[go: up one dir, main page]

CN101692617A - Multipath signal carrier phase error estimation device - Google Patents

Multipath signal carrier phase error estimation device Download PDF

Info

Publication number
CN101692617A
CN101692617A CN200910034235A CN200910034235A CN101692617A CN 101692617 A CN101692617 A CN 101692617A CN 200910034235 A CN200910034235 A CN 200910034235A CN 200910034235 A CN200910034235 A CN 200910034235A CN 101692617 A CN101692617 A CN 101692617A
Authority
CN
China
Prior art keywords
multiplier
twenty
signal
output
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910034235A
Other languages
Chinese (zh)
Inventor
傅海阳
刘雄
贾向东
钱巍巍
丁蔚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN200910034235A priority Critical patent/CN101692617A/en
Publication of CN101692617A publication Critical patent/CN101692617A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Noise Elimination (AREA)

Abstract

A multipath signal carrier phase error estimation device is used to realize the coherent demodulation of down rake receiver. The expressions of the multipath received signal carrier wave and the local carrier phase error theta can be exported according to the expression of multipath received signal and the following instruction book provides the exporting process; the multipath signal carrier phase error estimation device is provided according to the expressions. The device separately sends the outputs of QAM coherent demodulator to six multiplier units of In-phase and Quadrature, the outputs of three multiplier units of In-phase are sent to three processors and then sent to the other three multiplier units to be multiplied by the three outputs of three multiplier units of Quadrature, and finally the phase error tracking signal of signal in each path can be obtained; the phase error tracking signal control phase shifter adjusts the phase of local coherent carriers and recovers the local coherent carriers which are separately synchronous with three-path received signal carriers, the local coherent carriers are used to demodulate three-path signals and finally the In-phase and Quadrature of the three-path signals are separately combined and descrambled.

Description

多径信号载波相位误差估计装置Multipath Signal Carrier Phase Error Estimation Device

技术领域technical field

本发明涉及一种用于下行瑞克接收机多径收信号相干解调的多径收信号载波相位误差估计装置,可大幅度提升瑞克接收机多径分集接收的效率,提高多径收信号的功率利用率,属于移动通信技术领域。The invention relates to a device for estimating carrier phase error of a multipath receiving signal used for coherent demodulation of a multipath receiving signal in a downlink rake receiver, which can greatly improve the efficiency of multipath diversity reception of a rake receiver and improve multipath receiving signal The power utilization ratio belongs to the technical field of mobile communication.

背景技术Background technique

使用瑞克接收机的CDMA手机收信设备是移动通信领域的高科技产品。多径信号载波相位误差估计装置这种高科技设备用于CDMA系统的下行瑞克接收机,能够提高码分多址系统中下行信道多径收信号功率利用率和接收机接收信噪比。虽然有许多资料提到可以用传统瑞克接收机实现载波相干解调,但据申请人调研,传统下行瑞克接收机普遍采用的“载波相干解调”实际上对多径收信号而言是非完全相干的,由于收到的多径信号载波间存在相位差,收信机中恢复的一路相干载波C1L(t)=cosw1Lt只能与一径收信号载波S1(t)=S1cosw1t保持同步,这两个信号间的相位差θ为0,可实现相干解调,但会导致在其它两径收信号的解调中引入它们各自的收信号载波与C1L(t)相位差θ有关的解调信号幅度损失、极性变化和干扰。当其它一径收信号载波S2(t)=S2cosw2t与C1L(t)存在相位差θ时,已解调信号可简单表示为S2cosθ,显然相位差θ将影响已解调信号的极性和幅度。此相位差损失会使多径收信号的功率利用率大幅下降,可将cosθ定义为相干解调损耗因子。至今还没有资料给出具体的实现多径信号的完全相干解调,可消除相干解调损耗因子cosθ影响的多径信号载波相位误差估计方法和相应装置的原理。该方法与传统瑞克接收机的方法相比,可以准确的估计各路多径收信号载波与本地载波的相位误差θ,从而消除相干解调损耗因子cosθ的影响,大幅度提升瑞克接收机多径分集接收的效率,提高多径收信号的功率利用率,由于该方法是在基带实现多径收信号载波相位误差估计,使它的可用性上升,应用成本下降,使瑞克接收机的推广成为可能。The CDMA mobile phone receiving equipment using RAKE receiver is a high-tech product in the field of mobile communication. The multipath signal carrier phase error estimation device is a high-tech device used in the downlink rake receiver of the CDMA system, which can improve the power utilization rate of the multipath received signal of the downlink channel in the code division multiple access system and the received signal-to-noise ratio of the receiver. Although there are many materials mentioning that traditional RAKE receivers can be used to achieve carrier coherent demodulation, according to the applicant's research, the "carrier coherent demodulation" commonly used in traditional downlink RAKE receivers is actually very important for multipath receiving signals. Completely coherent, due to the phase difference between the received multipath signal carriers, the coherent carrier C 1L (t)=cosw 1L t recovered in the receiver can only be combined with the received signal carrier S 1 (t)=S 1 cosw 1 t is kept synchronous, the phase difference θ between these two signals is 0, coherent demodulation can be realized, but it will lead to the introduction of their respective received signal carriers and C 1L (t ) Demodulated signal amplitude loss, polarity change and interference related to the phase difference θ. When there is a phase difference θ between the other receiving signal carrier S 2 (t)=S 2 cosw 2 t and C 1L (t), the demodulated signal can be simply expressed as S 2 cosθ, obviously the phase difference θ will affect the resolved Adjust the polarity and amplitude of the signal. This phase difference loss will greatly reduce the power utilization rate of multipath receiving signals, and cosθ can be defined as the coherent demodulation loss factor. So far, there is no material to provide a specific realization of fully coherent demodulation of multipath signals, and the principle of multipath signal carrier phase error estimation methods and corresponding devices that can eliminate the influence of the coherent demodulation loss factor cosθ. Compared with the traditional rake receiver method, this method can accurately estimate the phase error θ between the multipath received signal carrier and the local carrier, thereby eliminating the influence of the coherent demodulation loss factor cosθ, and greatly improving the rake receiver The efficiency of multipath diversity reception improves the power utilization rate of multipath receiving signals. Since this method is to estimate the carrier phase error of multipath receiving signals in the baseband, its usability is increased, and the application cost is reduced, so that the popularization of rake receivers become possible.

发明内容Contents of the invention

技术问题:本发明要解决的技术问题是:针对以上还没有相关技术资料说明的多径信号载波相位误差估计方法,提出一种我们首创的多径收信号载波相位误差估计装置,这种装置可用于准确的估计各路多径信号载波与本地载波的相位误差θ,消除相干解调损耗因子cosθ带来的不确定的影响,实现多径收信号的相干解调,可以大大增加瑞克接收机的可用性,提高了下行接收机的接收信噪比,大大改善了CDMA系统的下行功率利用率。Technical problem: the technical problem to be solved in the present invention is: for the multipath signal carrier phase error estimation method that does not have relevant technical data explanation above, propose a kind of multipath receiving signal carrier phase error estimation device that we initiate, this device can be used In order to accurately estimate the phase error θ between the multipath signal carrier and the local carrier, eliminate the uncertain influence brought by the coherent demodulation loss factor cosθ, and realize the coherent demodulation of the multipath received signal, it can greatly increase the RAKE receiver The usability of the system improves the receiving signal-to-noise ratio of the downlink receiver, and greatly improves the downlink power utilization rate of the CDMA system.

技术方案:本发明的多径信号载波相位误差估计方法是根据多径收信号表达式、传统瑞克接收机表达式,导出各路径信号对应的相位误差跟踪信号tgθ1、tgθ2、tgθ3,在相位误差跟踪信号的控制下,经过移相器调整本地相干载波的相位,使得本地相干载波与收信号载波的相位误差θ趋向于零,恢复出分别与三路收信号的载波同步的本地相干载波。QAM相干解调器在此处具备双重功能,当对应路径的相位误差跟踪信号tgθ不等于0时,移相器产生的本地载波信号与其对应路径收信号载波不同步,其QAM相干解调器就相当于一个正交下变频器;当对应路径相位误差跟踪信号tgθ等于0时,移相器产生的载波信号会与其对应路径载波收信号达到完全同步,所述QAM相干解调器将会实现相干解调。QAM相干解调器的这两种功能是互不干扰的。Technical solution: The multipath signal carrier phase error estimation method of the present invention is to derive the phase error tracking signals tgθ 1 , tgθ 2 , tgθ 3 corresponding to each path signal according to the multipath signal receiving expression and the traditional rake receiver expression, Under the control of the phase error tracking signal, the phase of the local coherent carrier is adjusted through the phase shifter, so that the phase error θ between the local coherent carrier and the received signal carrier tends to zero, and the local coherence synchronized with the carriers of the three received signals is restored carrier. The QAM coherent demodulator has a dual function here. When the phase error tracking signal tgθ of the corresponding path is not equal to 0, the local carrier signal generated by the phase shifter is not synchronized with the received signal carrier of the corresponding path, and its QAM coherent demodulator is Equivalent to a quadrature down-converter; when the corresponding path phase error tracking signal tgθ is equal to 0, the carrier signal generated by the phase shifter will be fully synchronized with the corresponding path carrier receiving signal, and the QAM coherent demodulator will achieve coherence demodulation. These two functions of the QAM coherent demodulator do not interfere with each other.

多径信号载波相位误差估计装置包括用于两路基带信号与多个本地PN序列相乘的第十一乘法器、第十二乘法器、第十三乘法器、第十四乘法器、第十五乘法器、第十六乘法器,用于分别对所述第十一乘法器、第十二乘法器、第十三乘法器输出的基带信号进行处理的第十一处理器、第十二处理器、第十三处理器,用于对所述处理器输出的基带信号与相应所述第十四乘法器、第十五乘法器、第十六乘法器输出信号相乘的第十七乘法器、第十八乘法器、第十九乘法器;第二十一QAM相干解调器解调出的It1路信号分别进入所述第十一乘法器、第十二乘法器、第十三乘法器与对应的第一本地PN序列、第二本地PN序列和第三本地PN序列相乘,Qt1路信号分别进入所述第十四乘法器、第十五乘法器、第十六乘法器与对应第一本地PN序列、第二本地PN序列和第三本地PN序列相乘,所述第十一乘法器、第十二乘法器、第十三乘法器的输出端分别接所述第十一处理器、第十二处理器、第十三处理器的输入端,第十一处理器的输出端与所述第十四乘法器的输出端接所述第十七乘法器的两个输入端,第十二处理器的输出端与所述第十五乘法器的输出端接第十八乘法器的两个输入端,第十三处理器的输出端与第十六乘法器的输出端接第十九乘法器的两个输入端,第十七乘法器、第十八乘法器和第十九乘法器将分别输出三路收信号载波的相位误差跟踪信号tgθ1、tgθ2和tgθ3,相位误差跟踪信号tgθ1、tgθ2和tgθ3将送入所述多径信号载波相位误差估计装置中的相干解调电路。The multipath signal carrier phase error estimation device includes an eleventh multiplier, a twelfth multiplier, a thirteenth multiplier, a fourteenth multiplier, and a tenth multiplier for multiplying two-way baseband signals and multiple local PN sequences. The fifth multiplier and the sixteenth multiplier are used to process the baseband signals output by the eleventh multiplier, the twelfth multiplier, and the thirteenth multiplier respectively. The eleventh processor and the twelfth processing A device, a thirteenth processor, a seventeenth multiplier for multiplying the baseband signal output by the processor with the output signal of the fourteenth multiplier, the fifteenth multiplier, and the sixteenth multiplier , the eighteenth multiplier, the nineteenth multiplier; the I t1 road signal that the twenty-first QAM coherent demodulator demodulates enters respectively the eleventh multiplier, the twelfth multiplier, and the thirteenth multiplier multiplier with the corresponding first local PN sequence, the second local PN sequence and the third local PN sequence, and the Q t1 road signal enters the fourteenth multiplier, the fifteenth multiplier, the sixteenth multiplier and the Corresponding to multiplying the first local PN sequence, the second local PN sequence and the third local PN sequence, the output terminals of the eleventh multiplier, the twelfth multiplier, and the thirteenth multiplier are respectively connected to the eleventh multiplier The input ends of the processor, the twelfth processor, and the thirteenth processor, the output end of the eleventh processor and the output end of the fourteenth multiplier are connected to the two input ends of the seventeenth multiplier , the output end of the twelfth processor and the output end of the fifteenth multiplier are connected to the two input ends of the eighteenth multiplier, and the output end of the thirteenth processor is connected to the output end of the sixteenth multiplier The two input terminals of the nineteenth multiplier, the seventeenth multiplier, the eighteenth multiplier and the nineteenth multiplier will respectively output the phase error tracking signals tgθ 1 , tgθ 2 and tgθ 3 of the three-way received signal carrier, The phase error tracking signals tgθ 1 , tgθ 2 and tgθ 3 will be sent to the coherent demodulation circuit in the multipath signal carrier phase error estimation device.

所述相干解调电路中,三径收信号的输入信号SAD(t)分别送入第二十一QAM相干解调器、第二十二QAM相干解调器、第二十三QAM相干解调器,分别与由第二十四移相器、第二十五移相器、第二十六移相器产生的本地相干载波进行相干解调,第二十四移相器、第二十五移相器和第二十六移相器利用输入的所述相位误差跟踪信号tgθ1、tgθ2和tgθ3调整各路径对应本地相干载波的相位,使它们分别与对应的收信号载波同相;所述第二十一QAM相干解调器的两路输出信号It1、Qt1分别接第二十七延时电路的两路输入端,所述第二十二QAM相干解调器的两路输出信号It2、Qt2分别接第二十八延时电路的两路输入端,延时控制信号Cd1接所述第二十七延时电路的控制信号输入端,延时控制信号Cd2接所述第二十八延时电路的控制信号输入端,第二十七延时电路的输出信号It1′和第二十八延时电路的输出信号It2′分别接第二十一加法器的两路输入端,第二十七延时电路的输出信号Qt1′和第二十八延时电路的输出信号Qt2′分别接第二十二加法器的两路输入端,第二十三QAM相干解调器的输出It3接第二十一加法器的另一路输入端,第二十三QAM相干解调器的输出Qt3接所述第二十二加法器的另一路输入端,第二十一加法器的输出端接解扰码第二十三乘法器的一路输入端,第二十二加法器的输出端接解扰码第二十四乘法器的一路输入端,第三本地PN序列PNI3L和PNQ3L分别输入所述第二十三乘法器和第二十四乘法器另外两个输入端进行I路和Q路合并信号的解扰码。In the coherent demodulation circuit, the input signal S AD (t) of the three-path received signal is respectively sent to the twenty-first QAM coherent demodulator, the twenty-second QAM coherent demodulator, the twenty-third QAM coherent demodulator, and the twenty-third QAM coherent demodulator. The modulator is used for coherent demodulation with the local coherent carrier generated by the twenty-fourth phase shifter, the twenty-fifth phase shifter, and the twenty-sixth phase shifter respectively, and the twenty-fourth phase shifter, the twenty-first phase shifter The fifth phase shifter and the twenty-sixth phase shifter use the input phase error tracking signals tgθ 1 , tgθ 2 and tgθ 3 to adjust the phase of each path corresponding to the local coherent carrier, so that they are in phase with the corresponding received signal carrier; The two-way output signals I t1 and Q t1 of the twenty-first QAM coherent demodulator are respectively connected to the two-way input terminals of the twenty-seventh delay circuit, and the two-way output signals of the twenty-second QAM coherent demodulator The output signals I t2 and Q t2 are respectively connected to the two input ends of the twenty-eighth delay circuit, the delay control signal C d1 is connected to the control signal input end of the twenty-seventh delay circuit, and the delay control signal C d2 Connect the control signal input terminal of the twenty-eighth delay circuit, the output signal I t1 ' of the twenty-seventh delay circuit and the output signal I t2 ' of the twenty-eighth delay circuit are respectively connected to the twenty-first addition The two input terminals of the device, the output signal Q t1 ' of the twenty-seventh delay circuit and the output signal Q t2 ' of the twenty-eighth delay circuit are respectively connected to the two input terminals of the twenty-second adder, and the second The output I t3 of the thirteenth QAM coherent demodulator is connected to another input end of the twenty-first adder, and the output Q t3 of the twenty-third QAM coherent demodulator is connected to another input of the twenty-second adder terminal, the output terminal of the twenty-first adder is connected to one input terminal of the twenty-third multiplier of the descrambling code, and the output terminal of the twenty-second adder is connected to one input terminal of the twenty-fourth multiplier of the descrambling code, The third local PN sequence PN I3L and PN Q3L are respectively input to the other two input terminals of the twenty-third multiplier and the twenty-fourth multiplier for descrambling of the I-channel and Q-channel combined signals.

利用QAM相干解调器实现相干解调时,若图2中三个移相器最终产生的6路本地相干载波分别与三径收信号载波同频同相,据图2可以给出:When the QAM coherent demodulator is used to realize coherent demodulation, if the 6 local coherent carriers finally generated by the three phase shifters in Figure 2 are the same frequency and phase as the three-path receiving signal carrier, according to Figure 2, it can be given:

It1=I1+I2cosθ2+I3cosθ3+Q2sinθ2+Q3sinθ3            (1)I t1 =I 1 +I 2 cosθ 2 +I 3 cosθ 3 +Q 2 sinθ 2 +Q 3 sinθ 3 (1)

Qt1=Q1+Q2cosθ2+Q3cosθ3-I2sinθ2-I3sinθ3            (2)Q t1 =Q 1 +Q 2 cosθ 2 +Q 3 cosθ 3 -I 2 sinθ 2 -I 3 sinθ 3 (2)

It2=I2+I1cosθ1+I3cosθ3+Q1sinθ1+Q3sinθ3            (3)I t2 =I 2 +I 1 cosθ 1 +I 3 cosθ 3 +Q 1 sinθ 1 +Q 3 sinθ 3 (3)

Qt2=Q2+Q1cosθ1+Q3cosθ3-I1sinθ1-I3sinθ3            (4)Q t2 =Q 2 +Q 1 cosθ 1 +Q 3 cosθ 3 -I 1 sinθ 1 -I 3 sinθ 3 (4)

It3=I3+I1cosθ1+I2cosθ2+Q1sinθ1+Q2sinθ2            (5)I t3 =I 3 +I 1 cosθ 1 +I 2 cosθ 2 +Q 1 sinθ 1 +Q 2 sinθ 2 (5)

Qt3=Q3+Q1cosθ1+Q2cosθ2-I1sinθ1-I2sinθ2            (6)Q t3 =Q 3 +Q 1 cosθ 1 +Q 2 cosθ 2 -I 1 sinθ 1 -I 2 sinθ 2 (6)

由于可以用PNI1L、PNI2L和PNI3L判定It1和It2应有的时延,因此可以在解扩前完成相加过程,其后再用PNI3L进行解扩。可以用类似的方法导出Q路的接收部分,为避免重复,此处略。Since PN I1L , PN I2L and PN I3L can be used to determine the due time delay of It1 and It2 , the addition process can be completed before despreading, and then PN I3L is used for despreading. A similar method can be used to derive the receiving part of the Q path, which is omitted here to avoid repetition.

如果图2中三个移相器产生的6路本地相干载波分别未与三径收信号载波达到同频同相,其QAM相干解调器输出为:If the 6 local coherent carriers generated by the three phase shifters in Figure 2 do not reach the same frequency and phase as the three received signal carriers, the output of the QAM coherent demodulator is:

I=I1cosθ1+I2cosθ2+I3cosθ3+Q1sinθ1+Q2sinθ2+Q3sinθ3    (7)I=I 1 cosθ 1 +I 2 cosθ 2 +I 3 cosθ 3 +Q 1 sinθ 1 +Q 2 sinθ 2 +Q 3 sinθ 3 (7)

Q=Q1cosθ1+Q2cosθ2+Q3cosθ3-I1sinθ1-I2sinθ2-I3sinθ3    (8)Q=Q 1 cosθ 1 +Q 2 cosθ 2 +Q 3 cosθ 3 -I 1 sinθ 1 -I 2 sinθ 2 -I 3 sinθ 3 (8)

然而,对I、Q路输出信号做如下处理得:However, the I and Q output signals are processed as follows:

I1=PNI1L·I=D1(t)W1(t)cosθ1+PNI1L·[I2cosθ2+I3cosθ3+Q1sinθ1+Q2sinθ2+Q3sinQ3]I 1 =PN I1L ·I=D 1 (t)W 1 (t)cosθ 1 +PN I1L ·[I 2 cosθ 2 +I 3 cosθ 3 +Q 1 sinθ 1 +Q 2 sinθ 2 +Q 3 sinQ 3 ]

                                                            (9) (9)

I2=PNI2L·II 2 =PN I2L ·I

=D1(t-td1)W1(t-td1)cosθ2+PNI2L·[I1cosθ1+I3cosθ3+Q1sinθ1+Q2sinθ2+Q3sinθ3]=D 1 (tt d1 )W 1 (tt d1 )cosθ 2 +PN I2L ·[I 1 cosθ 1 +I 3 cosθ 3 +Q 1 sinθ 1 +Q 2 sinθ 2 +Q 3 sinθ 3 ]

                                                            (10)(10)

I3=PNI3L·II 3 =PN I3L ·I

=D1(t-td1-td2)W1(t-td1-td2)cosθ3+PNI3L·[I1cosθ1+I2cosθ2+Q1sinθ1+Q3sinθ3+Q2sinθ2]=D 1 (tt d1 -t d2 )W 1 (tt d1 -t d2 )cosθ 3 +PN I3L [I 1 cosθ 1 +I 2 cosθ 2 +Q 1 sinθ 1 +Q 3 sinθ 3 +Q 2 sinθ 2 ]

                                                       (11)                        

式子(9)中,由于PNI1L与I2、I3、Q1、Q2和Q3中的短PN序列异步,所以这五项信号无法解出,将表现为信号I1中由多径引入的CDMA自干扰噪声,此项噪声将会受到乘法器后接低通滤波器的限制,此处为简化框图将对应的低通滤波器略去。对于I2和I3做类似的处理。In formula (9), since PN I1L is asynchronous to the short PN sequences in I 2 , I 3 , Q 1 , Q 2 and Q 3 , these five signals cannot be solved, and it will appear as signal I 1 composed of multiple The CDMA self-interference noise introduced by the path will be limited by the low-pass filter connected after the multiplier. Here, the corresponding low-pass filter is omitted for a simplified block diagram. Do similar processing for I 2 and I 3 .

PNI2L·Q=-I2sinθ2+PNI2L·[Q1cosθ1+Q2cosθ2+Q3cosθ3-I1sinθ1-I3sinθ3]PN I2L Q=-I 2 sinθ 2 +PN I2L [Q 1 cosθ 1 +Q 2 cosθ 2 +Q 3 cosθ 3 -I 1 sinθ 1 -I 3 sinθ 3 ]

                                                       (12)                          

式子(12)中最后一项表现为噪声,经过低通滤波器后可以解出-I2sinθ2。做类似的处理同样可以得到-I1sinθ1、-I3sinθ3The last item in formula (12) is noise, and -I 2 sinθ 2 can be solved after passing through a low-pass filter. Doing similar processing can also get -I 1 sinθ 1 , -I 3 sinθ 3 .

因此根据上述公式(7)~(12),可以导出收信号多径载波相位误差跟踪信号产生电路原理框图见图1。Therefore, according to the above formulas (7) to (12), the block diagram of the circuit for generating multipath carrier phase error tracking signals of received signals can be derived, as shown in Fig. 1 .

有益效果:由于该发明利用给出的多径收信号相位误差估计方法,准确的估计各路多径收信号载波与本地相干载波的相位误差θ,可以消除相干解调损耗因子cosθ带来的不确定的影响,实现多径信号的相干解调,可以构造出一种新型的多径收信号载波相干解调瑞克接收机,提高了下行接收端的接收信噪比,大大改善了CDMA系统的下行功率利用率。由于该多径收信号相位误差估计方法是在基带实现,使它的可用性上升,应用成本下降。Beneficial effects: Since the invention utilizes the given multipath receiving signal phase error estimation method to accurately estimate the phase error θ between each multipath receiving signal carrier and the local coherent carrier, it can eliminate the inconvenience caused by the coherent demodulation loss factor cosθ Determining the influence, realizing coherent demodulation of multipath signals, can construct a new type of multipath receiving signal carrier coherent demodulation rake receiver, which improves the receiving signal-to-noise ratio of the downlink receiving end, and greatly improves the downlink performance of the CDMA system. power utilization. Since the method for estimating the phase error of multipath received signals is implemented in the baseband, its usability is increased and its application cost is reduced.

附图说明Description of drawings

图1为多径信号载波相位误差估计装置中的相位误差跟踪信号产生电路原理图。其中包括用于两路基带信号与多个本地PN序列相乘的第十一乘法器M11、第十二乘法器M12、第十三乘法器M13、第十四乘法器M14、第十五乘法器M15、第十六乘法器M16,用于分别对所述第十一乘法器M11、第十二乘法器M12、第十三乘法器M13输出的基带信号进行处理的第十一处理器11、第十二处理器12、第十三处理器13,用于对所述处理器输出的基带信号与相应所述第十四乘法器M14、第十五乘法器M15、第十六乘法器M16输出信号相乘的第十七乘法器M17、第十八乘法器M18、第十九乘法器M19FIG. 1 is a schematic diagram of a phase error tracking signal generation circuit in a multipath signal carrier phase error estimation device. It includes the eleventh multiplier M 11 , the twelfth multiplier M 12 , the thirteenth multiplier M 13 , the fourteenth multiplier M 14 , the th The fifteenth multiplier M 15 and the sixteenth multiplier M 16 are used to process the baseband signals output by the eleventh multiplier M 11 , the twelfth multiplier M 12 , and the thirteenth multiplier M 13 respectively The eleventh processor 11, the twelfth processor 12, and the thirteenth processor 13 are used to compare the baseband signal output by the processor with the corresponding fourteenth multiplier M 14 and fifteenth multiplier M 15 , the seventeenth multiplier M 17 , the eighteenth multiplier M 18 , and the nineteenth multiplier M 19 for multiplying the output signals of the sixteenth multiplier M 16 .

图2为多径信号载波相位误差估计装置中的相干解调电路部分原理图,其中包括三个用于三径收信号分离和相干解调的第二十一QAM相干解调器21、第二十二QAM相干解调器22、第二十三QAM相干解调器23,三个利用相位误差跟踪信号恢复出与三路径收信号载波同步的本地相干载波的第二十四移相器24、第二十五移相器25、第二十六移相器26,用于调整多径时延的第二十七延时电路27、第二十八延时电路28,用于I路三径信号叠加的第二十一加法器M21,用于Q路三径信号叠加的第二十二加法器M22,用于I路已合并信号解扰的第二十三乘法器M33,用于Q路已合并信号解扰的第二十四乘法器M24Fig. 2 is the schematic diagram of the part of the coherent demodulation circuit in the multipath signal carrier phase error estimation device, which includes three twenty-first QAM coherent demodulators 21, the second Twelve QAM coherent demodulators 22, twenty-third QAM coherent demodulators 23, three twenty-fourth phase shifters 24 that use phase error tracking signals to recover local coherent carriers that are synchronized with the three-path received signal carriers, The twenty-fifth phase shifter 25, the twenty-sixth phase shifter 26, the twenty-seventh delay circuit 27, the twenty-eighth delay circuit 28 for adjusting the multipath time delay, for the I path three-path The 21st adder M 21 for signal superposition, the 22nd adder M 22 for Q-path three-path signal superposition, the 23rd multiplier M 33 for I-path combined signal descrambling, using The twenty-fourth multiplier M 24 for descrambling the Q-way combined signal.

具体实施方式Detailed ways

实施例一Embodiment one

本实施例利用基带信号产生多径载波相位误差跟踪信号,实现相位误差估计。多径信号载波相位误差估计装置中的相位误差跟踪信号产生电路原理图见图1。主要由下列部分组成:其中包括用于两路基带信号与多个本地PN序列相乘的第十一乘法器M11、第十二乘法器M12、第十三乘法器M13、第十四乘法器M14、第十五乘法器M15、第十六乘法器M16,用于分别对所述第十一乘法器M11、第十二乘法器M12、第十三乘法器M13输出的基带信号进行处理的第十一处理器11、第十二处理器12、第十三处理器13,用于对所述处理器输出的基带信号与相应所述第十四乘法器M14、第十五乘法器M15、第十六乘法器M16输出信号相乘的第十七乘法器M17、第十八乘法器M18、第十九乘法器M19In this embodiment, a baseband signal is used to generate a multipath carrier phase error tracking signal to realize phase error estimation. See Figure 1 for the schematic diagram of the phase error tracking signal generation circuit in the multipath signal carrier phase error estimation device. It mainly consists of the following parts: including the eleventh multiplier M 11 , the twelfth multiplier M 12 , the thirteenth multiplier M 13 , and the fourteenth multiplier for multiplying two baseband signals by multiple local PN sequences The multiplier M 14 , the fifteenth multiplier M 15 , and the sixteenth multiplier M 16 are used to respectively provide the eleventh multiplier M 11 , the twelfth multiplier M 12 , and the thirteenth multiplier M 13 The eleventh processor 11, the twelfth processor 12, and the thirteenth processor 13 that process the output baseband signal are used to combine the baseband signal output by the processor with the corresponding fourteenth multiplier M 14 , the 17th multiplier M 17 , the 18th multiplier M 18 , and the 19th multiplier M 19 for multiplying the output signals of the fifteenth multiplier M 15 and the sixteenth multiplier M 16 .

首先将所述图2中第二十一QAM相干解调器21解调出的It1路信号分别进入所述第十一乘法器M11、第十二乘法器M12和第十三乘法器M13与对应的第一本地PN序列PNI1L、第二本地PN序列PNI2L和第三本地PN序列PNI3L相乘,Qt1路信号分别进入所述第十四乘法器M14、第十五乘法器M15和第十六乘法器M16与对应的第一本地PN序列PNI1L、第二本地PN序列PNI2L和第三本地PN序列PNI3L相乘,所述第十一乘法器M11、第十二乘法器M12和第十三乘法器M13的输出信号分别为I21cosθ1、I22cosθ2、I23cosθ3,所述第十四乘法器M14、第十五乘法器M15和第十六乘法器M16的输出信号分别为-I21sinθ1、-I22sinθ2、-I23sinθ3。所述第十一乘法器M11的输出信号I21cosθ1送入所述第十一处理器11,得到所述第十一处理器11的输出信号-1/I21cosθ1,将所述第十一处理器11的输出信号-1/I21cosθ1与所述第十四乘法器M14的输出信号-I21sinθ1送至所述第十七乘法器M17中相乘,所述第十七乘法器M17的输出信号即为这路信号的相位误差跟踪信号tgθ1,所述第十二乘法器M12和第十三乘法器M13的输出信号经过上述类似的处理过程可得到其对应的相位误差跟踪信号tgθ2和tgθ3。所述相位误差跟踪信号tgθ1、tgθ2和tgθ3将送入所述多径信号载波相位误差估计装置中的相干解调电路。First, the I t1 road signal demodulated by the twenty-first QAM coherent demodulator 21 in Fig. 2 enters the eleventh multiplier M 11 , the twelfth multiplier M 12 and the thirteenth multiplier respectively M 13 is multiplied by the corresponding first local PN sequence PN I1L , the second local PN sequence PN I2L and the third local PN sequence PN I3L , and the Q t1 signal enters the fourteenth multiplier M 14 and the fifteenth multiplier respectively. The multiplier M 15 and the sixteenth multiplier M 16 multiply the corresponding first local PN sequence PN I1L , the second local PN sequence PN I2L and the third local PN sequence PN I3L , the eleventh multiplier M 11 The output signals of the twelfth multiplier M 12 and the thirteenth multiplier M 13 are respectively I 21 cosθ 1 , I 22 cosθ 2 , and I 23 cosθ 3 , the fourteenth multiplier M 14 , the fifteenth multiplier The output signals of the multiplier M 15 and the sixteenth multiplier M 16 are respectively -I 21 sinθ 1 , -I 22 sinθ 2 , -I 23 sinθ 3 . The output signal I 21 cosθ 1 of the eleventh multiplier M 11 is sent to the eleventh processor 11 to obtain the output signal -1/I 21 cosθ 1 of the eleventh processor 11, and the The output signal -1/I 21 cosθ 1 of the eleventh processor 11 and the output signal -I 21 sinθ 1 of the fourteenth multiplier M 14 are sent to the seventeenth multiplier M 17 for multiplication, so The output signal of the seventeenth multiplier M 17 is the phase error tracking signal tgθ 1 of this signal, and the output signals of the twelfth multiplier M 12 and the thirteenth multiplier M 13 have undergone the above-mentioned similar processing The corresponding phase error tracking signals tgθ 2 and tgθ 3 can be obtained. The phase error tracking signals tgθ 1 , tgθ 2 and tgθ 3 will be sent to the coherent demodulation circuit in the multipath signal carrier phase error estimation device.

在多径信号载波相位误差估计装置的相干解调电路中,将所述相位误差跟踪信号tgθ1、tgθ2和tgθ3分别输入图2的第二十四移相器24、第二十四移相器25和第二十四移相器26,经过移动器调整本地相干载波的相位,使得本地相干载波与收信号载波的相位误差θ趋向于零,恢复出分别与三路收信号的载波同步的本地相干载波,恢复出的本地相干载波可用于在QAM相干解调器中实现多径信号的载波分离,并分别解调出三径信号。所述第二十一QAM相干解调器21的两路输出信号It1、Qt1分别接第二十七延时电路27的两路输入端,所述第二十二QAM相干解调器22的两路输出信号It2、Qt2分别接第二十八延时电路28的两路输入端,延时控制信号Cd1接所述第二十七延时电路27的控制信号输入端,延时控制信号Cd2接所述第二十八延时电路28的控制信号输入端,所述第二十七延时电路27的输出信号It1′和所述第二十八延时电路28的输出信号It2′分别接第二十一加法器M21的两路输入端,所述第二十七延时电路27的输出信号Qt1′和所述延时电路28的输出信号Qt2′分别接加法器M22的两路输入端,所述二十三QAM相干解调器23的输出It3接所述第二十一加法器M21的另一路输入端,所述第二十三QAM相干解调器23的输出Qt3接所述第二十二加法器M22的另一路输入端,所述第二十一加法器M21的输出端接解扰码第二十三乘法器M23的一路输入端,所述第二十二加法器M22的输出端接解扰码第二十四乘法器M24的一路输入端,PNI3L和PNQ2L分别输入所述第二十三乘法器M23和第二十四乘法器M24另外两路输入端进行I路和Q路合并信号的解扰码。In the coherent demodulation circuit of the multipath signal carrier phase error estimation device, the phase error tracking signals tgθ 1 , tgθ 2 and tgθ 3 are respectively input into the twenty-fourth phase shifter 24 and the twenty-fourth phase shifter in Fig. 2 The phaser 25 and the twenty-fourth phase shifter 26 adjust the phase of the local coherent carrier through the mover, so that the phase error θ between the local coherent carrier and the carrier of the received signal tends to zero, and restore the carrier synchronization with the three received signals respectively The recovered local coherent carrier can be used in the QAM coherent demodulator to realize the carrier separation of the multi-path signal and demodulate the three-path signals respectively. The two-way output signals I t1 and Q t1 of the twenty-first QAM coherent demodulator 21 are respectively connected to the two-way input terminals of the twenty-seventh delay circuit 27, and the twenty-second QAM coherent demodulator 22 The two-way output signals I t2 and Q t2 are respectively connected to the two input ends of the twenty-eighth delay circuit 28, and the delay control signal C d1 is connected to the control signal input end of the twenty-seventh delay circuit 27. When the control signal C d2 is connected to the control signal input end of the twenty-eighth delay circuit 28, the output signal I t1 ' of the twenty-seventh delay circuit 27 and the output signal of the twenty-eighth delay circuit 28 The output signal I t2 ' is respectively connected to the two input ends of the twenty-first adder M 21 , the output signal Q t1 ' of the twenty-seventh delay circuit 27 and the output signal Q t2 ' of the delay circuit 28 Connect the two input ends of the adder M 22 respectively, the output I t3 of the twenty-three QAM coherent demodulator 23 is connected to the other input end of the twenty-first adder M 21 , the twenty-third The output Q t3 of the QAM coherent demodulator 23 is connected to another input terminal of the twenty-second adder M 22 , and the output terminal of the twenty-first adder M 21 is connected to the descrambling code twenty-third multiplier One input terminal of M 23 , the output terminal of the twenty-second adder M 22 is connected to one input terminal of the twenty-fourth multiplier M 24 of the descrambling code, and PN I3L and PN Q2L respectively input the twenty-third The other two input terminals of the multiplier M 23 and the twenty-fourth multiplier M 24 perform descrambling of the I-channel and Q-channel combined signals.

除上述实施例外,本专利还可以有其它实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本专利要求的保护范围内。Except above-mentioned embodiment, this patent also can have other embodiment. All technical solutions formed by equivalent replacement or equivalent transformation fall within the scope of protection required by this patent.

Claims (2)

1.一种多径信号载波相位误差估计装置,其特征在于该装置包括用于两路基带信号与多个本地PN序列相乘的第十一乘法器(M11)、第十二乘法器(M12)、第十三乘法器(M13)、第十四乘法器(M14)、第十五乘法器(M15)、第十六乘法器(M16),用于分别对所述第十一乘法器(M11)、第十二乘法器(M12)、第十三乘法器(M13)输出的基带信号进行处理的第十一处理器(11)、第十二处理器(12)、第十三处理器(13),用于对所述处理器输出的基带信号与相应所述第十四乘法器(M14)、第十五乘法器(M15)、第十六乘法器(M16)输出信号相乘的第十七乘法器(M17)、第十八乘法器(M18)、第十九乘法器(M19);第二十一QAM相干解调器(21)解调出的It1路信号分别进入所述第十一乘法器(M11)、第十二乘法器(M12)、第十三乘法器(M13)与对应的第一本地PN序列(PNI1L)、第二本地PN序列(PNI2L)和第三本地PN序列(PNI3L)相乘,Qt1路信号分别进入所述第十四乘法器(M14)、第十五乘法器(M15)、第十六乘法器(M16)与对应第一本地PN序列(PNI1L)、第二本地PN序列(PNI2L)和第三本地PN序列(PNI3L)相乘,所述第十一乘法器(M11)、第十二乘法器(M12)、第十三乘法器(M13)的输出端分别接所述第十一处理器(11)、第十二处理器(12)、第十三处理器(13)的输入端,第十一处理器(11)的输出端与所述第十四乘法器(M14)的输出端接所述第十七乘法器(M17)的两个输入端,第十二处理器(12)的输出端与所述第十五乘法器(M15)的输出端接第十八乘法器(M18)的两个输入端,第十三处理器(13)的输出端与第十六乘法器(M16)的输出端接第十九乘法器(M19)的两个输入端,第十七乘法器(M17)、第十八乘法器(M18)和第十九乘法器(M19)将分别输出三路收信号载波的相位误差跟踪信号tgθ1、tgθ2和tgθ3,相位误差跟踪信号tgθ1、tgω2和tgθ3将送入所述多径信号载波相位误差估计装置中的相干解调电路。1. A multipath signal carrier phase error estimation device is characterized in that the device includes the eleventh multiplier (M 11 ), the twelfth multiplier ( M 12 ), the thirteenth multiplier (M 13 ), the fourteenth multiplier (M 14 ), the fifteenth multiplier (M 15 ), and the sixteenth multiplier (M 16 ), are used to respectively The eleventh processor ( 11 ), the twelfth processor for processing the baseband signals output by the eleventh multiplier (M 11 ), the twelfth multiplier (M 12 ), and the thirteenth multiplier (M 13 ) (12), the thirteenth processor (13), used for the baseband signal output by the processor and corresponding to the fourteenth multiplier (M 14 ), the fifteenth multiplier (M 15 ), the tenth multiplier The seventeenth multiplier (M 17 ), the eighteenth multiplier (M 18 ), and the nineteenth multiplier (M 19 ) for multiplying the output signals of the six multipliers (M 16 ); the twenty-first QAM coherent demodulation The I t1 road signal demodulated by the device (21) enters the eleventh multiplier (M 11 ), the twelfth multiplier (M 12 ), the thirteenth multiplier (M 13 ) and the corresponding first multiplier respectively. The local PN sequence (PN I1L ), the second local PN sequence (PN I2L ) and the third local PN sequence (PN I3L ) are multiplied, and the Q t1 signal enters the fourteenth multiplier (M 14 ), the tenth multiplier respectively The five multipliers (M 15 ), the sixteenth multiplier (M 16 ) multiply the corresponding first local PN sequence (PN I1L ), the second local PN sequence (PN I2L ) and the third local PN sequence (PN I3L ) , the output terminals of the eleventh multiplier (M 11 ), the twelfth multiplier (M 12 ), and the thirteenth multiplier (M 13 ) are respectively connected to the eleventh processor (11), the tenth The input terminals of the second processor (12), the thirteenth processor (13), the output terminal of the eleventh processor (11) and the output terminal of the fourteenth multiplier (M 14 ) are connected to the tenth The two input terminals of the seven multipliers (M 17 ), the output terminals of the twelfth processor (12) and the output terminals of the fifteenth multiplier (M 15 ) are connected to the eighteenth multiplier (M 18 ) Two input ends, the output end of the thirteenth processor (13) and the output end of the sixteenth multiplier (M 16 ) are connected to the two input ends of the nineteenth multiplier (M 19 ), the seventeenth multiplier (M 17 ), the eighteenth multiplier (M 18 ) and the nineteenth multiplier (M 19 ) will respectively output the phase error tracking signals tgθ 1 , tgθ 2 and tgθ 3 of the three received signal carriers, and the phase error tracking signal tgθ 1 , tgω 2 and tgθ 3 will be sent to the coherent demodulation circuit in the multipath signal carrier phase error estimation device. 2.如权利要求1所述多径信号载波相位误差估计装置,其特征在于所述相干解调电路中,三径收信号的输入信号SAD(t)分别送入第二十一QAM相干解调器(21)、第二十二QAM相干解调器(22)、第二十三QAM相干解调器(23),分别与由第二十四移相器(24)、第二十五移相器(25)、第二十六移相器(26)产生的本地相干载波进行相干解调,第二十四移相器(24)、第二十五移相器(25)和第二十六移相器(26)利用输入的所述相位误差跟踪信号tgθ1、tgθ2和tgθ3调整各路径对应本地相干载波的相位,使它们分别与对应的收信号载波同相;所述第二十一QAM相干解调器(21)的两路输出信号It1、Qt1分别接第二十七延时电路(27)的两路输入端,所述第二十二QAM相干解调器(22)的两路输出信号It2、Qt2分别接第二十八延时电路(28)的两路输入端,延时控制信号Cd1接所述第二十七延时电路(27)的控制信号输入端,延时控制信号Cd2接所述第二十八延时电路(28)的控制信号输入端,第二十七延时电路(27)的输出信号It1′和第二十八延时电路(28)的输出信号It2′分别接第二十一加法器(M21)的两路输入端,第二十七延时电路(27)的输出信号Qt1′和第二十八延时电路(28)的输出信号Qt2′分别接第二十二加法器(M22)的两路输入端,第二十三QAM相干解调器(23)的输出It3接第二十一加法器(M21)的另一路输入端,第二十三QAM相干解调器(23)的输出Qt3接所述第二十二加法器(M22)的另一路输入端,第二十一加法器(M21)的输出端接解扰码第二十三乘法器(M23)的一路输入端,第二十二加法器(M22)的输出端接解扰码第二十四乘法器(M24)的一路输入端,第三本地PN序列PN13L和PNQ3L分别输入所述第二十三乘法器(M23)和第二十四乘法器(M24)另外两个输入端进行I路和Q路合并信号的解扰码。2. multi-path signal carrier phase error estimation device as claimed in claim 1, it is characterized in that in the described coherent demodulation circuit, the input signal S AD (t) of three-path receiving signal is sent into the twenty-first QAM coherent solution respectively The modulator (21), the twenty-second QAM coherent demodulator (22), the twenty-third QAM coherent demodulator (23), and the twenty-fourth phase shifter (24), the twenty-fifth The local coherent carrier wave produced by the phase shifter (25), the twenty-sixth phase shifter (26) carries out coherent demodulation, and the twenty-fourth phase shifter (24), the twenty-fifth phase shifter (25) and the first Twenty-six phase shifters (26) use the input phase error tracking signals tgθ 1 , tgθ 2 and tgθ 3 to adjust the phases of the corresponding local coherent carriers in each path, so that they are in phase with the corresponding received signal carriers respectively; the first The two-way output signals I t1 and Q t1 of the twenty-first QAM coherent demodulator (21) are respectively connected to the two-way input terminals of the twenty-seventh delay circuit (27), and the twenty-second QAM coherent demodulator The two output signals I t2 and Q t2 of (22) are respectively connected to the two input ends of the twenty-eighth delay circuit (28), and the delay control signal C d1 is connected to the twenty-seventh delay circuit (27) The control signal input terminal of the control signal, the delay control signal C d2 is connected to the control signal input terminal of the twenty-eighth delay circuit (28), the output signal I t1 ' of the twenty-seventh delay circuit (27) and the second The output signal I t2 ' of the eighteenth delay circuit (28) is connected to two input terminals of the twenty-first adder (M 21 ) respectively, and the output signal Q t1 ' of the twenty-seventh delay circuit (27) and the first The output signal Q t2 ' of the twenty-eight time delay circuit (28) is connected to two input terminals of the twenty-second adder (M 22 ) respectively, and the output I t3 of the twenty-third QAM coherent demodulator (23) is connected The other input end of the twenty-first adder (M 21 ), the output Q t3 of the twenty-third QAM coherent demodulator (23) is connected to the other input end of the twenty-second adder (M 22 ) , the output terminal of the twenty-first adder (M 21 ) is connected to the descrambling code input terminal of the twenty-third multiplier (M 23 ), and the output terminal of the twenty-second adder (M 22 ) is connected to the descrambling code One input terminal of the twenty-fourth multiplier (M 24 ), the third local PN sequence PN 13L and PN Q3L respectively input the twenty-third multiplier (M 23 ) and the twenty-fourth multiplier (M 24 ) The other two input terminals are used for descrambling of combined signals of the I channel and the Q channel.
CN200910034235A 2009-08-26 2009-08-26 Multipath signal carrier phase error estimation device Pending CN101692617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910034235A CN101692617A (en) 2009-08-26 2009-08-26 Multipath signal carrier phase error estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910034235A CN101692617A (en) 2009-08-26 2009-08-26 Multipath signal carrier phase error estimation device

Publications (1)

Publication Number Publication Date
CN101692617A true CN101692617A (en) 2010-04-07

Family

ID=42081279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910034235A Pending CN101692617A (en) 2009-08-26 2009-08-26 Multipath signal carrier phase error estimation device

Country Status (1)

Country Link
CN (1) CN101692617A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971975A (en) * 2010-07-09 2013-03-13 华为技术有限公司 Method and apparatus for carrier phase estimation and correction in a coherent optical system
CN103141064A (en) * 2010-09-28 2013-06-05 瑞典爱立信有限公司 Adaptive equaliser with asynchronous detection and inhibit signal generator
CN103457892A (en) * 2013-08-22 2013-12-18 大连海事大学 Novel carrier extraction method for binary frequency shift keying signals
EP3088409A4 (en) * 2013-12-25 2017-11-08 Jellyfish Research Laboratories, Inc. Continuous production method for decomposition product from water-insoluble macromolecular compound

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971975A (en) * 2010-07-09 2013-03-13 华为技术有限公司 Method and apparatus for carrier phase estimation and correction in a coherent optical system
CN102971975B (en) * 2010-07-09 2015-07-22 华为技术有限公司 Method and apparatus for carrier phase estimation and correction in a coherent optical system
CN103141064A (en) * 2010-09-28 2013-06-05 瑞典爱立信有限公司 Adaptive equaliser with asynchronous detection and inhibit signal generator
CN103457892A (en) * 2013-08-22 2013-12-18 大连海事大学 Novel carrier extraction method for binary frequency shift keying signals
CN103457892B (en) * 2013-08-22 2016-08-17 大连海事大学 A kind of carrier extract new method for binary frequency shift keying signal
EP3088409A4 (en) * 2013-12-25 2017-11-08 Jellyfish Research Laboratories, Inc. Continuous production method for decomposition product from water-insoluble macromolecular compound
US10239915B2 (en) 2013-12-25 2019-03-26 Jellyfish Research Laboratories, Inc. Method for continuous production of degradation product of water-insoluble polymeric compound
AU2014371389B2 (en) * 2013-12-25 2019-12-05 Jellyfish Research Laboratories, Inc. Continuous production method for decomposition product from water-insoluble macromolecular compound

Similar Documents

Publication Publication Date Title
JP2868901B2 (en) Inner product circuit for multipath receiver
CN110300079B (en) A kind of MSK signal coherent demodulation method and system
EP1068672A1 (en) A method and device for despreading an offset signal
CN103281275B (en) A kind of MSK/GMSK Direct Sequence Spread Spectrum Signals receiver
JP3434141B2 (en) Synchronous dual channel QPSK modulation / demodulation device and method for CDMA system
JPH11127089A (en) CDMA receiver
CN103516413A (en) Combining in receive diversity systems
CN101692617A (en) Multipath signal carrier phase error estimation device
US5594755A (en) Apparatus for use in equipment providing a digital radio link between a fixed radio unit and a mobile radio unit
CN201479131U (en) Code Division Multiple Access Receiver Carrier Recovery Device
JP3399400B2 (en) Frequency shift demodulation circuit
JP2002344351A (en) Method and communication receiver for removing doppler frequency shift in spread spectrum communication signal
CN102685055B (en) Multi-data stream interpolation and extraction multiplexing device and method
KR100843421B1 (en) I / X playback device on 5-port network
CN102023291A (en) GPS (global position system) signal high-speed capturing device and method
KR960000606B1 (en) Differential quardrature phase-shift keying
CN113395229B (en) Coherent demodulation method and device suitable for pi/4-DQPSK and readable storage medium
KR100764356B1 (en) A timing estimator in a oqpsk demodulator
CN110474859A (en) A kind of zero intermediate frequency base band 2FSK signal coherence demodulation method
JP4572482B2 (en) CDMA wireless communication demodulator
CN101707493B (en) Multipath signal carrier coherent demodulating Rake receiver
CN201504233U (en) Code Division Multiple Access Multipath Synchronous Demodulation Diversity Receiver
CN113507427A (en) Carrier tracking method and device suitable for pi/4-DQPSK and readable storage medium
CN203872200U (en) Orthogonal frequency division multiplexing code division multiple access communication system signal reception device
CN203872202U (en) Code division multiplexing quadrature frequency division multiple access communication system signal reception device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Jia Xiangdong

Inventor after: Liu Xiong

Inventor after: Fu Haiyang

Inventor after: Qian Weiwei

Inventor after: Ding Wei

Inventor before: Fu Haiyang

Inventor before: Liu Xiong

Inventor before: Jia Xiangdong

Inventor before: Qian Weiwei

Inventor before: Ding Wei

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: FU HAIYANG LIU XIONG JIA XIANGDONG QIAN WEIWEI DING WEI TO: JIA XIANGDONG LIU XIONG FU HAIYANG QIAN WEIWEI DING WEI

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20100407