CN101705789B - Hydraulic pulse cavitation jet well drilling method - Google Patents
Hydraulic pulse cavitation jet well drilling method Download PDFInfo
- Publication number
- CN101705789B CN101705789B CN2009101691222A CN200910169122A CN101705789B CN 101705789 B CN101705789 B CN 101705789B CN 2009101691222 A CN2009101691222 A CN 2009101691222A CN 200910169122 A CN200910169122 A CN 200910169122A CN 101705789 B CN101705789 B CN 101705789B
- Authority
- CN
- China
- Prior art keywords
- pulse
- liquid
- cavitation
- fluid
- resonance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Earth Drilling (AREA)
Abstract
本发明公开了一种水力脉冲空化射流钻井方法。该方法包括如下步骤:在钻井作业中,将用于冲击井底的连续稳定的液体流转换为脉冲谐振流动液体;将脉冲谐振流动液体高速射入相对静止的液体中,产生空化现象;以波动压力的方式冲击井底,减少了压持效应、提高了射流清岩和破岩的能力,节约了钻井成本。
The invention discloses a hydraulic pulse cavitation jet drilling method. The method comprises the following steps: in the drilling operation, converting the continuous and stable liquid flow used to impact the bottom of the well into a pulse resonance flow liquid; injecting the pulse resonance flow liquid into the relatively static liquid at high speed to generate cavitation; and The way of fluctuating pressure impacts the bottom of the well, which reduces the holding effect, improves the ability of the jet to clear and break rocks, and saves drilling costs.
Description
本申请是2006年7月12日提交专利局、申请号为200610098598.8、发明名称为《水力脉冲空化射流钻井装置、方法及钻头》的专利申请的分案申请。 This application is a divisional application of the patent application submitted to the Patent Office on July 12, 2006, the application number is 200610098598.8, and the title of the invention is "Hydraulic Pulse Cavitation Jet Drilling Device, Method and Drill Bit". the
技术领域 technical field
本发明涉及一种钻井方法,尤其涉及一种水力脉冲空化射流钻井方法。 The invention relates to a drilling method, in particular to a hydraulic pulse cavitation jet drilling method. the
背景技术 Background technique
钻采工艺技术面对的对象是井下系统(从井筒到地层)。这种对象的特点是井眼小,地层深,井下条件复杂,而且看不见,只有井下钻采工具才能最接近工作的对象。因此,要想用新的钻采工艺技术对井下系统进行精细作业,只有依靠井下钻采工具。发展先进的钻采工艺技术的需求,引发了新的井下钻采工具的产生,而新的钻采工艺技术的实施,也必须依靠性能优良、工作可靠的井下钻采工具,而且后者的创新又将反过来进一步促进钻采工艺技术的变革。 The object of drilling and production technology is the downhole system (from the wellbore to the formation). This kind of object is characterized by small borehole, deep formation, complex downhole conditions, and invisible. Only downhole drilling tools can be closest to the working object. Therefore, if you want to use the new drilling and production technology to perform fine operations on the downhole system, you can only rely on downhole drilling and production tools. The demand for the development of advanced drilling and production technology has triggered the emergence of new downhole drilling and production tools, and the implementation of new drilling and production technology must also rely on downhole drilling and production tools with excellent performance and reliable work, and the innovation of the latter In turn, it will further promote the transformation of drilling technology. the
传统钻井方式在钻井过程中能量传输、转换、分配和利用一直存在着效率低等问题。虽然旋转冲击钻井、井下增压钻井均可以不同程度的提高机械钻速,但由于其寿命及稳定性差所以一直未能在现场大规模使用。脉冲射流辅助钻井技术在现场取得了一定的效果但因其寿命较短,因而也存在一定的局限性。脉冲射流辅助钻井技术主要是通过脉冲喷嘴的作用来产生脉冲效果,安装在钻头底部的胎体上。 Traditional drilling methods have always had problems such as low efficiency in energy transmission, conversion, distribution and utilization during the drilling process. Although rotary percussion drilling and downhole booster drilling can increase the ROP to varying degrees, they have not been widely used on site due to their poor life and stability. The pulse jet assisted drilling technology has achieved certain results in the field, but because of its short life, it also has certain limitations. The pulse jet assisted drilling technology mainly generates pulse effects through the action of the pulse nozzle, which is installed on the carcass at the bottom of the drill bit. the
单纯脉冲喷嘴寿命在现场使用具有一定的局限性,而且随着井深的增加,钻头水力能量降低,围压增大,空化能力相应减弱,射流冲击效果明显下降;井下液力推进器靠工具活塞产生钻压,水力脉冲效果不好;水力脉冲循环阀负压脉冲效果好,缺点是结构复杂,且钻井液中含有的固相颗粒易对调制器内部零件造成磨损。 The life of the simple pulse nozzle has certain limitations in the field, and with the increase of the well depth, the hydraulic energy of the drill bit decreases, the confining pressure increases, the cavitation capacity is correspondingly weakened, and the jet impact effect is significantly reduced; the downhole hydraulic propulsion depends on the tool piston. When bit pressure is generated, the effect of hydraulic pulse is not good; the effect of negative pressure pulse of hydraulic pulse circulation valve is good, but the disadvantage is that the structure is complex, and the solid particles contained in the drilling fluid are easy to cause wear to the internal parts of the modulator. the
发明内容 Contents of the invention
本发明实施例的目的是提供一种水力脉冲空化射流钻井方法,可以改善井底流场及井底岩石受力状况、减少“压持效应”、辅助破岩提高机械钻速,节约钻井成本。 The purpose of the embodiment of the present invention is to provide a hydraulic pulse cavitation jet drilling method, which can improve the bottom hole flow field and the stress state of the bottom rock, reduce the "holding effect", assist rock breaking to increase the ROP, and save drilling costs . the
本发明实施例提供了一种水力脉冲空化射流钻井方法,包括: The embodiment of the present invention provides a hydraulic pulse cavitation jet drilling method, comprising:
步骤1:在钻井作业中,通过使用于冲击井底的连续稳定的液体流的横截面的面积产生周期性变化,将所述连续稳定的液体流转换为脉冲流动液体;所述步骤1具体为:所述连续稳定的液体流经水力脉冲空化射流钻井装置的本体上端的流体入口段进入所述水力脉冲空化射流钻井装置的导流部,对所述水力脉冲空化射流钻井装置的脉冲发生器产生切向力迫使所述脉冲发生器内部的叶轮高速旋转改变流道面积,使所述连续稳定流动的液体产生脉冲,形成所述脉冲流动液体;
Step 1: During the drilling operation, by periodically changing the cross-sectional area of the continuous and stable liquid flow used to impact the bottom of the well, the continuous and stable liquid flow is converted into a pulsed flow liquid; the
步骤2:所述脉冲流动液体通过流体的压力反馈将脉冲幅值放大并使之产生谐振,转换为脉冲谐振流动液体;所述步骤2具体为:所述脉冲流动液体进入所述水力脉冲空化射流钻井装置的自激振荡腔室,在所述自激振荡腔室放大并产生流体谐振,形成所述脉冲谐振流动液体;
Step 2: The pulsating flow liquid amplifies the pulse amplitude and makes it resonate through the pressure feedback of the fluid, and converts it into a pulse resonance flow liquid; the
步骤3:将所述脉冲谐振流动液体高速射入相对静止的液体中,产生空化现象; Step 3: Inject the pulse resonance flow liquid into a relatively static liquid at high speed to generate cavitation;
步骤4:使产生所述空化现象的所述脉冲谐振流动液体的压力产生波动;使压力波动的所述脉冲谐振流动液体产生反馈压力谐振;利用所述反馈压力谐振产生流体声谐共振,提高所述脉冲谐振流动液体的流速,射入相对静止的液体中产生空化,使井底产生空蚀破坏;所述脉冲谐振流动液体以波动压力的方式冲击井底。 Step 4: fluctuate the pressure of the pulse resonance flowing liquid that produces the cavitation phenomenon; generate feedback pressure resonance in the pulse resonance flow liquid that fluctuates in pressure; use the feedback pressure resonance to generate fluid acoustic harmonic resonance to improve The flow rate of the pulse resonance flowing liquid is injected into the relatively static liquid to generate cavitation, causing cavitation damage to the bottom of the well; the pulse resonance flowing liquid impacts the bottom of the well in the form of fluctuating pressure. the
依照预先设定的频率对上述连续稳定的液体流的横截面进行周期性扰动,将其转换为脉冲流动液体。 Periodically perturb the cross-section of the above-mentioned continuous and stable liquid flow according to a preset frequency to convert it into a pulsed flow liquid. the
风琴管谐振腔将流入其中的所述脉冲谐振流动液体放大,产生流体声谐共振,所述流体高速射流,使喷嘴出口射流变成断续涡环流,所述涡环流在高速剪切运动中不断壮大,使所述射流产生较大的压力脉冲,形成脉冲射流,诱发空化的发生。 The organ pipe resonant cavity amplifies the pulse resonance flowing liquid flowing into it, and produces fluid acoustic resonance. The high-speed jet of the fluid makes the nozzle outlet jet flow into an intermittent vortex flow, and the vortex flow continues in the high-speed shearing motion. Intensify, so that the jet generates a larger pressure pulse, forming a pulsed jet, and inducing the occurrence of cavitation. the
通过流体力学的研究分析得到的水力脉冲与空化射流耦合调制机理的方法,结合水力脉冲与空化射流提高机械钻速机理的基础上,提出了本发明的水力脉冲空化射流钻井方法,其中,空化射流是指利用空泡破裂所产生的强大冲击力来增强射流效果的一种射流技术,在淹没方式下的液体射流大都产生空化。这是因为在淹没方式下高速射流与相对静止的环境液体之间的剪切层内形成扰流涡,扰流涡内的压力较低,低压区内产生空化场。射流的空化环既能提高射流的密度,又能扩大射流破碎与清洗的区域。 The hydraulic pulse and cavitation jet coupling modulation mechanism method obtained through the research and analysis of fluid mechanics, combined with the hydraulic pulse and cavitation jet to improve the mechanism of ROP, proposes the hydraulic pulse cavitation jet drilling method of the present invention, wherein , cavitation jet refers to a jet technology that uses the strong impact force generated by the rupture of the cavitation to enhance the jet effect. Most of the liquid jets in the submerged mode produce cavitation. This is because a turbulent vortex is formed in the shear layer between the high-speed jet and the relatively static ambient liquid in the submerged mode, the pressure in the turbulent vortex is low, and a cavitation field is generated in the low-pressure area. The cavitation ring of the jet can not only increase the density of the jet, but also expand the area where the jet is broken and cleaned. the
本发明提供的水力脉冲空化射流钻井方法,通过改善井底流场及井底岩石受力状况来提高机械钻速及延长使用寿命;同时,水力脉冲方法得到的低压区仅局限在井底钻头附近,整个环空仍为超平衡压力,比欠平衡钻井方法能更好地保证井壁稳定性同时保证了井下安全。 The hydraulic pulse cavitation jet drilling method provided by the present invention improves the mechanical penetration rate and prolongs the service life by improving the flow field at the bottom of the well and the stress on the rock at the bottom of the well; at the same time, the low-pressure area obtained by the hydraulic pulse method is only limited to the drill bit at the bottom of the well Nearby, the entire annulus is still at overbalanced pressure, which can better ensure the stability of the wellbore wall and ensure downhole safety than the underbalanced drilling method. the
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。 The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments. the
附图说明Description of drawings
图1为本发明方法的流程图; Fig. 1 is the flowchart of the inventive method;
图2为本发明的水力脉冲发生器装配示意图; Fig. 2 is the assembly schematic diagram of hydraulic pulse generator of the present invention;
图3为本发明的导流部的结构示意图; Fig. 3 is the structural representation of guide part of the present invention;
图4为本发明的脉冲发生器内叶轮的结构示意图; Fig. 4 is the structural representation of impeller in pulse generator of the present invention;
图5为本发明的脉冲发生器内叶轮座的侧视图; Fig. 5 is the side view of the impeller seat in the pulse generator of the present invention;
图6为本发明的脉冲发生器内叶轮座的俯视图; Fig. 6 is the plan view of impeller seat in the pulse generator of the present invention;
图7为本发明的振荡喷嘴的结构示意图; Fig. 7 is the structural representation of the oscillating nozzle of the present invention;
图8为本发明的脉冲发生器本体结构示意图; Fig. 8 is the structural representation of pulse generator body of the present invention;
图9为本发明的自振空化喷嘴钻头的定向式喷嘴结构示意图; Fig. 9 is a schematic diagram of the directional nozzle structure of the self-vibrating cavitation nozzle drill bit of the present invention;
图10为本发明的钻头的仰视图; Fig. 10 is the bottom view of drill bit of the present invention;
图11为本发明的喷嘴出口处的侧视图; Fig. 11 is the side view of nozzle outlet of the present invention;
图12为本发明的自振空化喷嘴钻头立体示意图; Figure 12 is a three-dimensional schematic diagram of a self-vibrating cavitation nozzle drill bit of the present invention;
图13为本发明水力脉冲空化射流钻井装置与自振空化喷嘴钻头的装配示意图。 Fig. 13 is a schematic diagram of the assembly of the hydraulic pulse cavitation jet drilling device and the self-vibrating cavitation nozzle drill bit of the present invention. the
附图标记说明: Explanation of reference signs:
1—本体; 2—导流体; 1—body; 2—conductor;
3—脉冲发生器; 4—自激振荡腔室; 3—pulse generator; 4—self-excited oscillation chamber;
5—振荡喷嘴; 6—叶轮座; 5—oscillating nozzle; 6—impeller seat;
7—流体入口段; 8—流体出口段; 7—fluid inlet section; 8—fluid outlet section;
9—叶轮; 10—自振空化喷嘴钻头; 9—impeller; 10—self-vibrating cavitation nozzle drill;
11-定向式喷嘴。 11 - Directional nozzle. the
具体实施方式 Detailed ways
实施例1 Example 1
图1为本发明方法实施例1的流程图。水力脉冲空化射流钻井的方法的具体步骤如下:
Fig. 1 is a flow chart of
步骤101:在钻井作业中,将用于冲击井底的连续稳定的液体流转换为脉冲谐振流动液体; Step 101: During the drilling operation, converting the continuous and steady liquid flow used to impact the bottom of the well into a pulsed resonance flow liquid;
步骤102:将所述脉冲谐振流动液体高速射入相对静止的液体中,产生空化现象; Step 102: Injecting the pulse resonance flowing liquid into a relatively static liquid at high speed to generate cavitation;
步骤103:将产生空化现象的脉冲谐振流动液体以波动压力的方式冲击井底。 Step 103: Impacting the pulsed resonance flow liquid that generates cavitation to the bottom of the well in the form of fluctuating pressure. the
以上最佳实施例中,其脉冲流动液体可依照预先设定的频率对所述连续稳定的液体流进行周期性扰动产生。 In the above preferred embodiment, the pulsating liquid flow can be generated by periodically disturbing the continuous and stable liquid flow according to a preset frequency. the
上述实施例中,连续流体通过谐振腔形成声谐共振,使喷嘴出口射流变成断续涡环流。在淹没状态下,流体运动的不连续性易产生压力振荡,从而诱发空化的发生。本专利设计的结构中,旋转叶轮可对连续流体产生扰动,增强流体的不连续性,从而增强空化作用。 In the above embodiment, the continuous fluid passes through the resonant cavity to form acoustic resonance, so that the jet flow at the outlet of the nozzle becomes an intermittent vortex flow. In the submerged state, the discontinuity of fluid motion is prone to pressure oscillations, which induce cavitation. In the structure designed by this patent, the rotating impeller can disturb the continuous fluid, enhance the discontinuity of the fluid, and thus enhance the cavitation. the
上述实施例中,步骤103可通过如下具体步骤实现。首先,使所述脉冲谐振流动液体的压力产生波动;其次,使压力波动的所述脉冲谐振流动液体产生反馈压力谐振;之后,利用所述压力谐振产生流体声谐共振;最后,提高具有流体声谐共振的所述脉冲谐振流动液体的流速,使其高速射入相对静止的液体中,形成剪切层,形式扰流涡,产生空化现象。 In the foregoing embodiment, step 103 may be implemented through the following specific steps. Firstly, the pressure of the pulse resonance flowing liquid is fluctuated; secondly, the pressure fluctuation of the pulse resonance flowing liquid is generated to generate feedback pressure resonance; after that, the pressure resonance is used to generate fluid acoustic resonance; finally, the fluid acoustic resonance is improved. The flow velocity of the harmonically resonant pulse resonance flowing liquid makes it inject into the relatively static liquid at high speed to form a shear layer, form a disturbance vortex, and generate cavitation phenomenon. the
实施例2 Example 2
本实施例是一个较实施例1更细的方案的流程。具体如下:
This embodiment is a process flow of a more detailed solution than that of
步骤1010:在钻井作业中,将用于冲击井底的连续稳定的液体流转换为脉冲谐振流动液体;依照预先设定的频率对所述连续稳定的液体流进行周期性扰动; Step 1010: During the drilling operation, converting the continuous and stable liquid flow used for impacting the bottom of the well into a pulse resonance flowing liquid; periodically disturbing the continuous and stable liquid flow according to a preset frequency;
步骤1021:风琴管谐振腔可形成声谐共振,使喷嘴出口射流变成断续涡环流,诱发空化的发生; Step 1021: The organ pipe resonant cavity can form acoustic resonance, so that the jet flow at the outlet of the nozzle becomes an intermittent vortex circulation, which induces the occurrence of cavitation;
步骤1022、旋转叶轮可对连续流体产生扰动,增强流体的不连续性,从而增强空化作用; Step 1022, the rotating impeller can disturb the continuous fluid, enhance the discontinuity of the fluid, thereby enhancing the cavitation;
步骤1031:使所述脉冲谐振流动液体的压力产生波动; Step 1031: fluctuate the pressure of the pulse resonance flowing liquid;
步骤1032:使压力波动的所述脉冲谐振流动液体产生反馈压力谐振; Step 1032: Make the pulsed resonant flowing liquid with pressure fluctuations generate feedback pressure resonance;
步骤1033:利用所述压力谐振产生流体声谐共振; Step 1033: using the pressure resonance to generate fluid acoustic harmonic resonance;
步骤1034:提高具有流体声谐共振的所述脉冲谐振流动液体的流速,射入相对静止的液体中; Step 1034: Increase the flow velocity of the pulse resonance flow liquid with fluid acoustic resonance, and inject it into a relatively static liquid;
步骤104:把水力脉冲空化射流引入自振空化喷嘴钻头,用以形成高效水力、机械联合破岩; Step 104: Introduce the hydraulic pulse cavitation jet into the self-vibrating cavitation nozzle drill bit to form a high-efficiency hydraulic and mechanical combined rock breaking;
步骤105:把自激振荡部与自振空化喷嘴钻头短接,用以提高破岩效率。 Step 105: Short-circuit the self-excited oscillation part with the self-vibration cavitation nozzle bit to improve rock breaking efficiency. the
实施例3 Example 3
本实施例是按照图13进行装配使用时,具体步骤如下: When this embodiment is assembled and used according to Figure 13, the specific steps are as follows:
步骤201、在钻具进行钻井作业中,导入用于冲击井底的连续稳定的液 体流; Step 201, during the drilling operation of the drilling tool, introduce a continuous and stable liquid flow for impacting the bottom of the well;
步骤202、周期性扰动此连续稳定的液体流,使之形成脉冲流动液体,用以增加冲击效果; Step 202, periodically disturbing the continuous and stable liquid flow to form a pulsed flow liquid to increase the impact effect;
步骤203、将脉冲流动的液体放大并使之产生谐振,于是就将其转变为了脉冲谐振流动液体; Step 203, amplifying the pulsating liquid and causing it to resonate, thus transforming it into a pulsating resonant flowing liquid;
步骤204、通过缩小流体的截面积、加快其流速,使其高速射入相对静止的环境液体中; Step 204, by reducing the cross-sectional area of the fluid and accelerating its flow velocity, injecting it into the relatively static ambient liquid at high speed;
步骤205、使该液体形成扰流涡,产生空化现象; Step 205, making the liquid form a turbulent vortex to generate cavitation;
步骤206、将产生空化现象的高速脉冲谐振流动液体以波动压力的方式流入钻头上的风琴管喷嘴; Step 206, flowing the high-speed pulse resonance flow liquid that produces cavitation into the organ pipe nozzle on the drill bit in the form of fluctuating pressure;
步骤207、空化射流经过风琴管谐振的进一步放大,高速冲击井底。 Step 207, the cavitation jet is further amplified by the resonance of the organ pipe, and hits the bottom of the well at high speed. the
实施例4 Example 4
图2为本发明装配示意图。图2是本发明装置的一个最佳实施例,如图2所示,包括一柱形的本体1,该本体的一端设有流体入口段7,另一端设有流体出口段8,流体入口段7与流体出口段8之间依次匹配设有使流体的流向产生偏离的导流部2、使连续的流体产生脉冲的脉冲发生器3以及使具有脉冲的流体产生谐振的自激振荡部;导流部3的一端设有入口,另一端设有出口,该出口与入口采取偏心方式设置,且出口的面积小于入口的面积;所述脉冲发生器3内枢设有利用流体的推力转动的叶轮9,该叶轮9的叶片与所述导流部2的出口对正设置;所述自激振荡部内设有一贯穿的流体通道,该流体通道由多段截面积依次减小的流道构成,截面积最大的流道设置在自激振荡部与所述脉冲发生器对接的一端。该装置可产生强烈脉动涡环流并以波动压力的方式冲击井底,其下端接钻头,上端直接连接井下动力钻具(或钻铤),使用及安装方便。同时其下部有可与钻铤配合的台阶、上部有弹性挡圈槽,该设计不仅满足了工艺要求而且大大简化了结构,使其安全、可靠性大大增强。
Fig. 2 is a schematic diagram of assembly of the present invention. Fig. 2 is a preferred embodiment of the device of the present invention, as shown in Fig. 2, comprises a
本发明所述的水力脉冲空化射流钻井装置就是在钻井过程中经钻铤(或井下动力钻具)内的连续流动的钻井液流经本体1上端的流体入口段7进入导流部2,对脉冲发生器3产生切向力迫使其内部的叶轮9高速旋转改变流道面积,使连续流动的钻井液产生脉冲后进入自激振荡腔室4,脉冲钻井液流在此腔室放大并产生流体谐振,当其通过自激振荡腔室4的出口收缩截面进入谐振喷嘴5时,产生压力波动,这种压力波动又反射回谐振腔形成反馈压力振荡,当压力波动的频率与谐振腔的频率相一致时,反馈压力振荡得以放大,从而在自激振荡腔室4内产生流体声谐共振,流体高速射流,并在流体出口段8产生强烈脉动涡环流,以波动压力的方式冲击井底,改善井底流场,减少“压持效应”提高射流清岩和破岩的能力,从而提高了机械钻速。空化的实现是通过自激振荡喷嘴来实现的,叶轮旋转目的是产生脉冲,使得进入自激振荡腔的钻井液成为一种有源扰动。涡流环在高剪切运动中又不断壮大,使射流产生较大的压力脉冲,形成脉冲射流,通过钻头传至井底,从而大幅度提高射流的冲蚀和清洁能力。一方面在钻头喷嘴出口形成脉冲射流,提高射流清岩破岩的作用能力;另一方面由于水力脉冲装置产生压力脉动,可以在钻头附近形成低压区,能够减少环空液柱压力对井底岩石的压持效应,其机理类似于欠平衡钻井,可以大幅提高钻井速度,但水力脉冲方法得到的低压区仅局限于井底钻头附近,整个环空仍为超平衡压力,因此比欠平衡钻井方法能更好地保证井壁稳定性及井下安全。
The hydraulic pulse cavitation jet drilling device of the present invention is to enter the
图3为本发明的导流部的结构示意图。如图2和图3所示,本发明中所述的导流部2为斜坡流道,其改变了钻井液的流向,并对脉冲发生器3的叶轮产生切向力迫使叶轮9转动,通过改变斜坡流道的角度改变钻井液液流对叶轮切向冲击力的大小,同时下面的凸起部分便于安装定位。
Fig. 3 is a schematic structural view of the flow guiding part of the present invention. As shown in Fig. 2 and Fig. 3, the
图4为本发明的脉冲发生器内叶轮9的结构示意图。图5为本发明的脉冲发生器内叶轮座的侧视图。图6为本发明的脉冲发生器内叶轮座的俯视图。本发明中所述脉冲发生器3,包括叶轮9和定位叶轮的叶轮座6,通过改变叶 轮9的叶轮叶片半径来改变流道面积以改变脉冲幅度,通过改变叶轮9的叶轮叶片数量来改变脉冲频率。
Fig. 4 is a schematic structural view of the impeller 9 in the pulse generator of the present invention. Fig. 5 is a side view of the impeller seat in the pulse generator of the present invention. Fig. 6 is a top view of the impeller seat in the pulse generator of the present invention. The
图7为本发明的振荡喷嘴5的结构示意图。由图6可见,振荡喷嘴5的截面积比自激振荡腔室4的截面积缩小很多,使得流体射流变成断续涡流环。
FIG. 7 is a schematic structural view of the
图8为为本发明的脉冲发生器本体结构示意图。上述装置的实施例中,所述本体1的流体入口段7可为圆柱状或为外大内小的圆台状。
Fig. 8 is a schematic diagram of the structure of the pulse generator body of the present invention. In the embodiment of the above-mentioned device, the
上述装置的实施例中,所述导流部2的入口的形状以及导流部的出口的形状可为矩形或圆形。
In the embodiment of the above device, the shape of the inlet of the flow guide
上述装置的实施例中,导流部2与所述脉冲发生器3结合的端面上还设有用于卡入脉冲发生器的入口,并使所述导流部2的出口与所述叶轮9对正的凸棱。
In the embodiment of the above device, the end face of the
上述装置的实施例中,自激振荡部内设置的多段流道的截面形状可为圆形或多边形。 In the embodiment of the above-mentioned device, the cross-sectional shape of the multi-stage flow channel provided in the self-excited oscillation part may be circular or polygonal. the
连续稳定高速的钻井液进入导流体对叶轮总成中的叶轮产生切向力迫使叶轮高速旋转产生脉冲扰动,通过改变叶轮的叶轮叶片半径来改变流道面积以改变脉冲幅度,通过改变叶轮的叶轮叶片数量来改变脉冲频率;然后进入振荡喷嘴上部的自激振荡腔室,脉冲钻井液流在此腔室放大并产生流体谐振,在出口产生强烈脉动涡环流,以波动压力的方式冲击井底,改善井底流场,减少“压持效应”提高射流清岩和破岩的能力,从而提高了机械钻速。 The continuous, stable and high-speed drilling fluid enters the guide body to generate tangential force on the impeller in the impeller assembly, forcing the impeller to rotate at high speed to generate pulse disturbance. By changing the radius of the impeller blade to change the area of the flow channel to change the pulse amplitude, by changing the impeller of the impeller The number of blades is used to change the pulse frequency; then it enters the self-excited oscillation chamber on the upper part of the oscillating nozzle, where the pulsed drilling fluid flow is amplified and generates fluid resonance, and a strong pulsating vortex circulation is generated at the outlet, impacting the bottom of the well in the form of fluctuating pressure, Improve the flow field at the bottom of the hole, reduce the "holding effect" and improve the ability of the jet to clear and break rock, thereby increasing the ROP. the
实施例5 Example 5
图9为本发明的自振空化喷嘴钻头的定向式喷嘴结构示意图。图10为本发明的钻头的仰视图。风琴管状谐振腔可形成声谐共振,使定向式喷嘴10出口射流变成断续涡环流,诱发空化的发生;同时,喷嘴10出口弯曲一定的角度,和自振空化喷嘴钻头11切屑齿配合,如图11所示;喷嘴10为内嵌式,其结构如图9所示,实现水力-机械联合破岩。该喷嘴采取定向安装,形成水力和机械联合破岩方式,提高了钻头破岩和井底清岩效果。图12是设计 加工成型的自振空化喷嘴钻头的立体示意图。
Fig. 9 is a schematic diagram of the directional nozzle structure of the self-vibrating cavitation nozzle drill bit of the present invention. Fig. 10 is a bottom view of the drill bit of the present invention. The organ tubular resonant cavity can form acoustic resonance, so that the jet flow at the outlet of the
实施例6 Example 6
图13为本发明水力脉冲空化射流钻井装置与自振空化喷嘴钻头的装配示意图。自振空化喷嘴钻头11与水力脉冲空化射流钻井装置的下端短接,配合在一起使用,将进一步增强流体的空化效果,提高破岩能力。最佳实施例具体如下:步骤1是在钻具进行钻井作业中,导入用于冲击井底的连续稳定的液体流;步骤2是周期性扰动此连续稳定的液体流,使之形成脉冲流动液体,用以增加冲击效果;步骤3是将脉冲流动的液体放大并使之产生谐振,于是就将其转变为了脉冲谐振流动液体;步骤4是通过缩小流体的截面积、加快其流速,使其高速射入相对静止的环境液体中;步骤5是使该液体形成扰流涡,产生空化现象;步骤6是将产生空化现象的高速脉冲谐振流动液体以波动压力的方式流入钻头上的风琴管喷嘴;步骤6是空化射流经过风琴管谐振的进一步放大,高速冲击井底。
Fig. 13 is a schematic diagram of the assembly of the hydraulic pulse cavitation jet drilling device and the self-vibrating cavitation nozzle drill bit of the present invention. The self-vibrating cavitation
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。 Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be The scheme shall be modified or equivalently replaced without departing from the spirit and scope of the technical scheme of the present invention. the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101691222A CN101705789B (en) | 2006-07-12 | 2006-07-12 | Hydraulic pulse cavitation jet well drilling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101691222A CN101705789B (en) | 2006-07-12 | 2006-07-12 | Hydraulic pulse cavitation jet well drilling method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610098598A Division CN101105115B (en) | 2006-07-12 | 2006-07-12 | Hydraulic pulse cavitation jet drilling device and drill bit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101705789A CN101705789A (en) | 2010-05-12 |
CN101705789B true CN101705789B (en) | 2012-11-21 |
Family
ID=42376038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101691222A Active CN101705789B (en) | 2006-07-12 | 2006-07-12 | Hydraulic pulse cavitation jet well drilling method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101705789B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102536121B (en) | 2012-02-08 | 2013-12-18 | 中国石油大学(北京) | Pulse type underground pressurization jet flow drilling method and device |
CN105201482B (en) * | 2015-10-20 | 2018-03-09 | 刘杰 | Liquid stream cavitation apparatus, system and method |
CN109184655B (en) * | 2018-11-21 | 2020-07-03 | 重庆地质矿产研究院 | Coiled tubing drag belt bottom setting pulse hydraulic fracturing tool and method |
CN114876374A (en) * | 2022-06-26 | 2022-08-09 | 东北石油大学 | Novel drill bit integrating multi-form combined rock breaking and drilling method thereof |
CN116122730B (en) * | 2022-12-08 | 2023-07-25 | 河南理工大学 | Pulse cavitation jet auxiliary rock breaking mechanism |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4607792A (en) * | 1983-12-28 | 1986-08-26 | Young Iii Chapman | Oscillating pulsed jet generator |
CN2059182U (en) * | 1988-12-11 | 1990-07-11 | 石油大学 | Accordion type spray nozzle for high pressure efflux |
CN1073376A (en) * | 1991-12-17 | 1993-06-23 | 陈国莲 | LF self-oscillation cavitation pulse jet nozzle and production method thereof |
US6279670B1 (en) * | 1996-05-18 | 2001-08-28 | Andergauge Limited | Downhole flow pulsing apparatus |
US6289998B1 (en) * | 1998-01-08 | 2001-09-18 | Baker Hughes Incorporated | Downhole tool including pressure intensifier for drilling wellbores |
CN2516694Y (en) * | 2001-10-31 | 2002-10-16 | 石油大学(华东) | Self-excitation wave waterflooding device |
-
2006
- 2006-07-12 CN CN2009101691222A patent/CN101705789B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4607792A (en) * | 1983-12-28 | 1986-08-26 | Young Iii Chapman | Oscillating pulsed jet generator |
CN2059182U (en) * | 1988-12-11 | 1990-07-11 | 石油大学 | Accordion type spray nozzle for high pressure efflux |
CN1073376A (en) * | 1991-12-17 | 1993-06-23 | 陈国莲 | LF self-oscillation cavitation pulse jet nozzle and production method thereof |
US6279670B1 (en) * | 1996-05-18 | 2001-08-28 | Andergauge Limited | Downhole flow pulsing apparatus |
US6289998B1 (en) * | 1998-01-08 | 2001-09-18 | Baker Hughes Incorporated | Downhole tool including pressure intensifier for drilling wellbores |
CN2516694Y (en) * | 2001-10-31 | 2002-10-16 | 石油大学(华东) | Self-excitation wave waterflooding device |
Non-Patent Citations (4)
Title |
---|
孙宝江 等.一种应用于喷射钻井的高效脉冲射流喷嘴探讨.《石油钻采工艺》.1993,第15卷(第2期), * |
廖振方 等.自激振荡脉冲射流喷嘴的试验研究.《重庆大学学报(自然科学版)》.2002,第25卷(第2期), * |
李根生 等.自振空化射流钻头喷嘴研制及现场试验.《石油钻探技术》.2003,第31卷(第5期), * |
王乐勤 等.低压大流量自激振荡脉冲射流喷嘴结构参数优化研究.《液体机械》.2004,第32卷(第3期), * |
Also Published As
Publication number | Publication date |
---|---|
CN101705789A (en) | 2010-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101105115B (en) | Hydraulic pulse cavitation jet drilling device and drill bit | |
CN200989162Y (en) | Hydraulic pulse cavitation jet-flow well drilling device and drill bit | |
CN203239230U (en) | Downhole jet flow auxiliary drilling speed increasing device | |
CN209704487U (en) | A kind of reverse-flow type self-excited oscillation pulse jet oscillator | |
CN101705789B (en) | Hydraulic pulse cavitation jet well drilling method | |
CN108425626A (en) | A kind of pitching control formula hydraulic pulse tool and method | |
CN106285482A (en) | Crusher drill in self-excited oscillation pulse enhanced | |
CN106930688A (en) | A kind of eddy current type waterpower pulse axial impact instrument | |
CN113530447B (en) | Wall-attached self-excited pulse jet device, perforating device and rock breaking device | |
CN103993859A (en) | Dual-sound-wave eddy wax-preventing and viscosity-reducing device | |
CN106246110A (en) | Runner staggered form center churning underbalance pulse drill bit | |
CN111395967A (en) | Hydraulic harmonic high-power reinforced vibrator excited by screw | |
CN206205787U (en) | Crusher drill in self-excited oscillation pulse enhanced | |
CN206111095U (en) | Horizontal well autogyration pulse internal grinding drill bit | |
CN106246107A (en) | A kind of radially horizontal well compound broken rock high-pressure nozzle of self-advancing type | |
CN212225109U (en) | Drill bit and drilling device for breaking rock | |
CN206111094U (en) | Tandem type pulse reinforcing formula internal grinding drill bit | |
CN2663642Y (en) | Down-hole waterpower slave oscillation supercharger | |
CN115788307A (en) | Drilling tool coupled with dual-stage drill bit, vibration shock and high-pressure pulse jet | |
CN206346706U (en) | Spinning reacting cycle pulse pumping drill bit | |
CN206346705U (en) | Helmholtz formula reacting cycle pulse pumping drill bit | |
CN206205793U (en) | Runner staggered form center churning underbalance pulse drill bit | |
CN211950445U (en) | High-pressure hydraulic jet radial jet well washing device | |
CN114183371B (en) | Underground fracturing auxiliary tool and underground fracturing auxiliary method | |
CN207245626U (en) | A kind of PDC drill bit of spiral vibrating nozzles and its composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20100512 Assignee: Boji Spray System Co., Ltd., Jiangsu Prov. Assignor: China University of Petroleum (Beijing) Contract record no.: 2013320000633 Denomination of invention: Hydraulic pulse cavitation jet well drilling method Granted publication date: 20121121 License type: Exclusive License Record date: 20130708 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model |