CN101736570B - Device and method for testing fabric contact coldness - Google Patents
Device and method for testing fabric contact coldness Download PDFInfo
- Publication number
- CN101736570B CN101736570B CN2009102731212A CN200910273121A CN101736570B CN 101736570 B CN101736570 B CN 101736570B CN 2009102731212 A CN2009102731212 A CN 2009102731212A CN 200910273121 A CN200910273121 A CN 200910273121A CN 101736570 B CN101736570 B CN 101736570B
- Authority
- CN
- China
- Prior art keywords
- fabric
- test
- tank
- heat
- test device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Treatment Of Fiber Materials (AREA)
Abstract
本发明涉及一种织物接触冷感测试装置及测试方法,属于纺织工程领域。测试装置由外罩、测试板、水槽、织物夹板、织物表面温度传感器等组成。本发明测试装置它结构合理、使用方便、体积小、制造成本低、可以大规模工业化生产;本发明测试装置采用稳定性好、精确度高的铂电阻作为温度传感器,提高了测试精度。测试平台的上方设置了由绝热材料制成的帽罩,不仅可以减少周围环境对测试的影响,而且可以减少织物热辐射带来的热量损失,提高测试的可靠性;本发明的测试装置及测试方法解决了以往测试织物的最大瞬态热流量Qmax评价织物冷感时技术要求高、测试成本高的不足。本发明的织物接触冷感测试装置及测试方法可用于织物的接触冷暖感评价领域。
The invention relates to a fabric contact cold feeling test device and a test method, which belong to the field of textile engineering. The test device consists of an outer cover, a test board, a water tank, a fabric splint, and a fabric surface temperature sensor. The test device of the present invention has reasonable structure, convenient use, small volume, low manufacturing cost, and can be produced in a large-scale industrialized manner; the test device of the present invention adopts a platinum resistor with good stability and high precision as a temperature sensor, thereby improving test accuracy. The top of the test platform is provided with a cap made of heat insulating material, which can not only reduce the influence of the surrounding environment on the test, but also reduce the heat loss caused by the thermal radiation of the fabric and improve the reliability of the test; the test device and test The method solves the shortcomings of high technical requirements and high testing costs when evaluating the cold feeling of fabrics by testing the maximum transient heat flow Qmax of fabrics in the past. The fabric contact cold feeling test device and test method of the present invention can be used in the field of fabric contact cold and warm feeling evaluation.
Description
技术领域 technical field
本发明涉及一种织物接触冷感测试装置及测试方法,属于纺织工程领域。The invention relates to a fabric contact cold feeling test device and a test method, which belong to the field of textile engineering.
背景技术 Background technique
随着生活水平的提高,服装的舒适性受到人们极大的关注。织物的热传递性能是影响服装热舒适性的重要因素。服装的热舒适性是指通过织物的热传递作用,使人体在变化的环境中能获得舒适满意的感觉。人体穿着衣服后,身体与环境之间始终处于能量交换之中,人体的舒适感觉,取决于人体本身产生的热量和向环境散发热量之间能量交换的平衡。由织物制成的服装,在能量交换中通过热传递过程中起着调节作用。围绕纺织品服装的热传递性能及其对舒适性的影响进行深入研究,建立了一套评价织物热舒适性的客观指标。热阻就是其中的一个重要指标。研究热阻的方法很多,其中实验仪器测试方法是常用的研究方法。用仪器对织物的热传递性能进行测定、并建立相应指标,可以对服装的舒适性能进行定量描述,并且不受心理和生理等因素的影响,测试结果具有可比性,有利于生产部门对服装或织物的质量控制和产品设计。Along with the raising of living standard, the comfort of clothing is subject to people's great concern. The heat transfer performance of fabric is an important factor affecting the thermal comfort of clothing. The thermal comfort of clothing refers to the heat transfer function of fabrics, so that the human body can obtain a comfortable and satisfactory feeling in a changing environment. After the human body wears clothes, there is always an energy exchange between the body and the environment. The comfort of the human body depends on the balance of energy exchange between the heat generated by the human body itself and the heat emitted to the environment. Clothing made of fabric plays a regulating role in the process of energy exchange through heat transfer. A set of objective indicators for evaluating the thermal comfort of fabrics has been established through in-depth research on the heat transfer performance of textiles and clothing and its influence on comfort. Thermal resistance is one of the important indicators. There are many methods to study thermal resistance, among which the experimental instrument test method is a commonly used research method. Measuring the heat transfer performance of fabrics with instruments and establishing corresponding indicators can quantitatively describe the comfort performance of clothing, and it is not affected by psychological and physiological factors. The test results are comparable, which is beneficial to the production department. Fabric quality control and product design.
织物的热传递性能通常用平板法测试方法(GB/T11048-2008,ISO11092和ASTMF1868)。其原理是将试样覆盖在恒温实验板上,使试验板的热量只能通过试样的方向散发。试验时,通过测定试验板在一定时间内保持温度所需的加热时间来计算织物的保暖指标。关于热传递性能研究,尽管出现了许多新技术如:热脉冲、热波、光热方法和光声方法应用在热性能测试方面,但应用热板和热电偶仍是测试织物热性能的有效方法,研究者对于测试装置的设计大多都是基于热平板,只是各自对于织物两侧条件的设计不同。这种测试方法只能测试织物达到稳态的热性能指标,与实际服装与实际有一定的差异,仅适合于对织物的舒适性进行粗略描述,不能反映织物的动态热传递性能。The heat transfer performance of fabrics is usually tested by the flat plate method (GB/T11048-2008, ISO11092 and ASTMF1868). The principle is to cover the sample on the constant temperature test plate, so that the heat of the test plate can only be dissipated through the direction of the sample. During the test, the heat retention index of the fabric is calculated by measuring the heating time required for the test plate to maintain the temperature within a certain period of time. Regarding the study of heat transfer performance, although many new technologies such as thermal pulse, thermal wave, photothermal method and photoacoustic method have been applied to thermal performance testing, the application of hot plates and thermocouples is still an effective method for testing the thermal properties of fabrics. Most of the researchers' designs for the test devices are based on hot plates, but the designs for the conditions on both sides of the fabric are different. This test method can only test the thermal performance index of the fabric reaching a steady state, which is different from the actual clothing and the actual situation. It is only suitable for a rough description of the comfort of the fabric and cannot reflect the dynamic heat transfer performance of the fabric.
随着研究的深入,很多学者开始注意到服装内微气候的重要影响,分别设计了不同类型的微气候测试仪,通过模拟在外界环境中,检测皮肤与试样间的微气候变化情况及热湿传递情况。即检测人体热量和汗汽通过织物内空气层、织物及织物外空气层与环境进行能量交换、质量交换的全过程,用温度梯度和湿度梯度法测试出织物能量交换和质量交换的状态变化,从而反映织物对能量流和质量流的阻力。这种服料的仪器测试并不能真实地反映服装配套的整体性能,国内外学者还同步开展了假人测试技术和评价方法的研究,更逼真地模拟人体穿着服装的状态。暖体假人法是在设定的环境条件下,模拟人体、服装和环境间的热交换过程,测试服装整体或局部的热湿传递性能的较先进的实验方法,优点是精确度高、重复性好,并可在真人无法试验的极端环境条件下,进行服装的热湿传递性能试验。然而由于暖体假人法是在严格控制的人工气候条件下,通过做大量的实验并进行分析而得出结论的,测试时间长、费用高。With the deepening of research, many scholars have begun to notice the important influence of the microclimate in clothing, and have designed different types of microclimate testers to detect the microclimate changes and thermal conditions between the skin and the sample by simulating the external environment. Moisture transfer conditions. That is to detect the whole process of energy exchange and mass exchange between human body heat and sweat vapor through the air layer inside the fabric, the air layer outside the fabric and the fabric and the environment, and use the temperature gradient and humidity gradient method to test the state changes of energy exchange and mass exchange of the fabric. Thus reflecting the fabric's resistance to energy flow and mass flow. The instrument test of this kind of clothing cannot truly reflect the overall performance of the clothing accessories. Scholars at home and abroad have also simultaneously carried out research on dummy testing technology and evaluation methods to more realistically simulate the state of the human body wearing clothing. The thermal manikin method is a relatively advanced experimental method to simulate the heat exchange process between the human body, clothing and the environment under set environmental conditions, and test the overall or partial heat and moisture transfer performance of the clothing. The advantages are high accuracy and repeatability. It has good performance, and can conduct heat and moisture transfer performance tests of clothing under extreme environmental conditions that cannot be tested by real people. However, because the thermal manikin method draws conclusions through a large number of experiments and analyzes under strictly controlled artificial climate conditions, the test time is long and the cost is high.
接触冷感是指织物与皮肤接触时,织物温度低于人体皮肤温度,人体与织物之间发生热交换,从而人体产生对织物的冷、暖的感觉,称之为接触冷感。织物接触人体时发生瞬间的热传递现象,环境温度的织物从人体皮肤表面吸收大量热量,使人体感觉到冷,冷感的强弱与织物的热传递性能有关。接触冷感是纺织品舒适性的重要性能之一,由于存在织物的热交换现象,是一个动态热传递过程,因此上面的研究方法都不能正确反映织物的接触冷感。随着人们生活水平的提高.对服用纺织品的各方面舒适性能要求越来越高,接触冷感已越来越引起人们的关注。尤其是冬季使用的纺织品,接触冷感已成为影响织物热舒适性能的一个重要指标。传统的评价方法是采用日本川端开发的精密迅速热物性测定装置KES-F7,通过测试最大瞬态热流量Qmax类来评价织物的冷暖感,但是测试设备贵,技术要求高,使用和维护费用高。Cold contact means that when the fabric is in contact with the skin, the temperature of the fabric is lower than that of the human skin, and heat exchange occurs between the human body and the fabric, so that the human body feels cold and warm to the fabric, which is called cold contact. Instantaneous heat transfer occurs when the fabric touches the human body. The fabric at ambient temperature absorbs a large amount of heat from the surface of the human skin, making the human body feel cold. The strength of the cold feeling is related to the heat transfer performance of the fabric. Cold contact is one of the important performances of textile comfort. Due to the heat exchange phenomenon of fabrics, which is a dynamic heat transfer process, the above research methods cannot correctly reflect the cold contact of fabrics. With the improvement of people's living standards, the requirements for comfort in all aspects of textiles are getting higher and higher, and the cold feeling of contact has attracted more and more attention. Especially for textiles used in winter, the contact cold feeling has become an important indicator affecting the thermal comfort performance of fabrics. The traditional evaluation method is to use the precise and rapid thermal physical property measuring device KES-F7 developed by Kawabata, Japan, to evaluate the warm and cold feeling of the fabric by testing the maximum transient heat flow Qmax, but the test equipment is expensive, the technical requirements are high, and the use and maintenance costs are high. .
发明内容 Contents of the invention
本发明的目的是为评价织物的接触织物的接触冷感,提出一种新的织物接触冷感测试装置和测试方法。The purpose of the present invention is to propose a new fabric cold feeling test device and test method for evaluating the cold feeling of the fabric in contact with the fabric.
本发明解决其技术问题所采用的技术方案是:一种织物接触冷感测试装置及测试方法。The technical solution adopted by the present invention to solve the technical problem is: a fabric contact cold feeling test device and test method.
测试装置由绝热帽罩(1)、测试板(2)、水槽(3)、织物夹板(4)、加热器(5)、织物表面温度传感器(6)等组成。水槽(3)上表面设置凸起的平台,测试板(2)镶嵌在凸起的平台中并构成测试平台,在水槽(3)的上表面还设置有加热器(5)和进水管(8),加热器(5)的下端设置在水槽(3)内,水槽(3)的外壁上包覆有绝热层(9),绝热帽罩(1)置放在水槽(3)的上表面上。The test device is composed of a thermal insulation cap (1), a test board (2), a water tank (3), a fabric splint (4), a heater (5), a fabric surface temperature sensor (6) and the like. A raised platform is arranged on the upper surface of the water tank (3), and the test board (2) is embedded in the raised platform to form a test platform, and a heater (5) and a water inlet pipe (8) are also arranged on the upper surface of the water tank (3). ), the lower end of the heater (5) is set in the water tank (3), the outer wall of the water tank (3) is coated with a heat insulating layer (9), and the heat insulating cap (1) is placed on the upper surface of the water tank (3) .
所述的测试板(2)为铜材料或铝合金材料。The test board (2) is copper material or aluminum alloy material.
所述的进水管(8)的进水口高度高于测试平台的高度。The water inlet of the water inlet pipe (8) is higher than the height of the test platform.
所述的液体介质为蒸馏水或植物油。The liquid medium is distilled water or vegetable oil.
所述的织物表面温度传感器(6)为铂电阻温度传感器。The fabric surface temperature sensor (6) is a platinum resistance temperature sensor.
织物接触冷感测试装置的测试方法,其测试方法包括如下步骤:The test method of the fabric contact cold feeling test device, the test method includes the following steps:
一测试准备a test preparation
(a)待测织物(7)的预处理,即将待测的织物,放置在人工气候室24小时;(a) pretreatment of the fabric to be tested (7), that is, placing the fabric to be tested in an artificial climate chamber for 24 hours;
(b)测试装置的调整,即从进水管(8)处往水槽(3)注入液体介质,将帽罩(1)盖在测试平台上,通过加热器(5)将水槽(3)内的液体介质加热使测试板的温度调整至摄氏35℃;(b) Adjustment of the test device, that is, inject liquid medium from the water inlet pipe (8) into the water tank (3), cover the cap (1) on the test platform, and heat the water in the water tank (3) through the heater (5). The liquid medium is heated to adjust the temperature of the test plate to 35°C;
(c)将织物表面温度传感器(6)粘贴在待测织物(7)的上表面;(c) Paste the fabric surface temperature sensor (6) on the upper surface of the fabric to be tested (7);
(d)织物表面温度传感器(6)与单片机数据采集系统相连,单片机与上位计算机连接。(d) The fabric surface temperature sensor (6) is connected with the single-chip microcomputer data acquisition system, and the single-chip microcomputer is connected with the host computer.
二测试two tests
待测试板(2)的温度恒定35℃后,取下帽罩(1),迅速把待测织物(7)平铺在测试板(2)上,再盖上帽罩(1),按每秒10次的数据采集频率开始测试。After the temperature of the test board (2) is constant at 35°C, remove the cap (1), spread the fabric to be tested (7) on the test board (2) quickly, then cover the cap (1), press each The data acquisition frequency of 10 times per second starts the test.
三数据处理Three data processing
将单片机每秒采集到的数据进行平均处理,
其中Xi为该i时间段的织物表面温度平均值,Xij为该i时间段第j时刻采集到的织物表面温度,j=1,2,...,10,Wherein Xi is the fabric surface temperature average value of the i time period, Xij is the fabric surface temperature collected at the j moment of the i time period, j=1, 2, ..., 10,
计算出每秒的织物表面温度平均值后,求出织物表面温度升温速率的最大值。max|Xi+1-Xi|{i=1,2,...,n-1},After calculating the average value of the fabric surface temperature per second, find the maximum value of the fabric surface temperature heating rate. max|X i+1 -X i |{i=1, 2,..., n-1},
其中|Xi+1-Xi|为第i秒的织物表面温度升温速率。Where |X i+1 -X i | is the temperature rise rate of the fabric surface in the i second.
用织物表面温度的升温速率的最大值来评价织物的冷感,温度差越大,织物的冷感越强。The maximum value of the temperature rise rate of the fabric surface is used to evaluate the coolness of the fabric. The greater the temperature difference, the stronger the coolness of the fabric.
由于采用了以上技术方案,本发明测试装置它结构合理、使用方便、体积小、制造成本低、可以大规模工业化生产;本发明测试装置采用稳定性好、精确度高的铂电阻作为温度传感器,提高了测试精度。测试平台的上方设置了由绝热材料制成的帽罩,不仅可以减少周围环境对测试的影响,而且可以减少织物热辐射带来的热量损失,提高测试的可靠性;本发明的测试装置及测试方法解决了以往测试织物的最大瞬态热流量Qmax评价织物冷感时技术要求高、测试成本高的不足。本发明的织物接触冷感测试装置及测试方法可用于织物的接触冷暖感评价领域。Due to the adoption of the above technical scheme, the test device of the present invention has reasonable structure, convenient use, small volume, low manufacturing cost, and can be industrialized on a large scale; the test device of the present invention uses a platinum resistor with good stability and high precision as the temperature sensor. Improved test accuracy. The top of the test platform is provided with a cap made of heat insulating material, which can not only reduce the influence of the surrounding environment on the test, but also reduce the heat loss caused by the thermal radiation of the fabric and improve the reliability of the test; the test device and test The method solves the shortcomings of high technical requirements and high testing costs when evaluating the cold feeling of fabrics by testing the maximum transient heat flow Qmax of fabrics in the past. The fabric contact cold feeling test device and test method of the present invention can be used in the field of fabric contact cold and warm feeling evaluation.
附图说明 Description of drawings
图1为本发明的织物表面温度测试装置的结构示意图Fig. 1 is the structural representation of fabric surface temperature testing device of the present invention
图2为本发明实施例的测试装置的测试原理图Fig. 2 is the test schematic diagram of the test device of the embodiment of the present invention
图3为本发明实施例的测试的织物表面升温速率图Fig. 3 is the fabric surface heating rate diagram of the test of the embodiment of the present invention
具体实施方式 Detailed ways
下面将结合附图和具体实施方式对本发明做进一步说明The present invention will be further described below in conjunction with accompanying drawing and specific embodiment
见附图see Attachment
测试装置由绝热帽罩1、测试板2、水槽3、织物夹板4、加热器5、织物表面温度传感器6等组成,铂电阻具有良好的稳定性和精确度,织物表面温度传感器6采用铂电阻温度传感器,在水槽3上表面设置凸起的平台,由于铜材料和铝合金材料的热传导较快,测试板2采用铜材料或铝合金材料,并且材料的厚度大于8mm,可以增加测试板2自身的热容量,提高测试的精度,测试板2镶嵌在凸起的平台中并构成测试平台,在水槽3的上表面还设置有加热器5和进水管8,测试板2与水槽3内的液体介质应中间无气泡,均匀接触,进水管8的进水口高度高于测试平台的高度,加热器5的下端设置在水槽3内,水槽3的外壁上包覆的绝热层9可以防止测试过程中热量的损失,影响测试精度,绝热帽罩1置放在水槽3的上表面上,防止热辐射所带来的热量流失。织物表面温度传感器6与单片机数据采集系统相连,来自温度传感器6的信号经过信号放大回路进行放大,使之适合于单片机的模数转换的输入电压0~5V要求,信号进入单片机后,经过A/D模数转换,转换后的数据通过串行通信端口传递给上位计算机,由计算机进行数据处理。The test device is composed of a thermal insulation cap 1, a
织物接触冷感测试装置的测试方法,其测试方法包括如下步骤:The test method of the fabric contact cold feeling test device, the test method includes the following steps:
一测试准备a test preparation
(a)待测织物7的预处理,即将待测的织物,放置在人工气候室24小时,以便于织物充分达到热湿平衡,人工气候室的温度为摄氏(25±1)℃,相对湿度(50±2)%。(a) Pretreatment of the
(b)测试装置的调整,即从进水管8处往水槽3注入液体介质,液体介质可以是蒸馏水或者是植物油。采用蒸馏水可以避免普通自来水在加热过程中产生气泡从而在测试板2下面形成堆积气泡,改变测试板2与液体介质间的接触状况,影响测试精度,植物油在加热过程中,不会产生气泡,测试板2受热均匀,可以保证测试精度。将帽罩1盖在测试平台上,减少测试板2因热辐射而产生的热量损失,测试板2的温度用一个温度传感器观察,通过加热器5将水槽3内的液体介质加热,使测试板2的温度调整至摄氏35℃。(b) Adjustment of the test device, that is, inject liquid medium from the
(c)将织物表面温度传感器6粘贴在待测织物7的上表面。(c) Paste the fabric
(d)织物表面温度传感器6与单片机数据采集系统相连,单片机通过通过串行通信端口与上位计算机相连,启动单片机和上位计算机的数据处理程序。(d) The fabric
二测试two tests
先用贴附在测试板上的温度传感器测试测试板2的温度,待测试板2的温度恒定在35℃保持五分钟以上后,取下帽罩1,迅速把织物夹板4夹持好的待测织物7平铺在测试板2上,再盖上帽罩1,防止待测织物7的热辐射影响测试精度,单片机数据采集系统按每秒10次的数据采集频率开始测量,并把模数转换后的数据通过串行通信端口及时传送给上位计算机,采集时间为60秒,First use the temperature sensor attached to the test board to test the temperature of the
三数据处理Three data processing
上位计算机将单片机每秒采集到的数据进行平均处理,
其中Xi为该i时间段的织物表面温度平均值,Xij为该i时间段第j时刻采集到的织物表面温度,j=1,2,...,10,Wherein Xi is the fabric surface temperature average value of the i time period, Xij is the fabric surface temperature collected at the j moment of the i time period, j=1, 2, ..., 10,
计算出每秒的织物表面温度平均值后,求出织物表面温度升温速率的最大值。max|Xi+1-Xi|{i=1,2,...,59}After calculating the average value of the fabric surface temperature per second, find the maximum value of the fabric surface temperature heating rate. max|X i+1 -X i |{i=1, 2,..., 59}
其中|Xi+1-Xi|为第i秒的织物表面温度升温速率。Where |X i+1 -X i | is the temperature rise rate of the fabric surface in the i second.
用织物表面温度的升温速率的最大值max|Xi+1-Xi|{i=1,2,...,59}来评价织物的冷感,升温速率的最大值越大,织物的冷感越强。Use the maximum value max|X i+1 -X i |{i=1, 2,...,59} of the maximum temperature rise rate of the fabric surface temperature to evaluate the cold feeling of the fabric. The stronger the cold feeling.
具体实施例 specific embodiment
用以上测试方法分别对三种织物表面的温度随时间的变化进行测试,求出织物表面温度的升温速率的最大值,评价织物的冷感。Use the above test methods to test the temperature of the surface of the three kinds of fabrics with time. The maximum value of the temperature rise rate of the fabric surface is obtained, and the cold feeling of the fabric is evaluated.
表1三种织物表面温度每秒的平均值(℃)Table 1 The average value of the surface temperature of three kinds of fabrics per second (℃)
表1Table 1
表2三种织物各时间段的升温速率(℃/S)Table 2 Heating rate (°C/S) of three kinds of fabrics in each time period
表2Table 2
冷感评价依据:Cold feeling evaluation basis:
织物上表面温度随时间变化的曲线如图2所示。T1,T2分别为织物上表面温度传感器在t1,t2时刻所测的对应的温度。单位面积内,一定的温度T可以认为对应一定的热量q,设其对应系数为α,则q=αT,其中α因织物的不同而不同。如图2所示,设在t1时刻织物上表面单位面积内的热量为q1,t2时刻其热量为q2。热量从织物的一侧传递到另一侧,织物上表面接受来自与测试板接触的织物下表面传递过来的热量qa的同时,也在向外界释放一定的热量qb,接受的热量大于释放的热量,这种热量差随着时间的延续而逐渐积累,宏观上表现为织物上表面温度的上升。The curve of the surface temperature of the fabric as a function of time is shown in Figure 2. T 1 and T 2 are the corresponding temperatures measured by the fabric upper surface temperature sensor at time t 1 and t 2 respectively. Within a unit area, a certain temperature T can be considered to correspond to a certain amount of heat q, and if its corresponding coefficient is α, then q=αT, where α varies with different fabrics. As shown in Figure 2, suppose the heat per unit area of the upper surface of the fabric is q 1 at time t 1 and q 2 at time t 2 . The heat is transferred from one side of the fabric to the other. While the upper surface of the fabric receives the heat q a transferred from the lower surface of the fabric in contact with the test plate, it also releases a certain amount of heat q b to the outside, and the heat received is greater than the heat released This heat difference gradually accumulates over time, which is manifested as an increase in the temperature of the upper surface of the fabric macroscopically.
q=qa-qb (1)q= qa - qb (1)
其中:in:
q为在t时刻织物上表面单位面积内的热量(J/m2h);q is the heat per unit area of the upper surface of the fabric at time t (J/m 2 h);
qa为在t时刻织物上表面单位面积内来自与测试板接触的织物下表面传递的热量(J/m2h);q a is the heat transferred from the lower surface of the fabric in contact with the test plate within the unit area of the upper surface of the fabric at time t (J/m 2 h);
qb为在t时刻织物上表面单位面积内向外界释放的热量(J/m2h);q b is the heat released to the outside in the unit area of the upper surface of the fabric at time t (J/m 2 h);
织物表面温度上升的速率为:The rate at which the surface temperature of the fabric rises is:
将式(1)代入式(2)Substitute formula (1) into formula (2)
热量从织物的一面向另一面热传递,就是在(t2-t1)时间内从测试板传递到单位面积织物上表面的热量,它与织物的动态热传递有关,传递的热量越大,织物接触冷感就越强。Heat is transferred from one side of the fabric to the other, It is the heat transferred from the test board to the upper surface of the fabric per unit area within the time (t 2 -t 1 ), which is related to the dynamic heat transfer of the fabric. The greater the heat transferred, the stronger the cold feeling of the fabric.
令t2-t1=Δt,则(3)变为Let t 2 -t 1 =Δt, then (3) becomes
Δt很小时,在绝热的实验空间内,织物上表面向外界释放的热量较少,且相对稳定,故可近视为一常量。有式(4)可知,织物瞬间传递的热量(q2a-q2b)越大,织物升温就越快,所以用升温速率能描述织物内部热传递速率的快慢,能反映织物动态热传递性能的优良,升温速率越快,织物传递热量就越快,接触冷感就越强。When Δt is small, in the adiabatic experimental space, the upper surface of the fabric releases less heat to the outside and is relatively stable, so Can be viewed as a constant. It can be seen from formula (4) that the greater the heat (q 2a -q 2b ) instantaneously transferred by the fabric, the faster the temperature of the fabric will rise, so the temperature rise rate is used It can describe the speed of the internal heat transfer rate of the fabric, and can reflect the excellent dynamic heat transfer performance of the fabric. The faster the heating rate, the faster the heat transfer of the fabric, and the stronger the cold feeling of contact.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102731212A CN101736570B (en) | 2009-12-09 | 2009-12-09 | Device and method for testing fabric contact coldness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102731212A CN101736570B (en) | 2009-12-09 | 2009-12-09 | Device and method for testing fabric contact coldness |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101736570A CN101736570A (en) | 2010-06-16 |
CN101736570B true CN101736570B (en) | 2012-05-23 |
Family
ID=42460559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102731212A Active CN101736570B (en) | 2009-12-09 | 2009-12-09 | Device and method for testing fabric contact coldness |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101736570B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102998331A (en) * | 2011-09-09 | 2013-03-27 | 力丽企业股份有限公司 | A tester that can continuously measure the temperature rise and fall of fabrics |
CN102661971B (en) * | 2012-05-16 | 2014-07-02 | 中原工学院 | Textile material thermal insulation property test instrument for simulating all-weather weather conditions |
JP6289058B2 (en) * | 2013-11-29 | 2018-03-07 | セーレン株式会社 | Skin material |
CN104089706B (en) * | 2014-07-29 | 2017-04-26 | 北京卫星环境工程研究所 | Transient heat flow meter used under thermal vacuum environment and heat flow measuring method |
CN104833694A (en) * | 2015-04-21 | 2015-08-12 | 青岛大学 | Fabric cold feeling testing apparatus |
CN105136847B (en) * | 2015-09-10 | 2018-03-16 | 温州方圆仪器有限公司 | Hot flow type fabric cool feeling test equipment and method of testing |
CN107917930A (en) * | 2017-12-22 | 2018-04-17 | 浙江工贸职业技术学院 | A kind of textile instantaneous touch cool feeling performance detection apparatus based on body temperature and tactile |
CN107957433B (en) * | 2018-01-12 | 2020-04-17 | 天津工业大学 | Device and method for testing thermal insulation performance of textile in low-temperature environment |
CN108593708B (en) * | 2018-07-18 | 2020-08-11 | 东华大学 | Testing device and evaluation method for cool function of fabric |
CN111272814B (en) * | 2020-03-31 | 2022-05-06 | 石狮市中纺学服装及配饰产业研究院 | Device and method for testing thermal insulation performance of ready-made clothes |
CN116148311B (en) * | 2023-04-24 | 2023-06-27 | 苏州太湖雪丝绸股份有限公司 | Textile contact cool feeling energy detection device and detection method thereof |
CN117131651B (en) * | 2023-05-08 | 2024-04-26 | 广东职业技术学院 | Method and system for generating temperature touch model for determining temperature touch |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1253289A (en) * | 1999-10-22 | 2000-05-17 | 向新柱 | Method and instrument for measuring water absorption of fabrics |
CN1441251A (en) * | 2003-04-08 | 2003-09-10 | 东华大学 | Microweather simulator for low-temperature microweather facbric test instrument |
CN1975416A (en) * | 2006-12-06 | 2007-06-06 | 武汉科技学院 | Fabric moisture-penetrability testing device and testing method |
CN101169401A (en) * | 2006-10-27 | 2008-04-30 | 香港理工大学 | Measuring equipment for dynamic heat and moisture transfer characteristics of fabric |
CN101487783A (en) * | 2009-02-24 | 2009-07-22 | 天津工业大学 | Test device and method for fabric moisture permeability |
-
2009
- 2009-12-09 CN CN2009102731212A patent/CN101736570B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1253289A (en) * | 1999-10-22 | 2000-05-17 | 向新柱 | Method and instrument for measuring water absorption of fabrics |
CN1441251A (en) * | 2003-04-08 | 2003-09-10 | 东华大学 | Microweather simulator for low-temperature microweather facbric test instrument |
CN101169401A (en) * | 2006-10-27 | 2008-04-30 | 香港理工大学 | Measuring equipment for dynamic heat and moisture transfer characteristics of fabric |
CN1975416A (en) * | 2006-12-06 | 2007-06-06 | 武汉科技学院 | Fabric moisture-penetrability testing device and testing method |
CN101487783A (en) * | 2009-02-24 | 2009-07-22 | 天津工业大学 | Test device and method for fabric moisture permeability |
Non-Patent Citations (3)
Title |
---|
王晓东,等.接触冷感的仪器测试与穿着实验的研究.《纺织学报》.1991,第12卷(第7期),第27-30页. * |
蒋培清,等.织物动态热湿传递性能测试仪的研制.《针织工业》.2004,(第4期),第138-141页. * |
黄瀛洲,等.微机控制的服装热物性测试仪的研究.《浙江丝绸工学院学报》.1987,第4卷(第3期),第1-8页. * |
Also Published As
Publication number | Publication date |
---|---|
CN101736570A (en) | 2010-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101736570B (en) | Device and method for testing fabric contact coldness | |
CN101706463B (en) | An unsteady-state measurement device and method for thermal conductivity of multiphase porous materials | |
CN105136847B (en) | Hot flow type fabric cool feeling test equipment and method of testing | |
CN102507641A (en) | Self-adapting testing instrument for heat-moisture comfort performance of fabric and coupled testing method using same | |
CN103033277B (en) | Device and method for evaluating relation of interface temperature and interface heat exchange coefficient | |
CN107102022B (en) | Thermal environment comfort evaluation method based on thermal manikin | |
CN103076358A (en) | Thermal insulation performance detection equipment and detection method for high-bulk proteiform bedding product | |
CN102661971A (en) | Textile material thermal insulation property test instrument for simulating all-weather weather conditions | |
CN105371897A (en) | Outdoor thermal comfort monitoring system and monitoring method thereof | |
CN106770448A (en) | A kind of method of testing for simulating the textile changes in temperature sense that Human Physiology is felt | |
CN102384928A (en) | Device and method for measuring thermal conductivity of high-conductivity thermal solid material | |
CN106840257A (en) | A kind of method for evaluating male individual sleep state thermal comfort | |
CN106821317A (en) | A kind of method for evaluating female individual sleep state thermal comfort | |
CN101551379A (en) | Method of testing textile dynamic heat-moisture transmission performance | |
CN108593708A (en) | A kind of test device and evaluation method of fabric cooling function | |
CN103565417A (en) | Pain test instrument | |
CN103575759B (en) | Flexible material compression dynamic heat transfer characteristic measuring equipment and measuring method | |
CN204556461U (en) | A kind of computer based textile heat-moisture transfer system safety testing device | |
CN101251501A (en) | Simulated skin sensor for fire emergency protective clothing testing and its testing method | |
CN201560339U (en) | Environment system of heat resistance and moisture resistance testing system namely sweat discharging moisture-transmitting instrument | |
CN208818771U (en) | Thermal resistance test device for anisotropic thermally conductive sheets | |
CN103257086B (en) | A kind of measurement mechanism of fibrefill fiber assembly moisture transmission performance | |
CN205426383U (en) | Temperature measurement probe and system | |
CN205580501U (en) | Outdoor thermal comfort degree monitoring system | |
CN102253186B (en) | A dynamic testing instrument for fabric heat and humidity performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 430073 Textile Road, Hongshan District, Hubei, China, No. 1, No. Patentee after: Wuhan Textile University Address before: 430073 Textile Road No. 1, Hongshan District, Wuhan, Hubei, Wuhan Patentee before: Wuhan University of Science & Engineering |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170519 Address after: Fushan District, Shandong province 265500 Yantai City Ying Road No. 28 Patentee after: Yantai Mingyuan Home Textile Co.,Ltd. Address before: 430073 Textile Road, Hongshan District, Hubei, China, No. 1, No. Patentee before: Wuhan Textile University |