The cyclic iterative frequency offset estimation method is adopted, and the frequency offset estimation value is more stable than the existing method.
分别采用现有技术方法和本实施例方法得到的频偏估计性能比较如图2所示,其横坐标是SNR(信噪比),纵坐标是频偏估计,从该图可以看出,本实施例方法有更加理想的频偏估计性能。The frequency offset estimation performance comparison obtained by adopting the prior art method and the method of this embodiment respectively is shown in Fig. 2, and its abscissa is SNR (signal-to-noise ratio), and the ordinate is frequency offset estimation. As can be seen from this figure, this The method of the embodiment has more ideal frequency offset estimation performance.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010169388XA CN101808071B (en) | 2010-05-13 | 2010-05-13 | Synchronizing method of OFDM (Orthogonal Frequency Division Multiplexing) system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010169388XA CN101808071B (en) | 2010-05-13 | 2010-05-13 | Synchronizing method of OFDM (Orthogonal Frequency Division Multiplexing) system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101808071A true CN101808071A (en) | 2010-08-18 |
CN101808071B CN101808071B (en) | 2012-09-05 |
Family
ID=42609692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010169388XA Expired - Fee Related CN101808071B (en) | 2010-05-13 | 2010-05-13 | Synchronizing method of OFDM (Orthogonal Frequency Division Multiplexing) system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101808071B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111541638A (en) * | 2020-07-07 | 2020-08-14 | 湖南国科锐承电子科技有限公司 | OFDM symbol synchronization algorithm based low-complexity implementation and synchronization updating method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050152403A1 (en) * | 2003-12-25 | 2005-07-14 | Koji Horisaki | Method and device for frequency adjustment |
CN101505290A (en) * | 2009-03-17 | 2009-08-12 | 山东大学 | Improved frequency bias estimation method for wideband MIMO |
-
2010
- 2010-05-13 CN CN201010169388XA patent/CN101808071B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050152403A1 (en) * | 2003-12-25 | 2005-07-14 | Koji Horisaki | Method and device for frequency adjustment |
CN101505290A (en) * | 2009-03-17 | 2009-08-12 | 山东大学 | Improved frequency bias estimation method for wideband MIMO |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111541638A (en) * | 2020-07-07 | 2020-08-14 | 湖南国科锐承电子科技有限公司 | OFDM symbol synchronization algorithm based low-complexity implementation and synchronization updating method |
CN111541638B (en) * | 2020-07-07 | 2020-10-16 | 湖南国科锐承电子科技有限公司 | OFDM symbol synchronization algorithm based low-complexity implementation and synchronization updating method |
Also Published As
Publication number | Publication date |
---|---|
CN101808071B (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103259756B (en) | A kind of timing synchronization being applied to ofdm system and carrier synchronization method | |
CN101883412B (en) | Initial cell searching method of LTE (Long Term Evolution) under high-speed mobile condition | |
CN105847211B (en) | A Carrier Frequency Offset Estimation Method for MIMO-OFDM Systems | |
CN101815048B (en) | Frequency domain joint estimation method for OFDM integer frequency offset and symbol fine synchronization | |
CN107086974B (en) | OFDM synchronization method and telemetering system under high dynamic environment | |
CN106559370B (en) | A Method for Compensating Sampling Clock Frequency Deviation in Low Complexity OFDM-PON System | |
CN103095638B (en) | The blind evaluation method of the sampling frequency deviation of ofdm system under a kind of multidiameter fading channel | |
CN103441778B (en) | TD-LTE cell search synchronization method based on CP flat top method | |
CN104320367B (en) | A kind of method that synchronous offset estimation and channel estimation are timed to reception signal | |
CN106059639B (en) | A Blind Estimation Method for the Number of Transmitting Antennas Based on Matrix Gail Circle | |
CN107508780B (en) | A Timing Synchronization Method for OFDM System Based on IEEE 802.11ac | |
CN101778066B (en) | Physical layer preamble optimization-based synchronization method and system | |
CN103532903A (en) | Frame synchronization scheme of 60 GHz OFDM (orthogonal frequency division multiplexing) wireless communication system | |
CN107196887A (en) | Satellite OFDM synchronized algorithms based on conjugation CAZAC sequences | |
CN112910805A (en) | Frequency offset estimation method based on 5G new air interface system | |
CN101369882A (en) | A Frequency Synchronization Method Based on Transmitter Pre-correction | |
CN104836770A (en) | Timing estimation method based on correlation average and windowing | |
CN101621493B (en) | OFDM frequency offset estimation judgment method | |
CN103346992B (en) | Doppler changing rate method of estimation in a kind of ofdm system and system | |
CN100369394C (en) | A method for frame synchronization and timing at the receiving end of a base station in a WiMAX system | |
CN101488939B (en) | Method, device and receiver for realizing symbol synchronization in broadband wireless communication system | |
CN101667990B (en) | OFDM frequency offset joint estimation method | |
CN102801683B (en) | Frame synchronism and frequency synchronism combined method for OFDM (Orthogonal Frequency Division Multiplexing) system | |
CN101399805A (en) | Frame synchronization method for full phase OFDM system | |
CN101808071A (en) | Synchronizing method of OFDM (Orthogonal Frequency Division Multiplexing) system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120905 Termination date: 20170513 |
|
CF01 | Termination of patent right due to non-payment of annual fee |