CN101692617A - Multipath signal carrier phase error estimation device - Google Patents
Multipath signal carrier phase error estimation device Download PDFInfo
- Publication number
- CN101692617A CN101692617A CN200910034235A CN200910034235A CN101692617A CN 101692617 A CN101692617 A CN 101692617A CN 200910034235 A CN200910034235 A CN 200910034235A CN 200910034235 A CN200910034235 A CN 200910034235A CN 101692617 A CN101692617 A CN 101692617A
- Authority
- CN
- China
- Prior art keywords
- multiplier
- twenty
- signal
- output
- local
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001427 coherent effect Effects 0.000 claims abstract description 75
- 239000000969 carrier Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 abstract description 15
- 230000001360 synchronised effect Effects 0.000 abstract description 6
- 230000014509 gene expression Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Noise Elimination (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种用于下行瑞克接收机多径收信号相干解调的多径收信号载波相位误差估计装置,可大幅度提升瑞克接收机多径分集接收的效率,提高多径收信号的功率利用率,属于移动通信技术领域。The invention relates to a device for estimating carrier phase error of a multipath receiving signal used for coherent demodulation of a multipath receiving signal in a downlink rake receiver, which can greatly improve the efficiency of multipath diversity reception of a rake receiver and improve multipath receiving signal The power utilization ratio belongs to the technical field of mobile communication.
背景技术Background technique
使用瑞克接收机的CDMA手机收信设备是移动通信领域的高科技产品。多径信号载波相位误差估计装置这种高科技设备用于CDMA系统的下行瑞克接收机,能够提高码分多址系统中下行信道多径收信号功率利用率和接收机接收信噪比。虽然有许多资料提到可以用传统瑞克接收机实现载波相干解调,但据申请人调研,传统下行瑞克接收机普遍采用的“载波相干解调”实际上对多径收信号而言是非完全相干的,由于收到的多径信号载波间存在相位差,收信机中恢复的一路相干载波C1L(t)=cosw1Lt只能与一径收信号载波S1(t)=S1cosw1t保持同步,这两个信号间的相位差θ为0,可实现相干解调,但会导致在其它两径收信号的解调中引入它们各自的收信号载波与C1L(t)相位差θ有关的解调信号幅度损失、极性变化和干扰。当其它一径收信号载波S2(t)=S2cosw2t与C1L(t)存在相位差θ时,已解调信号可简单表示为S2cosθ,显然相位差θ将影响已解调信号的极性和幅度。此相位差损失会使多径收信号的功率利用率大幅下降,可将cosθ定义为相干解调损耗因子。至今还没有资料给出具体的实现多径信号的完全相干解调,可消除相干解调损耗因子cosθ影响的多径信号载波相位误差估计方法和相应装置的原理。该方法与传统瑞克接收机的方法相比,可以准确的估计各路多径收信号载波与本地载波的相位误差θ,从而消除相干解调损耗因子cosθ的影响,大幅度提升瑞克接收机多径分集接收的效率,提高多径收信号的功率利用率,由于该方法是在基带实现多径收信号载波相位误差估计,使它的可用性上升,应用成本下降,使瑞克接收机的推广成为可能。The CDMA mobile phone receiving equipment using RAKE receiver is a high-tech product in the field of mobile communication. The multipath signal carrier phase error estimation device is a high-tech device used in the downlink rake receiver of the CDMA system, which can improve the power utilization rate of the multipath received signal of the downlink channel in the code division multiple access system and the received signal-to-noise ratio of the receiver. Although there are many materials mentioning that traditional RAKE receivers can be used to achieve carrier coherent demodulation, according to the applicant's research, the "carrier coherent demodulation" commonly used in traditional downlink RAKE receivers is actually very important for multipath receiving signals. Completely coherent, due to the phase difference between the received multipath signal carriers, the coherent carrier C 1L (t)=cosw 1L t recovered in the receiver can only be combined with the received signal carrier S 1 (t)=S 1 cosw 1 t is kept synchronous, the phase difference θ between these two signals is 0, coherent demodulation can be realized, but it will lead to the introduction of their respective received signal carriers and C 1L (t ) Demodulated signal amplitude loss, polarity change and interference related to the phase difference θ. When there is a phase difference θ between the other receiving signal carrier S 2 (t)=S 2 cosw 2 t and C 1L (t), the demodulated signal can be simply expressed as S 2 cosθ, obviously the phase difference θ will affect the resolved Adjust the polarity and amplitude of the signal. This phase difference loss will greatly reduce the power utilization rate of multipath receiving signals, and cosθ can be defined as the coherent demodulation loss factor. So far, there is no material to provide a specific realization of fully coherent demodulation of multipath signals, and the principle of multipath signal carrier phase error estimation methods and corresponding devices that can eliminate the influence of the coherent demodulation loss factor cosθ. Compared with the traditional rake receiver method, this method can accurately estimate the phase error θ between the multipath received signal carrier and the local carrier, thereby eliminating the influence of the coherent demodulation loss factor cosθ, and greatly improving the rake receiver The efficiency of multipath diversity reception improves the power utilization rate of multipath receiving signals. Since this method is to estimate the carrier phase error of multipath receiving signals in the baseband, its usability is increased, and the application cost is reduced, so that the popularization of rake receivers become possible.
发明内容Contents of the invention
技术问题:本发明要解决的技术问题是:针对以上还没有相关技术资料说明的多径信号载波相位误差估计方法,提出一种我们首创的多径收信号载波相位误差估计装置,这种装置可用于准确的估计各路多径信号载波与本地载波的相位误差θ,消除相干解调损耗因子cosθ带来的不确定的影响,实现多径收信号的相干解调,可以大大增加瑞克接收机的可用性,提高了下行接收机的接收信噪比,大大改善了CDMA系统的下行功率利用率。Technical problem: the technical problem to be solved in the present invention is: for the multipath signal carrier phase error estimation method that does not have relevant technical data explanation above, propose a kind of multipath receiving signal carrier phase error estimation device that we initiate, this device can be used In order to accurately estimate the phase error θ between the multipath signal carrier and the local carrier, eliminate the uncertain influence brought by the coherent demodulation loss factor cosθ, and realize the coherent demodulation of the multipath received signal, it can greatly increase the RAKE receiver The usability of the system improves the receiving signal-to-noise ratio of the downlink receiver, and greatly improves the downlink power utilization rate of the CDMA system.
技术方案:本发明的多径信号载波相位误差估计方法是根据多径收信号表达式、传统瑞克接收机表达式,导出各路径信号对应的相位误差跟踪信号tgθ1、tgθ2、tgθ3,在相位误差跟踪信号的控制下,经过移相器调整本地相干载波的相位,使得本地相干载波与收信号载波的相位误差θ趋向于零,恢复出分别与三路收信号的载波同步的本地相干载波。QAM相干解调器在此处具备双重功能,当对应路径的相位误差跟踪信号tgθ不等于0时,移相器产生的本地载波信号与其对应路径收信号载波不同步,其QAM相干解调器就相当于一个正交下变频器;当对应路径相位误差跟踪信号tgθ等于0时,移相器产生的载波信号会与其对应路径载波收信号达到完全同步,所述QAM相干解调器将会实现相干解调。QAM相干解调器的这两种功能是互不干扰的。Technical solution: The multipath signal carrier phase error estimation method of the present invention is to derive the phase error tracking signals tgθ 1 , tgθ 2 , tgθ 3 corresponding to each path signal according to the multipath signal receiving expression and the traditional rake receiver expression, Under the control of the phase error tracking signal, the phase of the local coherent carrier is adjusted through the phase shifter, so that the phase error θ between the local coherent carrier and the received signal carrier tends to zero, and the local coherence synchronized with the carriers of the three received signals is restored carrier. The QAM coherent demodulator has a dual function here. When the phase error tracking signal tgθ of the corresponding path is not equal to 0, the local carrier signal generated by the phase shifter is not synchronized with the received signal carrier of the corresponding path, and its QAM coherent demodulator is Equivalent to a quadrature down-converter; when the corresponding path phase error tracking signal tgθ is equal to 0, the carrier signal generated by the phase shifter will be fully synchronized with the corresponding path carrier receiving signal, and the QAM coherent demodulator will achieve coherence demodulation. These two functions of the QAM coherent demodulator do not interfere with each other.
多径信号载波相位误差估计装置包括用于两路基带信号与多个本地PN序列相乘的第十一乘法器、第十二乘法器、第十三乘法器、第十四乘法器、第十五乘法器、第十六乘法器,用于分别对所述第十一乘法器、第十二乘法器、第十三乘法器输出的基带信号进行处理的第十一处理器、第十二处理器、第十三处理器,用于对所述处理器输出的基带信号与相应所述第十四乘法器、第十五乘法器、第十六乘法器输出信号相乘的第十七乘法器、第十八乘法器、第十九乘法器;第二十一QAM相干解调器解调出的It1路信号分别进入所述第十一乘法器、第十二乘法器、第十三乘法器与对应的第一本地PN序列、第二本地PN序列和第三本地PN序列相乘,Qt1路信号分别进入所述第十四乘法器、第十五乘法器、第十六乘法器与对应第一本地PN序列、第二本地PN序列和第三本地PN序列相乘,所述第十一乘法器、第十二乘法器、第十三乘法器的输出端分别接所述第十一处理器、第十二处理器、第十三处理器的输入端,第十一处理器的输出端与所述第十四乘法器的输出端接所述第十七乘法器的两个输入端,第十二处理器的输出端与所述第十五乘法器的输出端接第十八乘法器的两个输入端,第十三处理器的输出端与第十六乘法器的输出端接第十九乘法器的两个输入端,第十七乘法器、第十八乘法器和第十九乘法器将分别输出三路收信号载波的相位误差跟踪信号tgθ1、tgθ2和tgθ3,相位误差跟踪信号tgθ1、tgθ2和tgθ3将送入所述多径信号载波相位误差估计装置中的相干解调电路。The multipath signal carrier phase error estimation device includes an eleventh multiplier, a twelfth multiplier, a thirteenth multiplier, a fourteenth multiplier, and a tenth multiplier for multiplying two-way baseband signals and multiple local PN sequences. The fifth multiplier and the sixteenth multiplier are used to process the baseband signals output by the eleventh multiplier, the twelfth multiplier, and the thirteenth multiplier respectively. The eleventh processor and the twelfth processing A device, a thirteenth processor, a seventeenth multiplier for multiplying the baseband signal output by the processor with the output signal of the fourteenth multiplier, the fifteenth multiplier, and the sixteenth multiplier , the eighteenth multiplier, the nineteenth multiplier; the I t1 road signal that the twenty-first QAM coherent demodulator demodulates enters respectively the eleventh multiplier, the twelfth multiplier, and the thirteenth multiplier multiplier with the corresponding first local PN sequence, the second local PN sequence and the third local PN sequence, and the Q t1 road signal enters the fourteenth multiplier, the fifteenth multiplier, the sixteenth multiplier and the Corresponding to multiplying the first local PN sequence, the second local PN sequence and the third local PN sequence, the output terminals of the eleventh multiplier, the twelfth multiplier, and the thirteenth multiplier are respectively connected to the eleventh multiplier The input ends of the processor, the twelfth processor, and the thirteenth processor, the output end of the eleventh processor and the output end of the fourteenth multiplier are connected to the two input ends of the seventeenth multiplier , the output end of the twelfth processor and the output end of the fifteenth multiplier are connected to the two input ends of the eighteenth multiplier, and the output end of the thirteenth processor is connected to the output end of the sixteenth multiplier The two input terminals of the nineteenth multiplier, the seventeenth multiplier, the eighteenth multiplier and the nineteenth multiplier will respectively output the phase error tracking signals tgθ 1 , tgθ 2 and tgθ 3 of the three-way received signal carrier, The phase error tracking signals tgθ 1 , tgθ 2 and tgθ 3 will be sent to the coherent demodulation circuit in the multipath signal carrier phase error estimation device.
所述相干解调电路中,三径收信号的输入信号SAD(t)分别送入第二十一QAM相干解调器、第二十二QAM相干解调器、第二十三QAM相干解调器,分别与由第二十四移相器、第二十五移相器、第二十六移相器产生的本地相干载波进行相干解调,第二十四移相器、第二十五移相器和第二十六移相器利用输入的所述相位误差跟踪信号tgθ1、tgθ2和tgθ3调整各路径对应本地相干载波的相位,使它们分别与对应的收信号载波同相;所述第二十一QAM相干解调器的两路输出信号It1、Qt1分别接第二十七延时电路的两路输入端,所述第二十二QAM相干解调器的两路输出信号It2、Qt2分别接第二十八延时电路的两路输入端,延时控制信号Cd1接所述第二十七延时电路的控制信号输入端,延时控制信号Cd2接所述第二十八延时电路的控制信号输入端,第二十七延时电路的输出信号It1′和第二十八延时电路的输出信号It2′分别接第二十一加法器的两路输入端,第二十七延时电路的输出信号Qt1′和第二十八延时电路的输出信号Qt2′分别接第二十二加法器的两路输入端,第二十三QAM相干解调器的输出It3接第二十一加法器的另一路输入端,第二十三QAM相干解调器的输出Qt3接所述第二十二加法器的另一路输入端,第二十一加法器的输出端接解扰码第二十三乘法器的一路输入端,第二十二加法器的输出端接解扰码第二十四乘法器的一路输入端,第三本地PN序列PNI3L和PNQ3L分别输入所述第二十三乘法器和第二十四乘法器另外两个输入端进行I路和Q路合并信号的解扰码。In the coherent demodulation circuit, the input signal S AD (t) of the three-path received signal is respectively sent to the twenty-first QAM coherent demodulator, the twenty-second QAM coherent demodulator, the twenty-third QAM coherent demodulator, and the twenty-third QAM coherent demodulator. The modulator is used for coherent demodulation with the local coherent carrier generated by the twenty-fourth phase shifter, the twenty-fifth phase shifter, and the twenty-sixth phase shifter respectively, and the twenty-fourth phase shifter, the twenty-first phase shifter The fifth phase shifter and the twenty-sixth phase shifter use the input phase error tracking signals tgθ 1 , tgθ 2 and tgθ 3 to adjust the phase of each path corresponding to the local coherent carrier, so that they are in phase with the corresponding received signal carrier; The two-way output signals I t1 and Q t1 of the twenty-first QAM coherent demodulator are respectively connected to the two-way input terminals of the twenty-seventh delay circuit, and the two-way output signals of the twenty-second QAM coherent demodulator The output signals I t2 and Q t2 are respectively connected to the two input ends of the twenty-eighth delay circuit, the delay control signal C d1 is connected to the control signal input end of the twenty-seventh delay circuit, and the delay control signal C d2 Connect the control signal input terminal of the twenty-eighth delay circuit, the output signal I t1 ' of the twenty-seventh delay circuit and the output signal I t2 ' of the twenty-eighth delay circuit are respectively connected to the twenty-first addition The two input terminals of the device, the output signal Q t1 ' of the twenty-seventh delay circuit and the output signal Q t2 ' of the twenty-eighth delay circuit are respectively connected to the two input terminals of the twenty-second adder, and the second The output I t3 of the thirteenth QAM coherent demodulator is connected to another input end of the twenty-first adder, and the output Q t3 of the twenty-third QAM coherent demodulator is connected to another input of the twenty-second adder terminal, the output terminal of the twenty-first adder is connected to one input terminal of the twenty-third multiplier of the descrambling code, and the output terminal of the twenty-second adder is connected to one input terminal of the twenty-fourth multiplier of the descrambling code, The third local PN sequence PN I3L and PN Q3L are respectively input to the other two input terminals of the twenty-third multiplier and the twenty-fourth multiplier for descrambling of the I-channel and Q-channel combined signals.
利用QAM相干解调器实现相干解调时,若图2中三个移相器最终产生的6路本地相干载波分别与三径收信号载波同频同相,据图2可以给出:When the QAM coherent demodulator is used to realize coherent demodulation, if the 6 local coherent carriers finally generated by the three phase shifters in Figure 2 are the same frequency and phase as the three-path receiving signal carrier, according to Figure 2, it can be given:
It1=I1+I2cosθ2+I3cosθ3+Q2sinθ2+Q3sinθ3 (1)I t1 =I 1 +I 2 cosθ 2 +I 3 cosθ 3 +Q 2 sinθ 2 +Q 3 sinθ 3 (1)
Qt1=Q1+Q2cosθ2+Q3cosθ3-I2sinθ2-I3sinθ3 (2)Q t1 =Q 1 +Q 2 cosθ 2 +Q 3 cosθ 3 -I 2 sinθ 2 -I 3 sinθ 3 (2)
It2=I2+I1cosθ1+I3cosθ3+Q1sinθ1+Q3sinθ3 (3)I t2 =I 2 +I 1 cosθ 1 +I 3 cosθ 3 +Q 1 sinθ 1 +Q 3 sinθ 3 (3)
Qt2=Q2+Q1cosθ1+Q3cosθ3-I1sinθ1-I3sinθ3 (4)Q t2 =Q 2 +Q 1 cosθ 1 +Q 3 cosθ 3 -I 1 sinθ 1 -I 3 sinθ 3 (4)
It3=I3+I1cosθ1+I2cosθ2+Q1sinθ1+Q2sinθ2 (5)I t3 =I 3 +I 1 cosθ 1 +I 2 cosθ 2 +Q 1 sinθ 1 +Q 2 sinθ 2 (5)
Qt3=Q3+Q1cosθ1+Q2cosθ2-I1sinθ1-I2sinθ2 (6)Q t3 =Q 3 +Q 1 cosθ 1 +Q 2 cosθ 2 -I 1 sinθ 1 -I 2 sinθ 2 (6)
由于可以用PNI1L、PNI2L和PNI3L判定It1和It2应有的时延,因此可以在解扩前完成相加过程,其后再用PNI3L进行解扩。可以用类似的方法导出Q路的接收部分,为避免重复,此处略。Since PN I1L , PN I2L and PN I3L can be used to determine the due time delay of It1 and It2 , the addition process can be completed before despreading, and then PN I3L is used for despreading. A similar method can be used to derive the receiving part of the Q path, which is omitted here to avoid repetition.
如果图2中三个移相器产生的6路本地相干载波分别未与三径收信号载波达到同频同相,其QAM相干解调器输出为:If the 6 local coherent carriers generated by the three phase shifters in Figure 2 do not reach the same frequency and phase as the three received signal carriers, the output of the QAM coherent demodulator is:
I=I1cosθ1+I2cosθ2+I3cosθ3+Q1sinθ1+Q2sinθ2+Q3sinθ3 (7)I=I 1 cosθ 1 +I 2 cosθ 2 +I 3 cosθ 3 +Q 1 sinθ 1 +Q 2 sinθ 2 +Q 3 sinθ 3 (7)
Q=Q1cosθ1+Q2cosθ2+Q3cosθ3-I1sinθ1-I2sinθ2-I3sinθ3 (8)Q=Q 1 cosθ 1 +Q 2 cosθ 2 +Q 3 cosθ 3 -I 1 sinθ 1 -I 2 sinθ 2 -I 3 sinθ 3 (8)
然而,对I、Q路输出信号做如下处理得:However, the I and Q output signals are processed as follows:
I1=PNI1L·I=D1(t)W1(t)cosθ1+PNI1L·[I2cosθ2+I3cosθ3+Q1sinθ1+Q2sinθ2+Q3sinQ3]I 1 =PN I1L ·I=D 1 (t)W 1 (t)cosθ 1 +PN I1L ·[I 2 cosθ 2 +I 3 cosθ 3 +Q 1 sinθ 1 +Q 2 sinθ 2 +Q 3 sinQ 3 ]
(9) (9)
I2=PNI2L·II 2 =PN I2L ·I
=D1(t-td1)W1(t-td1)cosθ2+PNI2L·[I1cosθ1+I3cosθ3+Q1sinθ1+Q2sinθ2+Q3sinθ3]=D 1 (tt d1 )W 1 (tt d1 )cosθ 2 +PN I2L ·[I 1 cosθ 1 +I 3 cosθ 3 +Q 1 sinθ 1 +Q 2 sinθ 2 +Q 3 sinθ 3 ]
(10)(10)
I3=PNI3L·II 3 =PN I3L ·I
=D1(t-td1-td2)W1(t-td1-td2)cosθ3+PNI3L·[I1cosθ1+I2cosθ2+Q1sinθ1+Q3sinθ3+Q2sinθ2]=D 1 (tt d1 -t d2 )W 1 (tt d1 -t d2 )cosθ 3 +PN I3L [I 1 cosθ 1 +I 2 cosθ 2 +Q 1 sinθ 1 +Q 3 sinθ 3 +Q 2 sinθ 2 ]
(11)
式子(9)中,由于PNI1L与I2、I3、Q1、Q2和Q3中的短PN序列异步,所以这五项信号无法解出,将表现为信号I1中由多径引入的CDMA自干扰噪声,此项噪声将会受到乘法器后接低通滤波器的限制,此处为简化框图将对应的低通滤波器略去。对于I2和I3做类似的处理。In formula (9), since PN I1L is asynchronous to the short PN sequences in I 2 , I 3 , Q 1 , Q 2 and Q 3 , these five signals cannot be solved, and it will appear as signal I 1 composed of multiple The CDMA self-interference noise introduced by the path will be limited by the low-pass filter connected after the multiplier. Here, the corresponding low-pass filter is omitted for a simplified block diagram. Do similar processing for I 2 and I 3 .
PNI2L·Q=-I2sinθ2+PNI2L·[Q1cosθ1+Q2cosθ2+Q3cosθ3-I1sinθ1-I3sinθ3]PN I2L Q=-I 2 sinθ 2 +PN I2L [Q 1 cosθ 1 +Q 2 cosθ 2 +Q 3 cosθ 3 -I 1 sinθ 1 -I 3 sinθ 3 ]
(12)
式子(12)中最后一项表现为噪声,经过低通滤波器后可以解出-I2sinθ2。做类似的处理同样可以得到-I1sinθ1、-I3sinθ3。The last item in formula (12) is noise, and -I 2 sinθ 2 can be solved after passing through a low-pass filter. Doing similar processing can also get -I 1 sinθ 1 , -I 3 sinθ 3 .
因此根据上述公式(7)~(12),可以导出收信号多径载波相位误差跟踪信号产生电路原理框图见图1。Therefore, according to the above formulas (7) to (12), the block diagram of the circuit for generating multipath carrier phase error tracking signals of received signals can be derived, as shown in Fig. 1 .
有益效果:由于该发明利用给出的多径收信号相位误差估计方法,准确的估计各路多径收信号载波与本地相干载波的相位误差θ,可以消除相干解调损耗因子cosθ带来的不确定的影响,实现多径信号的相干解调,可以构造出一种新型的多径收信号载波相干解调瑞克接收机,提高了下行接收端的接收信噪比,大大改善了CDMA系统的下行功率利用率。由于该多径收信号相位误差估计方法是在基带实现,使它的可用性上升,应用成本下降。Beneficial effects: Since the invention utilizes the given multipath receiving signal phase error estimation method to accurately estimate the phase error θ between each multipath receiving signal carrier and the local coherent carrier, it can eliminate the inconvenience caused by the coherent demodulation loss factor cosθ Determining the influence, realizing coherent demodulation of multipath signals, can construct a new type of multipath receiving signal carrier coherent demodulation rake receiver, which improves the receiving signal-to-noise ratio of the downlink receiving end, and greatly improves the downlink performance of the CDMA system. power utilization. Since the method for estimating the phase error of multipath received signals is implemented in the baseband, its usability is increased and its application cost is reduced.
附图说明Description of drawings
图1为多径信号载波相位误差估计装置中的相位误差跟踪信号产生电路原理图。其中包括用于两路基带信号与多个本地PN序列相乘的第十一乘法器M11、第十二乘法器M12、第十三乘法器M13、第十四乘法器M14、第十五乘法器M15、第十六乘法器M16,用于分别对所述第十一乘法器M11、第十二乘法器M12、第十三乘法器M13输出的基带信号进行处理的第十一处理器11、第十二处理器12、第十三处理器13,用于对所述处理器输出的基带信号与相应所述第十四乘法器M14、第十五乘法器M15、第十六乘法器M16输出信号相乘的第十七乘法器M17、第十八乘法器M18、第十九乘法器M19。FIG. 1 is a schematic diagram of a phase error tracking signal generation circuit in a multipath signal carrier phase error estimation device. It includes the eleventh multiplier M 11 , the twelfth multiplier M 12 , the thirteenth multiplier M 13 , the fourteenth multiplier M 14 , the th The fifteenth multiplier M 15 and the sixteenth multiplier M 16 are used to process the baseband signals output by the eleventh multiplier M 11 , the twelfth multiplier M 12 , and the thirteenth multiplier M 13 respectively The eleventh processor 11, the twelfth processor 12, and the thirteenth processor 13 are used to compare the baseband signal output by the processor with the corresponding fourteenth multiplier M 14 and fifteenth multiplier M 15 , the seventeenth multiplier M 17 , the eighteenth multiplier M 18 , and the nineteenth multiplier M 19 for multiplying the output signals of the sixteenth multiplier M 16 .
图2为多径信号载波相位误差估计装置中的相干解调电路部分原理图,其中包括三个用于三径收信号分离和相干解调的第二十一QAM相干解调器21、第二十二QAM相干解调器22、第二十三QAM相干解调器23,三个利用相位误差跟踪信号恢复出与三路径收信号载波同步的本地相干载波的第二十四移相器24、第二十五移相器25、第二十六移相器26,用于调整多径时延的第二十七延时电路27、第二十八延时电路28,用于I路三径信号叠加的第二十一加法器M21,用于Q路三径信号叠加的第二十二加法器M22,用于I路已合并信号解扰的第二十三乘法器M33,用于Q路已合并信号解扰的第二十四乘法器M24。Fig. 2 is the schematic diagram of the part of the coherent demodulation circuit in the multipath signal carrier phase error estimation device, which includes three twenty-first QAM coherent demodulators 21, the second Twelve QAM coherent demodulators 22, twenty-third QAM
具体实施方式Detailed ways
实施例一Embodiment one
本实施例利用基带信号产生多径载波相位误差跟踪信号,实现相位误差估计。多径信号载波相位误差估计装置中的相位误差跟踪信号产生电路原理图见图1。主要由下列部分组成:其中包括用于两路基带信号与多个本地PN序列相乘的第十一乘法器M11、第十二乘法器M12、第十三乘法器M13、第十四乘法器M14、第十五乘法器M15、第十六乘法器M16,用于分别对所述第十一乘法器M11、第十二乘法器M12、第十三乘法器M13输出的基带信号进行处理的第十一处理器11、第十二处理器12、第十三处理器13,用于对所述处理器输出的基带信号与相应所述第十四乘法器M14、第十五乘法器M15、第十六乘法器M16输出信号相乘的第十七乘法器M17、第十八乘法器M18、第十九乘法器M19。In this embodiment, a baseband signal is used to generate a multipath carrier phase error tracking signal to realize phase error estimation. See Figure 1 for the schematic diagram of the phase error tracking signal generation circuit in the multipath signal carrier phase error estimation device. It mainly consists of the following parts: including the eleventh multiplier M 11 , the twelfth multiplier M 12 , the thirteenth multiplier M 13 , and the fourteenth multiplier for multiplying two baseband signals by multiple local PN sequences The multiplier M 14 , the fifteenth multiplier M 15 , and the sixteenth multiplier M 16 are used to respectively provide the eleventh multiplier M 11 , the twelfth multiplier M 12 , and the thirteenth multiplier M 13 The eleventh processor 11, the twelfth processor 12, and the thirteenth processor 13 that process the output baseband signal are used to combine the baseband signal output by the processor with the corresponding fourteenth multiplier M 14 , the 17th multiplier M 17 , the 18th multiplier M 18 , and the 19th multiplier M 19 for multiplying the output signals of the fifteenth multiplier M 15 and the sixteenth multiplier M 16 .
首先将所述图2中第二十一QAM相干解调器21解调出的It1路信号分别进入所述第十一乘法器M11、第十二乘法器M12和第十三乘法器M13与对应的第一本地PN序列PNI1L、第二本地PN序列PNI2L和第三本地PN序列PNI3L相乘,Qt1路信号分别进入所述第十四乘法器M14、第十五乘法器M15和第十六乘法器M16与对应的第一本地PN序列PNI1L、第二本地PN序列PNI2L和第三本地PN序列PNI3L相乘,所述第十一乘法器M11、第十二乘法器M12和第十三乘法器M13的输出信号分别为I21cosθ1、I22cosθ2、I23cosθ3,所述第十四乘法器M14、第十五乘法器M15和第十六乘法器M16的输出信号分别为-I21sinθ1、-I22sinθ2、-I23sinθ3。所述第十一乘法器M11的输出信号I21cosθ1送入所述第十一处理器11,得到所述第十一处理器11的输出信号-1/I21cosθ1,将所述第十一处理器11的输出信号-1/I21cosθ1与所述第十四乘法器M14的输出信号-I21sinθ1送至所述第十七乘法器M17中相乘,所述第十七乘法器M17的输出信号即为这路信号的相位误差跟踪信号tgθ1,所述第十二乘法器M12和第十三乘法器M13的输出信号经过上述类似的处理过程可得到其对应的相位误差跟踪信号tgθ2和tgθ3。所述相位误差跟踪信号tgθ1、tgθ2和tgθ3将送入所述多径信号载波相位误差估计装置中的相干解调电路。First, the I t1 road signal demodulated by the twenty-first QAM coherent demodulator 21 in Fig. 2 enters the eleventh multiplier M 11 , the twelfth multiplier M 12 and the thirteenth multiplier respectively M 13 is multiplied by the corresponding first local PN sequence PN I1L , the second local PN sequence PN I2L and the third local PN sequence PN I3L , and the Q t1 signal enters the fourteenth multiplier M 14 and the fifteenth multiplier respectively. The multiplier M 15 and the sixteenth multiplier M 16 multiply the corresponding first local PN sequence PN I1L , the second local PN sequence PN I2L and the third local PN sequence PN I3L , the eleventh multiplier M 11 The output signals of the twelfth multiplier M 12 and the thirteenth multiplier M 13 are respectively I 21 cosθ 1 , I 22 cosθ 2 , and I 23 cosθ 3 , the fourteenth multiplier M 14 , the fifteenth multiplier The output signals of the multiplier M 15 and the sixteenth multiplier M 16 are respectively -I 21 sinθ 1 , -I 22 sinθ 2 , -I 23 sinθ 3 . The output signal I 21 cosθ 1 of the eleventh multiplier M 11 is sent to the eleventh processor 11 to obtain the output signal -1/I 21 cosθ 1 of the eleventh processor 11, and the The output signal -1/I 21 cosθ 1 of the eleventh processor 11 and the output signal -I 21 sinθ 1 of the fourteenth multiplier M 14 are sent to the seventeenth multiplier M 17 for multiplication, so The output signal of the seventeenth multiplier M 17 is the phase error tracking signal tgθ 1 of this signal, and the output signals of the twelfth multiplier M 12 and the thirteenth multiplier M 13 have undergone the above-mentioned similar processing The corresponding phase error tracking signals tgθ 2 and tgθ 3 can be obtained. The phase error tracking signals tgθ 1 , tgθ 2 and tgθ 3 will be sent to the coherent demodulation circuit in the multipath signal carrier phase error estimation device.
在多径信号载波相位误差估计装置的相干解调电路中,将所述相位误差跟踪信号tgθ1、tgθ2和tgθ3分别输入图2的第二十四移相器24、第二十四移相器25和第二十四移相器26,经过移动器调整本地相干载波的相位,使得本地相干载波与收信号载波的相位误差θ趋向于零,恢复出分别与三路收信号的载波同步的本地相干载波,恢复出的本地相干载波可用于在QAM相干解调器中实现多径信号的载波分离,并分别解调出三径信号。所述第二十一QAM相干解调器21的两路输出信号It1、Qt1分别接第二十七延时电路27的两路输入端,所述第二十二QAM相干解调器22的两路输出信号It2、Qt2分别接第二十八延时电路28的两路输入端,延时控制信号Cd1接所述第二十七延时电路27的控制信号输入端,延时控制信号Cd2接所述第二十八延时电路28的控制信号输入端,所述第二十七延时电路27的输出信号It1′和所述第二十八延时电路28的输出信号It2′分别接第二十一加法器M21的两路输入端,所述第二十七延时电路27的输出信号Qt1′和所述延时电路28的输出信号Qt2′分别接加法器M22的两路输入端,所述二十三QAM相干解调器23的输出It3接所述第二十一加法器M21的另一路输入端,所述第二十三QAM相干解调器23的输出Qt3接所述第二十二加法器M22的另一路输入端,所述第二十一加法器M21的输出端接解扰码第二十三乘法器M23的一路输入端,所述第二十二加法器M22的输出端接解扰码第二十四乘法器M24的一路输入端,PNI3L和PNQ2L分别输入所述第二十三乘法器M23和第二十四乘法器M24另外两路输入端进行I路和Q路合并信号的解扰码。In the coherent demodulation circuit of the multipath signal carrier phase error estimation device, the phase error tracking signals tgθ 1 , tgθ 2 and tgθ 3 are respectively input into the twenty-fourth phase shifter 24 and the twenty-fourth phase shifter in Fig. 2 The phaser 25 and the twenty-
除上述实施例外,本专利还可以有其它实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本专利要求的保护范围内。Except above-mentioned embodiment, this patent also can have other embodiment. All technical solutions formed by equivalent replacement or equivalent transformation fall within the scope of protection required by this patent.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910034235A CN101692617A (en) | 2009-08-26 | 2009-08-26 | Multipath signal carrier phase error estimation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910034235A CN101692617A (en) | 2009-08-26 | 2009-08-26 | Multipath signal carrier phase error estimation device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101692617A true CN101692617A (en) | 2010-04-07 |
Family
ID=42081279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910034235A Pending CN101692617A (en) | 2009-08-26 | 2009-08-26 | Multipath signal carrier phase error estimation device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101692617A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102971975A (en) * | 2010-07-09 | 2013-03-13 | 华为技术有限公司 | Method and apparatus for carrier phase estimation and correction in a coherent optical system |
CN103141064A (en) * | 2010-09-28 | 2013-06-05 | 瑞典爱立信有限公司 | Adaptive equaliser with asynchronous detection and inhibit signal generator |
CN103457892A (en) * | 2013-08-22 | 2013-12-18 | 大连海事大学 | Novel carrier extraction method for binary frequency shift keying signals |
EP3088409A4 (en) * | 2013-12-25 | 2017-11-08 | Jellyfish Research Laboratories, Inc. | Continuous production method for decomposition product from water-insoluble macromolecular compound |
-
2009
- 2009-08-26 CN CN200910034235A patent/CN101692617A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102971975A (en) * | 2010-07-09 | 2013-03-13 | 华为技术有限公司 | Method and apparatus for carrier phase estimation and correction in a coherent optical system |
CN102971975B (en) * | 2010-07-09 | 2015-07-22 | 华为技术有限公司 | Method and apparatus for carrier phase estimation and correction in a coherent optical system |
CN103141064A (en) * | 2010-09-28 | 2013-06-05 | 瑞典爱立信有限公司 | Adaptive equaliser with asynchronous detection and inhibit signal generator |
CN103457892A (en) * | 2013-08-22 | 2013-12-18 | 大连海事大学 | Novel carrier extraction method for binary frequency shift keying signals |
CN103457892B (en) * | 2013-08-22 | 2016-08-17 | 大连海事大学 | A kind of carrier extract new method for binary frequency shift keying signal |
EP3088409A4 (en) * | 2013-12-25 | 2017-11-08 | Jellyfish Research Laboratories, Inc. | Continuous production method for decomposition product from water-insoluble macromolecular compound |
US10239915B2 (en) | 2013-12-25 | 2019-03-26 | Jellyfish Research Laboratories, Inc. | Method for continuous production of degradation product of water-insoluble polymeric compound |
AU2014371389B2 (en) * | 2013-12-25 | 2019-12-05 | Jellyfish Research Laboratories, Inc. | Continuous production method for decomposition product from water-insoluble macromolecular compound |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2868901B2 (en) | Inner product circuit for multipath receiver | |
CN110300079B (en) | A kind of MSK signal coherent demodulation method and system | |
EP1068672A1 (en) | A method and device for despreading an offset signal | |
CN103281275B (en) | A kind of MSK/GMSK Direct Sequence Spread Spectrum Signals receiver | |
JP3434141B2 (en) | Synchronous dual channel QPSK modulation / demodulation device and method for CDMA system | |
JPH11127089A (en) | CDMA receiver | |
CN103516413A (en) | Combining in receive diversity systems | |
CN101692617A (en) | Multipath signal carrier phase error estimation device | |
US5594755A (en) | Apparatus for use in equipment providing a digital radio link between a fixed radio unit and a mobile radio unit | |
CN201479131U (en) | Code Division Multiple Access Receiver Carrier Recovery Device | |
JP3399400B2 (en) | Frequency shift demodulation circuit | |
JP2002344351A (en) | Method and communication receiver for removing doppler frequency shift in spread spectrum communication signal | |
CN102685055B (en) | Multi-data stream interpolation and extraction multiplexing device and method | |
KR100843421B1 (en) | I / X playback device on 5-port network | |
CN102023291A (en) | GPS (global position system) signal high-speed capturing device and method | |
KR960000606B1 (en) | Differential quardrature phase-shift keying | |
CN113395229B (en) | Coherent demodulation method and device suitable for pi/4-DQPSK and readable storage medium | |
KR100764356B1 (en) | A timing estimator in a oqpsk demodulator | |
CN110474859A (en) | A kind of zero intermediate frequency base band 2FSK signal coherence demodulation method | |
JP4572482B2 (en) | CDMA wireless communication demodulator | |
CN101707493B (en) | Multipath signal carrier coherent demodulating Rake receiver | |
CN201504233U (en) | Code Division Multiple Access Multipath Synchronous Demodulation Diversity Receiver | |
CN113507427A (en) | Carrier tracking method and device suitable for pi/4-DQPSK and readable storage medium | |
CN203872200U (en) | Orthogonal frequency division multiplexing code division multiple access communication system signal reception device | |
CN203872202U (en) | Code division multiplexing quadrature frequency division multiple access communication system signal reception device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent for invention or patent application | ||
CB03 | Change of inventor or designer information |
Inventor after: Jia Xiangdong Inventor after: Liu Xiong Inventor after: Fu Haiyang Inventor after: Qian Weiwei Inventor after: Ding Wei Inventor before: Fu Haiyang Inventor before: Liu Xiong Inventor before: Jia Xiangdong Inventor before: Qian Weiwei Inventor before: Ding Wei |
|
COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: FU HAIYANG LIU XIONG JIA XIANGDONG QIAN WEIWEI DING WEI TO: JIA XIANGDONG LIU XIONG FU HAIYANG QIAN WEIWEI DING WEI |
|
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20100407 |