[go: up one dir, main page]

CN101736570B - Device and method for testing fabric contact coldness - Google Patents

Device and method for testing fabric contact coldness Download PDF

Info

Publication number
CN101736570B
CN101736570B CN2009102731212A CN200910273121A CN101736570B CN 101736570 B CN101736570 B CN 101736570B CN 2009102731212 A CN2009102731212 A CN 2009102731212A CN 200910273121 A CN200910273121 A CN 200910273121A CN 101736570 B CN101736570 B CN 101736570B
Authority
CN
China
Prior art keywords
fabric
test
tank
heat
test device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009102731212A
Other languages
Chinese (zh)
Other versions
CN101736570A (en
Inventor
张如全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Mingyuan Home Textile Co ltd
Wuhan Textile University
Original Assignee
Wuhan University of Science and Technology WHUST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Technology WHUST filed Critical Wuhan University of Science and Technology WHUST
Priority to CN2009102731212A priority Critical patent/CN101736570B/en
Publication of CN101736570A publication Critical patent/CN101736570A/en
Application granted granted Critical
Publication of CN101736570B publication Critical patent/CN101736570B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

本发明涉及一种织物接触冷感测试装置及测试方法,属于纺织工程领域。测试装置由外罩、测试板、水槽、织物夹板、织物表面温度传感器等组成。本发明测试装置它结构合理、使用方便、体积小、制造成本低、可以大规模工业化生产;本发明测试装置采用稳定性好、精确度高的铂电阻作为温度传感器,提高了测试精度。测试平台的上方设置了由绝热材料制成的帽罩,不仅可以减少周围环境对测试的影响,而且可以减少织物热辐射带来的热量损失,提高测试的可靠性;本发明的测试装置及测试方法解决了以往测试织物的最大瞬态热流量Qmax评价织物冷感时技术要求高、测试成本高的不足。本发明的织物接触冷感测试装置及测试方法可用于织物的接触冷暖感评价领域。

Figure 200910273121

The invention relates to a fabric contact cold feeling test device and a test method, which belong to the field of textile engineering. The test device consists of an outer cover, a test board, a water tank, a fabric splint, and a fabric surface temperature sensor. The test device of the present invention has reasonable structure, convenient use, small volume, low manufacturing cost, and can be produced in a large-scale industrialized manner; the test device of the present invention adopts a platinum resistor with good stability and high precision as a temperature sensor, thereby improving test accuracy. The top of the test platform is provided with a cap made of heat insulating material, which can not only reduce the influence of the surrounding environment on the test, but also reduce the heat loss caused by the thermal radiation of the fabric and improve the reliability of the test; the test device and test The method solves the shortcomings of high technical requirements and high testing costs when evaluating the cold feeling of fabrics by testing the maximum transient heat flow Qmax of fabrics in the past. The fabric contact cold feeling test device and test method of the present invention can be used in the field of fabric contact cold and warm feeling evaluation.

Figure 200910273121

Description

一种织物接触冷感测试装置及测试方法A fabric contact cold feeling test device and test method

技术领域 technical field

本发明涉及一种织物接触冷感测试装置及测试方法,属于纺织工程领域。The invention relates to a fabric contact cold feeling test device and a test method, which belong to the field of textile engineering.

背景技术 Background technique

随着生活水平的提高,服装的舒适性受到人们极大的关注。织物的热传递性能是影响服装热舒适性的重要因素。服装的热舒适性是指通过织物的热传递作用,使人体在变化的环境中能获得舒适满意的感觉。人体穿着衣服后,身体与环境之间始终处于能量交换之中,人体的舒适感觉,取决于人体本身产生的热量和向环境散发热量之间能量交换的平衡。由织物制成的服装,在能量交换中通过热传递过程中起着调节作用。围绕纺织品服装的热传递性能及其对舒适性的影响进行深入研究,建立了一套评价织物热舒适性的客观指标。热阻就是其中的一个重要指标。研究热阻的方法很多,其中实验仪器测试方法是常用的研究方法。用仪器对织物的热传递性能进行测定、并建立相应指标,可以对服装的舒适性能进行定量描述,并且不受心理和生理等因素的影响,测试结果具有可比性,有利于生产部门对服装或织物的质量控制和产品设计。Along with the raising of living standard, the comfort of clothing is subject to people's great concern. The heat transfer performance of fabric is an important factor affecting the thermal comfort of clothing. The thermal comfort of clothing refers to the heat transfer function of fabrics, so that the human body can obtain a comfortable and satisfactory feeling in a changing environment. After the human body wears clothes, there is always an energy exchange between the body and the environment. The comfort of the human body depends on the balance of energy exchange between the heat generated by the human body itself and the heat emitted to the environment. Clothing made of fabric plays a regulating role in the process of energy exchange through heat transfer. A set of objective indicators for evaluating the thermal comfort of fabrics has been established through in-depth research on the heat transfer performance of textiles and clothing and its influence on comfort. Thermal resistance is one of the important indicators. There are many methods to study thermal resistance, among which the experimental instrument test method is a commonly used research method. Measuring the heat transfer performance of fabrics with instruments and establishing corresponding indicators can quantitatively describe the comfort performance of clothing, and it is not affected by psychological and physiological factors. The test results are comparable, which is beneficial to the production department. Fabric quality control and product design.

织物的热传递性能通常用平板法测试方法(GB/T11048-2008,ISO11092和ASTMF1868)。其原理是将试样覆盖在恒温实验板上,使试验板的热量只能通过试样的方向散发。试验时,通过测定试验板在一定时间内保持温度所需的加热时间来计算织物的保暖指标。关于热传递性能研究,尽管出现了许多新技术如:热脉冲、热波、光热方法和光声方法应用在热性能测试方面,但应用热板和热电偶仍是测试织物热性能的有效方法,研究者对于测试装置的设计大多都是基于热平板,只是各自对于织物两侧条件的设计不同。这种测试方法只能测试织物达到稳态的热性能指标,与实际服装与实际有一定的差异,仅适合于对织物的舒适性进行粗略描述,不能反映织物的动态热传递性能。The heat transfer performance of fabrics is usually tested by the flat plate method (GB/T11048-2008, ISO11092 and ASTMF1868). The principle is to cover the sample on the constant temperature test plate, so that the heat of the test plate can only be dissipated through the direction of the sample. During the test, the heat retention index of the fabric is calculated by measuring the heating time required for the test plate to maintain the temperature within a certain period of time. Regarding the study of heat transfer performance, although many new technologies such as thermal pulse, thermal wave, photothermal method and photoacoustic method have been applied to thermal performance testing, the application of hot plates and thermocouples is still an effective method for testing the thermal properties of fabrics. Most of the researchers' designs for the test devices are based on hot plates, but the designs for the conditions on both sides of the fabric are different. This test method can only test the thermal performance index of the fabric reaching a steady state, which is different from the actual clothing and the actual situation. It is only suitable for a rough description of the comfort of the fabric and cannot reflect the dynamic heat transfer performance of the fabric.

随着研究的深入,很多学者开始注意到服装内微气候的重要影响,分别设计了不同类型的微气候测试仪,通过模拟在外界环境中,检测皮肤与试样间的微气候变化情况及热湿传递情况。即检测人体热量和汗汽通过织物内空气层、织物及织物外空气层与环境进行能量交换、质量交换的全过程,用温度梯度和湿度梯度法测试出织物能量交换和质量交换的状态变化,从而反映织物对能量流和质量流的阻力。这种服料的仪器测试并不能真实地反映服装配套的整体性能,国内外学者还同步开展了假人测试技术和评价方法的研究,更逼真地模拟人体穿着服装的状态。暖体假人法是在设定的环境条件下,模拟人体、服装和环境间的热交换过程,测试服装整体或局部的热湿传递性能的较先进的实验方法,优点是精确度高、重复性好,并可在真人无法试验的极端环境条件下,进行服装的热湿传递性能试验。然而由于暖体假人法是在严格控制的人工气候条件下,通过做大量的实验并进行分析而得出结论的,测试时间长、费用高。With the deepening of research, many scholars have begun to notice the important influence of the microclimate in clothing, and have designed different types of microclimate testers to detect the microclimate changes and thermal conditions between the skin and the sample by simulating the external environment. Moisture transfer conditions. That is to detect the whole process of energy exchange and mass exchange between human body heat and sweat vapor through the air layer inside the fabric, the air layer outside the fabric and the fabric and the environment, and use the temperature gradient and humidity gradient method to test the state changes of energy exchange and mass exchange of the fabric. Thus reflecting the fabric's resistance to energy flow and mass flow. The instrument test of this kind of clothing cannot truly reflect the overall performance of the clothing accessories. Scholars at home and abroad have also simultaneously carried out research on dummy testing technology and evaluation methods to more realistically simulate the state of the human body wearing clothing. The thermal manikin method is a relatively advanced experimental method to simulate the heat exchange process between the human body, clothing and the environment under set environmental conditions, and test the overall or partial heat and moisture transfer performance of the clothing. The advantages are high accuracy and repeatability. It has good performance, and can conduct heat and moisture transfer performance tests of clothing under extreme environmental conditions that cannot be tested by real people. However, because the thermal manikin method draws conclusions through a large number of experiments and analyzes under strictly controlled artificial climate conditions, the test time is long and the cost is high.

接触冷感是指织物与皮肤接触时,织物温度低于人体皮肤温度,人体与织物之间发生热交换,从而人体产生对织物的冷、暖的感觉,称之为接触冷感。织物接触人体时发生瞬间的热传递现象,环境温度的织物从人体皮肤表面吸收大量热量,使人体感觉到冷,冷感的强弱与织物的热传递性能有关。接触冷感是纺织品舒适性的重要性能之一,由于存在织物的热交换现象,是一个动态热传递过程,因此上面的研究方法都不能正确反映织物的接触冷感。随着人们生活水平的提高.对服用纺织品的各方面舒适性能要求越来越高,接触冷感已越来越引起人们的关注。尤其是冬季使用的纺织品,接触冷感已成为影响织物热舒适性能的一个重要指标。传统的评价方法是采用日本川端开发的精密迅速热物性测定装置KES-F7,通过测试最大瞬态热流量Qmax类来评价织物的冷暖感,但是测试设备贵,技术要求高,使用和维护费用高。Cold contact means that when the fabric is in contact with the skin, the temperature of the fabric is lower than that of the human skin, and heat exchange occurs between the human body and the fabric, so that the human body feels cold and warm to the fabric, which is called cold contact. Instantaneous heat transfer occurs when the fabric touches the human body. The fabric at ambient temperature absorbs a large amount of heat from the surface of the human skin, making the human body feel cold. The strength of the cold feeling is related to the heat transfer performance of the fabric. Cold contact is one of the important performances of textile comfort. Due to the heat exchange phenomenon of fabrics, which is a dynamic heat transfer process, the above research methods cannot correctly reflect the cold contact of fabrics. With the improvement of people's living standards, the requirements for comfort in all aspects of textiles are getting higher and higher, and the cold feeling of contact has attracted more and more attention. Especially for textiles used in winter, the contact cold feeling has become an important indicator affecting the thermal comfort performance of fabrics. The traditional evaluation method is to use the precise and rapid thermal physical property measuring device KES-F7 developed by Kawabata, Japan, to evaluate the warm and cold feeling of the fabric by testing the maximum transient heat flow Qmax, but the test equipment is expensive, the technical requirements are high, and the use and maintenance costs are high. .

发明内容 Contents of the invention

本发明的目的是为评价织物的接触织物的接触冷感,提出一种新的织物接触冷感测试装置和测试方法。The purpose of the present invention is to propose a new fabric cold feeling test device and test method for evaluating the cold feeling of the fabric in contact with the fabric.

本发明解决其技术问题所采用的技术方案是:一种织物接触冷感测试装置及测试方法。The technical solution adopted by the present invention to solve the technical problem is: a fabric contact cold feeling test device and test method.

测试装置由绝热帽罩(1)、测试板(2)、水槽(3)、织物夹板(4)、加热器(5)、织物表面温度传感器(6)等组成。水槽(3)上表面设置凸起的平台,测试板(2)镶嵌在凸起的平台中并构成测试平台,在水槽(3)的上表面还设置有加热器(5)和进水管(8),加热器(5)的下端设置在水槽(3)内,水槽(3)的外壁上包覆有绝热层(9),绝热帽罩(1)置放在水槽(3)的上表面上。The test device is composed of a thermal insulation cap (1), a test board (2), a water tank (3), a fabric splint (4), a heater (5), a fabric surface temperature sensor (6) and the like. A raised platform is arranged on the upper surface of the water tank (3), and the test board (2) is embedded in the raised platform to form a test platform, and a heater (5) and a water inlet pipe (8) are also arranged on the upper surface of the water tank (3). ), the lower end of the heater (5) is set in the water tank (3), the outer wall of the water tank (3) is coated with a heat insulating layer (9), and the heat insulating cap (1) is placed on the upper surface of the water tank (3) .

所述的测试板(2)为铜材料或铝合金材料。The test board (2) is copper material or aluminum alloy material.

所述的进水管(8)的进水口高度高于测试平台的高度。The water inlet of the water inlet pipe (8) is higher than the height of the test platform.

所述的液体介质为蒸馏水或植物油。The liquid medium is distilled water or vegetable oil.

所述的织物表面温度传感器(6)为铂电阻温度传感器。The fabric surface temperature sensor (6) is a platinum resistance temperature sensor.

织物接触冷感测试装置的测试方法,其测试方法包括如下步骤:The test method of the fabric contact cold feeling test device, the test method includes the following steps:

一测试准备a test preparation

(a)待测织物(7)的预处理,即将待测的织物,放置在人工气候室24小时;(a) pretreatment of the fabric to be tested (7), that is, placing the fabric to be tested in an artificial climate chamber for 24 hours;

(b)测试装置的调整,即从进水管(8)处往水槽(3)注入液体介质,将帽罩(1)盖在测试平台上,通过加热器(5)将水槽(3)内的液体介质加热使测试板的温度调整至摄氏35℃;(b) Adjustment of the test device, that is, inject liquid medium from the water inlet pipe (8) into the water tank (3), cover the cap (1) on the test platform, and heat the water in the water tank (3) through the heater (5). The liquid medium is heated to adjust the temperature of the test plate to 35°C;

(c)将织物表面温度传感器(6)粘贴在待测织物(7)的上表面;(c) Paste the fabric surface temperature sensor (6) on the upper surface of the fabric to be tested (7);

(d)织物表面温度传感器(6)与单片机数据采集系统相连,单片机与上位计算机连接。(d) The fabric surface temperature sensor (6) is connected with the single-chip microcomputer data acquisition system, and the single-chip microcomputer is connected with the host computer.

二测试two tests

待测试板(2)的温度恒定35℃后,取下帽罩(1),迅速把待测织物(7)平铺在测试板(2)上,再盖上帽罩(1),按每秒10次的数据采集频率开始测试。After the temperature of the test board (2) is constant at 35°C, remove the cap (1), spread the fabric to be tested (7) on the test board (2) quickly, then cover the cap (1), press each The data acquisition frequency of 10 times per second starts the test.

三数据处理Three data processing

将单片机每秒采集到的数据进行平均处理, X ‾ i = Σ j = 1 10 X ij / 10 , The average processing of the data collected by the single chip microcomputer per second, x ‾ i = Σ j = 1 10 x ij / 10 ,

其中Xi为该i时间段的织物表面温度平均值,Xij为该i时间段第j时刻采集到的织物表面温度,j=1,2,...,10,Wherein Xi is the fabric surface temperature average value of the i time period, Xij is the fabric surface temperature collected at the j moment of the i time period, j=1, 2, ..., 10,

计算出每秒的织物表面温度平均值后,求出织物表面温度升温速率的最大值。max|Xi+1-Xi|{i=1,2,...,n-1},After calculating the average value of the fabric surface temperature per second, find the maximum value of the fabric surface temperature heating rate. max|X i+1 -X i |{i=1, 2,..., n-1},

其中|Xi+1-Xi|为第i秒的织物表面温度升温速率。Where |X i+1 -X i | is the temperature rise rate of the fabric surface in the i second.

用织物表面温度的升温速率的最大值来评价织物的冷感,温度差越大,织物的冷感越强。The maximum value of the temperature rise rate of the fabric surface is used to evaluate the coolness of the fabric. The greater the temperature difference, the stronger the coolness of the fabric.

由于采用了以上技术方案,本发明测试装置它结构合理、使用方便、体积小、制造成本低、可以大规模工业化生产;本发明测试装置采用稳定性好、精确度高的铂电阻作为温度传感器,提高了测试精度。测试平台的上方设置了由绝热材料制成的帽罩,不仅可以减少周围环境对测试的影响,而且可以减少织物热辐射带来的热量损失,提高测试的可靠性;本发明的测试装置及测试方法解决了以往测试织物的最大瞬态热流量Qmax评价织物冷感时技术要求高、测试成本高的不足。本发明的织物接触冷感测试装置及测试方法可用于织物的接触冷暖感评价领域。Due to the adoption of the above technical scheme, the test device of the present invention has reasonable structure, convenient use, small volume, low manufacturing cost, and can be industrialized on a large scale; the test device of the present invention uses a platinum resistor with good stability and high precision as the temperature sensor. Improved test accuracy. The top of the test platform is provided with a cap made of heat insulating material, which can not only reduce the influence of the surrounding environment on the test, but also reduce the heat loss caused by the thermal radiation of the fabric and improve the reliability of the test; the test device and test The method solves the shortcomings of high technical requirements and high testing costs when evaluating the cold feeling of fabrics by testing the maximum transient heat flow Qmax of fabrics in the past. The fabric contact cold feeling test device and test method of the present invention can be used in the field of fabric contact cold and warm feeling evaluation.

附图说明 Description of drawings

图1为本发明的织物表面温度测试装置的结构示意图Fig. 1 is the structural representation of fabric surface temperature testing device of the present invention

图2为本发明实施例的测试装置的测试原理图Fig. 2 is the test schematic diagram of the test device of the embodiment of the present invention

图3为本发明实施例的测试的织物表面升温速率图Fig. 3 is the fabric surface heating rate diagram of the test of the embodiment of the present invention

具体实施方式 Detailed ways

下面将结合附图和具体实施方式对本发明做进一步说明The present invention will be further described below in conjunction with accompanying drawing and specific embodiment

见附图see Attachment

测试装置由绝热帽罩1、测试板2、水槽3、织物夹板4、加热器5、织物表面温度传感器6等组成,铂电阻具有良好的稳定性和精确度,织物表面温度传感器6采用铂电阻温度传感器,在水槽3上表面设置凸起的平台,由于铜材料和铝合金材料的热传导较快,测试板2采用铜材料或铝合金材料,并且材料的厚度大于8mm,可以增加测试板2自身的热容量,提高测试的精度,测试板2镶嵌在凸起的平台中并构成测试平台,在水槽3的上表面还设置有加热器5和进水管8,测试板2与水槽3内的液体介质应中间无气泡,均匀接触,进水管8的进水口高度高于测试平台的高度,加热器5的下端设置在水槽3内,水槽3的外壁上包覆的绝热层9可以防止测试过程中热量的损失,影响测试精度,绝热帽罩1置放在水槽3的上表面上,防止热辐射所带来的热量流失。织物表面温度传感器6与单片机数据采集系统相连,来自温度传感器6的信号经过信号放大回路进行放大,使之适合于单片机的模数转换的输入电压0~5V要求,信号进入单片机后,经过A/D模数转换,转换后的数据通过串行通信端口传递给上位计算机,由计算机进行数据处理。The test device is composed of a thermal insulation cap 1, a test board 2, a water tank 3, a fabric splint 4, a heater 5, and a fabric surface temperature sensor 6. The platinum resistor has good stability and accuracy, and the fabric surface temperature sensor 6 adopts a platinum resistor For the temperature sensor, a raised platform is set on the upper surface of the water tank 3. Since the heat conduction of the copper material and the aluminum alloy material is fast, the test board 2 is made of copper material or aluminum alloy material, and the thickness of the material is greater than 8mm, and the test board 2 itself can be increased. heat capacity, improve the accuracy of the test, the test board 2 is embedded in the raised platform to form a test platform, the upper surface of the water tank 3 is also provided with a heater 5 and a water inlet pipe 8, the test board 2 and the liquid medium in the water tank 3 There should be no air bubbles in the middle, uniform contact, the height of the water inlet of the water inlet pipe 8 is higher than the height of the test platform, the lower end of the heater 5 is set in the water tank 3, and the heat insulating layer 9 coated on the outer wall of the water tank 3 can prevent the heat generated during the test. The loss of the test will affect the accuracy of the test. The heat insulating cap 1 is placed on the upper surface of the water tank 3 to prevent heat loss caused by heat radiation. The fabric surface temperature sensor 6 is connected with the single-chip microcomputer data acquisition system, and the signal from the temperature sensor 6 is amplified through the signal amplification circuit, so that it is suitable for the input voltage 0-5V requirement of the analog-to-digital conversion of the single-chip microcomputer. After the signal enters the single-chip microcomputer, it passes through the A/ D Analog-to-digital conversion, the converted data is transmitted to the upper computer through the serial communication port, and the data is processed by the computer.

织物接触冷感测试装置的测试方法,其测试方法包括如下步骤:The test method of the fabric contact cold feeling test device, the test method includes the following steps:

一测试准备a test preparation

(a)待测织物7的预处理,即将待测的织物,放置在人工气候室24小时,以便于织物充分达到热湿平衡,人工气候室的温度为摄氏(25±1)℃,相对湿度(50±2)%。(a) Pretreatment of the fabric 7 to be tested, that is, to place the fabric to be tested in an artificial climate chamber for 24 hours so that the fabric can fully reach the heat and humidity balance. The temperature of the artificial climate chamber is (25±1)°C, and the relative humidity is (50±2)%.

(b)测试装置的调整,即从进水管8处往水槽3注入液体介质,液体介质可以是蒸馏水或者是植物油。采用蒸馏水可以避免普通自来水在加热过程中产生气泡从而在测试板2下面形成堆积气泡,改变测试板2与液体介质间的接触状况,影响测试精度,植物油在加热过程中,不会产生气泡,测试板2受热均匀,可以保证测试精度。将帽罩1盖在测试平台上,减少测试板2因热辐射而产生的热量损失,测试板2的温度用一个温度传感器观察,通过加热器5将水槽3内的液体介质加热,使测试板2的温度调整至摄氏35℃。(b) Adjustment of the test device, that is, inject liquid medium from the water inlet pipe 8 into the water tank 3, and the liquid medium can be distilled water or vegetable oil. The use of distilled water can prevent ordinary tap water from generating bubbles during the heating process, thereby forming accumulated bubbles under the test plate 2, changing the contact between the test plate 2 and the liquid medium, and affecting the test accuracy. Vegetable oil will not produce bubbles during the heating process. Plate 2 is evenly heated, which can ensure test accuracy. Cover the cap 1 on the test platform to reduce the heat loss of the test board 2 due to heat radiation. The temperature of the test board 2 is observed with a temperature sensor, and the liquid medium in the water tank 3 is heated by the heater 5 to make the test board 2. Adjust the temperature to 35°C.

(c)将织物表面温度传感器6粘贴在待测织物7的上表面。(c) Paste the fabric surface temperature sensor 6 on the upper surface of the fabric 7 to be tested.

(d)织物表面温度传感器6与单片机数据采集系统相连,单片机通过通过串行通信端口与上位计算机相连,启动单片机和上位计算机的数据处理程序。(d) The fabric surface temperature sensor 6 is connected with the single-chip microcomputer data acquisition system, and the single-chip microcomputer is connected with the host computer through the serial communication port, and starts the data processing program of the single-chip microcomputer and the host computer.

二测试two tests

先用贴附在测试板上的温度传感器测试测试板2的温度,待测试板2的温度恒定在35℃保持五分钟以上后,取下帽罩1,迅速把织物夹板4夹持好的待测织物7平铺在测试板2上,再盖上帽罩1,防止待测织物7的热辐射影响测试精度,单片机数据采集系统按每秒10次的数据采集频率开始测量,并把模数转换后的数据通过串行通信端口及时传送给上位计算机,采集时间为60秒,First use the temperature sensor attached to the test board to test the temperature of the test board 2. After the temperature of the test board 2 is kept at 35°C for more than five minutes, remove the cap 1, and quickly clamp the fabric splint 4 to wait. The test fabric 7 is laid flat on the test board 2, and then the cap 1 is covered to prevent the heat radiation of the test fabric 7 from affecting the test accuracy. The single-chip data acquisition system starts measuring at a data acquisition frequency of 10 times per second, and the The converted data is transmitted to the upper computer in time through the serial communication port, and the collection time is 60 seconds.

三数据处理Three data processing

上位计算机将单片机每秒采集到的数据进行平均处理, X ‾ i = Σ j = 1 10 X ij / 10 , The upper computer averages the data collected by the single-chip microcomputer every second, x ‾ i = Σ j = 1 10 x ij / 10 ,

其中Xi为该i时间段的织物表面温度平均值,Xij为该i时间段第j时刻采集到的织物表面温度,j=1,2,...,10,Wherein Xi is the fabric surface temperature average value of the i time period, Xij is the fabric surface temperature collected at the j moment of the i time period, j=1, 2, ..., 10,

计算出每秒的织物表面温度平均值后,求出织物表面温度升温速率的最大值。max|Xi+1-Xi|{i=1,2,...,59}After calculating the average value of the fabric surface temperature per second, find the maximum value of the fabric surface temperature heating rate. max|X i+1 -X i |{i=1, 2,..., 59}

其中|Xi+1-Xi|为第i秒的织物表面温度升温速率。Where |X i+1 -X i | is the temperature rise rate of the fabric surface in the i second.

用织物表面温度的升温速率的最大值max|Xi+1-Xi|{i=1,2,...,59}来评价织物的冷感,升温速率的最大值越大,织物的冷感越强。Use the maximum value max|X i+1 -X i |{i=1, 2,...,59} of the maximum temperature rise rate of the fabric surface temperature to evaluate the cold feeling of the fabric. The stronger the cold feeling.

具体实施例 specific embodiment

用以上测试方法分别对三种织物表面的温度随时间的变化进行测试,求出织物表面温度的升温速率的最大值,评价织物的冷感。Use the above test methods to test the temperature of the surface of the three kinds of fabrics with time. The maximum value of the temperature rise rate of the fabric surface is obtained, and the cold feeling of the fabric is evaluated.

表1三种织物表面温度每秒的平均值(℃)Table 1 The average value of the surface temperature of three kinds of fabrics per second (℃)

表1Table 1

  时间(秒) time (seconds)   棉织物 cotton fabric   丝绸织物 silk fabric   毛织物 wool fabric   0 0   24.925 24.925   25.097 25.097   25.030 25.030   1 1   25.035 25.035   26.369 26.369   25.841 25.841   2 2   26.083 26.083   28.148 28.148   27.223 27.223   3 3   27.425 27.425   29.481 29.481   28.307 28.307   4 4   28.432 28.432   30.384 30.384   29.290 29.290   5 5   29.203 29.203   31.085 31.085   29.947 29.947   6 6   29.825 29.825   31.563 31.563   30.484 30.484   7 7   30.366 30.366   32.005 32.005   30.927 30.927   8 8   30.742 30.742   32.286 32.286   31.309 31.309   9 9   31.085 31.085   32.518 32.518   31.568 31.568   10 10   31.339 31.339   32.679 32.679   31.793 31.793   11 11   31.560 31.560   32.824 32.824   32.005 32.005   12 12   31.661 31.661   32.917 32.917   32.173 32.173   13 13   31.820 31.820   33.046 33.046   32.297 32.297   14 14   31.930 31.930   33.104 33.104   32.438 32.438   15 15   32.074 32.074   33.206 33.206   32.536 32.536   16 16   32.137 32.137   33.246 33.246   32.598 32.598   17 17   32.221 32.221   33.286 33.286   32.655 32.655   18 18   32.261 32.261   33.317 33.317   32.686 32.686   19 19   32.279 32.279   33.402 33.402   32.726 32.726   20 20   32.297 32.297   33.451 33.451   32.788 32.788   21 twenty one   32.305 32.305   33.455 33.455   32.811 32.811   22 twenty two   32.368 32.368   33.460 33.460   32.833 32.833   23 twenty three   32.385 32.385   33.477 33.477   32.864 32.864   24 twenty four   32.390 32.390   33.477 33.477   32.895 32.895   25 25   32.394 32.394   33.486 33.486   32.899 32.899   26 26   32.398 32.398   33.504 33.504   32.908 32.908   27 27   32.407 32.407   33.504 33.504   32.913 32.913   28 28   32.434 32.434   33.504 33.504   32.930 32.930   29 29   32.434 32.434   33.513 33.513   32.944 32.944   30 30   32.452 32.452   33.513 33.513   32.975 32.975   31 31   32.465 32.465   33.531 33.531   32.988 32.988   32 32   32.483 32.483   33.540 33.540   32.997 32.997   33 33   32.491 32.491   33.540 33.540   33.015 33.015   34 34   32.522 32.522   33.549 33.549   33.015 33.015   35 35   32.571 32.571   33.558 33.558   33.019 33.019   36 36   32.580 32.580   33.567 33.567   33.024 33.024   37 37   32.580 32.580   33.571 33.571   33.033 33.033   38 38   32.593 32.593   33.580 33.580   33.033 33.033   39 39   32.593 32.593   33.611 33.611   33.059 33.059   40 40   32.602 32.602   33.611 33.611   33.064 33.064   41 41   32.607 32.607   33.625 33.625   33.073 33.073   42 42   32.624 32.624   33.647 33.647   33.073 33.073   43 43   32.629 32.629   33.683 33.683   33.073 33.073   44 44   32.633 32.633   33.687 33.687   33.090 33.090   45 45   32.633 32.633   33.687 33.687   33.090 33.090   46 46   32.633 32.633   33.687 33.687   33.090 33.090   47 47   32.642 32.642   33.687 33.687   33.113 33.113   48 48   32.642 32.642   33.696 33.696   33.113 33.113   49 49   32.664 32.664   33.696 33.696   33.126 33.126   50 50   32.673 32.673   33.700 33.700   33.130 33.130   51 51   32.695 32.695   33.709 33.709   33.135 33.135   52 52   32.704 32.704   33.709 33.709   33.139 33.139   53 53   32.704 32.704   33.709 33.709   33.148 33.148   54 54   32.722 32.722   33.714 33.714   33.161 33.161   55 55   32.753 32.753   33.718 33.718   33.166 33.166   56 56   32.753 32.753   33.718 33.718   33.166 33.166   57 57   32.753 32.753   33.727 33.727   33.175 33.175   58 58   32.775 32.775   33.732 33.732   33.179 33.179   59 59   32.793 32.793   33.732 33.732   33.184 33.184   60 60   32.793 32.793   33.732 33.732   33.201 33.201

表2三种织物各时间段的升温速率(℃/S)Table 2 Heating rate (°C/S) of three kinds of fabrics in each time period

表2Table 2

  时间(秒) time (seconds)   棉织物 cotton fabric   丝绸织物 silk fabric   毛织物 wool fabric   0 0   0.000 0.000   0.000 0.000   0.000 0.000   1 1   0.110 0.110   1.272 1.272   0.811 0.811   2 2   1.048 1.048   1.779 1.779   1.382 1.382   3 3   1.342 1.342   1.333 1.333   1.084 1.084   4 4   1.007 1.007   0.903 0.903   0.983 0.983   5 5   0.771 0.771   0.701 0.701   0.657 0.657   6 6   0.622 0.622   0.479 0.479   0.537 0.537   7 7   0.541 0.541   0.442 0.442   0.443 0.443   8 8   0.376 0.376   0.281 0.281   0.382 0.382   9 9   0.342 0.342   0.232 0.232   0.260 0.260   10 10   0.255 0.255   0.161 0.161   0.225 0.225   11 11   0.220 0.220   0.145 0.145   0.212 0.212   12 12   0.101 0.101   0.093 0.093   0.168 0.168   13 13   0.159 0.159   0.129 0.129   0.124 0.124   14 14   0.110 0.110   0.058 0.058   0.142 0.142   15 15   0.144 0.144   0.102 0.102   0.097 0.097   16 16   0.063 0.063   0.040 0.040   0.062 0.062   17 17   0.084 0.084   0.040 0.040   0.058 0.058   18 18   0.040 0.040   0.031 0.031   0.031 0.031   19 19   0.018 0.018   0.085 0.085   0.040 0.040   20 20   0.018 0.018   0.049 0.049   0.062 0.062   21 twenty one   0.009 0.009   0.004 0.004   0.022 0.022   22 twenty two   0.062 0.062   0.004 0.004   0.022 0.022   23 twenty three   0.018 0.018   0.018 0.018   0.031 0.031   24 twenty four   0.004 0.004   0.000 0.000   0.031 0.031   25 25   0.004 0.004   0.009 0.009   0.004 0.004   26 26   0.004 0.004   0.018 0.018   0.009 0.009   27 27   0.009 0.009   0.000 0.000   0.004 0.004   28 28   0.027 0.027   0.000 0.000   0.018 0.018   29 29   0.000 0.000   0.009 0.009   0.013 0.013   30 30   0.018 0.018   0.000 0.000   0.031 0.031   31 31   0.013 0.013   0.018 0.018   0.013 0.013   32 32   0.018 0.018   0.009 0.009   0.009 0.009   33 33   0.009 0.009   0.000 0.000   0.018 0.018   34 34   0.031 0.031   0.009 0.009   0.000 0.000   35 35   0.049 0.049   0.009 0.009   0.004 0.004   36 36   0.009 0.009   0.009 0.009   0.004 0.004   37 37   0.000 0.000   0.004 0.004   0.009 0.009   38 38   0.013 0.013   0.009 0.009   0.000 0.000   39 39   0.000 0.000   0.031 0.031   0.027 0.027   40 40   0.009 0.009   0.000 0.000   0.004 0.004   41 41   0.004 0.004   0.013 0.013   0.009 0.009   42 42   0.018 0.018   0.022 0.022   0.000 0.000   43 43   0.004 0.004   0.036 0.036   0.000 0.000   44 44   0.004 0.004   0.004 0.004   0.018 0.018   45 45   0.000 0.000   0.000 0.000   0.000 0.000   46 46   0.000 0.000   0.000 0.000   0.000 0.000   47 47   0.009 0.009   0.000 0.000   0.022 0.022   48 48   0.000 0.000   0.009 0.009   0.000 0.000   49 49   0.022 0.022   0.000 0.000   0.013 0.013   50 50   0.009 0.009   0.004 0.004   0.004 0.004   51 51   0.022 0.022   0.009 0.009   0.004 0.004   52 52   0.009 0.009   0.000 0.000   0.004 0.004   53 53   0.000 0.000   0.000 0.000   0.009 0.009   54 54   0.018 0.018   0.004 0.004   0.013 0.013   55 55   0.031 0.031   0.004 0.004   0.004 0.004   56 56   0.000 0.000   0.000 0.000   0.000 0.000   57 57   0.000 0.000   0.009 0.009   0.009 0.009   58 58   0.022 0.022   0.004 0.004   0.004 0.004   59 59   0.018 0.018   0.000 0.000   0.004 0.004   60 60   0.000 0.000   0.000 0.000   0.018 0.018   最大值 maximum value   1.342 1.342   1.779 1.779   1.382 1.382

冷感评价依据:Cold feeling evaluation basis:

织物上表面温度随时间变化的曲线如图2所示。T1,T2分别为织物上表面温度传感器在t1,t2时刻所测的对应的温度。单位面积内,一定的温度T可以认为对应一定的热量q,设其对应系数为α,则q=αT,其中α因织物的不同而不同。如图2所示,设在t1时刻织物上表面单位面积内的热量为q1,t2时刻其热量为q2。热量从织物的一侧传递到另一侧,织物上表面接受来自与测试板接触的织物下表面传递过来的热量qa的同时,也在向外界释放一定的热量qb,接受的热量大于释放的热量,这种热量差随着时间的延续而逐渐积累,宏观上表现为织物上表面温度的上升。The curve of the surface temperature of the fabric as a function of time is shown in Figure 2. T 1 and T 2 are the corresponding temperatures measured by the fabric upper surface temperature sensor at time t 1 and t 2 respectively. Within a unit area, a certain temperature T can be considered to correspond to a certain amount of heat q, and if its corresponding coefficient is α, then q=αT, where α varies with different fabrics. As shown in Figure 2, suppose the heat per unit area of the upper surface of the fabric is q 1 at time t 1 and q 2 at time t 2 . The heat is transferred from one side of the fabric to the other. While the upper surface of the fabric receives the heat q a transferred from the lower surface of the fabric in contact with the test plate, it also releases a certain amount of heat q b to the outside, and the heat received is greater than the heat released This heat difference gradually accumulates over time, which is manifested as an increase in the temperature of the upper surface of the fabric macroscopically.

q=qa-qb       (1)q= qa - qb (1)

其中:in:

q为在t时刻织物上表面单位面积内的热量(J/m2h);q is the heat per unit area of the upper surface of the fabric at time t (J/m 2 h);

qa为在t时刻织物上表面单位面积内来自与测试板接触的织物下表面传递的热量(J/m2h);q a is the heat transferred from the lower surface of the fabric in contact with the test plate within the unit area of the upper surface of the fabric at time t (J/m 2 h);

qb为在t时刻织物上表面单位面积内向外界释放的热量(J/m2h);q b is the heat released to the outside in the unit area of the upper surface of the fabric at time t (J/m 2 h);

织物表面温度上升的速率为:The rate at which the surface temperature of the fabric rises is:

TT 22 -- TT 11 tt 22 -- tt 11 == qq 22 -- qq 11 αα (( tt 22 -- tt 11 )) -- -- -- (( 22 ))

将式(1)代入式(2)Substitute formula (1) into formula (2)

TT 22 -- TT 11 tt 22 -- tt 11 == qq 22 -- qq 11 αα (( tt 22 -- tt 11 )) == (( qq 22 aa -- qq 22 bb )) -- (( qq 11 aa -- qq 11 bb )) αα (( tt 22 -- tt 11 )) == qq 22 aa -- qq 11 aa αα (( tt 22 -- tt 11 )) -- qq 22 bb -- qq 11 bb αα (( tt 22 -- tt 11 )) -- -- -- (( 33 ))

热量从织物的一面向另一面热传递,就是在(t2-t1)时间内从测试板传递到单位面积织物上表面的热量,它与织物的动态热传递有关,传递的热量越大,织物接触冷感就越强。Heat is transferred from one side of the fabric to the other, It is the heat transferred from the test board to the upper surface of the fabric per unit area within the time (t 2 -t 1 ), which is related to the dynamic heat transfer of the fabric. The greater the heat transferred, the stronger the cold feeling of the fabric.

令t2-t1=Δt,则(3)变为Let t 2 -t 1 =Δt, then (3) becomes

TT 22 -- TT 11 ΔtΔt == qq 22 aa -- qq 11 aa αα ·&Center Dot; ΔtΔt -- qq 22 bb -- qq 11 bb αα ·&Center Dot; ΔtΔt -- -- -- (( 33 ))

Δt很小时,在绝热的实验空间内,织物上表面向外界释放的热量较少,且相对稳定,故可近视为一常量。有式(4)可知,织物瞬间传递的热量(q2a-q2b)越大,织物升温就越快,所以用升温速率

Figure G2009102731212D00086
能描述织物内部热传递速率的快慢,能反映织物动态热传递性能的优良,升温速率越快,织物传递热量就越快,接触冷感就越强。When Δt is small, in the adiabatic experimental space, the upper surface of the fabric releases less heat to the outside and is relatively stable, so Can be viewed as a constant. It can be seen from formula (4) that the greater the heat (q 2a -q 2b ) instantaneously transferred by the fabric, the faster the temperature of the fabric will rise, so the temperature rise rate is used
Figure G2009102731212D00086
It can describe the speed of the internal heat transfer rate of the fabric, and can reflect the excellent dynamic heat transfer performance of the fabric. The faster the heating rate, the faster the heat transfer of the fabric, and the stronger the cold feeling of contact.

Claims (1)

1. the method for testing of a fabric contact coldness testing arrangement; It is characterized in that: testing arrangement comprises adiabatic calotte (1), test board (2), tank (3), fabric clamping plate (4), heater (5), fabric face temperature sensor (6); Tank (3) upper surface is provided with protruding platform, and test board (2) is embedded in the protruding platform and constitutes test platform, also is provided with heater (5) and water inlet pipe (8) at the upper surface of tank (3); The lower end of heater (5) is arranged in the tank (3); Be coated with heat insulation layer (9) on the outer wall of tank (3), adiabatic calotte (1) is seated on the upper surface of tank (3), and method of testing comprises the steps:
One test is prepared
(a) preliminary treatment of fabric to be measured (7) is about to fabric to be measured, is placed on phjytotron 24 hours,
(b) adjustment of testing arrangement; Promptly inject liquid medium from water inlet pipe (8) toward tank (3); Adiabatic calotte (1) is covered on the upper surface of tank (3), make the temperature of test board (2) be adjusted to 35 ℃ Celsius the heating of liquid medium in the tank (3) through heater (5)
(c) fabric face temperature sensor (6) is sticked on the upper surface of fabric to be measured (7),
(d) fabric face temperature sensor (6) links to each other with single-chip data acquisition system, and single-chip microcomputer is connected with host computer,
Two tests
After 35 ℃ of the temperature constant of test plate (panel) to be measured (2), take off adiabatic calotte (1), being tiled on the test board (2), cover adiabatic calotte (1) more rapidly, begin test by the data acquiring frequency of per second 10 times with the good fabric to be measured (7) of fabric clamping plate (4) clamping,
Three data
The data that the single-chip microcomputer per second is collected average processing,
Figure FSB00000717551500011
Wherein
Figure FSB00000717551500012
Be the i fabric face temperature-averaging value of second, X IjBe the i fabric face temperature that second, j collected constantly, j=1,2 ..., 10
After calculating
Figure FSB00000717551500013
; Obtain the maximum of fabric face temperature heating rate;
Figure FSB00000717551500014
{ i=1; 2; ...; N-1}, wherein
Figure FSB00000717551500015
is the i fabric face temperature heating rate of second.
CN2009102731212A 2009-12-09 2009-12-09 Device and method for testing fabric contact coldness Active CN101736570B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102731212A CN101736570B (en) 2009-12-09 2009-12-09 Device and method for testing fabric contact coldness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102731212A CN101736570B (en) 2009-12-09 2009-12-09 Device and method for testing fabric contact coldness

Publications (2)

Publication Number Publication Date
CN101736570A CN101736570A (en) 2010-06-16
CN101736570B true CN101736570B (en) 2012-05-23

Family

ID=42460559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102731212A Active CN101736570B (en) 2009-12-09 2009-12-09 Device and method for testing fabric contact coldness

Country Status (1)

Country Link
CN (1) CN101736570B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998331A (en) * 2011-09-09 2013-03-27 力丽企业股份有限公司 A tester that can continuously measure the temperature rise and fall of fabrics
CN102661971B (en) * 2012-05-16 2014-07-02 中原工学院 Textile material thermal insulation property test instrument for simulating all-weather weather conditions
JP6289058B2 (en) * 2013-11-29 2018-03-07 セーレン株式会社 Skin material
CN104089706B (en) * 2014-07-29 2017-04-26 北京卫星环境工程研究所 Transient heat flow meter used under thermal vacuum environment and heat flow measuring method
CN104833694A (en) * 2015-04-21 2015-08-12 青岛大学 Fabric cold feeling testing apparatus
CN105136847B (en) * 2015-09-10 2018-03-16 温州方圆仪器有限公司 Hot flow type fabric cool feeling test equipment and method of testing
CN107917930A (en) * 2017-12-22 2018-04-17 浙江工贸职业技术学院 A kind of textile instantaneous touch cool feeling performance detection apparatus based on body temperature and tactile
CN107957433B (en) * 2018-01-12 2020-04-17 天津工业大学 Device and method for testing thermal insulation performance of textile in low-temperature environment
CN108593708B (en) * 2018-07-18 2020-08-11 东华大学 Testing device and evaluation method for cool function of fabric
CN111272814B (en) * 2020-03-31 2022-05-06 石狮市中纺学服装及配饰产业研究院 Device and method for testing thermal insulation performance of ready-made clothes
CN116148311B (en) * 2023-04-24 2023-06-27 苏州太湖雪丝绸股份有限公司 Textile contact cool feeling energy detection device and detection method thereof
CN117131651B (en) * 2023-05-08 2024-04-26 广东职业技术学院 Method and system for generating temperature touch model for determining temperature touch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253289A (en) * 1999-10-22 2000-05-17 向新柱 Method and instrument for measuring water absorption of fabrics
CN1441251A (en) * 2003-04-08 2003-09-10 东华大学 Microweather simulator for low-temperature microweather facbric test instrument
CN1975416A (en) * 2006-12-06 2007-06-06 武汉科技学院 Fabric moisture-penetrability testing device and testing method
CN101169401A (en) * 2006-10-27 2008-04-30 香港理工大学 Measuring equipment for dynamic heat and moisture transfer characteristics of fabric
CN101487783A (en) * 2009-02-24 2009-07-22 天津工业大学 Test device and method for fabric moisture permeability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253289A (en) * 1999-10-22 2000-05-17 向新柱 Method and instrument for measuring water absorption of fabrics
CN1441251A (en) * 2003-04-08 2003-09-10 东华大学 Microweather simulator for low-temperature microweather facbric test instrument
CN101169401A (en) * 2006-10-27 2008-04-30 香港理工大学 Measuring equipment for dynamic heat and moisture transfer characteristics of fabric
CN1975416A (en) * 2006-12-06 2007-06-06 武汉科技学院 Fabric moisture-penetrability testing device and testing method
CN101487783A (en) * 2009-02-24 2009-07-22 天津工业大学 Test device and method for fabric moisture permeability

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
王晓东,等.接触冷感的仪器测试与穿着实验的研究.《纺织学报》.1991,第12卷(第7期),第27-30页. *
蒋培清,等.织物动态热湿传递性能测试仪的研制.《针织工业》.2004,(第4期),第138-141页. *
黄瀛洲,等.微机控制的服装热物性测试仪的研究.《浙江丝绸工学院学报》.1987,第4卷(第3期),第1-8页. *

Also Published As

Publication number Publication date
CN101736570A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
CN101736570B (en) Device and method for testing fabric contact coldness
CN101706463B (en) An unsteady-state measurement device and method for thermal conductivity of multiphase porous materials
CN105136847B (en) Hot flow type fabric cool feeling test equipment and method of testing
CN102507641A (en) Self-adapting testing instrument for heat-moisture comfort performance of fabric and coupled testing method using same
CN103033277B (en) Device and method for evaluating relation of interface temperature and interface heat exchange coefficient
CN107102022B (en) Thermal environment comfort evaluation method based on thermal manikin
CN103076358A (en) Thermal insulation performance detection equipment and detection method for high-bulk proteiform bedding product
CN102661971A (en) Textile material thermal insulation property test instrument for simulating all-weather weather conditions
CN105371897A (en) Outdoor thermal comfort monitoring system and monitoring method thereof
CN106770448A (en) A kind of method of testing for simulating the textile changes in temperature sense that Human Physiology is felt
CN102384928A (en) Device and method for measuring thermal conductivity of high-conductivity thermal solid material
CN106840257A (en) A kind of method for evaluating male individual sleep state thermal comfort
CN106821317A (en) A kind of method for evaluating female individual sleep state thermal comfort
CN101551379A (en) Method of testing textile dynamic heat-moisture transmission performance
CN108593708A (en) A kind of test device and evaluation method of fabric cooling function
CN103565417A (en) Pain test instrument
CN103575759B (en) Flexible material compression dynamic heat transfer characteristic measuring equipment and measuring method
CN204556461U (en) A kind of computer based textile heat-moisture transfer system safety testing device
CN101251501A (en) Simulated skin sensor for fire emergency protective clothing testing and its testing method
CN201560339U (en) Environment system of heat resistance and moisture resistance testing system namely sweat discharging moisture-transmitting instrument
CN208818771U (en) Thermal resistance test device for anisotropic thermally conductive sheets
CN103257086B (en) A kind of measurement mechanism of fibrefill fiber assembly moisture transmission performance
CN205426383U (en) Temperature measurement probe and system
CN205580501U (en) Outdoor thermal comfort degree monitoring system
CN102253186B (en) A dynamic testing instrument for fabric heat and humidity performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 430073 Textile Road, Hongshan District, Hubei, China, No. 1, No.

Patentee after: Wuhan Textile University

Address before: 430073 Textile Road No. 1, Hongshan District, Wuhan, Hubei, Wuhan

Patentee before: Wuhan University of Science & Engineering

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170519

Address after: Fushan District, Shandong province 265500 Yantai City Ying Road No. 28

Patentee after: Yantai Mingyuan Home Textile Co.,Ltd.

Address before: 430073 Textile Road, Hongshan District, Hubei, China, No. 1, No.

Patentee before: Wuhan Textile University