CN101678310A - 锂含氟聚合物及含氟有机物电池 - Google Patents
锂含氟聚合物及含氟有机物电池 Download PDFInfo
- Publication number
- CN101678310A CN101678310A CN200880015315A CN200880015315A CN101678310A CN 101678310 A CN101678310 A CN 101678310A CN 200880015315 A CN200880015315 A CN 200880015315A CN 200880015315 A CN200880015315 A CN 200880015315A CN 101678310 A CN101678310 A CN 101678310A
- Authority
- CN
- China
- Prior art keywords
- electrochemical cell
- electrode
- fluoropolymer
- mixture
- fluorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/20—Cells with non-aqueous electrolyte with solid electrolyte working at high temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/50—Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
- H01M2006/5094—Aspects relating to capacity ratio of electrolyte/electrodes or anode/cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M2010/4292—Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供锂及锂离子电池,所述电池中一个电极的活性材料包括大量具有碳-氟键的含氟聚合物或含氟低聚物材料。所述含氟聚合物或含氟低聚物活性材料可与大量导电材料混合,也可与低氟化碳质材料混合。本发明电池可用于较高的温度应用中。本发明还提供了在较高温度下使用本发明电池产生能源的电化学方法。
Description
相关申请的相互参引
本申请要求2007年5月9日提交的美国临时申请No.60/928,366的优先权,该申请的内容通过引用的方式纳入本文,只要与本公开内容不相抵触。
背景技术
氟化碳在工业上用作锂原电池的正极材料。石墨的氟化使氟嵌入碳层之间。已知Li/CFx电池体系在室温下以C/100的速率(即每小时电池容量的1/100的电池电流)能够输送最高达700Wh/kg、1000Wh/l。(参见,例如Bruce,G.Development of a CFx D Cell for Man PortableApplications,in Joint Service Power Expo.2005;和Gabano,J.P.,ed.Lithium Batteries,by M.Fukuda&T.lijima.1983,Academic Press:NewYork)。这些体系中的阴极通常具有通常为CF1.05至CF1.1的碳-氟化学计量。但是,已知该阴极材料的放电速率受限制,通常要求电流低于C/50(每1小时电池容量的1/50的电池电流)以避免电池极化和大的容量损失。CFx的高达1015Ohm.cm的高电阻率是所观测到的放电率受限的一个潜在原因,因为阴极厚度和性能之间具有很强的关联性;阴极越厚越容易使速率受限。(参见,例如V.N.Mittkin,J.Structural Chemistry,2003,Vol.44,82-115,翻译自Zhurnal Structunoi Khimii,2003,Vol.44,99-138)。
在锂/CFx电池中,电池总放电反应——由Wittingham(1975)Electrochem.Soc.122:526首次提出——可通过方程(1)表达:
因此,以mAh·g-1表示的理论放电比容量Qth通过方程(2)给出:
其中F为法拉第常数,3.6为单位换算常数。
因此具有不同化学计量的(CFx)n材料的理论容量如下:
x=0.25,Qth=400mAh·g-1;x=0.33,Qth=484mAh·g-1;x=0.50,Qm=623mAh g-1;x=0.66,Qth=721mAh·g-1;x=1.00,Qth=865mAh·g-1。
在锂的存在下氟化聚合物的电化学还原也已有报道。Kavan论述了包括聚(四氟乙烯)(PTFE)和聚(氯三氟乙烯)(PCTFE)在内的多种聚合物的阴极还原结果(Kaven,L.,Chem.Rev.,97(8),3061-3082)。关于Societe des Accumlateurs Fixes et de Traction的GB1357286对PTFE电化学还原为碳颗粒进行了报道。
对以氟化聚合物作为活性材料的电化学电池已进行了报道。GB1357286报道了非水电解质型电化学电池,该电池具有一种基于锂的负极活性材料、一种含有至少一种为烃衍生物的氟化聚合物的正极活性材料,和一种由二氧戊环、四氢呋喃-二甲氧基乙烷混合物或四氢呋喃-二甘醇二甲基醚的混合物组成的电解质溶剂。向正极活性材料中添加1-12%灯黑和稍高量的石墨作为导电性物质。活性材料还可含有可还原至金属态的金属化合物,例如硫化铁或氧化铜。所报道的阴极由PTFE和石墨构成的原电池的放电曲线表明,对200、100和50欧姆电阻放电的放电电压小于1.25V。所报道的阴极由PTFE和灯黑构成的原电池的放电曲线也表明,放电电压小于1.25V。
更通常地,氟化聚合物例如聚偏1,1-二氟乙烯(PVDF)和PTFE通常被用作包含氟化碳质材料或其他活性材料的电极组合物中的粘合剂材料。通常将粘合剂的量最小化以便使活性材料的量最大化。Yazami等人的美国专利公开文本2007-0231697描述了掺入最高达15重量%的粘合剂与低氟化碳质活性材料混合。但是,Barriere等人的美国专利公开文本2002/0168569中报道了含有2-40重量%含氟聚合物粘合剂和98-60%碳或氧化物填充剂的电活性层。
许多氟化碳质材料被提出用于电池应用中。Watanabe等人的美国专利3,536,532描述了包括一个具有由式(CFx)n表示的晶型氟化碳作为主要活性材料的正极的原电池,式中x不小于0.5但不大于1。Watanabe等人的美国专利3,700,502描述了包括一个具有由式(CFx)n表示的无定形或部分无定形的固体氟化碳作为其活性材料的正极的电池,式中x在大于0至1的范围内。Watanabe等人的美国专利4,247,608描述了包括一个具有由式(C2F)n表示的聚一氟化二碳作为主要活性材料的正极的电解池,式中n为整数。Yazami等人的美国专利申请公开文本2007/0231696描述了将多层氟化纳米材料例如多壁纳米管氟化掺入电化学装置中。所述氟化材料可含有未氟化的和/或“轻度氟化的”相。氟化纳米管材料也被Chamssedine等人和Yazami等人描述(F.Chamssedine,Reactivity ofCarbon Nanotubes with Fluorine GasChem.Mat.19(2007)161-172;Yazami et al.,Fluorinated Carbon Nanotubes for High Energy and HighPower Densities Primary Lithium Batteries Electrochem.Comm.9(2007)1850-1855)。Yazami等人的美国专利申请公开文本2007/0231697描述了低氟化石墨和焦炭的生产,其中所述低氟化材料含有未氟化的和/或″轻度氟化的″相,并描述了这些材料在电化学装置中的用途。Yazami等人的美国专利申请公开文本No.2007/0077495和US2007/0077493,以及国际专利公开文本WO/2007/040547也描述了低氟化石墨材料的生产和用途。
掺有氟化碳材料的电极组合物还可掺入一种导电材料,例如炭黑或石墨。Kozawa等人的美国专利6,956,018描述了将基于活性及导电材料重量计为5-40重量%的导电材料掺入含有聚氟化碳(CFx)n的电极复合物中;该电极复合物与一个锌阳极和一种碱性含水电解质结合使用。Watanabe等人的美国专利5,753,786描述了将最高达100重量%的一种导电材料(基于活性材料的量计)掺入一种电极组合物中。所述活性材料为通过使分解的残留碳氟化而得到的氟化石墨。Watanabe等人的美国专利4,247,608报道了掺有一种导电剂并含有C2F的电极组合物。报道了具有少至25重量%C2F的电极组合物。
还报道了结合有不同氟化碳质材料的电极组合物。Shia等人的美国专利4,686,161和4,765,968报道了通过将一种不显示显著电压抑制的添加剂CFx与一种显示电压抑制的本体CFx进行掺和来消除电压抑制。Tung等人的美国专利4,681,823报道了用于消除电压抑制的完全氟化或过度氟化的CFx与少量未氟化材料的混合物。Pyszczek的美国专利申请US 2007/0281213报道了一种氟化的碳材料的掺和物,其提供一种可用来预测电化学电池在使用过程中放电时的剩余能量容量的电化学电池电压特性。
发明内容
一方面,本发明提供一种电化学电池,其中一个电极含有一种包含具有碳-氟键的含氟聚合物或含氟低聚物的活性材料。由于C-F键的存在,含氟聚合物或含氟低聚物可用作锂原电池和锂二次电池中的正极材料(例如用作原电池中的阴极材料)。在一个实施方案中,所述电极含有一种固态含氟聚合物或含氟低聚物活性材料与大量导电材料的混合物。由于存在于含氟聚合物中的轻元素(C、H、F、O……)和由于形成LiF的高能量,Li-含氟聚合物/含氟低聚物电池的比容量(mAh/g)和放电电压能够提供较高的比容量(mAh/g)和放电电压。例如,PVDF和PTFE的理论容量分别为837和1072mAh/g。本发明的含有含氟聚合物的电极可用于电化学原电池和电化学二次电池,包括锂离子电池。本发明电极包括固态、液态或固态与液态的结合的形式的含氟聚合物活性材料。
已发现含有含氟聚合物正极的电化学电池的放电容量和电压可随放电温度显著增加,使电池适于高温应用。这些电化学电池可用于通常温度超过100-150℃的汽车和石油钻井应用中。在比室温高很多的温度下(例如≥100℃),所述电化学电池可提供高达3V的放电电压和超过300mAh/g的容量(对每克活性材料测得)。
在一个实施方案中,所述电化学电池包括含有一种导电材料和一种具有碳-氟键的含氟聚合物或含氟低聚物的混合物的第一电极;含有碱金属或碱土金属离子源的第二电极;和位于所述第一和第二电极之间的电解质。在一个实施方案中,所述混合物中含氟聚合物或含氟低聚物的量大于50%,并且该导电材料和含氟聚合物或含氟低聚物的混合物的电导率大于或等于1×10-8S/cm;该电导率值在无电解质的情况下测得。所述导电材料的量可大于或等于所述混合物的30重量%。在不同的实施方案中,所述含氟聚合物为固态、半固态或熔融态。所述电解质可为非水液态电解质。在一个实施方案中,所述电解质含有一种溶于质子惰性有机溶剂中的碱金属或碱土金属的盐,其中所述有机溶剂的沸腾温度小于第一电极的温度。在另一个实施方案中,所述电解质含有一种离子液体。在一个实施方案中,所述电解质不为熔点大于含氟聚合物的分解温度的易熔金属盐。
另一个方面,本发明提供一种通过电化学方式产生电能的方法,该方法包括如下步骤:1)提供一种电化学电池,该电池包括含有一种导电材料和一种具有碳-氟键的含氟聚合物或含氟低聚物的混合物的第一电极;含有碱金属或碱土金属离子源的第二电极;和位于所述第一和第二电极之间的电解质,和2)将所述第一电极及任选地电化学电池加热至大于50℃并小于所述含氟聚合物的分解温度的温度,从而从中引出电流。在一个实施方案中,将电化学电池加热至大于或等于100℃的温度。所述电化学电池可在较长的时间内提供高达3V的放电电压。当碱金属离子源为锂或锂合金时,加热电化学电池所达的温度可在锂或锂合金的熔点以下。
适于本发明使用的含氟聚合物和含氟低聚物具有氟-碳键。在一个实施方案中,认为锂离子与键合至碳上的氟的反应提供了所述聚合物或低聚物的电化学活性。在其他实施方案中,与其他碱金属或与碱土金属的反应也可提供所述聚合物或低聚物的电化学活性。
在一个实施方案中,所述含氟聚合物为烃聚合物中的一个或多个氢原子被氟替代的氟碳聚合物。所述聚合物包括聚偏1,1-二氟乙烯,也称为聚偏氟乙烯(PVDF)和聚四氟乙烯(PTFE)。在一个实施方案中,C-F键与C-H键的比例大于或等于1。在一个实施方案中,所述含氟聚合物为由1,1-二氟乙烯单体形成的均聚物或共聚物;该聚合物具有可表示为(CF2CH2)n的单元。由1,1-二氟乙烯单体形成的共聚物(1,1-二氟乙烯共聚物)包括,但不限于,PVDF和六氟丙稀(HFP)的共聚物和FKM氟化弹性体(也称为FPM)。在另一个实施方案中,含氟聚合物为由四氟乙烯单体形成的均聚物或共聚物;该聚合物具有可表示为(CF2CF2)n的单元。四氟乙烯共聚物包括,但不限于,乙烯四氟乙烯(ETFE)和氟化乙烯丙烯(FEP)。在另一个实施方案中,含氟聚合物为氯三氟乙烯均聚物或共聚物。氯三氟乙烯共聚物包括,但不限于,乙烯氯三氟乙烯(ECTFE)。在所述聚合物为一种或多种未氟化单体与一种或多种氟化单体的共聚物的情况下,在一个实施方案中,所述一种或多种氟化单体与一种或多种未氟化单体的比例为0.25-0.75。
在一个实施方案中,第一电极混合物的含氟聚合物组分可为两种或多种含氟聚合物的混合物或掺合物。类似地,第一电极混合物的含氟低聚物组分可为两种或多种含氟低聚物的混合物或掺合物。在另一个实施方案中,第一电极混合物可含有一种含氟聚合物组分和一种含氟低聚物组分。
在另一个实施方案中,含氟聚合物还可含有氧-碳键和/或氢-碳键。所述含氟聚合物可由化学通式(CnFmHpOq)r表示。在一些实施方案中,在此情况下的总电池反应可表述为:
(CnFmHpOq)r+rmLi->(CnHpOq)r+rm LiF(3)
其中n、m、p、q和r均为表征含氟聚合物活性材料的组成的整数,实际上,该聚合物中的所有氟均无需反应。此外,所述含氟聚合物中的氧可与锂离子反应,形成Li2O或LiOH。所述聚合物包括全氟乙烯基醚的共聚物,例如全氟乙烯基醚聚四氟乙烯共聚物(例如全氟烷氧基(PFA))。在一个实施方案中,C-F键与C-H键之比大于或等于1。在一个实施方案中,C-F键与C-O键之比大于或等于1。
许多聚合材料被提出用作电化学活性材料,所述聚合材料通过不同于形成LiF的机制得到活性。例如,许多导电聚合物被提出用作电极材料,例如聚乙炔、聚苯胺、聚吡咯、聚噻吩、聚(对亚苯基)、聚薁、聚咔唑、二茂铁取代的聚乙烯或咔唑取代的聚乙烯(Novak,P.,Chem.Rev.,97(1),1997,207-282)。作为另一个实例,含有稳定基团例如硝基氧(nitroxide)/硝酰基的聚合物已被提出用作活性材料(Ashide,H.et al.Electochem.Soc.Interface,Winter 2005,32-36)。在一个实施方案中,可用于本发明的含氟聚合物主要地不是由这些机制得到它们的电化学活性。在一个实施方案中,可用于本发明电化学电池的电极的含氟聚合物不具有导电性。在另一个实施方案中,可用于本发明电化学电池的电极的含氟聚合物不含稳定基团。
在一个实施方案中,含有含氟聚合物和导电材料的混合物中的含氟聚合物的量大于40重量%。在其他实施方案中,含氟聚合物的量为大于50重量%,大于40重量%至小于或等于70%,50%-70%,或50%-60%。
除了用作电化学活性材料外,第一电极组合物的含氟聚合物或含氟低聚物组分还可用作导电材料的粘合剂。当电化学电池中含有含氟聚合物或含氟低聚物与导电材料(及其他任选组分)的组合物时,该组合物通常被压在一个集电器上,从而保持与该集电器的物理接触和电接触。在一个实施方案中,电池中的压力(例如堆叠压力)足以防止导电材料与含氟聚合物或含氟低聚物分开,即使当含氟聚合物或含氟低聚物处于溶胀态或至少部分处于熔融态时。在另一个实施方案中,在第一电极组合物中可使用至少两种聚合物的掺和物,所述聚合物中的至少一种为含氟聚合物,其他聚合物不为含氟聚合物。这样两种聚合物的组合物可用作粘合剂。
向含氟聚合物或含氟低聚物中添加大量的导电材料可改进电极的放电性能。例如,将大量导电材料掺入电极组合物中可增加最大放电率和/或该电极组合物中单位重量活性材料的比容量。在一个实施方案中,导电材料的量大于第一电极混合物的20重量%。在其他实施方案中,导电材料可为所述混合物的大于20重量%至60重量%,大于30重量%,30-60重量%,或30-50重量%。在一个实施方案中,导电材料构成第一电极组合物的余量物。在另一个实施方案中,导电材料和第二活性材料的组合量为30重量%-60重量%,或40重量%-50重量%。在一个实施方案中,导电材料和第二活性材料一起构成第一电极组合物的余量物。在一个实施方案中,含氟聚合物与导电材料之比为0.66-2.3。在不同实施方案中,含氟聚合物、导电材料和任选的第二活性材料的复合物的室温电导率大于10-10Scm-1,大于或等于10-8Scm-1,或大于或等于10-6Scm-1(这不包括电解质的任何贡献,因此可称为″固有电导率″)。电导率可在电极致密化后进行测量。适宜的导电材料包括,但不限于,粉状金属和碳质材料,例如乙炔黑、炭黑、粉状石墨、焦炭、碳纤维和碳纳米管。
在另一个实施方案中,含氟聚合物和导电材料的混合物还含有不同于该导电材料的第二活性材料。在一个实施方案中,第二活性材料的量小于或等于第一电极组合物或混合物的20重量%。包含少量第二活性材料可增加电池的放电电压。该第二活性材料还可称为去极化剂。第二活性材料可为一种低氟化碳材料或本领域已知的任何其他正极材料。第二活性材料组分可含有单一活性材料组合物或者两种或多种活性材料的混合物。适于锂原电池和可充电锂电池的活性材料包括,但不限于,MnO2、FeS、FeS2、S(硫)、AgV2O5.5(银钒氧化物或SVO)、LiMO2(M=Co、Ni、Mn、Al、Li,或其结合)、LiMn2O4、LiMPO4(M=Co、Ni、Mn、Al、Li,或其结合)、CF和CFx。
电化学电池的温度,包括含有含氟聚合物或含氟低聚物与任选的导电材料的第一电极的温度,可作为电池性能的一个重要参数。在一个实施方案中,第一电极的温度为大于50℃,大于或等于70℃,大于或等于100℃,70℃-150℃,或100℃-150℃。在一个实施方案中,第一电极以及任选地电化学电池的温度小于400℃。在一个实施方案中,第一电极的温度大于或等于含氟聚合物熔化温度的50%、75%、80%或90%。在一个实施方案中,第一和第二电极及电解质的温度基本相同(例如,通过使电池暴露于较高的环境温度下)。在另一个实施方案中,第一电极的温度可独立于电池其他元件的温度而单独控制。
附图说明
图1a-1c所示为Li-PVDF电池(PVDF与乙炔黑石墨(ABG)之比=1∶1)在140℃在2.7mA/g(PVDF)放电电流下所得到的放电曲线。
图2a-2b所示为Li-PVDF电池(PVDF∶ABG之比=1∶1)在室温在分别为2.63mA/g(PVDF)及15mA/g(PVDF)放电电流下得到的放电曲线。
图3a-3b所示为Li-PVDF电池(PVDF∶ABG之比=1∶2)在室温在分别为3.5mA/g(PVDF)及17mA/g(PVDF)放电电流下得到的放电曲线。
图4所示为Li-PVDF电池(PVDF∶ABG=1∶4)在室温在4mA/g(PVDF)放电电流下得到的放电曲线。
图5所示为Li-PVDF电池(PVDF∶ABG=6∶4)在多个温度在10μA放电电流下得到的放电曲线。
图6所示为预热的Li-PVDF电池(PVDF∶ABG=6∶4)在多个温度在10μA放电电流下得到的放电曲线。
图7所示为Li-PTFE电池(PTFE∶ABG=1∶1)在72℃在2μA放电电流下得到的放电曲线。
图8所示为Li-PTFE电池(PTFE∶ABG=1∶1)在室温在10μA放电电流下得到的放电曲线。
图9所示为Li-PVDF-CFx电池(PVDF∶ABG=6∶4;20重量%CFx,x=0.74)在多个温度在10μA放电电流下得到的放电曲线。
图10所示为Li-PVDF电池的充电曲线和随后的放电曲线。
具体实施方式
术语“电化学电池”指的是将化学能转化为电能或将电能转化为化学能的装置和/或装置元件。电化学电池通常具有两个或多个电极(例如,正极和负极),其中在电极表面发生的电极反应导致电荷转移过程。电化学电池包括,但不限于,原电池、二次电池、锂电池和锂离子电池。通常的电池和/或电池构造为本领域已知,参见,例如美国专利No.6,489,055、4,052,539、6,306,540,Seel and Dahn J.Electrochem.Soc.147(3)892-898(2000)。电化学双层电容器(EDLC)和混合型电池-EDLC体系也被认为是本申请中的电化学电池。(Conway,B,Journal of Solid StateElectrochemistry,7:637(2003);Hu X et al. J.Electrochem.Soc.,154(2007)A1026-A1030)。本公开内容还包括串联和/或并联成电池组和/或超级电容器的二次电化学电池的结合。
术语“容量”为电化学电池的一项特征,指的是电化学电池例如电池组能够容纳电荷的总量。容量通常以安培-小时为单位来表述。术语“比容量”指的是每单位重量的电化学电池例如电池组的容量输出量,比容量通常以安培-小时kg-1或mAh/g为单位来表述。理论比容量称为Qth。
术语“放电速率”指电化学电池放电时的电流。放电电流可以安培为单位表述。或者,放电电流可以“C/n”速率来表述,其中n为使电池完全放电在理论上需要的小时数。例如,在C/5速率和3C速率下,预计完全放电分别在5小时和20分钟内达到。在强度Ix的恒定放电电流下,理论放电时间td由Qth(x)=Ixtd给出。Ix为以电流每单位重量(例如mA/g)为单位的放电电流强度。因此C/n速率下的放电电流由方程(4)给出:
Ix以mA/g计,Qth(x)以mAh/g计,并且n以小时计。
“电流密度”指每单位电极面积的电流流量。
“活性材料”指电极中参与电化学反应的材料,所述电化学反应在电化学电池中贮存和/或输送能量。本发明提供包括具有含氟聚合物和/或含氟有机活性材料的正极的电化学电池。
在一个实施方案中,本发明提供一种电化学电池,该电化学电池包括
a.含有一种导电材料和一种具有碳-氟键的含氟聚合物或含氟低聚物的混合物的第一电极,其中所述含氟聚合物或含氟低聚物的量大于混合物的50重量%并小于100重量%,并且该混合物的电导率大于或等于1×10-8S/cm。
b.含有碱金属或碱土金属离子源的第二电极;和
c.位于所述第一和第二电极之间的电解质,所述电解质具有离子传导性,含有碱金属阳离子或碱土金属阳离子,并且不为易熔金属盐。
在另一个实施方案中,本发明提供
a.含有一种导电材料和一种具有碳-氟键的含氟聚合物或含氟低聚物的混合物的第一电极,其中所述含氟聚合物或含氟低聚物的量大于混合物的50重量%,并且所述导电材料的量大于混合物的30重量%。
b.含有碱金属或碱土金属离子源的第二电极;和
c.位于所述第一和第二电极之间的电解质,所述电解质具有离子传导性,含有碱金属阳离子或碱土金属阳离子,并且不为易熔金属盐。
在一个实施方案中,本发明提供一种电化学电池,该电化学电池包括
a.含有一种导电材料和一种具有碳-氟键的含氟聚合物或含氟低聚物的混合物的第一电极,其中所述含氟聚合物或含氟低聚物的量大于混合物的40重量%且小于或等于其70重量%,所述导电材料的量大于或等于混合物的30重量%,并且所述第一电极的温度大于100℃且小于所述含氟聚合物或含氟低聚物的分解温度;
b.含有碱金属或碱土金属离子源的第二电极;和
c.位于所述第一和第二电极之间的电解质,所述电解质具有离子传导性,含有碱金属阳离子或碱土金属阳离子,并且不为易熔金属盐。
所述电化学电池还可含有置于第一和第二电极之间的离子输送材料。在一个实施方案中,所述电化学电池为原电池。在另一个实施方案中,所述电化学电池为二次电池。在一个实施方案中,对电化学装置进行预放电。
一方面,本发明还提供含有一种含氟聚合物或含氟低聚物、一种导电材料和一种任选的第二活性材料的电极组合物。在一个实施方案中,第一电极(正极)含有一种第一电极组合物,而该第一电极组合物又含有一种含氟聚合物或含氟低聚物和一种导电材料的混合物。在一个实施方案中,第一电极组合物含有一种含氟聚合物。在另一个实施方案中,第一电极组合物含有一种含氟低聚物。本文所用集电器不意欲被包括在第一电极组合物中,并且第一电极组合物中的导电材料的重量%量不包括集电器。此外,所给第一电极组合物的重量百分比量不包括电解质。
如前所述,含氟聚合物或含氟低聚物具有氟-碳键。在一个实施方案中,活性材料含有一种含氟低聚物。本文所用的一种含氟低聚物包括2-10个重复结构单元。在一个实施方案中,含氟低聚物为一种其中烃低聚物的一个或多个氢原子被氟替代的氟碳低聚物。该低聚物包括由1,1-二氟乙烯单体或四氟乙烯单体形成的低聚物。在一个实施方案中,C-F键与C-H键之比大于或等于1。在一个实施方案中,含氟低聚物含有1,1-二氟乙烯单体;该低聚物具有可表示为(CF2CH2)n的单元。在另一个实施方案中,含氟低聚物含有四氟乙烯单体;该低聚物具有可表示为(CF2CF2)n的单元。在另一个实施方案中,含氟低聚物含有氯三氟乙烯单体。在一个实施方案中,含氟低聚物在室温下为固态。所述含氟低聚物可完全溶于有机电解质溶剂中。在另一个实施方案中,含氟低聚物在室温下为液态。当含氟低聚物在电化学电池的使用温度下为液态或可溶于电解质中时,该电化学电池可包括第一导电电极;含有与所述第一电极电接触的含氟低聚物的正极组合物;含有碱金属或碱土金属离子源的第二电极;和位于所述第一和第二电极之间的电解质。所述第一导电电极可由一种多孔导电材料例如碳形成。所述电解质可包括在所述正极组合物中,或可以是单独的。
本文所用的一种含氟聚合物包括多于10个重复结构单元。本文所用术语含氟聚合物不意欲包括氟化碳质材料,例如氟化石墨、氟化焦炭或其他氟化碳质材料;这些材料有时称为聚氟化碳或含氟石墨。在一个实施方案中,含氟聚合物具有大于或等于500的分子量。在一个实施方案中,含氟聚合物的主链由碳-碳键形成;该聚合物可为直链或支链的。
固态的含氟聚合物可为晶型、无定形,或可含有晶型和无定形区域的混合物。在一个实施方案中,含氟聚合物具有确定的熔化或液化温度或者熔化温度范围。在一个实施方案中,所述聚合物的熔化温度在100℃和200℃之间。在一个实施方案中,含氟聚合物为一种熔体可处理性(melt-processable)聚合物。当含氟聚合物在电化学电池的使用温度下熔化时,电化学电池可包括第一导电电极;含有与所述第一电极电接触的含氟聚合物的正极组合物;含有碱金属或碱土金属离子源的第二电极;和电解质。所述第一导电电极可由一种多孔导电性材料例如碳形成。所述电解质可包含在所述正极组合物中,或者可以是单独的。
在另一个实施方案中,所述含氟聚合物可能不具有非常明确的熔化温度或范围,在此情况下,所述第一电极的温度可参照含氟聚合物的分解温度。当分解发生在一个温度范围内时,该分解温度可视为发生主要分解的最低温度。在一个实施方案中,第一电极的温度大于或等于聚合物分解温度的50%或75%。在一个实施方案中,不论聚合物是否具有非常明确的熔点或范围,含氟聚合物的温度均小于聚合物的分解温度。
含氟聚合物的结晶程度可影响含有有机溶剂的电解质中含氟聚合物溶胀的量,预计晶型含氟聚合物越少,溶剂吸收量越大。在一个实施方案中,电解质溶剂使含氟聚合物溶胀。溶剂吸收量可能取决于温度,预计温度越高,溶剂吸收量越大。较大的溶胀量可改进穿过聚合物的离子电导率。在一个实施方案中,含氟聚合物在电化学电池的使用温度下能够吸收大于20%、30%、40%或50%的电解质溶剂(在无其他电极组合物组分的情况下通过聚合物的标准溶剂吸收试验而测得)。
在一个实施方案中,聚合物选自:聚四氟乙烯(PTFE)、全氟烷氧基聚合物(PFA)、氟化乙烯丙烯(FEP)、乙烯四氟乙烯(ETFE)、乙烯氯三氟乙烯(ECTFE)、聚偏1,1-二氟乙烯(PVDF)、聚氯三氟乙烯(PCTFE)、FFKM、FKM、PTFE、PFA和FEP均以商品名或商标名Teflon出售。ETFE以商标名Tefzel或Fluon出售。ECTFE以商标名Halar出售。PVDF以商标名Kynar出售。PCTFE以商标名Kel-F出售。FFKM以商标名Kalrez和Tecnoflon FFKM出售。FKM以商标名Viton和Tecnoflon出售。其他适宜聚合物包括由Ameduri等人描述的那些(J.Fluorine Chem.,114(2002),171-176),该文献内容通过引用的方式纳入本文,只要与本文公开内容不相抵触。
在一个实施方案中,初始时含氟聚合物为颗粒形式。但是,加热所述颗粒可改变其初始形状和/或形式。含氟聚合物活性材料也可以其他物理状态提供,包括纤维、薄膜和涂层。电极的制备过程可能会涉及含氟聚合物的溶解,在此情况下,不会保持初始大小。在一个实施方案中,含氟聚合物颗粒的初始平均横截面尺寸选择在1-1000微米的范围内。
在一个实施方案中,导电材料和含氟聚合物或含氟有机材料形成一种混合物。在一个实施方案中,导电材料和含氟聚合物或含氟有机材料形成一种复合材料。在一个实施方案中,导电材料与含氟聚合物或含氟有机材料的平均比例在大于活性材料或导电材料的颗粒尺寸的长度尺度上(例如1mm或更大)可能是均一的。但是,导电材料与含氟聚合物或含氟有机材料之比在更小的长度尺度上可能不均一。例如,导电材料可形成聚集体、通道或网状体。
导电材料可选自例如,乙炔黑、炭黑、粉状石墨、焦炭、碳纤维、碳纳米管、石墨晶须和金属粉末,例如粉状的镍、铜、铝、钛和不锈钢。在一个实施方案中,导电材料为一种碳质材料。在另一个实施方案中,导电材料可为一种导电聚合物。在一个实施方案中,该材料的电导率大于低氟化碳质材料或含氟聚合物或含氟有机化合物的电导率。导电材料可为微粒形式以便于其与电极组合物其他组分的混合。在一个实施方案中,该导电材料的颗粒大小为1微米-100微米。
在一个实施方案中,所述正极组合物中所含的第二活性材料为一种低氟化碳质材料。本文所用表述“低氟化碳质材料”是指含有一种其中至少一些碳牢固地键合至氟上的氟化碳质组分和一种未氟化碳质组分和/或一种其中氟不牢固地键合至碳上的“轻度氟化的”碳质组分的一种多组分碳质材料。所述低氟化材料可由式CFx表述,式中x小于1。
在本发明的另一个方面,电极组合物包含一种低氟化碳材料作为去极化剂。在不同实施方案中,所述低氟化碳质材料的氟与碳之比为0.18-0.95,0.33-0.95,0.36-0.95,0.5-0.95,大于0.5至0.95,0.63-0.95,0.66-0.95,0.7-0.95,或0.7-0.9。在一个实施方案中,所述低氟化碳质材料为颗粒形式;该颗粒的平均大小可为1微米至100微米。
在本发明的另一个方面,电极组合物包含不同的低氟化碳材料的混合物。在一个实施方案中,不同氟化碳材料具有不同的氟化水平。在另一个实施方案中,不同氟化材料可基于不同的碳质材料(例如,电极组合物可为氟化碳和氟化焦炭的混合物,所述氟化材料具有相同或不同的氟化水平)。可使用氟化碳材料的组合来调节装置性能。例如,可将一种具有相对较高能量密度和相对较低功率性能的氟化碳质材料与一种具有较高功率性能的氟化碳质材料进行掺合,从而得到一种适于相对较高能量密度和功率密度应用的混合物。在不同实施方案中,基于第一和第二材料的总量计,第一材料的量为5重量%-95重量%、10重量%-90重量%、20重量%-80重量%、30重量%-70重量%、40重量%-60重量%、30重量%-95重量%、40重量%-95重量%、50重量%-95重量%,大于50重量%-95重量%、60重量%-95重量%、70重量%-95重量%、40重量%-90重量%、50重量%-90重量%、大于50重量%至90重量%、60重量%-95重量%、70重量%-90重量%。
所述第二电极含有碱金属或碱土金属离子源。碱金属包括Li、Na、K、Rb、Cs或Fr。在一个实施方案中,碱金属阳离子为Li阳离子。碱土阳离子包括Be、Mg、Ca、Sr和Ba。在一个实施方案中,阳极含有锂或一种锂合金。阳极可含有例如,锂或锂的金属合金(例如LiAl)或碳-锂的箔片或薄膜。在一个实施方案中,阳极含有一种锂金属。
电解质位于第一和第二电极(或正极和负极)之间。如果电解质为液体,则电解质液体中的一些可被吸收到第一电极的含氟聚合物中,而一些预计保留在第一和第二电极之间。在一个实施方案中,电解质为一种含有选自碱金属阳离子或碱土金属阳离子的阳离子的离子传导介质。在一个实施方案中,碱金属阳离子为Li阳离子。
在一个实施方案中,电解质为一种由溶于质子惰性有机溶剂中的碱金属或碱土金属盐组成的非水电解质。适宜的溶剂包括,但不限于,醚类、酯类、碳酸酯类,及其氟化衍生物。在一个实施方案中,溶剂选自碳酸亚丙酯(PC)、碳酸亚乙酯(EC)、碳酸甲乙酯(EMC)、二甲醚(DME),及其混合物。常用的为PC和DME的混合物,其重量比通常为约1∶3至约2∶1。在一个实施方案中,溶剂为PC。在一个实施方案中,溶剂不为二氧戊环、四氢呋喃-二甲氧基乙烷混合物或四氢呋喃-二甘醇的二甲醚混合物。在一个实施方案中,对溶剂进行选择,从而使其沸腾温度大于电化学电池的预期使用温度。在一个适于与锂阳极一起使用的实施方案中,选择溶剂使其沸腾温度大于锂的熔点(约180℃)。适宜在电解质中使用的锂盐包括,但不限于,LiBF4、LiPF6、LiCF3SO3、LiClO4、LiAlCl4等。在一个实施方案中,电化学电池还含有一种位于正极和负极之间的“隔膜”材料。常规隔膜材料具有较低的电阻,并显示出较高强度、良好的化学和物理稳定性,及整体均一性。如上所述,本文优选的隔膜为微孔材料和非织造材料,例如非织造聚烯烃如非织造聚乙烯和/或非织造聚丙烯;和微孔聚烯烃膜,如微孔聚乙烯、聚四氟乙烯(PTFE)和玻璃纤维。一种示例性微孔聚乙烯材料为从Hoechst Celanese获得的名为Celgard.RTM.的材料(例如Celgard.RTM.2400、2500和2502)。
在另一个实施方案中,电解质为一种溶于离子液体的碱金属或碱土金属盐。在一个实施方案中,离子液体为一种“室温”离子液体。在一个实施方案中,离子液体的熔点小于100℃。许多室温离子液体(RTILS)为本领域已知并且对其在含锂电池中的使用进行了测试。这些RTILS包括,但不限于,基于咪唑鎓阳离子的RTILS(Seki,S.et al,2007,J.Electrochem.Soc,154(3),A173-A177)。
在一个实施方案中,电解质不为易熔金属盐。在一个实施方案中,电解质不为熔化温度超过锂的熔化温度的易熔金属盐。易熔金属盐用在热电池中且通常具有超过300℃的熔化温度。例如,使用熔点为352℃的碱金属卤化物电解质LiCl-KCl(共熔)的热电池在U.S.4,840,859中有描述。
在另一个实施方案中,电解质为含有碱金属阳离子或碱土金属阳离子的固态或凝胶化聚合物电解质。所述固态或凝胶化聚合物电解质也用作物理隔膜。固体聚合物电解质的实例包括化学惰性聚醚,例如聚(环氧乙烷)(PEO)、聚环氧丙烷(PPO),及其他聚醚,其中该聚合材料被浸渍于一种盐中或与其缔合,所述盐例如锂盐,如前述的那些锂盐。凝胶化聚合物电解质的实例包括经非水电解质例如前面段落中述及的那些非水性电解质浸渍或与其缔合的聚偏1,1-二氟乙烯(PVDF)均聚物或共聚物。
电极的放电容量和电压还可能受除电极组成外的电极参数的影响,包括但不限于电极厚度、电极密度、混合方法,及电极对基质的粘附。
电极可通过一种浆体方法制备。在所述方法中,通过将一种或多种活性材料和导电材料与溶剂混合而形成一种浆体。所述溶剂可用于溶解含氟聚合物或含氟有机活性材料。然后使该浆体沉积或通过其他方式提供于导电基质(集电器)上,从而形成电极。如果固体颗粒较长,则它们可能会在沉积过程中至少部分地排列。例如,也可使用剪切排列来排列颗粒。一种特别优选的导电基质为铝,但也可使用许多其他导电性基质,例如不锈钢、钛、铂、金等。然后可将溶剂从浆体中蒸发出,形成电极组合物薄膜。
电极可加工至所需密度。加工电极组合物的适宜方法包括多种传递机械能的方法,包括但不限于对薄膜进行冲压、模压、压花(embossing)或碾压。电极组合物也可在加工过程中被加热。加工时间也是影响最终密度的一个重要因素。在不同实施方案中,加工后膜的最终密度大于1.0g/cm3,大于或等于1.25g/cm3,或大于或等于1.5g/cm3。电极厚度可按具体应用的需要进行调节。对于需要较高功率密度的应用,可能需要使用较薄的电极。使用下式计算密度:
其中m=以克计的阴极盘重量,D=以厘米计的阴极(薄膜或薄片)直径,并且h=以厘米计的电极厚度。
在一个实施方案中,第一电极混合物通过被加热至含氟聚合物的熔化温度以上而进行加工。该预热过程可改进导电材料和含氟聚合物之间的接触。该预热过程还可改变含氟聚合物的结晶度。在一个实施方案中,第一电极混合物可在电解质的存在下进行预热。
电化学电池可通过将正极在电解质中浸渍或溶胀,将隔膜在电解质中浸渍,装配正极、隔膜和阳极,然后密封电池而进行组装。
在一个实施方案中,本发明提供一种电化学装置,该装置包括第一电极、第二电极和置于其间的离子输送材料。在一个锂原电池中,例如,前述电极作为阴极,阳极提供锂离子源,其中离子输送材料通常为一种被非水电解质饱和的微孔或非织造材料。在一个实施方案中,阳极含有锂或锂合金。阳极可含有,例如,锂或锂的金属合金(例如LiAl)或碳-锂的箔片或薄膜,优选锂金属箔片。所述离子输送材料可含有一种具有较低电阻且显示出较高强度、良好化学和物理稳定性及整体均一性的常规“隔膜”材料。如上所述,本文优选的隔膜为微孔材料和非织造材料,例如非织造聚烯烃如非织造聚乙烯和/或非织造聚丙烯;和微孔聚烯烃膜,如微孔聚乙烯、聚四氟乙烯(PTFE)和玻璃纤维。一种示例性微孔聚乙烯材料为从Hoechst Celanese获得的名为Celgard.RTM.的材料(例如Celgard.RTM.2400,2500和2502)。电解质需要为非水的,因为锂在含水介质中具有反应性。适宜的非水电解质由溶于质子惰性有机溶剂中的锂盐组成,所述溶剂例如碳酸亚丙酯(PC)、碳酸亚乙酯(EC)、碳酸甲乙酯(EMC)、二甲醚(DME),及其混合物。常用的为PC和DME的混合物,其重量比通常为约1∶3至约2∶1。适用于该目的的锂盐包括,但不限于,LiBF4、LiPF6、LiCF3SO3、LiClO4、LiAlCl4等。将认识到的是,在使用中,电压的改变导致在阳极生成锂离子,所述离子穿过电解质浸渍的隔膜迁移至阴极的低氟化碳质材料,使电池“放电”。
低温电解质已被Whitacre等人所提及(Low Temperature Li-CFxBatteries Based on Sub-Fluorinated Graphitic Materials J.PowerSources 160(2006)577-584;Enhanced Low-Temperature Performances ofLi-CFx Batteries Electrochem.Solid State Let.10(2007)A166-A170)。
在一个实施方案中,本发明提供一种电化学装置,其中该装置为一种如下所述的锂原电池,其中第一电极用作阴极,第二电极用作阳极且含有锂离子源,并且离子输送材料将第一和第二电极物理分隔,并防止其间的直接电接触。
在一个实施方案中,本发明提供一种原电池,该原电池能够提供大于或等于1.5V、2.0V、2.25V、2.5V或2.75V、或1.5V-4V、2.0V-4V、2.25V-4V、2.5V-4V、或2.75V-4V的放电电压或在正极测得的电压。在一个实施方案中,电池的容量大于200mAh/g、250mAh/g、300mAh/g、350mAh/g、400mAh/g或450mAh/g(每克活性材料)。
如果本发明的Li/含氟聚合物或Li/含氟有机物电池(具有任选的第二活性材料)的放电曲线在初始放电阶段显示出一种特征性电压延迟(有时也称为电压抑制),则可通过预放电电池容量的一部分(例如小于或等于10%)而抑制该效应。在一个实施方案中,预放电过程包括使电池初始容量的不多于10%放电。在一个实施方案中,预放电速率小于或等于电池初始容量的5%。在不同实施方案中,放电时间可为0.5小时至5小时或1至3小时。放电电流可以恒定或改变。因此,本发明还提供一种使电池初始容量的不多于10%放电后的电化学电池。
在另一个实施方案中,含氟聚合物或含氟有机材料用于二次电池即可充电电池中,例如可充电锂电池。在此情况下,阳离子,例如锂离子,通过一种固态或凝胶化的聚合物电解质——其也用作物理隔膜——传输至含氟聚合物或含氟有机物电极,在该处锂离子通过所述氟化材料进行嵌入和脱出。固态聚合物电解质的实例包括化学惰性聚醚,例如聚(环氧乙烷)(PEO)、聚(环氧丙烷)(PPO),及其他聚醚,其中所述聚合材料被浸渍于一种盐例如锂盐中或与其缔合,所述锂盐例如前面段落中所述的那些。凝胶化聚合物电解质的实例包括经非水电解质浸渍或与其缔合的聚偏1,1-二氟乙烯(PVDF)均聚物或共聚物,所述非水电解质例如前面段落中述及的那些。
在另一个实施方案中,本发明提供一种电化学装置,其中该装置为一种如下所述的二次电池:其中第二电极含有选自元素周期表的1、2和3族的金属的离子源,且离子输送材料含有一种可传输所述金属阳离子并将第一和第二电极物理分隔的固态聚合物电解质。
本发明的又一方面提供一种可充电电池,该电池包括:含有含氟聚合物或含氟有机材料的第一电极,该电极能够接收和释放选自元素周期表1、2和3族的金属的阳离子;含有所述金属阳离子源的第二电极;和可传输所述金属阳离子并将第一和第二电极物理分隔的固态或凝胶化的聚合物电解质。
本发明的电化学电池可在环境温度或室温下产生电化学能量。在一个实施方案中,可通过加热电池而由该电池获得更大的放电电流和/或容量。可通过使电池或电池元件暴露于较高温度的环境下(例如可用于石油钻井应用)或通过使用加热装置而对该电池或电池元件进行加热。
在本发明的另一个方面,本发明提供一种通过电化学方式产生电能的方法,该方法包括以下步骤:
a.提供一种电化学电池,该电池包括:
含有一种导电材料和一种具有碳-氟键的含氟聚合物或含氟低聚物的混合物的第一电极,其中所述含氟聚合物或含氟低聚物的量大于该混合物40重量%并小于或等于其70重量%,且导电材料的量大于或等于该混合物的30重量%;
含有碱金属或碱土金属离子源的第二电极;和
位于第一和第二电极之间的电解质,该电解质具有离子传导性并含有碱金属阳离子或碱土金属阳离子;
b.将该电化学电池加热至大于100℃并小于所述含氟聚合物或含氟低聚物的分解温度的温度,从而从中引出电流。
本发明还提供通过电化学方式产生电能的方法,该方法包括以下步骤:
a.提供一种电化学电池,该电池包括:
含有一种导电材料和一种具有碳-氟键的含氟聚合物或含氟低聚物的混合物的第一电极,其中所述含氟聚合物或含氟低聚物的量大于该混合物的50重量%并小于其100重量%,且所述混合物的电导率大于或等于1×10-8S/cm;
含有碱金属或碱土金属离子源且不为易熔金属盐的第二电极;
位于第一和第二电极之间的电解质,该电解质具有离子传导性、含有碱金属阳离子或碱土金属阳离子;和
b.将该电化学电池加热至小于所述含氟聚合物或含氟低聚物的分解温度的温度,从而从中引出电流。
如前所述,除含氟聚合物或含氟有机材料外,本发明的电极组合物还可含有一种低氟化碳质材料。低氟化碳质材料为氟化碳质材料中的一类。本文所用的氟化碳质材料为向其中引入了氟的碳质材料。在本发明中,这种氟化通常包括碳和氟之间的键的形成。氟能够与碳形成离子键和共价键。在一些情况下,C-F键也被分类为强度在离子键和共价键之间的中间态(例如,部分离子、半离子、半共价)。氟化方法可影响氟化产物中存在的键的类型。
可使用氟与碳(F/C)的平均比作为氟化程度或水平的量度。该平均比可通过增重测量法或定量NMR测量法测定。当氟在碳材料的整个厚度上不均匀分布时,该平均比可能不同于可通过x射线光电子能谱法(XPS)或ESCA测得的表面氟与碳之比。在一些实施方案中,氟与碳(F/C)的平均比可能大于或等于1。术语CF1或CF可在本文中用于指氟与碳的表观比为约1或更大的氟化碳。
在一个实施方案中,碳质材料为低氟化的,并包含未氟化碳质组分和/或其中氟不牢固地键合至碳上的“轻度氟化的”碳质组分。多相低氟化碳质材料可包括多种碳质相的混合物,所述碳质相包括未氟化的碳质相(例如石墨或焦炭)、“轻度氟化的”相和一种或多种氟化的相(例如,聚(一氟化碳(CF1));聚(一氟化二碳)等)。在一个实施方案中,低氟化的石墨或焦炭材料通过Yazami等人的美国专利申请公开文本20070231697中所述方法生产,并且比用本领域先前已知的其他类型氟化方法生产的具有相同的平均F/C比的材料具有更大量的未氟化的碳、“轻度氟化的”碳或它们的结合。在不同实施方案中,低氟化材料具有平均化学组成CFx,且其中0.18≤x≤0.95、0.33≤x≤0.95、0.36≤x≤0.95、0.5≤x≤0.95、0.63≤x≤0.95、066≤x≤0.95、0.7≤x≤0.95,或0.7≤x≤0.9。在一个实施方案中,低氟化石墨材料的氟与碳之比大于0.63并小于或等于0.95。在不同实施方案中,低氟化材料中未氟化和“轻度氟化的”碳的量为5%-40%、5%-37%、5%-25%、10%-20%,或约15%。
在一个实施方案中,低氟化碳质材料为一种具有平均化学组成CFx且其中0.63<x≤0.95的低氟化石墨材料,其中所述低氟化石墨的13C核磁共振光谱分析提供的谱图中,含有至少一个中心位于相对于四甲基硅烷(TMS)约100-150ppm之间的化学位移峰和另一个中心位于相对于TMS约84-88ppm之间的化学位移峰。
在一个实施方案中,低氟化碳质材料为一种通过直接氟化焦炭而制得且相干长度Lc在5nm和20nm之间的低氟化焦炭材料,所述低氟化焦炭材料具有平均化学组成CFx且其中0.63<x≤0.95。所述低氟化焦炭的13C核磁共振光谱分析提供的谱图中,含有至少一个中心位于相对于四甲基硅烷(TMS)约100-150ppm之间的化学位移峰和另一个中心位于相对于TMS约84-88ppm之间的化学位移峰。
在另一个实施方案中,低氟化材料为一种如Yazami等人的美国专利申请公开文本2007/0231696中所述的氟化碳纳米材料。这些氟化碳纳米材料可含有未氟化的碳相和至少一种氟化的碳产品,该氟化的碳产品中至少一些碳共价键合至或近乎共价地键合至氟上,其中所述碳纳米材料在氟化之前具有基本有序的多层结构。在不同实施方案中,氟与碳的平均比在0.06和0.68之间,在0.3和0.66之间或0.3和0.6之间。
在另一个实施方案中,氟化碳纳米材料可含有至少一种氟化的碳产品,该氟化的碳产品中至少一些碳共价键合至或近乎共价地键合至氟上,且其中平均层间距离介于石墨聚(一氟化二碳)的平均层间距离和石墨聚(一氟化碳)的平均层间距离之间,其中碳纳米材料在氟化之前具有多层结构。在不同实施方案中,氟与碳的平均比为小于1.0、0.3-0.8或0.6-0.8、0.39-0.95、0.39-0.86、0.39-0.68、0.68-0.86,或0.74-0.86。
在一个实施方案中,所述氟化的碳纳米材料与通过石墨氟化物(C2F)n和(CF)n的混合物制得的氟化的碳纳米材料具有一些相似的特征。X射线衍射分析表明,该产品具有中心位于12.0度和41.5度的2Θ峰。该化合物的层间距离为约0.72nm。该化合物的13C-NMR光谱在42ppm具有一个共振峰,其表示未氟化的sp3碳原子。NMR分析还表明了碳和氟之间的共价键合。CF2和CF3基团也可少量存在。另一种氟化的碳产品可具有与(CF)n类似的结构。X射线衍射分析表明该化合物具有中心位于大于12.0度且小于41.5度处的2Θ峰。该化合物的层间距离为约0.60nm。NMR分析也表明了碳和氟之间的共价键合。CF2和CF3基团也可以少量存在。
许多碳质材料均可用于本发明电极中的氟化材料,包括石墨、焦炭和碳质纳米材料,如多壁碳纳米管、碳纳米纤维、多层碳纳米颗粒、碳纳米晶须和碳纳米棒。在一个实施方案中,本发明使用通过直接氟化石墨或焦炭颗粒或碳纳米材料而得到的低氟化碳质材料。通过氟化石墨颗粒而得到的低氟化碳质材料在本文也可称为低氟化石墨或低氟化石墨材料。类似地,通过氟化焦炭颗粒而得到的低氟化碳质材料在本文也可称为低氟化焦炭或低氟化焦炭材料。
各种碳同素异形体与氟气体的反应活性非常不同,这主要是由于石墨化程度或碳材料的类型不同(Hamwi A.et al.;J.Phys.Chem.Solids,1996,57(6-8),677-688)。一般地,石墨化程度越高,反应温度越高。碳的氟化物在氟或氟与惰性气体的混合物的存在下通过直接氟化而获得。当使用石墨作为原料时,在300℃以下未观察到显著氟化。在350-640℃,形成两种主要是晶体结构和组成不同的氟化石墨:聚(一氟化二碳)(C2F)n和聚(一氟化碳)(CF)n(Nakajima T.;Watanabe N.Graphite fluorides andCarbon-Fluoride compounds,1991,CRC Press,Boston;Kita Y.;Watanabe N.;Fujii Y.;J.Am.Chem.Soc,1979,101,3832)。在这两种化合物中,碳原子均为sp3杂化,碳六边形各自从平面构型变形为‘椅式’或‘船式’构型。聚(一氟化二碳)在约350℃得到并具有特征结构,其中两个相邻的氟层沿六方晶格的c轴被两个通过强共价C-C键而键合的碳层隔开(阶数2)。另一方面,在约600℃得到的聚(一氟化碳)的结构为在两个相邻的氟层之间仅具有一个碳层(阶数1)。在350和600℃之间得到的氟化石墨具有介于(C2F)n和(CF)n之间的中间组成,并由这两相的混合物构成(Kita,1979,同前所述)。阶数s表示分开两个连续的氟层的碳层的数目。因此阶数1的化合物的层堆叠次序为FCF/FCF……,阶数2的化合物的次序为FCCF/FCCF……。已知聚(一氟化二碳)和聚(一氟化碳)均具有相对较差的导电性。低氟化碳质材料包括暴露于处于使碳质原料不完全或部分氟化的条件下的氟源的碳质材料。部分氟化的碳材料包括其中外部基本上已与氟反应而内部区域大部分仍未反应的材料。
碳-氟插层化合物也已通过将能够用作氟化催化剂的其他化合物例如HF或其他氟化物掺入气体混合物中而得到。这些方法可在较低温度下氟化。这些方法还允许制备除(C2F)n和(CF)n之外的插层化合物(N.Watanabe et al.,″Graphite Fluorides″,Elsevier,Amsterdam,1988,pp240-246)。在HF或金属氟化物的存在下制得的这些插层化合物在氟含量极低时(F/C<0.1)具有离子特征,或在较高的氟含量时(0.2<F/C<0.5)具有离子-共价特征。在任何情况下,通过化学分析电子光谱法(ESCA)测得的键合能的值对于最重要的F1s谱线峰为小于687eV,对于C1s谱线峰为小于285eV(T.Nakajima,Fluorine-carbon and Fluoride-carbon,Chemistry,Physics and Applications,Marcel Dekker 1995p.13)。
在一个实施方案中,本发明中使用的低氟化碳质材料为含有氟化碳质组分和未氟化碳质组分和/或其中氟未牢固地键合至碳上的“轻度氟化的”碳质组分的多组分材料。未氟化的和/或“轻度氟化的”碳质组分的存在可提供比仅由氟化相聚(一氟化二碳)、聚(一氟化碳)及其结合组成的材料所能获得的电导率更高的电导率。
在一个实施方案中,低氟化碳质材料含有许多纳米结构颗粒;其中每一个纳米结构颗粒含有多个氟化域和多个未氟化域。在本说明书中,“域”是一种具有特征组成(例如未氟化的或氟化的)、相(例如无定形的、晶型的、C2F、CF1、石墨、焦炭、碳纤维,碳纳米材料如多壁碳纳米管、碳晶须、碳纤维等)和/或形态的材料的结构组成部分。可用于正极活性材料的低氟化碳质材料含有多个不同的域。单个氟化的和未氟化的域优选对于某些应用而言具有至少一个小于约50纳米的外形尺寸(例如,长度、深度、横截面尺寸等),并且更优选对于某些应用而言具有至少一个小于约10纳米的外形尺寸。特别可用于在低温下提供高性能电化学电池的正极活性材料包括具有氟化域和未氟化域的纳米结构颗粒,所述氟化域和未氟化域遍布于所述活性材料的每一个纳米结构颗粒,并且在一些实施方案中,基本均匀地遍布于所述活性材料的每一个纳米结构颗粒。在一些实施方案中,正极活性材料颗粒的氟化域含有具有平均化学计量CFy——其中y是氟原子与碳原子的平均原子比并且选自约0.8至约0.9的范围——的低氟化碳质材料,并且正极活性材料颗粒的未氟化域含有未氟化的碳质相,例如石墨、焦炭、多壁碳纳米管、多层碳纳米纤维、多层碳纳米颗粒、碳纳米晶须和碳纳米棒。
“室温”指选自约293-303K范围的温度。
通过以下非限制性实例可进一步理解本发明。
本申请通篇中所有文献,例如专利文献,包括公布或授权的专利或等效物;专利申请公开文本;非专利文献文件或其他来源的材料,整体通过引用纳入本文,如同逐一通过引用纳入一般,只要每篇文献与本申请的公开内容至少部分地不相抵触(例如,部分地相抵触的文献排除该文献的部分地相抵触的部分后通过引用而纳入)。
本说明书中提及的所有专利和公开文本表明了本发明所属领域的技术人员的技术水平。本文所引用文献的全部内容通过引用纳入本文用以指明现有技术状态,在某些情况下用于指明其申请日时的状态,并且如果需要,该信息可用在本文中用以排除(例如放弃)属于现有技术的具体实施方案。例如,当要求保护一种化合物时,应该理解为,现有技术中已知的化合物,包括本文公开的文献中(特别是在所引的专利文献中)公开的某些化合物不欲包括在权利要求中。当要求保护一种化合物时,应该理解为,现有技术中已知的化合物,包括本文公开的文献中公开的化合物,并不欲包括在内。当本文使用马库什组或其他组时,该组中的所有单个元素和该组的所有可能的组合及亚组合均欲逐一包括在本公开内容中。
除非另有说明,否则所述或所示例的组分的每一种制剂或组合物均可用于实施本发明。化合物的具体名称均意为示例性的,正如所知,本领域普通技术人员可对相同化合物进行不同命名。例如当本文以一种化学式或一个化学名描述一种化合物而未指明该化合物的具体异构体或对映体时,该描述意欲包括单独地或以任何结合方式描述的化合物的每一种异构体和对映体。本领域的普通技术人员应认识到的是,可在本发明的实施中使用除明确示例的那些之外的方法、装置元件、原料和合成方法,而无需借助过多的实验。所有本领域已知的任何所述方法、装置元件、原料和合成方法的等效物均欲包括在本发明中。只要本说明书中给定一个范围,例如温度范围、时间范围或组成范围,则所给范围中包括的所有中间范围和亚范围,以及所有单个值,均欲包括在公开内容中。
本文所用“包括”与“包含”、“含有”或“特征在于”同义,为包括式或开放式的,不排除其他未列举的元素或方法步骤。本文所用“由……组成”排除未在权利要求元素中指明的任何元件、步骤或成分。本文所用“基本由……组成”不排除不会很大地影响权利要求的基本特征和新特征的材料或步骤。本文对术语“包括”的任何叙述,特别是在描述组合物的组分或描述装置的元件时,应理解为包括主要由所述组分或元件组成或由所述组分或元件组成的那些组合物和方法。本文中示例性描述的本发明可在无本文未明确公开的任何一个或多个元件、一个或多个限制条件的情况下适当地实施。
所用术语和表述被用作描述性而非限制性术语,使用这些术语和表述并不意欲排除所示和所述特征或其部分的任意等效物,而应该认识到,可在本发明要求保护的范围内进行多种变形。因此,应该理解的是,虽然本发明已通过优选实施方案和任选特征进行明确公开,但是本领域技术人员可对本文公开的概念寻求改进和变化,并且所述改进和变化也应认为在所附权利要求书所限定的本发明范围内。
一般而言,本文所用术语和词语具有本领域公认的含义,该含义可通过参照本领域技术人员已知的教科书、期刊文献和上下文而找到。提供前述限定是为了阐明它们在本发明中的具体用途。
虽然本说明书含有许多具体说明,但是这不应解释为对本发明范围的限制,而是仅是对本发明的一些目前优选的实施方案提供说明。因此本发明的范围应该通过例如所附权利要求书及其等效物而确定,而不是通过所给实施例而确定。
实施例1:Li-PVDF电池
制备含有PVDF-ABG阴极和金属锂阳极的电池。PVDF颗粒为KYNAR 2800(Arkema)。该材料为PVDF和六氟丙烯(HFP)的一种共聚物(Arkema product literature,Kynar PVDF,Resins for BatteryManufacture,2007)。乙炔黑石墨(ABC)颗粒来自Superior Graphite。为制备常规阴极组合物,将PVDF颗粒和乙炔黑石墨(ABG)颗粒以所选重量比进行混合,PVDF在混合之前溶于丙酮中。在压制之前干燥该混合物。厚度为约100-200微米。在试验电池中,在阴极和Li阳极之间放置一个玻璃纤维隔膜(Craneglas 230,Crane and Co.)。电解质为1M LiBF4的碳酸亚丙酯(PC)溶液(1∶1)。PDF的软化温度为约130-140℃。
为进行室温以上的实验,将电池放置在烘箱中。图1a-1c所示为用200微米厚的电极和等量(重量)PVDF和ABG(1∶1的比例)的阴极混合物在140℃得到的放电曲线。放电电流为2.7mA/g(PVDF)。放电电压为约3V。测试的容量大于400mA/g、367mA/g和229mA/g(每g PVDF)。
电池容量在室温显著降低。为进行比较,图2a示出了相同电极组合物在室温在2.63mA/g(PVDF)及10μA的放电电流下得到的放电曲线。工作电势为2.2V。截止电势设定在1.5V,估计容量为16mA/g。图2b示出了相同电极组合物在15mA/g(PVDF)的放电电流下的放电曲线。电势在半小时内降至1V。开路电压为约3V。
还对较高碳含量的电池进行了试验。额外的碳被认为会增加反应表面积,从而增加工作容量。图3a示出了1∶2的PVDF∶ABG组合物在室温在3.5mA/g(PVDF)及10μA的放电电流下得到的放电曲线。图3b所示为1∶2的PVDF∶ABG组合物在室温在17mA/g(PVDF)及50μA的放电电流下得到的放电曲线。两种情况下的工作电势均为约2.25V;在3.5mA/g(PVDF)下测得的容量为28mA/g。图4所示为1∶4的PVDF∶ABG组合物在室温在4mA/g(PVDF)及5μA的放电电流下得到的放电曲线。测得的容量为40mAh/g。
在另一组实验中,将PVDF粉末(Arkema2801)和ABG以6∶4的重量比混合于丙酮中。丙酮在空气中蒸发后,将得到的混合物在真空中过夜干燥,然后在压力设定为80psi时,压成圆片(直径1.6mm,厚0.3mm)。将得到的PVDF圆片在1M LiBF4的碳酸亚丙酯(PC)溶液中浸渍半小时。将其放入2016型纽扣电池中作为阴极。锂箔为阳极。使用一片玻璃纤维盘作隔膜。电解质为1M LiBF4的PC溶液。将高温环氧树脂涂在该纽扣电池垫片的周围,从而防止高温下可能的泄漏。
将电池放入温度试验室内并当所述室的温度从室温(23℃)增至160℃时在10μA下进行放电。随着温度的增加,工作电压从2.3V升至2.6V并当T为160℃时最终稳定在2.5V,如图5所示。
将类似的PVDF(60%)圆片电池预热至160℃,该温度高于PVDF的熔点。在160℃停留2小时后,使电池温度回至室温(RT)。在RT放置1天后,将电池再次从RT加热至160℃,同时以10μA进行放电。同刚加热的电池相比,该经过预热的PVDF在160℃显示出更稳定、稍高的工作电压2.7V,如图6中所示。当PVDF在阴极中熔化时,认为已形成了一个更均匀结构化的具有导电碳的电极。
实施例2:Li-PTFE电池
制备含有PTFE-ABG阴极和金属锂阳极的电池。PTFE颗粒的直径为约0.5mm。乙炔黑石墨(ABC)颗粒来自Superior Graphite。为制备常规阴极组合物,将PTFE颗粒和乙炔黑石墨(ABG)颗粒在混合之前以所选重量比混合于丙酮中。在压制之前对混合物进行干燥。厚度为约100-200微米。在试验电池中,在阴极和Li阳极之间放置一个玻璃纤维隔膜(Craneglas 230,Crane and Co.)。电解质为1M LiBF4的PC(1∶1)溶液。PTFE的熔点为约325℃。图7所示为等量PTFE和ABG(1∶1的比例)的阴极混合物在72℃得到的放电曲线。放电电流为2.0μA。放电电压为约2V。
图8所示为等量PTFE和ABG(1∶1的比例)的阴极混合物在室温得到的放电曲线。放电电流为10μA。放电电压在1.5和2V之间。在极低的放电速率下,电池电压在1V保持几天。
实施例3:Li-PVDF-CFx电池
将PVDF粉末(Arkema2801)和ABG以6∶4的重量比混合于丙酮中,向该混合物中添加20%石墨CFx(x=0.74)。丙酮在空气中蒸发后,将得到的混合物在真空中过夜干燥,然后在压力设定为80psi时将其压制成圆片(直径为1.6mm,厚0.3mm)。将得到的PVDF圆片用1M LiBF4的碳酸亚丙酯(PC)溶液浸渍半小时。将其放入2016型纽扣电池中作为阴极。锂箔为阳极。使用一片玻璃纤维盘作为隔膜。电解质为1MLiBF4的PC溶液。将高温环氧树脂涂在该纽扣电池垫片的周围,以防止高温下可能的泄漏。
将电池放入温度试验室内并当所述室的温度从室温(23℃)增至160℃时在10μA下进行放电。总工作电压从室温时的2.8V增至160℃时的3.3V,如图9中所示。
实施例4:Li-PVDF电池的循环
Claims (31)
1.一种电化学电池,其包括
a.含有一种导电材料和一种具有碳-氟键的含氟聚合物或含氟低聚物的混合物的第一电极,其中含氟聚合物或含氟低聚物的量大于该混合物的50重量%并小于100重量%,且该混合物的电导率大于或等于1×10-8S/cm;
b.含有碱金属或碱土金属离子源的第二电极;和
c.位于第一和第二电极之间的电解质,该电解质具有离子传导性、含有碱金属阳离子或碱土金属阳离子,并且不为易熔金属盐。
2.权利要求1的电化学电池,其中所述导电材料的量大于或等于混合物的30重量%。
3.权利要求2的电化学电池,其中所述导电材料构成第一电极混合物的余量物。
4.权利要求1的电化学电池,其中所述第一电极混合物还含有一种第二活性材料,该第二活性材料的量小于或等于第一电极混合物的20重量%。
5.权利要求4的电化学电池,其中所述第二活性材料和所述导电材料一起构成第一电极混合物的余量物。
6.权利要求1的电化学电池,其中所述导电材料为一种碳质材料或一种金属粉末。
7.权利要求1的电化学电池,其中所述第二电极含有锂离子源。
8.权利要求7的电化学电池,其中所述第二电极含有锂或一种锂合金。
9.权利要求7的电化学电池,其中所述电解质含有锂阳离子。
10.权利要求1的电化学电池,其中所述第一电极混合物含有一种含氟聚合物。
11.权利要求10的电化学电池,其中所述含氟聚合物为一种1,1-二氟乙烯均聚物或共聚物。
12.权利要求10的电化学电池,其中所述含氟聚合物为一种四氟乙烯均聚物或共聚物。
13.权利要求10的电化学电池,其中所述含氟聚合物选自:聚四氟乙烯、全氟烷氧基聚合物、氟化乙烯丙烯、乙烯四氟乙烯、聚偏1,1-二氟乙烯、聚氯三氟乙烯、FPM、CTFE、FFKM、FKM。
14.权利要求1的电化学电池,其中所述第一电极的电压大于或等于2.25V。
15.权利要求1的电化学电池,其包括锂原电池。
16.权利要求1的电化学电池,其包括锂二次电池。
17.一种通过电化学方式产生电能的方法,该方法包括以下步骤:
a.提供一种电化学电池,该电池包括:
含有一种导电材料和一种具有碳-氟键的含氟聚合物或含氟低聚物的混合物的第一电极,其中含氟聚合物或含氟低聚物的量大于该混合物的50重量%并小于100重量%,且所述混合物的电导率大于或等于1×10-8S/cm;
含有碱金属或碱土金属离子源的第二电极;和
位于第一和第二电极之间的电解质,该电解质具有离子传导性、含有碱金属阳离子或碱土金属阳离子,并且不为易熔金属盐;和
b.将该电化学电池加热至小于所述含氟聚合物或含氟低聚物的分解温度的温度,从而从中引出电流。
18.权利要求17的方法,其中将所述电池加热至大于或等于100℃的温度。
19.权利要求17的电化学电池,其中所述导电材料的量大于或等于所述混合物的30重量%。
20.权利要求19的电化学电池,其中所述导电材料构成第一电极混合物的余量物。
21.权利要求17的电化学电池,其中所述第一电极混合物还含有一种第二活性材料,该第二活性材料的量小于或等于第一电极混合物的20重量%。
22.权利要求21的电化学电池,其中所述第二活性材料和所述导电材料一起构成第一电极混合物的余量物。
23.权利要求17的电化学电池,其中所述导电材料为一种碳质材料或一种金属粉末。
24.权利要求17的电化学电池,其中所述第二电极含有锂离子源。
25.权利要求24的电化学电池,其中所述第二电极含有锂或锂合金。
26.权利要求24的电化学电池,其中所述电解质含有锂阳离子。
27.权利要求17的电化学电池,其中所述第一电极混合物含有含氟聚合物。
28.权利要求27的电化学电池,其中所述含氟聚合物为一种1,1-二氟乙烯均聚物或共聚物。
29.权利要求27的电化学电池,其中所述含氟聚合物为一种四氟乙烯均聚物或共聚物。
30.权利要求27的电化学电池,其中所述含氟聚合物选自:聚四氟乙烯、全氟烷氧基聚合物、氟化乙烯丙烯、乙烯四氟乙烯、聚偏1,1-二氟乙烯、聚氯三氟乙烯、FPM、CTFE、FFKM、FKM。
31.权利要求17的电化学电池,其中所述第一电极的电压大于或等于2.25V。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US92836607P | 2007-05-09 | 2007-05-09 | |
US60/928,366 | 2007-05-09 | ||
PCT/US2008/063270 WO2008141200A1 (en) | 2007-05-09 | 2008-05-09 | Lithium fluoropolymer and fluoro-organic batteries |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101678310A true CN101678310A (zh) | 2010-03-24 |
Family
ID=39969839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200880015315A Pending CN101678310A (zh) | 2007-05-09 | 2008-05-09 | 锂含氟聚合物及含氟有机物电池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20080280191A1 (zh) |
EP (1) | EP2167228B1 (zh) |
CN (1) | CN101678310A (zh) |
WO (1) | WO2008141200A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102893446A (zh) * | 2010-04-29 | 2013-01-23 | 锂电池科技有限公司 | 锂硫电池 |
CN106298260A (zh) * | 2016-09-13 | 2017-01-04 | 南昌大学 | 一种氟化碳材料超级电容器极片的制备方法 |
CN108370026A (zh) * | 2015-12-10 | 2018-08-03 | 株式会社钟化 | 非水电解液二次电池 |
CN113421993A (zh) * | 2021-07-01 | 2021-09-21 | 电子科技大学 | 一种可充放电锂离子电池正极材料的制备及应用 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8377586B2 (en) | 2005-10-05 | 2013-02-19 | California Institute Of Technology | Fluoride ion electrochemical cell |
WO2010124172A2 (en) * | 2009-04-23 | 2010-10-28 | California Institute Of Technology | A metal air battery system |
US10326168B2 (en) * | 2011-01-03 | 2019-06-18 | Nanotek Instruments, Inc. | Partially and fully surface-enabled alkali metal ion-exchanging energy storage devices |
JP5553798B2 (ja) * | 2011-06-10 | 2014-07-16 | 株式会社日立製作所 | リチウムイオン二次電池用正極材料 |
US20150295227A1 (en) * | 2014-04-11 | 2015-10-15 | Xin Zhao | Silicon and graphene-incorporated rechargeable li-ion batteries with enhanced energy delivery and cycling life by using silecon and graphene based anode for energy storage |
JP6570843B2 (ja) * | 2014-07-31 | 2019-09-04 | 株式会社東芝 | 非水電解質電池及び電池パック |
EP3298646A4 (en) * | 2015-05-21 | 2018-12-12 | The University of North Carolina at Chapel Hill | Hybrid solid single-ion-conducting electrolytes for alkali batteries |
RU2628567C1 (ru) * | 2016-12-12 | 2017-08-21 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Химический источник тока |
CN114628710A (zh) * | 2020-12-11 | 2022-06-14 | 中国科学院大连化学物理研究所 | 一种氟化碳电池用电解液及应用 |
Family Cites Families (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT500094A (zh) * | 1968-04-12 | |||
JPS4825566B1 (zh) * | 1968-04-17 | 1973-07-30 | ||
US3660164A (en) * | 1969-07-02 | 1972-05-02 | California Inst Res Found | Primary cell utilizing halogen-organic charge tranfer complex |
US3642538A (en) * | 1969-10-31 | 1972-02-15 | Zito Co | Metal halide battery |
FR2127399A5 (zh) * | 1971-03-05 | 1972-10-13 | Accumulateurs Fixes | |
US3922174A (en) * | 1973-01-22 | 1975-11-25 | Gte Laboratories Inc | Electrochemical cell |
US4029854A (en) * | 1975-12-29 | 1977-06-14 | Eco-Control, Inc. | Halogen electrode |
US4052539A (en) * | 1977-01-17 | 1977-10-04 | Exxon Research And Engineering Company | Electrochemical cell with a grahite intercalation compound cathode |
JPS5528246A (en) | 1978-08-21 | 1980-02-28 | Oyo Kagaku Kenkyusho | Active material for battery |
US4166888A (en) * | 1978-10-30 | 1979-09-04 | Exxon Research & Engineering Co. | Cell having an alkali metal anode, a fluorinated carbon cathode and an electrolyte which includes an alkali metal halide salt and a solvent system containing a substituted amide solvent and a cyclic carbonate cosolvent |
US4211832A (en) * | 1978-12-07 | 1980-07-08 | Wilson Greatbatch Ltd. | Lithium-halogen cell including monomer charge transfer complex |
US4352866A (en) * | 1978-12-20 | 1982-10-05 | Gte Laboratories Incorporated | Electrochemical cell with improved cathode current collector and method |
US4214969A (en) * | 1979-01-02 | 1980-07-29 | General Electric Company | Low cost bipolar current collector-separator for electrochemical cells |
US4442187A (en) * | 1980-03-11 | 1984-04-10 | University Patents, Inc. | Batteries having conjugated polymer electrodes |
US4379772A (en) * | 1980-10-31 | 1983-04-12 | Diamond Shamrock Corporation | Method for forming an electrode active layer or sheet |
US4761355A (en) * | 1980-11-24 | 1988-08-02 | Medtronic, Inc. | Electrochemical cells and cathode materials |
JPS6139368A (ja) * | 1984-06-29 | 1986-02-25 | Daikin Ind Ltd | 電池 |
DE3617777A1 (de) * | 1985-05-27 | 1986-11-27 | Ricoh Co., Ltd., Tokio/Tokyo | Organisches sekundaerelement |
US4765968A (en) | 1985-09-16 | 1988-08-23 | Allied-Signal Inc. | Fluorinated carbon composition for use in fabricating a Li/CFx battery cathode |
US4686161A (en) | 1985-09-16 | 1987-08-11 | Allied Corporation | Method of inhibiting voltage suppression lithium/fluorinated carbon batteries |
US4681823A (en) | 1986-05-19 | 1987-07-21 | Allied Corporation | Lithium/fluorinated carbon battery with no voltage delay |
US4840859A (en) * | 1986-06-16 | 1989-06-20 | Mine Safety Appliances Company | Thermal battery |
DE3735971A1 (de) * | 1986-10-25 | 1988-06-09 | Ricoh Kk | Halbleitende oder leitende polymerisate, verfahren zu ihrer herstellung und ihre verwendung als aktive materialien in batterien |
US4833048A (en) * | 1988-03-31 | 1989-05-23 | The United States Of America As Represented By The United States Department Of Energy | Metal-sulfur type cell having improved positive electrode |
US4976904A (en) * | 1989-04-20 | 1990-12-11 | Energy Research Corporation | Method and apparatus for continuous formation of fibrillated polymer binder electrode component |
US5273840A (en) * | 1990-08-01 | 1993-12-28 | Covalent Associates Incorporated | Methide salts, formulations, electrolytes and batteries formed therefrom |
US5219680A (en) * | 1991-07-29 | 1993-06-15 | Ultracell Incorporated | Lithium rocking-chair rechargeable battery and electrode therefor |
US5427872A (en) * | 1993-11-17 | 1995-06-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Dendrite preventing separator for secondary lithium batteries |
US5442019A (en) * | 1994-03-25 | 1995-08-15 | Exxon Chemical Company | Process for transitioning between incompatible polymerization catalysts |
FR2724490B1 (fr) * | 1994-09-09 | 1996-10-25 | Lorraine Carbone | Electrode composite carbone/polymere pour generateur electrochimique rechargeable au lithium |
US5756230A (en) * | 1996-06-20 | 1998-05-26 | Valence Technology, Inc. | Fluoropolymer blends for polymeric electrolyte and electrodes |
US6120940A (en) * | 1996-10-30 | 2000-09-19 | The Johns Hopkins University | Electrochemical storage cell containing at least one electrode formulated from a phenylene-thienyl based polymer |
JP4417554B2 (ja) * | 1998-03-03 | 2010-02-17 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 相当にフッ素化されたイオノマー |
JPH11260349A (ja) * | 1998-03-05 | 1999-09-24 | Fujitsu Ltd | リチウム二次電池及びそれに用いる正極合剤 |
US6780928B1 (en) | 1998-06-17 | 2004-08-24 | Nof Corporation | Polyoxyalkylene monoalkyl ether, process for producing the same, polymerizable polyoxyalkylene monoalkyl ether derivative, polymer of said derivative and dispersant comprising said polymer |
KR100276656B1 (ko) * | 1998-09-16 | 2001-04-02 | 박찬구 | 박막형 복합 재료 양극으로 구성된 고체형 이차 전지 |
EP1121384A1 (en) * | 1998-10-15 | 2001-08-08 | E.I. Dupont De Nemours And Company | Polymers, containing a fluorocyclobutyl ring and their preparation |
KR100413907B1 (ko) * | 1998-12-22 | 2004-01-07 | 미쓰비시덴키 가부시키가이샤 | 전지용 전해액 및 이를 사용한 전지 |
ATE381767T1 (de) * | 1999-02-05 | 2008-01-15 | Kureha Corp | Zusammensetzung zur herstellung von elektroden, aktiv-kohle elektrode und elektrischer doppelschichtkondensator |
DE19917000A1 (de) | 1999-04-15 | 2000-10-19 | Varta Geraetebatterie Gmbh | Primäre Lithium-Ionen-Zelle |
US6489055B1 (en) * | 1999-06-25 | 2002-12-03 | Sanyo Electric Co., Ltd. | Lithium secondary battery |
JP3348405B2 (ja) * | 1999-07-22 | 2002-11-20 | エヌイーシートーキン株式会社 | インドール系高分子を用いた二次電池及びキャパシタ |
SG103298A1 (en) * | 2000-06-16 | 2004-04-29 | Nisshin Spinning | Polymer battery and method of manufacture |
US6815121B2 (en) * | 2000-07-31 | 2004-11-09 | Electrovaya Inc. | Particulate electrode including electrolyte for a rechargeable lithium battery |
FR2822296A1 (fr) * | 2001-03-19 | 2002-09-20 | Atofina | Elements de batteries lithium-ion fabriques a partir d'une poudre microcomposite a base d'une charge et d'un fluoropolymere |
JP4013032B2 (ja) * | 2001-10-03 | 2007-11-28 | 日本電気株式会社 | 電極および電池 |
FR2831715B1 (fr) * | 2001-10-25 | 2004-03-19 | Centre Nat Rech Scient | Oxyde de lithium et de vanadium, son utilisation comme matiere active d'electrode |
JP2003229172A (ja) * | 2002-01-31 | 2003-08-15 | Sony Corp | 非水電解質電池 |
WO2004077593A1 (ja) * | 2003-02-28 | 2004-09-10 | Nec Corporation | 二次電池 |
KR20060009797A (ko) * | 2003-05-13 | 2006-02-01 | 미쓰비시 가가꾸 가부시키가이샤 | 층형 리튬니켈계 복합 산화물 분체 및 그 제조방법 |
US20050227146A1 (en) * | 2003-12-12 | 2005-10-13 | Dania Ghantous | Medium rate and high rate batteries |
US20060115738A1 (en) * | 2004-12-01 | 2006-06-01 | Sergiy Sazhin | Lithium-fluorinated carbon cells |
US7794880B2 (en) * | 2005-11-16 | 2010-09-14 | California Institute Of Technology | Fluorination of multi-layered carbon nanomaterials |
US8232007B2 (en) * | 2005-10-05 | 2012-07-31 | California Institute Of Technology | Electrochemistry of carbon subfluorides |
US7563542B2 (en) * | 2005-10-05 | 2009-07-21 | California Institute Of Technology | Subfluorinated graphite fluorides as electrode materials |
JP2009512133A (ja) | 2005-10-05 | 2009-03-19 | カリフォルニア インスティテュート オブ テクノロジー | 電極材料としての部分フッ素化フッ化グラファイト |
CN100517855C (zh) * | 2005-11-24 | 2009-07-22 | 比亚迪股份有限公司 | 电解液、含有该电解液的锂离子电池以及它们的制备方法 |
US20070281213A1 (en) | 2006-06-02 | 2007-12-06 | Gentcorp Ltd. | Carbon Monofluoride Cathode Materials Providing Simplified Elective Replacement Indication |
-
2008
- 2008-05-09 EP EP08769406.3A patent/EP2167228B1/en active Active
- 2008-05-09 US US12/118,324 patent/US20080280191A1/en not_active Abandoned
- 2008-05-09 CN CN200880015315A patent/CN101678310A/zh active Pending
- 2008-05-09 WO PCT/US2008/063270 patent/WO2008141200A1/en active Application Filing
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102893446A (zh) * | 2010-04-29 | 2013-01-23 | 锂电池科技有限公司 | 锂硫电池 |
CN108370026A (zh) * | 2015-12-10 | 2018-08-03 | 株式会社钟化 | 非水电解液二次电池 |
CN108370026B (zh) * | 2015-12-10 | 2021-07-16 | 株式会社钟化 | 非水电解液二次电池 |
CN106298260A (zh) * | 2016-09-13 | 2017-01-04 | 南昌大学 | 一种氟化碳材料超级电容器极片的制备方法 |
CN113421993A (zh) * | 2021-07-01 | 2021-09-21 | 电子科技大学 | 一种可充放电锂离子电池正极材料的制备及应用 |
Also Published As
Publication number | Publication date |
---|---|
WO2008141200A1 (en) | 2008-11-20 |
EP2167228B1 (en) | 2015-07-08 |
US20080280191A1 (en) | 2008-11-13 |
EP2167228A1 (en) | 2010-03-31 |
EP2167228A4 (en) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2167228B1 (en) | Lithium fluoropolymer and fluoro-organic batteries | |
US20090111021A1 (en) | High discharge rate batteries | |
US8748036B2 (en) | Non-aqueous secondary battery | |
JP4454948B2 (ja) | 非水電解液二次電池 | |
US6051343A (en) | Polymeric solid electrolyte and lithium secondary cell using the same | |
CN101330139A (zh) | 锂二次电池 | |
US10403885B2 (en) | Active material for batteries | |
JP4253051B2 (ja) | 非水系電池用電極合剤および非水系電池 | |
JP2003077476A (ja) | リチウムイオン二次電池 | |
KR101748914B1 (ko) | 리튬 전극, 이의 제조방법 및 이를 포함하는 리튬 전지 | |
KR20150048499A (ko) | 비수 전해액 및 그를 갖는 리튬 이차전지 | |
JP6377881B2 (ja) | リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
JP5863631B2 (ja) | 非水電解質二次電池の製造方法 | |
JP2022083299A (ja) | 電解質及びデュアルイオン電池 | |
JP5573875B2 (ja) | 非水電解質溶液およびリチウムイオン二次電池 | |
JP2009176598A (ja) | 非水電解質二次電池およびその製造方法 | |
JP2009272120A (ja) | 負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池 | |
JP6486018B2 (ja) | 負極およびその負極を用いたリチウム二次電池 | |
JP2002134103A (ja) | ポリマーリチウム二次電池用電極の製造方法 | |
WO2022118443A1 (ja) | 電解質及びデュアルイオン電池 | |
JP4544250B2 (ja) | 非水電解液リチウム二次電池 | |
KR20250030945A (ko) | 이차전지용 음극 저항 측정 방법 및 음극의 저항을 측정할 수 있는 이차전지 | |
KR20230137555A (ko) | In-situ 가교된 겔 고분자 전해질 및 이의 제조방법 | |
KR20250000697A (ko) | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 | |
TW202012420A (zh) | 電解液及電化學裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20100324 |