CN101685844A - GaN-based Single chip white light emitting diode epitaxial material - Google Patents
GaN-based Single chip white light emitting diode epitaxial material Download PDFInfo
- Publication number
- CN101685844A CN101685844A CN200810223235A CN200810223235A CN101685844A CN 101685844 A CN101685844 A CN 101685844A CN 200810223235 A CN200810223235 A CN 200810223235A CN 200810223235 A CN200810223235 A CN 200810223235A CN 101685844 A CN101685844 A CN 101685844A
- Authority
- CN
- China
- Prior art keywords
- layer
- gan
- ingan
- white light
- superlattice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 42
- 239000010410 layer Substances 0.000 claims abstract description 235
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 14
- 239000011229 interlayer Substances 0.000 claims abstract description 13
- 239000002096 quantum dot Substances 0.000 claims abstract description 8
- 230000004888 barrier function Effects 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 238000009833 condensation Methods 0.000 claims description 2
- 230000005494 condensation Effects 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 239000000203 mixture Substances 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 6
- 238000005204 segregation Methods 0.000 abstract description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 239000000843 powder Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001194 electroluminescence spectrum Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
Abstract
本发明涉及一种GaN基单芯片白光发光二极管外延材料,包括一衬底和在衬底上依次生长的初始生长层、本征GaN缓冲层、n型GaN层、应力弛豫层、InGaN多量子阱结构发光层、p型AlGaN夹层和p型GaN层;该应力弛豫层为InGaN/GaN超晶格应力调制层,由交替生长的InGaN层和GaN层组成,其中交替生长的InGaN层和GaN层的生长周期为6-500,对应的厚度为10nm-3μm;InGaN层中的In组分在1%~35%范围内。本发明通过在N型GaN层和量子阱发光层之间,增加应力弛豫的InGaN/GaN超晶格应力调制层,增强In的偏析效应,并形成不同组分的InGaN量子点。这些量子点发射不同波长的光的混合实现白光发光;从根本上降低了白光发光二极管成本,增加了光出射效率和利用效率,提高了白光发光二极管的整体性能。
The invention relates to a GaN-based single-chip white light-emitting diode epitaxial material, which includes a substrate, an initial growth layer grown sequentially on the substrate, an intrinsic GaN buffer layer, an n-type GaN layer, a stress relaxation layer, and an InGaN multi-quantum Well structure light-emitting layer, p-type AlGaN interlayer and p-type GaN layer; the stress relaxation layer is an InGaN/GaN superlattice stress modulation layer, which is composed of alternately grown InGaN layers and GaN layers, wherein the alternately grown InGaN layers and GaN The growth cycle of the layer is 6-500, and the corresponding thickness is 10nm-3μm; the In composition in the InGaN layer is in the range of 1%-35%. In the present invention, a stress-relaxed InGaN/GaN superlattice stress modulation layer is added between the N-type GaN layer and the quantum well light-emitting layer to enhance the segregation effect of In and form InGaN quantum dots with different components. These quantum dots emit light of different wavelengths to achieve white light emission; fundamentally reduce the cost of white light emitting diodes, increase light emission efficiency and utilization efficiency, and improve the overall performance of white light emitting diodes.
Description
技术领域 technical field
本发明涉及一种白光发光二极管外延材料,特别涉及一种不需荧光粉转换的白光GaN基单芯片发光二极管芯片用外延材料。The invention relates to a white light emitting diode epitaxial material, in particular to an epitaxial material for a white light GaN-based single-chip light emitting diode chip that does not require phosphor powder conversion.
背景技术 Background technique
白光发光二极管作为白光光源具有发光效率高、响应时间短、寿命长等诸多优点,这些优点决定了它将取代现有白光光源的趋势。目前普遍认同的白光发光二极管的制作方法有以下三种:(1)由三个单独制作的或是单片集成的红光、绿光和蓝光发光二极管同时发光,从而混合得到白光,(2)由紫外或紫光发光二极管作为发光光源激发外层包裹的红绿蓝三色混合荧光粉,三色荧光粉所发光混合得到白光,(3)由蓝光发光二极管作为发光光源,部分地激发外层包裹的黄光荧光粉发出黄光,内部发光二极管所发蓝光和激发荧光粉得到的黄光混合得到白光。As a white light source, white light-emitting diodes have many advantages such as high luminous efficiency, short response time, and long life. These advantages determine that it will replace the existing white light source. At present, there are three kinds of manufacturing methods for white light-emitting diodes that are generally accepted: (1) three red, green and blue light-emitting diodes that are separately produced or integrated in a single chip emit light at the same time, thereby mixing white light, (2) The red, green and blue three-color mixed phosphor powder wrapped in the outer layer is excited by the ultraviolet or purple light-emitting diode as the light source, and the three-color phosphor emits and mixes to obtain white light. (3) The blue light-emitting diode is used as the light source to partially excite the outer package The yellow light phosphor powder emits yellow light, and the blue light emitted by the internal light-emitting diode and the yellow light obtained by exciting the phosphor powder are mixed to obtain white light.
其中,制作方法(1)由于成本和技术方面的原因还没有得到应用;方法(2)是制作比较简单也最被看好的一种白光发光二极管制作方法,但由于至今没有找到合适的耐紫外辐照的封装树脂以及缺乏高效的红色荧光粉,没有得到普遍应用;方法(3)是目前已经商业化的一种白光发光二极管制作方法,同样由于缺乏合适的红光荧光粉而使白光发光二极管的发光品质受到限制,由两色光混合得到的白光光谱比较单一,发光色温偏高且显色指数偏低。方法(3)虽然已经商品化且显色指数和色温经过多年的探索已经有了有效改善,但是其本质是经过荧光粉转换的这个核心问题,也就是荧光粉把蓝光转换成黄光的过程中,势必导致斯托克斯频移造成了发光效率不高的问题,仍然制约着该方法的进一步发展。Among them, the production method (1) has not been applied due to cost and technical reasons; the production method (2) is relatively simple and the most promising white light-emitting diode production method, but because no suitable ultraviolet radiation resistance has been found so far. According to the encapsulation resin and the lack of efficient red phosphors, it has not been widely used; method (3) is a white light-emitting diode production method that has been commercialized at present, and the same lack of suitable red phosphors makes the white light-emitting diodes The luminous quality is limited. The white light spectrum obtained by mixing two colors of light is relatively simple, the luminous color temperature is high and the color rendering index is low. Although method (3) has been commercialized and the color rendering index and color temperature have been effectively improved after years of exploration, its essence is the core problem of phosphor conversion, that is, the process of phosphor converting blue light into yellow light. , will inevitably lead to the Stokes frequency shift and cause the problem of low luminous efficiency, which still restricts the further development of this method.
在前本申请人申请了无荧光粉转换的GaN白光发光二极管专利(专利申请号:200610065103.1),该专利通过采用InGaN应力弛豫层作为量子阱发光层的应力调制模板,使得在其上外延的InGaN量子阱中由于应力模板的作用,增强In的偏析效应而形成不同In组分或不同尺寸的InGaN量子点,这些量子点发出不同波长光(宽谱发光)的混合实现白光发光。但是,该无荧光粉转换的GaN基白光发光二极管还存在白光发光效率不够高的缺陷,以及还达不到实用化的要求。Previously, the applicant applied for the patent of GaN white light-emitting diode without phosphor powder conversion (patent application number: 200610065103.1). This patent uses the InGaN stress relaxation layer as the stress modulation template of the quantum well light-emitting layer, so that In the InGaN quantum well, due to the effect of the stress template, the segregation effect of In is enhanced to form InGaN quantum dots with different In compositions or different sizes. These quantum dots emit a mixture of different wavelengths of light (broad-spectrum luminescence) to achieve white light emission. However, the GaN-based white light-emitting diode without phosphor powder conversion still has the defect that the white light luminous efficiency is not high enough, and it cannot meet the requirements for practical use.
发明内容 Contents of the invention
本发明的目的在于:为了提高已有的无荧光粉转换的单芯片白光发光二极管的发光效率,从而提供一种通过采用弛豫的InGaN/GaN超晶格结构代替现有的单层InGaN弛豫层的、GaN基单芯片白光发光二极管外延材料,该材料即可实现应力调制,又可借助超晶格结构特有的降低位错的功能,起到明显降低弛豫层中的位错,为后续外延的量子阱发光中心层提供高质量的应力调制模板,从而可以有效地提高单芯片白光的发光效率。The object of the present invention is: in order to improve the luminous efficiency of the existing single-chip white light emitting diode without phosphor powder conversion, thereby providing a kind of relaxation by using the relaxed InGaN/GaN superlattice structure instead of the existing single-layer InGaN layer, GaN-based single-chip white light-emitting diode epitaxial material, the material can realize stress modulation, and can significantly reduce the dislocation in the relaxation layer with the help of the unique function of the superlattice structure to reduce dislocations, which will be used for the follow-up The epitaxial quantum well luminescent central layer provides a high-quality stress-modulated template, which can effectively improve the luminous efficiency of single-chip white light.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
本发明提供的一种GaN基单芯片白光发光二极管外延材料,包括一衬底,和在所述的衬底上依次生长的初始生长层、本征GaN缓冲层、n型GaN层、应力弛豫层、InGaN多量子结构发光层、p型AlGaN夹层和p型GaN层;其特征在于:所述的应力弛豫层由交替生长的InGaN和GaN超晶格组成,其中超晶格应力调制层的厚度为10nm-3μm,所述的InGaN/GaN层交替生长的周期为6-500个周期;所述的InGaN层中的In组分介于1%~35%范围内(详细的结构见图1),超晶格的应力是弛豫的。A GaN-based single-chip white light-emitting diode epitaxial material provided by the present invention includes a substrate, and an initial growth layer, an intrinsic GaN buffer layer, an n-type GaN layer, and a stress relaxation layer grown sequentially on the substrate. layer, an InGaN multi-quantum structure light-emitting layer, a p-type AlGaN interlayer and a p-type GaN layer; it is characterized in that: the stress relaxation layer is composed of alternately grown InGaN and GaN superlattices, wherein the superlattice stress modulation layer The thickness is 10nm-3μm, and the cycle of the alternate growth of the InGaN/GaN layer is 6-500 cycles; the In composition in the InGaN layer is in the range of 1% to 35% (see Figure 1 for the detailed structure ), the stress of the superlattice is relaxed.
本发明提供的一种GaN基单芯片白光发光二极管外延材料,包括一衬底,和在所述的衬底上依次生长的初始生长层、本征GaN缓冲层、n型GaN层、应力弛豫层、InGaN多量子结构发光层、p型AlGaN夹层和p型GaN层;其特征在于:所述的应力弛豫层为超晶格应力调制层,该超晶格应力调制层由交替生长InxGa1-xN层和InyGa1-yN层组成,其中超晶格应力调制层的厚度为10nm-3μm,所述的InxGa1-xN/InyGa1-yN交替生长层的周期为6-500;所述的InGaN的In组分x和y满足x>y,且x在1%~35%范围内调控,y在0~35%范围内调控,超晶格的应力是弛豫的。A GaN-based single-chip white light-emitting diode epitaxial material provided by the present invention includes a substrate, and an initial growth layer, an intrinsic GaN buffer layer, an n-type GaN layer, and a stress relaxation layer grown sequentially on the substrate. layer, an InGaN multi-quantum structure light-emitting layer, a p-type AlGaN interlayer, and a p-type GaN layer; it is characterized in that: the stress relaxation layer is a superlattice stress modulation layer, and the superlattice stress modulation layer is formed by alternately growing In x Ga 1-x N layer and In y Ga 1-y N layer, wherein the thickness of the superlattice stress modulation layer is 10nm-3μm, and the In x Ga 1-x N/In y Ga 1-y N alternate The period of the growth layer is 6-500; the In composition x and y of the InGaN satisfy x>y, and x is regulated in the range of 1% to 35%, y is regulated in the range of 0 to 35%, and the superlattice The stress is relaxed.
在上述的技术方案中,所述的InGaN/GaN超晶格弛豫层中的InGaN为InxAlyGa1-x-yN;In the above technical scheme, the InGaN in the InGaN /GaN superlattice relaxation layer is InxAlyGa1 -xyN ;
所述的InGaN/GaN超晶格弛豫层中的GaN为InyAlzGa1-y-zN或AlxGa1-xN。The GaN in the InGaN/GaN superlattice relaxation layer is In y Al z Ga 1-yz N or Al x Ga 1-x N.
在上述的技术方案中,所述的衬底为蓝宝石基片、SiC基片或硅基片;In the above technical scheme, the substrate is a sapphire substrate, a SiC substrate or a silicon substrate;
所述的初始生长层为AlN层或者GaN层;其厚度20nm-2μm;The initial growth layer is an AlN layer or a GaN layer; its thickness is 20nm-2μm;
所述的本征GaN层为GaN层、AlN层、AlGaN层、InGaN层、InAlN层、InAlGaN层或者这几种合金组合而成的在异质衬底上外延的过渡层;其厚度50nm-2μm;The intrinsic GaN layer is a GaN layer, an AlN layer, an AlGaN layer, an InGaN layer, an InAlN layer, an InAlGaN layer, or a combination of these alloys and is epitaxial transition layer on a heterogeneous substrate; its thickness is 50nm-2μm ;
所述的n型GaN层为GaN层、AlN层、AlGaN层、InGaN层、InAlN层、InAlGaN层或者这几种合金组合的n型欧姆接触的接触层;其厚度50nm-3μm;The n-type GaN layer is a GaN layer, an AlN layer, an AlGaN layer, an InGaN layer, an InAlN layer, an InAlGaN layer, or an n-type ohmic contact layer of a combination of these alloys; its thickness is 50nm-3μm;
所述的InGaN多量子结构发光层为由势垒层InyGa1-yN和量子阱层InxGa1-xN组成的发光二极管的有源层,其中y<x,0.1<x<0.3,0<y<0.15;所述量子阱层InxGa1-xN由量子点和浸润层组成或者由相分凝而产生的两个不同组分的量子结构组成;所述势垒层InyGa1-yN和量子阱层InxGa1-xN层的掺杂浓度为0~1×1018/cm3,势垒层的厚度5-15nm,量子阱层厚度2-5nm;量子阱的周期数为1~20;The InGaN multi-quantum structure light-emitting layer is the active layer of a light-emitting diode composed of a barrier layer In y Ga 1-y N and a quantum well layer In x Ga 1-x N, where y<x, 0.1<x< 0.3, 0<y<0.15; the quantum well layer In x Ga 1-x N is composed of quantum dots and a wetting layer or two quantum structures of different components produced by phase separation and condensation; the barrier layer The doping concentration of In y Ga 1-y N and the quantum well layer In x Ga 1-x N layer is 0~1×10 18 /cm 3 , the thickness of the barrier layer is 5-15nm, and the thickness of the quantum well layer is 2-5nm ; The period number of the quantum well is 1-20;
所述p型AlGaN夹层为AlmGa1-mN夹层,其中m为0~0.2;其厚度5nm-1μm;The p-type AlGaN interlayer is an Al m Ga 1-m N interlayer, wherein m is 0-0.2; its thickness is 5nm-1μm;
所述p型GaN层为GaN层、InAlN层、AlGaN层、InAlGaN层或这几种合金组合的制备p型欧姆接触的接触层。其厚度10nm-1μm。The p-type GaN layer is a GaN layer, an InAlN layer, an AlGaN layer, an InAlGaN layer, or a combination of these alloys to form a p-type ohmic contact layer. Its thickness is 10nm-1μm.
本发明提出的GaN基单芯片白光发光二极管外延材料的生长方法可以是采用金属有机化学气相外延方法,也可以采用分子束外延方法在蓝宝石、Si或SiC衬底上进行外延实现。The growth method of the GaN-based single-chip white light emitting diode epitaxial material proposed by the present invention can be realized by metal-organic chemical vapor phase epitaxy or molecular beam epitaxy on sapphire, Si or SiC substrates.
这种无荧光粉转换的GaN基白光发光二极管避免了前述三种白光技术的局限性,工艺技术简单,与常规蓝光发光二极管的技术兼容,成本低,有助于推进半导体照明早目走进家庭应用。This GaN-based white light emitting diode without phosphor powder conversion avoids the limitations of the aforementioned three white light technologies. The process technology is simple, compatible with conventional blue light emitting diode technology, and the cost is low, which will help promote semiconductor lighting into the family early. application.
本发明在无荧光粉转换的GaN基白光发光二极管专利技术的基础上,通过采用弛豫的InGaN/GaN超晶格结构代替现有的单层InGaN弛豫层,可以同时实现即可调制应力,又可有效降低材料中位错,从而有效提高单芯片白光的发光效率。Based on the patented technology of GaN-based white light-emitting diodes without phosphor conversion, the present invention replaces the existing single-layer InGaN relaxation layer with a relaxed InGaN/GaN superlattice structure, so that the stress can be modulated at the same time. It can also effectively reduce dislocations in the material, thereby effectively improving the luminous efficiency of single-chip white light.
与现有技术相比,使用本发明的GaN基单芯片白光发光二极管外延结构材料所制备的发光二极管的优点在于:Compared with the prior art, the advantages of the light-emitting diode prepared by using the GaN-based single-chip white light-emitting diode epitaxial structure material of the present invention are:
1.通过采用InGaN/GaN超晶格应力调制层,由于增强In的相分凝而在发光层中产生不同In组分的InGaN发光中心发射不同波长的光,这些多波长发光混合成白光的方法实现了单芯片出射白光的目的,简化了常规含荧光粉的白光发光二极管的制作工艺与流程,降低了白光发光二极管的成本。同时,由于不存在荧光粉转换,故而没有斯托克斯频移效应,提高了发光二极管的光利用效率。1. By using the InGaN/GaN superlattice stress modulation layer, the InGaN luminescent centers with different In components in the light-emitting layer emit light of different wavelengths due to the enhanced phase separation of In and emit light of different wavelengths. The method of mixing these multi-wavelength light into white light The purpose of emitting white light from a single chip is realized, the manufacturing process and process of conventional white light emitting diodes containing phosphor are simplified, and the cost of white light emitting diodes is reduced. At the same time, since there is no phosphor powder conversion, there is no Stokes frequency shift effect, which improves the light utilization efficiency of the light emitting diode.
2.通过采用InGaN/GaN超晶格应力调制层代替弛豫的InGaN层,一方面可以达到单层InGaN应力调制的作用,又可以通过超晶格多层界面的交替作用实现位错的弯曲或合并,从而达到有效过滤位错的目的。从而有利于降低发光层中的位错,提高发光层的发光效率,使得单芯片白光发光器件的性能进一步改进和提高。2. By using the InGaN/GaN superlattice stress modulation layer instead of the relaxed InGaN layer, on the one hand, the single-layer InGaN stress modulation can be achieved, and the dislocation bending or dislocation can be realized through the alternating action of the superlattice multilayer interface. Merge, so as to achieve the purpose of effectively filtering dislocations. Therefore, it is beneficial to reduce the dislocation in the light-emitting layer, improve the light-emitting efficiency of the light-emitting layer, and further improve and enhance the performance of the single-chip white light-emitting device.
3.本发明在不增加外延结构材料制备和器件工艺制备复杂性的前提下,从根本上降低了白光发光二极管成本,增加了光出射效率和利用效率,克服了常规荧光粉转换获得白光发光二极管的缺点,提高了白光发光二极管的整体性能。3. The present invention fundamentally reduces the cost of white light-emitting diodes without increasing the complexity of epitaxial structure material preparation and device process preparation, increases light emission efficiency and utilization efficiency, and overcomes conventional phosphor conversion to obtain white light-emitting diodes The disadvantages, improve the overall performance of white light emitting diodes.
综上所述,本发明的核心内容是在无荧光粉转换的GaN白光发光二极管专利(专利申请号:200610065103.1)的基础上,通过将InGaN弛豫层采用InGaN/GaN超晶格代替,同时实现过滤位错和应力调制的双重作用,而实现对单芯片白光发光性能的进一步提高,图2给出了采用弛豫InGaN/GaN超晶格(实施例1)和单层InGaN弛豫层的单芯片白光发光二极管的发光特性曲线,可以看出采用弛豫超晶格应力调制层的白光发光强度更强。In summary, the core content of the present invention is based on the GaN white light emitting diode patent without phosphor powder conversion (patent application number: 200610065103.1), by replacing the InGaN relaxation layer with an InGaN/GaN superlattice, and simultaneously realizing The dual effects of filtering dislocations and stress modulation can further improve the single-chip white light emission performance. Figure 2 shows a single From the luminous characteristic curve of the chip white light emitting diode, it can be seen that the white light luminous intensity of the relaxed superlattice stress modulation layer is stronger.
附图说明 Description of drawings
图1含有InGaN/GaN超晶格应力调制层的单芯片白光发光二极管的材料结构的示意图。Fig. 1 is a schematic diagram of the material structure of a single-chip white light emitting diode containing an InGaN/GaN superlattice stress modulation layer.
图2分别采用InGaN/GaN超晶格应力调制层和单层InGaN弛豫层的单芯片白光发光二极管的发光谱。Fig. 2 is the emission spectrum of a single-chip white light-emitting diode using an InGaN/GaN superlattice stress modulation layer and a single-layer InGaN relaxation layer, respectively.
具体实施方式 Detailed ways
下面通过材料的生长方法来具体说明本发明的GaN基单芯片白光发光二极管外延材料的结构。实施例中的GaN基单芯片白光发光二极管外延材料的结构,除弛豫的应力调制层以外的其余外延结构层采用已公开的GaN基蓝光发光二极管的结构。The structure of the GaN-based single-chip white light emitting diode epitaxial material of the present invention will be described in detail below through the growth method of the material. The epitaxial material structure of the GaN-based single-chip white light emitting diode in the embodiment, and the other epitaxial structure layers except the relaxed stress modulation layer adopt the disclosed structure of the GaN-based blue light emitting diode.
实施例1Example 1
参考图1,制作一种本发明的GaN基单芯片白光发光二极管外延材料,其结构如下:Referring to Fig. 1, a GaN-based single-chip white light-emitting diode epitaxial material of the present invention is produced, and its structure is as follows:
采用蓝宝石作为衬底1,使用金属有机物化学汽相沉积技术(MOCVD)在蓝宝石上依次生长20nm厚的GaN初始生长层2、200nm本征GaN层3、1μm厚的n型GaN层4(掺杂浓度5×1018cm-3)、20个周期的10nm厚的(指In0.1Ga0.9N单层的厚度)In0.1Ga0.9N/10nm厚的GaN超晶格应力调制层5、InGaN多量子结构发光层6(由势垒层In0.05Ga0.95N和量子阱层In0.15Ga0.85N组成的5个周期的多量子阱,其中势垒层In0.05Ga0.95N的厚度为10nm,量子阱层In0.15Ga0.85N的厚度为3nm)、100nm厚p型Al0.2Ga0.8N夹层7、100nm厚的p型GaN层8(掺杂浓度3×1017cm-3),得到GaN基单芯片白光发光二极管外延结构材料(图1所示)。该结构经过进行器件工艺后的电发光谱见图2。Using sapphire as the substrate 1, a 20nm thick GaN initial growth layer 2, a 200nm intrinsic GaN layer 3, and a 1 μm thick n-type GaN layer 4 (doped Concentration 5×10 18 cm -3 ), 20 cycles of 10nm thick (referring to the thickness of In 0.1 Ga 0.9 N single layer) In 0.1 Ga 0.9 N/10nm thick GaN superlattice stress modulation layer 5, InGaN multi-quantum Structural light-emitting layer 6 (5 periods of multiple quantum wells composed of barrier layer In 0.05 Ga 0.95 N and quantum well layer In 0.15 Ga 0.85 N, wherein the thickness of the barrier layer In 0.05 Ga 0.95 N is 10nm, and the quantum well layer In 0.15 Ga 0.85 N thickness is 3nm), 100nm thick p-type Al 0.2 Ga 0.8 N interlayer 7, 100nm thick p-type GaN layer 8 (doping concentration 3×10 17 cm -3 ), to obtain GaN-based single-chip white light Light-emitting diode epitaxial structure material (shown in Figure 1). The electroluminescence spectrum of the structure after the device process is shown in FIG. 2 .
实施例2Example 2
参考图1,制作一种本发明的GaN基单芯片白光发光二极管外延材料:采用0.4mm厚的SiC作为衬底1,使用金属有机物化学汽相沉积技术(MOCVD)在其上依次生长100nm厚的AlN初始生长层2、0.3μm厚的本征GaN层3、1μm厚的n型GaN层4、150nm厚10个周期的5nmIn0.15Ga0.85N/10nm厚的In0.05Ga0.95N超晶格应力调制层5、InGaN多量子结构发光层6(由势垒层GaN和量子阱层In0.15Ga0.85N组成的4个周期的多量子阱,其中势垒层GaN的厚度为12nm,量子阱层In0.15Ga0.85N的厚度为3nm,所述势垒层GaN的掺杂浓度为1×1018/cm3,量子阱层InxGa1-xN层的掺杂浓度为0)、50nm厚p型Al0.2Ga0.8N夹层7、500nm厚的P型GaN层8,得到不需荧光粉转换的白光GaN发光二极管外延材料,如图1所示。Referring to FIG. 1, a GaN-based single-chip white light-emitting diode epitaxial material of the present invention is produced: a 0.4 mm thick SiC is used as a substrate 1, and a 100 nm thick SiC is sequentially grown on it using a metal organic chemical vapor deposition technique (MOCVD). AlN initial growth layer 2, 0.3μm thick intrinsic GaN layer 3, 1μm thick n-type GaN layer 4, 150nm thick 5nmIn 0.15 Ga 0.85 N/10nm thick In 0.05 Ga 0.95 N superlattice stress modulation Layer 5, InGaN multi-quantum structure light-emitting layer 6 (four periods of multi-quantum wells composed of barrier layer GaN and quantum well layer In 0.15 Ga 0.85 N, wherein the thickness of the barrier layer GaN is 12nm, and the quantum well layer In 0.15 The thickness of Ga 0.85 N is 3nm, the doping concentration of the barrier layer GaN is 1×10 18 /cm 3 , the doping concentration of the quantum well layer InxGa1-xN layer is 0), and the thickness of 50nm p-type Al 0.2 Ga 0.8 The N interlayer 7 and the P-type GaN layer 8 with a thickness of 500nm are used to obtain epitaxial materials for white light GaN light-emitting diodes that do not require phosphor powder conversion, as shown in FIG. 1 .
实施例3Example 3
参考图1,制作一种本发明的GaN基单芯片白光发光二极管外延材料:采用0.3mm厚的硅基片作为衬底1,使用分子束外延技术(MBE)在其上依次生长200nm厚AlN初始生长层2、0.5μm厚的本征GaN层3、0.5μm厚的n型GaN层4、15个周期的1nm In0.3Ga0.7N/8nm In0.05Al0.02Ga0.93N超晶格应力调制层5、InGaN多量子结构发光层6(由势垒层GaN和量子阱层In0.15Ga0.85N组成的4个周期的多量子阱,其中势垒层GaN的厚度为10nm,量子阱层In0.15Ga0.85N的厚度为3nm,所述势垒层GaN的掺杂浓度为1×1017/cm3,量子阱层InxGa1-xN层的掺杂浓度为2×1017/cm3)、100nm厚p型Al0.2Ga0.8N夹层7、300nm厚的P型GaN层8,得到GaN基单芯片白光发光二极管外延结构材料,如图1所示。Referring to Fig. 1, a GaN-based single-chip white light emitting diode epitaxial material of the present invention is produced: a 0.3 mm thick silicon substrate is used as the substrate 1, and a 200 nm thick AlN initial layer is sequentially grown on it by molecular beam epitaxy (MBE). Growth layer 2, 0.5 μm thick intrinsic GaN layer 3, 0.5 μm thick n-type GaN layer 4, 15 periods of 1nm In 0.3 Ga 0.7 N/8nm In 0.05 Al 0.02 Ga 0.93 N superlattice stress modulation layer 5 , InGaN multi-quantum structure light-emitting layer 6 (four periods of multi-quantum wells composed of barrier layer GaN and quantum well layer In 0.15 Ga 0.85 N, wherein the thickness of the barrier layer GaN is 10nm, and the quantum well layer In 0.15 Ga 0.85 The thickness of N is 3 nm, the doping concentration of GaN in the barrier layer is 1×10 17 /cm 3 , the doping concentration of the quantum well layer In x Ga 1-x N layer is 2×10 17 /cm 3 ), A 100nm-thick p-type Al 0.2 Ga 0.8 N interlayer 7 and a 300nm-thick p-type GaN layer 8 were used to obtain the GaN-based single-chip white light emitting diode epitaxial structure material, as shown in FIG. 1 .
实施例4Example 4
参考图1,制作一种本发明的GaN基单芯片白光发光二极管外延材料:采用实施例2中除了超晶格应力调制层5有所改动的相似结构。改变后的超晶格应力调制层5的结构为:6个周期的10nm In0.2Ga0.8N/10nm GaN超晶格应力调制层。含有此应力调制层的白光发光二极管结构如图1所示,即可获得不需荧光粉转换的白光GaN发光二极管外延材料。Referring to FIG. 1 , a GaN-based single-chip white light-emitting diode epitaxial material of the present invention is produced: a similar structure as in Example 2 is adopted except that the superlattice stress modulation layer 5 is modified. The changed structure of the superlattice stress modulation layer 5 is: 6 periods of 10nm In 0.2 Ga 0.8 N/10nm GaN superlattice stress modulation layers. The structure of the white light emitting diode containing the stress modulation layer is shown in Figure 1, and the epitaxial material of the white light GaN light emitting diode without phosphor conversion can be obtained.
实施例5Example 5
参考图1,制作一种本发明的GaN基单芯片白光发光二极管外延材料:采用实施例3中除了超晶格应力调制层5有所改动的相似结构。改变后的超晶格应力调制层5的结构为:150个周期的10nm In0.01Ga0.99N/1nmGaN超晶格应力调制层。含有此应力调制层的白光发光二极管结构如图1所示,即可获得不需荧光粉转换的白光GaN发光二极管外延材料。Referring to FIG. 1 , a GaN-based single-chip white light-emitting diode epitaxial material of the present invention is produced: a similar structure as in Example 3 is adopted except that the superlattice stress modulation layer 5 is modified. The changed structure of the superlattice stress modulation layer 5 is: 10nm In 0.01 Ga 0.99 N/1nmGaN superlattice stress modulation layer with 150 cycles. The structure of the white light emitting diode containing the stress modulation layer is shown in Figure 1, and the white light GaN light emitting diode epitaxial material without phosphor conversion can be obtained.
实施例6Example 6
参考图1,制作一种本发明的GaN基单芯片白光发光二极管外延材料:采用实施例1中除了超晶格应力调制层5有所改动的相似结构。改变后的超晶格应力调制层5的结构为:40个周期的5nm In0.08Al0.02Ga0.9N/2nmAl0.01Ga0.98N超晶格应力调制层。含有此应力调制层的白光发光二极管结构如图1所示,即可获得不需荧光粉转换的白光GaN发光二极管外延材料。Referring to FIG. 1 , a GaN-based single-chip white light-emitting diode epitaxial material of the present invention is produced: a similar structure as in Embodiment 1 is adopted except that the superlattice stress modulation layer 5 is modified. The changed structure of the superlattice stress modulation layer 5 is: 40 cycles of 5nm In 0.08 Al 0.02 Ga 0.9 N/2nmAl 0.01 Ga 0.98 N superlattice stress modulation layers. The structure of the white light emitting diode containing the stress modulation layer is shown in Figure 1, and the epitaxial material of the white light GaN light emitting diode without phosphor conversion can be obtained.
实施例7Example 7
参考图1,制作一种本发明的GaN基单芯片白光发光二极管外延材料:采用实施例1中除了超晶格应力调制层5有所改动的相似结构。改变后的超晶格应力调制层5的结构为:400个周期的2nm厚的In0.02Ga0.98N/3nmGaN超晶格应力调制层。含有此应力调制层的白光发光二极管结构如图1所示,即可获得不需荧光粉转换的白光GaN发光二极管外延材料。Referring to FIG. 1 , a GaN-based single-chip white light-emitting diode epitaxial material of the present invention is produced: a similar structure as in Embodiment 1 is adopted except that the superlattice stress modulation layer 5 is modified. The changed structure of the superlattice stress modulation layer 5 is: 400 periods of 2nm thick In 0.02 Ga 0.98 N/3nmGaN superlattice stress modulation layer. The structure of the white light emitting diode containing the stress modulation layer is shown in Figure 1, and the epitaxial material of the white light GaN light emitting diode without phosphor conversion can be obtained.
上述实施例提出的GaN基单芯片白光发光二极管外延材料结构中的超晶格应力调制层的组成,即超晶格的两层材料可以是InxGa1-xN和InyGa1-yN超晶格组成,其中In的组分x和y满足x>y,且x在1%~35%范围内调控,y在0~35%范围内调控;所述的超晶格应力调制层的厚度为10nm-3μm,所述的InGaN/GaN层交替生长的周期为6-500个周期;超晶格的应力是弛豫的。The composition of the superlattice stress modulation layer in the GaN-based single-chip white light emitting diode epitaxial material structure proposed in the above embodiments, that is, the two-layer material of the superlattice can be In x Ga 1-x N and In y Ga 1-y Composed of N superlattice, wherein the components x and y of In satisfy x>y, and x is regulated in the range of 1% to 35%, and y is regulated in the range of 0 to 35%; the superlattice stress modulation layer The thickness of the InGaN/GaN layer is 10nm-3μm, and the cycle of the alternate growth of the InGaN/GaN layer is 6-500 cycles; the stress of the superlattice is relaxed.
上述实施例提出的GaN基单芯片白光发光二极管外延材料结构中的超晶格应力调制层的特征在于,组成超晶格的两层材料InGaN和GaN,可以遵照本发明原理而进行拓展,如InGaN可以用InxAlyGa1-x-yN代替,GaN可以用InyAlzGa1-y-zN或AlxGa1-xN代替。其目的在于形成弛豫的应力调制层,增强其上外延的InGaN发光层的In偏析效应。The superlattice stress modulation layer in the GaN-based single-chip white light emitting diode epitaxial material structure proposed in the above embodiments is characterized in that the two layers of materials InGaN and GaN that make up the superlattice can be expanded according to the principles of the present invention, such as InGaN It can be replaced by In x Aly Ga 1-xy N, and GaN can be replaced by In y Al z Ga 1-yz N or Al x Ga 1-x N. The purpose is to form a relaxed stress modulation layer and enhance the In segregation effect of the epitaxial InGaN light-emitting layer thereon.
上述实施例的GaN基单芯片白光发光二极管外延结构材料,即在蓝宝石、Si或SiC衬底上用常规半导体器件沉积技术依次生长初始生长层、本征GaN缓冲层、n型GaN层、InGaN/GaN弛豫的超晶格应力调制层、InGaN多量子结构发光层、p型AlGaN夹层和p型GaN层。本方法保留已有常规蓝光发光二极管结构材料的制备工艺,仅对GaN基发光材料的结构设计进行改进,通过在N型GaN层和量子阱发光层之间,增加弛豫的InGaN/GaN超晶格应力调制层,增强In的偏析效应,并形成不同组分的InGaN量子点。这些量子点发射不同波长的光的混合实现白光发光。本发明采用InGaN/GaN超晶格应力调制层替代已有的单层InGaN应力调制层,不仅同时兼有应力调制的作用,同时还可以起到过滤位错的作用,可以增强单芯片白光器件的性能。本发明在不增加外延结构材料制备和器件工艺制备复杂性的前提下,从根本上降低了白光发光二极管成本,增加了光出射效率和利用效率,克服了常规荧光粉转换获得白光发光二极管的缺点,提高了白光发光二极管的整体性能。The GaN-based single-chip white light emitting diode epitaxial structure material of the above-mentioned embodiment, that is, the initial growth layer, intrinsic GaN buffer layer, n-type GaN layer, InGaN/ GaN relaxed superlattice stress modulation layer, InGaN multi-quantum structure light emitting layer, p-type AlGaN interlayer and p-type GaN layer. This method retains the preparation process of the existing conventional blue light-emitting diode structural materials, and only improves the structural design of the GaN-based light-emitting material, by adding a relaxed InGaN/GaN supercrystal between the N-type GaN layer and the quantum well light-emitting layer The lattice stress modulation layer enhances the segregation effect of In and forms InGaN quantum dots of different compositions. These quantum dots emit a mixture of different wavelengths of light to achieve white light emission. The present invention uses the InGaN/GaN superlattice stress modulation layer to replace the existing single-layer InGaN stress modulation layer, which not only has the function of stress modulation, but also can filter dislocations, and can enhance the performance of single-chip white light devices. performance. The present invention fundamentally reduces the cost of white light emitting diodes without increasing the complexity of epitaxial structure material preparation and device process preparation, increases light emission efficiency and utilization efficiency, and overcomes the shortcomings of conventional phosphor powder conversion to obtain white light emitting diodes , improving the overall performance of white light emitting diodes.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810223235A CN101685844A (en) | 2008-09-27 | 2008-09-27 | GaN-based Single chip white light emitting diode epitaxial material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810223235A CN101685844A (en) | 2008-09-27 | 2008-09-27 | GaN-based Single chip white light emitting diode epitaxial material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101685844A true CN101685844A (en) | 2010-03-31 |
Family
ID=42048894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810223235A Pending CN101685844A (en) | 2008-09-27 | 2008-09-27 | GaN-based Single chip white light emitting diode epitaxial material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101685844A (en) |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102157646A (en) * | 2011-05-03 | 2011-08-17 | 映瑞光电科技(上海)有限公司 | Nitride LED structure and preparation method thereof |
CN102214740A (en) * | 2011-05-24 | 2011-10-12 | 中国科学院半导体研究所 | Method for improving antistatic capability of gallium nitride based light emitting diode |
CN102544290A (en) * | 2010-12-27 | 2012-07-04 | 财团法人工业技术研究院 | Nitride semiconductor light emitting diode element |
CN102605422A (en) * | 2011-01-24 | 2012-07-25 | 清华大学 | Mask for growth of epitaxial structure and usage thereof |
CN102610719A (en) * | 2011-01-20 | 2012-07-25 | 夏普株式会社 | Metamorphic substrate system, method of manufacture of same, and iii-nitrides semiconductor device |
CN102637787A (en) * | 2012-04-25 | 2012-08-15 | 中国科学院半导体研究所 | Method for uninterrupted growth of high-quality InGaN/GaN multi-quantum well (MQW) |
CN102723408A (en) * | 2011-03-29 | 2012-10-10 | 清华大学 | Method for preparing semiconductor epitaxial structure |
CN102779737A (en) * | 2011-10-27 | 2012-11-14 | 华灿光电股份有限公司 | Epitaxial method for improving luminous efficiency of GaN-based LED (light emitting diode) |
CN102820392A (en) * | 2012-08-31 | 2012-12-12 | 华灿光电股份有限公司 | Epitaxial wafer of light-emitting diode and manufacturing method thereof |
CN103035805A (en) * | 2012-12-12 | 2013-04-10 | 华灿光电股份有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN103178175A (en) * | 2011-12-23 | 2013-06-26 | 丰田合成株式会社 | GROUP III nitride semiconductor light-emitting device and production method therefor |
CN103219438A (en) * | 2013-04-08 | 2013-07-24 | 合肥彩虹蓝光科技有限公司 | Light emitting diode shallow trap growing method for improving stress release and carrier storage |
CN103296168A (en) * | 2012-02-28 | 2013-09-11 | 苏州新纳晶光电有限公司 | InGaN quantum dot epitaxial wafer prepared through substrate with atom step and preparation method thereof |
CN103337572A (en) * | 2013-06-28 | 2013-10-02 | 武汉迪源光电科技有限公司 | GaN-based LED extension structure and developing method thereof |
CN103500780A (en) * | 2013-09-29 | 2014-01-08 | 山西飞虹微纳米光电科技有限公司 | Gallium nitride (GaN)-based light-emitting diode (LED) epitaxy structure and preparation method thereof |
CN103633215A (en) * | 2012-08-28 | 2014-03-12 | 江门市奥伦德光电有限公司 | Novel GaN-based green light emitting diode device and manufacturing method thereof |
CN103700739A (en) * | 2014-01-03 | 2014-04-02 | 合肥彩虹蓝光科技有限公司 | Epitaxial growth method capable of preventing large-size epitaxial wafer from cracking |
CN103972342A (en) * | 2013-01-25 | 2014-08-06 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN103972345A (en) * | 2013-01-25 | 2014-08-06 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN104185899A (en) * | 2012-04-11 | 2014-12-03 | 夏普株式会社 | Nitride semiconductor device |
CN104638074A (en) * | 2015-02-04 | 2015-05-20 | 映瑞光电科技(上海)有限公司 | High-brightness GaN-based LED (Light-Emitting Diode) extensional structure and manufacturing method thereof |
CN104733575A (en) * | 2013-08-19 | 2015-06-24 | 新世纪光电股份有限公司 | Light emitting structure and semiconductor light emitting element including the same |
CN104733579A (en) * | 2015-01-20 | 2015-06-24 | 扬州德豪润达光电有限公司 | Semiconductor light-emitting device and manufacturing method thereof |
CN104810451A (en) * | 2015-04-29 | 2015-07-29 | 华灿光电(苏州)有限公司 | GaN-based light-emitting diode epitaxial wafer production method and produced epitaxial wafer |
CN104900771A (en) * | 2015-06-24 | 2015-09-09 | 山东浪潮华光光电子股份有限公司 | High-efficiency white light LED epitaxial structure having no fluorescent powder and growing method thereof |
CN105103309A (en) * | 2013-04-12 | 2015-11-25 | 首尔伟傲世有限公司 | UV light emitting device |
CN105161582A (en) * | 2015-09-21 | 2015-12-16 | 东莞市中镓半导体科技有限公司 | A kind of method adopting MOCVD technology to prepare deep ultraviolet LED |
US9219193B2 (en) | 2011-01-12 | 2015-12-22 | Tsinghua University | Method for making epitaxial structure |
CN105206723A (en) * | 2015-11-03 | 2015-12-30 | 湘能华磊光电股份有限公司 | Epitaxial growth method for improving LED brightness |
CN105428482A (en) * | 2015-12-30 | 2016-03-23 | 厦门市三安光电科技有限公司 | LED epitaxial structure and manufacturing method thereof |
CN105576144A (en) * | 2016-02-26 | 2016-05-11 | 安徽三安光电有限公司 | Light emitting diode and manufacturing method thereof |
CN105870279A (en) * | 2016-04-28 | 2016-08-17 | 厦门乾照光电股份有限公司 | Large-dimensional light emitting diode epitaxial wafer without being warped easily |
CN105870273A (en) * | 2016-06-02 | 2016-08-17 | 厦门市三安光电科技有限公司 | Nitride light-emitting diode |
CN106098881A (en) * | 2016-07-12 | 2016-11-09 | 河源市众拓光电科技有限公司 | The InGaN/GaN MQW being grown on yttrium-aluminium-garnet substrate and preparation method |
CN104115262B (en) * | 2012-02-15 | 2017-03-29 | 夏普株式会社 | Nitride compound semiconductor device |
US9640712B2 (en) | 2012-11-19 | 2017-05-02 | Genesis Photonics Inc. | Nitride semiconductor structure and semiconductor light emitting device including the same |
US9685586B2 (en) | 2012-11-19 | 2017-06-20 | Genesis Photonics Inc. | Semiconductor structure |
US9780255B2 (en) | 2012-11-19 | 2017-10-03 | Genesis Photonics Inc. | Nitride semiconductor structure and semiconductor light emitting device including the same |
US9859462B2 (en) | 2012-12-06 | 2018-01-02 | Genesis Photonics Inc. | Semiconductor structure |
CN108198920A (en) * | 2017-11-15 | 2018-06-22 | 华灿光电(浙江)有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN108269903A (en) * | 2018-02-12 | 2018-07-10 | 厦门三安光电有限公司 | UV LED and preparation method thereof |
CN108447952A (en) * | 2018-03-26 | 2018-08-24 | 华灿光电(浙江)有限公司 | A light-emitting diode epitaxial wafer and its preparation method |
WO2018195703A1 (en) * | 2017-04-24 | 2018-11-01 | 苏州晶湛半导体有限公司 | Semiconductor structure, and manufacturing method of semiconductor structure |
CN108878608A (en) * | 2018-06-01 | 2018-11-23 | 太原理工大学 | A kind of InGaN quantum dot LED epitaxial structure reducing structure with strain |
US10229977B2 (en) | 2016-09-19 | 2019-03-12 | Genesis Photonics Inc. | Nitrogen-containing semiconductor device |
CN109768125A (en) * | 2018-12-29 | 2019-05-17 | 晶能光电(江西)有限公司 | Silicon substrate epitaxial wafer growth method |
CN109860342A (en) * | 2018-12-19 | 2019-06-07 | 湘能华磊光电股份有限公司 | LED epitaxial growth method suitable for 4-inch substrates |
CN110265518A (en) * | 2014-08-19 | 2019-09-20 | 首尔伟傲世有限公司 | Luminescent device |
CN110350057A (en) * | 2019-06-26 | 2019-10-18 | 佛山市国星半导体技术有限公司 | A kind of white light emitting diode epitaxial structure and preparation method thereof |
CN110383507A (en) * | 2017-02-01 | 2019-10-25 | 日机装株式会社 | Semiconductor light-emitting element and method for manufacturing the same |
CN110571316A (en) * | 2019-09-11 | 2019-12-13 | 合肥彩虹蓝光科技有限公司 | A light-emitting diode structure and method of making the same |
CN112259657A (en) * | 2020-10-26 | 2021-01-22 | 山西中科潞安紫外光电科技有限公司 | InAlGaN superlattice structure growth method, superlattice structure, epitaxial structure and chip |
CN113013302A (en) * | 2021-02-26 | 2021-06-22 | 东莞市中麒光电技术有限公司 | Preparation method of InGaN-based red light LED chip structure |
CN113270525A (en) * | 2021-04-30 | 2021-08-17 | 广东德力光电有限公司 | Preparation method of green light epitaxial structure |
WO2022052097A1 (en) * | 2020-09-14 | 2022-03-17 | 安徽三安光电有限公司 | Light-emitting diode and preparation method therefor |
CN115188863A (en) * | 2022-09-09 | 2022-10-14 | 江西兆驰半导体有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN116344691A (en) * | 2023-05-25 | 2023-06-27 | 江西兆驰半导体有限公司 | LED epitaxial wafer, preparation method thereof and LED |
-
2008
- 2008-09-27 CN CN200810223235A patent/CN101685844A/en active Pending
Cited By (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102544290A (en) * | 2010-12-27 | 2012-07-04 | 财团法人工业技术研究院 | Nitride semiconductor light emitting diode element |
CN102544290B (en) * | 2010-12-27 | 2014-12-03 | 财团法人工业技术研究院 | Nitride semiconductor light emitting diode element |
US9219193B2 (en) | 2011-01-12 | 2015-12-22 | Tsinghua University | Method for making epitaxial structure |
US9905726B2 (en) | 2011-01-12 | 2018-02-27 | Tsinghua University | Semiconductor epitaxial structure |
US9559255B2 (en) | 2011-01-12 | 2017-01-31 | Tsinghua University | Epitaxial structure |
CN102610719A (en) * | 2011-01-20 | 2012-07-25 | 夏普株式会社 | Metamorphic substrate system, method of manufacture of same, and iii-nitrides semiconductor device |
CN102605422B (en) * | 2011-01-24 | 2015-07-29 | 清华大学 | For mask and the using method thereof of growing epitaxial structure |
CN102605422A (en) * | 2011-01-24 | 2012-07-25 | 清华大学 | Mask for growth of epitaxial structure and usage thereof |
CN102723408A (en) * | 2011-03-29 | 2012-10-10 | 清华大学 | Method for preparing semiconductor epitaxial structure |
CN102723408B (en) * | 2011-03-29 | 2015-04-15 | 清华大学 | Method for preparing semiconductor epitaxial structure |
CN102157646A (en) * | 2011-05-03 | 2011-08-17 | 映瑞光电科技(上海)有限公司 | Nitride LED structure and preparation method thereof |
CN102214740A (en) * | 2011-05-24 | 2011-10-12 | 中国科学院半导体研究所 | Method for improving antistatic capability of gallium nitride based light emitting diode |
CN102779737A (en) * | 2011-10-27 | 2012-11-14 | 华灿光电股份有限公司 | Epitaxial method for improving luminous efficiency of GaN-based LED (light emitting diode) |
CN102779737B (en) * | 2011-10-27 | 2015-02-11 | 华灿光电股份有限公司 | Epitaxial method for improving luminous efficiency of GaN-based LED (light emitting diode) |
CN103178175A (en) * | 2011-12-23 | 2013-06-26 | 丰田合成株式会社 | GROUP III nitride semiconductor light-emitting device and production method therefor |
CN103178175B (en) * | 2011-12-23 | 2015-09-23 | 丰田合成株式会社 | Group iii nitride semiconductor light-emitting device and manufacture method thereof |
CN104115262B (en) * | 2012-02-15 | 2017-03-29 | 夏普株式会社 | Nitride compound semiconductor device |
CN103296168B (en) * | 2012-02-28 | 2016-02-17 | 苏州新纳晶光电有限公司 | InGaN quantum dot epitaxial wafer utilizing tool atomic steps substrate to prepare and preparation method thereof |
CN103296168A (en) * | 2012-02-28 | 2013-09-11 | 苏州新纳晶光电有限公司 | InGaN quantum dot epitaxial wafer prepared through substrate with atom step and preparation method thereof |
CN104185899B (en) * | 2012-04-11 | 2017-03-29 | 夏普株式会社 | Nitride compound semiconductor device |
CN104185899A (en) * | 2012-04-11 | 2014-12-03 | 夏普株式会社 | Nitride semiconductor device |
CN102637787A (en) * | 2012-04-25 | 2012-08-15 | 中国科学院半导体研究所 | Method for uninterrupted growth of high-quality InGaN/GaN multi-quantum well (MQW) |
CN102637787B (en) * | 2012-04-25 | 2014-10-15 | 中国科学院半导体研究所 | Method for uninterrupted growth of high-quality InGaN/GaN multi-quantum well (MQW) |
CN103633215A (en) * | 2012-08-28 | 2014-03-12 | 江门市奥伦德光电有限公司 | Novel GaN-based green light emitting diode device and manufacturing method thereof |
CN102820392A (en) * | 2012-08-31 | 2012-12-12 | 华灿光电股份有限公司 | Epitaxial wafer of light-emitting diode and manufacturing method thereof |
CN102820392B (en) * | 2012-08-31 | 2016-02-03 | 华灿光电股份有限公司 | A kind of epitaxial wafer of light-emitting diode and manufacture method thereof |
US9640712B2 (en) | 2012-11-19 | 2017-05-02 | Genesis Photonics Inc. | Nitride semiconductor structure and semiconductor light emitting device including the same |
US9780255B2 (en) | 2012-11-19 | 2017-10-03 | Genesis Photonics Inc. | Nitride semiconductor structure and semiconductor light emitting device including the same |
US9685586B2 (en) | 2012-11-19 | 2017-06-20 | Genesis Photonics Inc. | Semiconductor structure |
US9859462B2 (en) | 2012-12-06 | 2018-01-02 | Genesis Photonics Inc. | Semiconductor structure |
CN103035805A (en) * | 2012-12-12 | 2013-04-10 | 华灿光电股份有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN103035805B (en) * | 2012-12-12 | 2016-06-01 | 华灿光电股份有限公司 | A kind of LED epitaxial slice and its preparation method |
CN103972342A (en) * | 2013-01-25 | 2014-08-06 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN103972345A (en) * | 2013-01-25 | 2014-08-06 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN103219438A (en) * | 2013-04-08 | 2013-07-24 | 合肥彩虹蓝光科技有限公司 | Light emitting diode shallow trap growing method for improving stress release and carrier storage |
CN105103309A (en) * | 2013-04-12 | 2015-11-25 | 首尔伟傲世有限公司 | UV light emitting device |
CN103337572A (en) * | 2013-06-28 | 2013-10-02 | 武汉迪源光电科技有限公司 | GaN-based LED extension structure and developing method thereof |
CN104733575A (en) * | 2013-08-19 | 2015-06-24 | 新世纪光电股份有限公司 | Light emitting structure and semiconductor light emitting element including the same |
CN103500780A (en) * | 2013-09-29 | 2014-01-08 | 山西飞虹微纳米光电科技有限公司 | Gallium nitride (GaN)-based light-emitting diode (LED) epitaxy structure and preparation method thereof |
CN103500780B (en) * | 2013-09-29 | 2016-03-30 | 山西飞虹微纳米光电科技有限公司 | A kind of extension of gallium nitride-based LED structure and preparation method thereof |
CN103700739A (en) * | 2014-01-03 | 2014-04-02 | 合肥彩虹蓝光科技有限公司 | Epitaxial growth method capable of preventing large-size epitaxial wafer from cracking |
CN103700739B (en) * | 2014-01-03 | 2016-11-16 | 合肥彩虹蓝光科技有限公司 | A Method of Epitaxial Growth Avoiding Fragmentation of Large-scale Epitaxial Wafers |
CN110265518A (en) * | 2014-08-19 | 2019-09-20 | 首尔伟傲世有限公司 | Luminescent device |
CN104733579A (en) * | 2015-01-20 | 2015-06-24 | 扬州德豪润达光电有限公司 | Semiconductor light-emitting device and manufacturing method thereof |
CN104638074A (en) * | 2015-02-04 | 2015-05-20 | 映瑞光电科技(上海)有限公司 | High-brightness GaN-based LED (Light-Emitting Diode) extensional structure and manufacturing method thereof |
CN104638074B (en) * | 2015-02-04 | 2017-12-08 | 映瑞光电科技(上海)有限公司 | High brightness GaN base LED epitaxial structures and preparation method thereof |
CN104810451B (en) * | 2015-04-29 | 2017-11-24 | 华灿光电(苏州)有限公司 | A kind of GaN base light emitting epitaxial wafer and preparation method thereof |
CN104810451A (en) * | 2015-04-29 | 2015-07-29 | 华灿光电(苏州)有限公司 | GaN-based light-emitting diode epitaxial wafer production method and produced epitaxial wafer |
CN104900771A (en) * | 2015-06-24 | 2015-09-09 | 山东浪潮华光光电子股份有限公司 | High-efficiency white light LED epitaxial structure having no fluorescent powder and growing method thereof |
CN105161582B (en) * | 2015-09-21 | 2018-03-27 | 东莞市中镓半导体科技有限公司 | A kind of method adopting MOCVD technology to prepare deep ultraviolet LED |
CN105161582A (en) * | 2015-09-21 | 2015-12-16 | 东莞市中镓半导体科技有限公司 | A kind of method adopting MOCVD technology to prepare deep ultraviolet LED |
CN105206723B (en) * | 2015-11-03 | 2017-11-07 | 湘能华磊光电股份有限公司 | A kind of epitaxial growth method for improving LED luminance |
CN105206723A (en) * | 2015-11-03 | 2015-12-30 | 湘能华磊光电股份有限公司 | Epitaxial growth method for improving LED brightness |
CN105428482A (en) * | 2015-12-30 | 2016-03-23 | 厦门市三安光电科技有限公司 | LED epitaxial structure and manufacturing method thereof |
CN105428482B (en) * | 2015-12-30 | 2018-09-11 | 厦门市三安光电科技有限公司 | A kind of LED epitaxial structure and production method |
CN105576144B (en) * | 2016-02-26 | 2018-02-27 | 安徽三安光电有限公司 | Light emitting diode and preparation method thereof |
CN105576144A (en) * | 2016-02-26 | 2016-05-11 | 安徽三安光电有限公司 | Light emitting diode and manufacturing method thereof |
CN105870279B (en) * | 2016-04-28 | 2018-08-21 | 厦门乾照光电股份有限公司 | A kind of large scale LED epitaxial slice being not susceptible to warpage |
CN105870279A (en) * | 2016-04-28 | 2016-08-17 | 厦门乾照光电股份有限公司 | Large-dimensional light emitting diode epitaxial wafer without being warped easily |
CN105870273A (en) * | 2016-06-02 | 2016-08-17 | 厦门市三安光电科技有限公司 | Nitride light-emitting diode |
CN106098881A (en) * | 2016-07-12 | 2016-11-09 | 河源市众拓光电科技有限公司 | The InGaN/GaN MQW being grown on yttrium-aluminium-garnet substrate and preparation method |
US10229977B2 (en) | 2016-09-19 | 2019-03-12 | Genesis Photonics Inc. | Nitrogen-containing semiconductor device |
CN110383507B (en) * | 2017-02-01 | 2022-06-03 | 日机装株式会社 | Semiconductor light-emitting element and method for manufacturing the same |
CN110383507A (en) * | 2017-02-01 | 2019-10-25 | 日机装株式会社 | Semiconductor light-emitting element and method for manufacturing the same |
CN110603650A (en) * | 2017-04-24 | 2019-12-20 | 苏州晶湛半导体有限公司 | A kind of semiconductor structure and method of making semiconductor structure |
WO2018195703A1 (en) * | 2017-04-24 | 2018-11-01 | 苏州晶湛半导体有限公司 | Semiconductor structure, and manufacturing method of semiconductor structure |
CN110603650B (en) * | 2017-04-24 | 2022-07-08 | 苏州晶湛半导体有限公司 | Semiconductor structure and method for preparing semiconductor structure |
CN108198920A (en) * | 2017-11-15 | 2018-06-22 | 华灿光电(浙江)有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN108269903B (en) * | 2018-02-12 | 2024-04-02 | 厦门三安光电有限公司 | Ultraviolet light-emitting diode and manufacturing method thereof |
CN108269903A (en) * | 2018-02-12 | 2018-07-10 | 厦门三安光电有限公司 | UV LED and preparation method thereof |
CN108447952B (en) * | 2018-03-26 | 2020-04-14 | 华灿光电(浙江)有限公司 | A kind of light-emitting diode epitaxial wafer and preparation method thereof |
CN108447952A (en) * | 2018-03-26 | 2018-08-24 | 华灿光电(浙江)有限公司 | A light-emitting diode epitaxial wafer and its preparation method |
CN108878608A (en) * | 2018-06-01 | 2018-11-23 | 太原理工大学 | A kind of InGaN quantum dot LED epitaxial structure reducing structure with strain |
CN109860342A (en) * | 2018-12-19 | 2019-06-07 | 湘能华磊光电股份有限公司 | LED epitaxial growth method suitable for 4-inch substrates |
CN109768125A (en) * | 2018-12-29 | 2019-05-17 | 晶能光电(江西)有限公司 | Silicon substrate epitaxial wafer growth method |
CN110350057A (en) * | 2019-06-26 | 2019-10-18 | 佛山市国星半导体技术有限公司 | A kind of white light emitting diode epitaxial structure and preparation method thereof |
CN110571316A (en) * | 2019-09-11 | 2019-12-13 | 合肥彩虹蓝光科技有限公司 | A light-emitting diode structure and method of making the same |
WO2022052097A1 (en) * | 2020-09-14 | 2022-03-17 | 安徽三安光电有限公司 | Light-emitting diode and preparation method therefor |
CN112259657A (en) * | 2020-10-26 | 2021-01-22 | 山西中科潞安紫外光电科技有限公司 | InAlGaN superlattice structure growth method, superlattice structure, epitaxial structure and chip |
CN113013302A (en) * | 2021-02-26 | 2021-06-22 | 东莞市中麒光电技术有限公司 | Preparation method of InGaN-based red light LED chip structure |
CN113270525A (en) * | 2021-04-30 | 2021-08-17 | 广东德力光电有限公司 | Preparation method of green light epitaxial structure |
CN115188863A (en) * | 2022-09-09 | 2022-10-14 | 江西兆驰半导体有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN115188863B (en) * | 2022-09-09 | 2022-12-06 | 江西兆驰半导体有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN116344691A (en) * | 2023-05-25 | 2023-06-27 | 江西兆驰半导体有限公司 | LED epitaxial wafer, preparation method thereof and LED |
CN116344691B (en) * | 2023-05-25 | 2023-08-11 | 江西兆驰半导体有限公司 | LED epitaxial wafer, preparation method thereof and LED |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101685844A (en) | GaN-based Single chip white light emitting diode epitaxial material | |
CN100547819C (en) | Epitaxial material and manufacturing method for GaN-based light-emitting diode chip with low polarization effect | |
CN101038947A (en) | White light GaN LED epitaxial material without fluorescent powder conversion and method for making the same | |
CN100403564C (en) | Monolithic multi-color, multi-quantum well semiconductor light-emitting diode and method of manufacturing same | |
JP4653671B2 (en) | Light emitting device | |
US8421058B2 (en) | Light emitting diode structure having superlattice with reduced electron kinetic energy therein | |
US9035324B2 (en) | Light emitting device | |
TWI395343B (en) | Semiconductor and semiconductor manufacturing method | |
US20060192195A1 (en) | Nitride semiconductor light emitting device | |
CN108292693B (en) | Group III nitride semiconductor light emitting device with amber to red light emission (>600 nm) and method for making the same | |
TWI359506B (en) | Light-emitting device and manufacturing method the | |
US7692181B2 (en) | Gallium-nitride based light emitting diode light emitting layer structure | |
CN106057990A (en) | Method for manufacturing epitaxial wafer of GaN-based light emitting diode | |
CN101217175A (en) | Structure and preparation method of semiconductor light-emitting device with broad-spectrum light-emitting function | |
JP5048496B2 (en) | Nitride semiconductor light emitting device and manufacturing method thereof | |
CN101562222B (en) | Single-chip white light-emitting diode with backside light emission and preparation method thereof | |
JP2010056423A (en) | Electrode for semiconductor light-emitting element, and semiconductor light emitting element | |
CN103531681B (en) | A kind of GaN base white light emitting diode and preparation method thereof | |
CN104218125B (en) | A kind of growing method of white light LEDs and the white light LEDs prepared using the growing method | |
CN100411211C (en) | Monolithic integrated white light diode | |
KR20080063422A (en) | Semiconductor light emitting diode | |
CN104868027A (en) | Phosphor-free GaN-based white light LED epitaxial structure and preparation method thereof | |
CN101281945A (en) | GaN-based LED epitaxial wafer capable of simultaneously emitting light of different wavelengths and preparation method thereof | |
CN114203870B (en) | LED epitaxial structure and preparation method and application thereof | |
CN110854246B (en) | Light-emitting diode and light-emitting diode manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20100331 |