[go: up one dir, main page]

CN101645474B - Photoelectric element, manufacturing method thereof, backlight module device, and lighting device - Google Patents

Photoelectric element, manufacturing method thereof, backlight module device, and lighting device Download PDF

Info

Publication number
CN101645474B
CN101645474B CN2008101298347A CN200810129834A CN101645474B CN 101645474 B CN101645474 B CN 101645474B CN 2008101298347 A CN2008101298347 A CN 2008101298347A CN 200810129834 A CN200810129834 A CN 200810129834A CN 101645474 B CN101645474 B CN 101645474B
Authority
CN
China
Prior art keywords
layer
semiconductor layer
photoelectric cell
light
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008101298347A
Other languages
Chinese (zh)
Other versions
CN101645474A (en
Inventor
杨雅兰
王心盈
林锦源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to CN2008101298347A priority Critical patent/CN101645474B/en
Priority to CN201210006818.5A priority patent/CN102522486B/en
Publication of CN101645474A publication Critical patent/CN101645474A/en
Application granted granted Critical
Publication of CN101645474B publication Critical patent/CN101645474B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

The invention discloses a photoelectric element, a manufacturing method thereof, a backlight module device and an illuminating device. The photoelectric element comprises a semiconductor light-emitting laminated layer, a first semiconductor layer, an active layer and a second semiconductor layer, wherein the surface of the first semiconductor layer is provided with a plurality of recesses; a transparent conductive layer formed on the surface of the first semiconductor layer to recess and form a hole containing air; a metal reflective layer is further disposed on the transparent conductive layer to form an omni-directional reflective layer with high reflectivity. According to the invention, the light extraction efficiency of the element is increased.

Description

光电元件及其制造方法、背光模块装置和照明装置Photoelectric element, manufacturing method thereof, backlight module device, and lighting device

技术领域 technical field

本发明涉及一种光电元件,特别是一种具有高效率反射层的发光二极管元件。The invention relates to a photoelectric element, in particular to a light-emitting diode element with a high-efficiency reflective layer.

背景技术 Background technique

发光二极管与传统的白炽灯泡与冷阴极灯管相较,具有省电以及使用寿命更长的优越特性,所以被广泛应用于各种领域之中,例如交通号志、背光模块、路灯照明、医疗设备与通讯储存装置等产业。Compared with traditional incandescent bulbs and cold cathode lamps, light-emitting diodes have the advantages of energy saving and longer service life, so they are widely used in various fields, such as traffic signs, backlight modules, street lighting, medical Equipment and communication storage devices and other industries.

为提升发光二极管的出光效率,通常于发光二极管结构的适当位置,如基板与发光叠层之间,设置一反射层,可减少基板的吸光效应,使发光层所产生的光透过上述反射层的反射作用而增加出光。反射层多采用具有高反射特性的金属材料,例如金(Au)或银(Ag),来作为单一反射金属层。此种反射层的反射能力,取决于所选用的反射金属层的材料其反射系数的大小,例如金(Au)大约是86%、银(Ag)大约是92%。In order to improve the light extraction efficiency of the light-emitting diode, a reflective layer is usually placed at an appropriate position of the light-emitting diode structure, such as between the substrate and the light-emitting stack, which can reduce the light absorption effect of the substrate and allow the light generated by the light-emitting layer to pass through the above-mentioned reflective layer The reflection effect increases the light output. The reflective layer mostly uses a metal material with high reflective properties, such as gold (Au) or silver (Ag), as a single reflective metal layer. The reflection ability of this kind of reflective layer depends on the size of the reflection coefficient of the material of the reflective metal layer selected, for example, gold (Au) is about 86%, and silver (Ag) is about 92%.

另一经常运用于发光二极管结构中的反射层为布拉格反射镜(Distributed Bragg Reflector:DBR)。布拉格反射镜(DBR)是由厚度为约四分之一光波长的多层具不同折射率的材料所组成的结构,其组成材料选择众多,例如是由SiO2/TiO2所形成的多层结构或是由外延工艺所形成的不同组成的半导体层所堆叠而成的多层结构。其反射率取决多层结构的层数与折射率变化的搭配设计。Another reflective layer often used in LED structures is a Distributed Bragg Reflector (DBR). A Bragg reflector (DBR) is a structure composed of multiple layers of materials with different refractive indices with a thickness of about a quarter of the light wavelength. structure or a multilayer structure formed by stacking semiconductor layers of different compositions formed by an epitaxial process. Its reflectivity depends on the number of layers of the multilayer structure and the matching design of the refractive index change.

在发光二极管结构中,尚可以采用一种全方向性反射层(omni-directionreflector:ODR)的设计,其通常具有比一般金属反射层更好的反射效果。全方向性反射层(ODR)是由半导体层、低折射率层与金属层所堆叠形成的结构,其中低折射率层(low index layer)的厚度为四分之一光波长的倍数,且通常为绝缘材料,例如二氧化硅(SiO2)或氮化硅(Si3N4),所以并不具有导电的特性。In the light-emitting diode structure, an omni-directional reflector (ODR) design can also be used, which usually has a better reflection effect than ordinary metal reflectors. An omnidirectional reflective layer (ODR) is a structure formed by stacking a semiconductor layer, a low refractive index layer, and a metal layer. The thickness of the low index layer (low index layer) is a multiple of a quarter of the wavelength of light, and usually It is an insulating material, such as silicon dioxide (SiO 2 ) or silicon nitride (Si 3 N 4 ), so it does not have conductive properties.

如上所述,设置一反射层于发光二极管结构中的适当位置,来增加元件的出光效率,是一个已知而且有效的方法,但如何设计一个反射效率更高的反射层,便成为一个大家所追求的目标。As mentioned above, it is a known and effective method to arrange a reflective layer at an appropriate position in the light emitting diode structure to increase the light extraction efficiency of the device, but how to design a reflective layer with higher reflective efficiency has become a public question. the goal that is pursued.

发明内容 Contents of the invention

本发明提供一种光电元件,其包括一半导体层,其表面具有许多凹陷;一中间层,形成于半导体层的表面,并将这些凹陷形成内含空气(折射系数约为1)的孔;以及一反射层,形成于中间层之上,以形成一具有高反射效率的全方向性反射层(ODR);其中上述的中间层可以是透明导电层或介电层。The present invention provides a kind of photoelectric element, it comprises a semiconductor layer, and its surface has many depressions; An intermediate layer, is formed on the surface of semiconductor layer, and these depressions form the hole that contains air (refractive index is about 1); And A reflective layer is formed on the intermediate layer to form an omnidirectional reflective layer (ODR) with high reflection efficiency; wherein the above-mentioned intermediate layer can be a transparent conductive layer or a dielectric layer.

本发明还提供一种光电元件,其包括一半导体发光叠层,其具有一第一半导体层、一有源层与一第二半导体层,且第一半导体层的表面具有许多凹陷;一透明导电层,形成于第一半导体层的表面,并将这些凹陷形成内含空气(折射系数约为1)的孔;一金属反射层,形成于透明导电层之上,以便形成一具有高反射效率的全方向性反射层(ODR)。The present invention also provides a photoelectric element, which includes a semiconductor light emitting stack, which has a first semiconductor layer, an active layer and a second semiconductor layer, and the surface of the first semiconductor layer has many depressions; a transparent conductive layer, formed on the surface of the first semiconductor layer, and form these depressions into holes containing air (refractive index about 1); a metal reflective layer, formed on the transparent conductive layer, so as to form a high reflective efficiency Omni Directional Reflective Layer (ODR).

本发明主要是希望通过上述于半导体层与透明导电层之间所形成的孔设计,来达到降低透明导电层的折射系数的效果,以提升全方向性反射层(ODR)的反射效率,使得由有源层所产生的光可以经由全方向性反射层(ODR)的反射作用而出光,以增加元件的出光效率。The present invention mainly hopes to achieve the effect of reducing the refractive index of the transparent conductive layer through the above-mentioned hole design formed between the semiconductor layer and the transparent conductive layer, so as to improve the reflection efficiency of the omnidirectional reflective layer (ODR), so that by The light generated by the active layer can be emitted through the reflection effect of the omnidirectional reflective layer (ODR), so as to increase the light extraction efficiency of the element.

附图说明 Description of drawings

图1为根据本发明的第一实施例。Fig. 1 is a first embodiment according to the present invention.

图2为根据本发明的第二实施例。Fig. 2 is a second embodiment according to the present invention.

图3为根据本发明的第三实施例。Fig. 3 is a third embodiment according to the present invention.

图4为根据本发明的背光模块结构图。FIG. 4 is a structural diagram of a backlight module according to the present invention.

图5为根据本发明的照明装置结构图。Fig. 5 is a structural diagram of an illuminating device according to the present invention.

附图标记说明Explanation of reference signs

200基板          210第一半导体层200 substrate 210 first semiconductor layer

220有源层        230第二半导体层220 active layer 230 second semiconductor layer

231孔            232凹陷231 holes 232 depressions

240透明导电层    250金属反射层240 transparent conductive layer 250 metal reflective layer

270第一电极      280第二电极270 first electrode 280 second electrode

300基板          310连结层300 substrate 310 connection layer

320金属反射层      330透明导电层320 metal reflective layer 330 transparent conductive layer

340第一半导体层    341孔340 first semiconductor layer 341 holes

342凹陷            350有源层342 concave 350 active layer

360第二半导体层    370第一电极360 second semiconductor layer 370 first electrode

380第二电极380 second electrode

600背光模块装置    610光源装置600 backlight module device 610 light source device

611发光元件        620光学装置611 Light-emitting element 620 Optical device

630电源供应系统    700照明装置630 power supply system 700 lighting device

710光源装置        711发光元件710 light source device 711 light emitting element

720电源供应系统    730控制元件720 Power Supply System 730 Control Elements

具体实施方式 Detailed ways

图1为本发明的第一实施例。如图所示为一发光元件,例如一发光二极管结构,是在基板200上以外延方式形成一第一半导体层210,再于第一半导体层210上形成一有源层220,最后形成一第二半导体层230于有源层220之上,其中第一半导体层210与第二半导体层230两者的电性相异。接者,在第二半导体层230的表面形成多个凹陷232,并在其上方覆盖一透明导电层240,此时透明导电层240并不会将凹陷232填满,因而形成多个孔231,其中大致包括空气(折射系数约为1)。然后再于透明导电层240的上方,形成一金属反射层250,此时第二半导体层230、透明导电层240与金属反射层250形成一具有高反射效率的全方向性反射层(omni-direction reflector:ODR)。最后分别在第一半导体层210与金属反射层250的上方,形成一第一电极270与一第二电极280,便可完成本实施例的发光二极管的结构。Fig. 1 is the first embodiment of the present invention. As shown in the figure, a light-emitting element, such as a light-emitting diode structure, is epitaxially formed on a substrate 200 with a first semiconductor layer 210, and then an active layer 220 is formed on the first semiconductor layer 210, and finally a first semiconductor layer 210 is formed. The second semiconductor layer 230 is on the active layer 220 , wherein the electrical properties of the first semiconductor layer 210 and the second semiconductor layer 230 are different. Then, a plurality of depressions 232 are formed on the surface of the second semiconductor layer 230, and a transparent conductive layer 240 is covered thereon. At this time, the transparent conductive layer 240 will not fill the depressions 232, thus forming a plurality of holes 231, This roughly includes air (with a refractive index of about 1). Then, on the top of the transparent conductive layer 240, a metal reflective layer 250 is formed. At this time, the second semiconductor layer 230, the transparent conductive layer 240 and the metal reflective layer 250 form an omni-directional reflective layer (omni-direction) with high reflection efficiency. reflector: ODR). Finally, a first electrode 270 and a second electrode 280 are respectively formed on the first semiconductor layer 210 and the metal reflective layer 250 to complete the structure of the light emitting diode of this embodiment.

上述的多个孔231其大小以使其上方的透明导电层无法填入孔231为原则,其最大直径优选约为小于200nm,使其中大致包括空气(折射系数约为1);其形状并无限制,可以是六角形孔穴、倒金字塔形,不规则的多边形等;其排列方式并无限制,例如是周期性排列或不规则排列。凹陷230的形成方式也并不受局限,举例如下:(a)外延法--在形成第二半导体层230的外延工艺中,通过控制外延条件,使得第二半导体层230的表面自然形成多个凹陷232;(b)湿式蚀刻法--当完成第二半导体层230之后,依据第二半导体层230的材料,选择适当的蚀刻溶液如盐酸或磷酸,对第二半导体层230的表面进行纳米光刻蚀刻,形成凹陷232;(C)纳米压印法(nano-imprint)--完成第二半导体层230之后,在其表面进行纳米印刷工艺步骤,以形成具有纳米级的多个凹陷232;(d)纳米球体散布法--当完成第二半导体层230之后,在其表面散布如SiO2、Al2O3、TiO2、MgO、ZnO等纳米球体,便可以在第二半导体层230的表面形成多个凹陷232;(e)高温合金球法--在第二半导体层230的表面先形成一薄金属层,再利用高温合金法,将此薄金属层转变为金属球体,便可以在第二半导体层230的表面形成多个凹陷232;(f)机械式粗化法--在第二半导体层230的表面,利用机械研磨的方式形成多个凹陷232于第二半导体层230的表面;(g)干式蚀刻法---在第二半导体层230的表面,利用干式蚀刻法如等离子体蚀刻法、电子束蚀刻法或激光蚀刻法等,对第二半导体层230的表面进行蚀刻,形成多个凹陷232。形成这些凹陷232是为了在半导体层230与透明导电层240之间,形成内含空气(折射率大约为1)的孔231的结构,透过孔231的结构设计来达到降低透明导电层240的折射系数的效果,进而提高全方向性反射层(ODR)的反射能力。The size of the above-mentioned plurality of holes 231 is based on the principle that the transparent conductive layer above it cannot be filled into the holes 231, and its maximum diameter is preferably about less than 200 nm, so that it generally includes air (the refractive index is about 1); its shape does not have Constraints can be hexagonal holes, inverted pyramids, irregular polygons, etc.; the arrangement is not limited, such as periodic arrangement or irregular arrangement. The formation method of the recess 230 is not limited, for example as follows: (a) epitaxial method - in the epitaxial process of forming the second semiconductor layer 230, by controlling the epitaxial conditions, the surface of the second semiconductor layer 230 naturally forms a plurality of Recess 232; (b) wet etching method--after the second semiconductor layer 230 is completed, according to the material of the second semiconductor layer 230, select an appropriate etching solution such as hydrochloric acid or phosphoric acid, and perform nanophotometry on the surface of the second semiconductor layer 230 Engraving and etching to form depressions 232; (C) nano-imprint method (nano-imprint)-after completing the second semiconductor layer 230, perform nano-imprinting process steps on its surface to form multiple depressions 232 with nanoscale; ( d) Nanosphere dispersion method--after the second semiconductor layer 230 is completed, nanospheres such as SiO 2 , Al 2 O 3 , TiO 2 , MgO, ZnO, etc. are spread on its surface, and then the surface of the second semiconductor layer 230 can be Form a plurality of depressions 232; (e) superalloy ball method--form a thin metal layer on the surface of the second semiconductor layer 230 first, and then use the superalloy method to convert this thin metal layer into a metal sphere, which can be A plurality of depressions 232 are formed on the surface of the second semiconductor layer 230; (f) mechanical roughening method-on the surface of the second semiconductor layer 230, a plurality of depressions 232 are formed on the surface of the second semiconductor layer 230 by mechanical grinding; (g) dry etching method---on the surface of the second semiconductor layer 230, use a dry etching method such as plasma etching, electron beam etching or laser etching, etc., to etch the surface of the second semiconductor layer 230 , forming a plurality of depressions 232 . The purpose of forming these depressions 232 is to form a structure of holes 231 containing air (refractive index is about 1) between the semiconductor layer 230 and the transparent conductive layer 240. The effect of the refractive index, thereby improving the reflective ability of the omnidirectional reflective layer (ODR).

上述实施例中基板200,可以是Al2O3、GaN、AlN、SiC、GaAs、GaP、Si、ZnO、MgO、MgAl2O4及玻璃所构成的材料组中至少一种材料或其它可代替的材料取代之;第一半导体层210、有源层220以及第二半导体层230可选自于GaN、AlGaN、InGaN、AlGaInP及AlInGaN等材料;第一电极270与一第二电极280选自于Al、Ti、Ti/Al、Cr/Al、Ti/Au、Cr/Au、Ni/Au、TiW、TiN、WSi、Au/Ge、Pt、Pd及Rb所构成的材料组中至少一种材料;透明导电层240选自于氧化铟锡、氧化镉锡、氧化锑锡、氧化锌铝及氧化锌锡所构成的材料组中至少一种材料;金属反射层250,为具有高反射率的导电性的材料,例如铝(Al)或银(Ag)。In the above embodiment, the substrate 200 can be at least one material in the group consisting of Al 2 O 3 , GaN, AlN, SiC, GaAs, GaP, Si, ZnO, MgO, MgAl 2 O 4 and glass, or other alternative materials. materials; the first semiconductor layer 210, the active layer 220 and the second semiconductor layer 230 can be selected from materials such as GaN, AlGaN, InGaN, AlGaInP and AlInGaN; the first electrode 270 and a second electrode 280 are selected from At least one material in the group consisting of Al, Ti, Ti/Al, Cr/Al, Ti/Au, Cr/Au, Ni/Au, TiW, TiN, WSi, Au/Ge, Pt, Pd and Rb; The transparent conductive layer 240 is at least one material selected from the material group consisting of indium tin oxide, cadmium tin oxide, antimony tin oxide, zinc aluminum oxide and zinc tin oxide; the metal reflective layer 250 is a conductive material with high reflectivity. materials such as aluminum (Al) or silver (Ag).

如图2所示为本发明的第二实施例。本实施例的结构与第一实施例不同的地方,是由第一半导体层210、透明导电层240与金属反射层250所形成的全方向性反射层(ODR)位于基板200与有源层220之间,使得由有源层220所产生向下发射的光经由全方向性反射层(ODR)的反射作用而反射出光,而避免为下方基板所吸收,进而提高出光效率。其中透明导电层240除了是由氧化铟锡、氧化镉锡、氧化锑锡、氧化锌铝及氧化锌锡等透明导电材料所构成以外;也可以一介电层所取代,此介电层可以是无机介电材料,例如二氧化硅(SiO2)、氧化铝(Al2O3)、氮化硅(SiNx)、或旋涂玻璃(spin-on glass)等,或是有机介电材料,例如环氧树脂(epoxy)、聚亚酰胺(polyimide)或BCB树脂(benzocyclobutene)等。As shown in Figure 2 is the second embodiment of the present invention. The difference between the structure of this embodiment and the first embodiment is that the omnidirectional reflective layer (ODR) formed by the first semiconductor layer 210, the transparent conductive layer 240 and the metal reflective layer 250 is located between the substrate 200 and the active layer 220. In between, the downwardly emitted light generated by the active layer 220 is reflected through the omnidirectional reflective layer (ODR) to avoid being absorbed by the underlying substrate, thereby improving the light extraction efficiency. Wherein the transparent conductive layer 240 is not only made of transparent conductive materials such as indium tin oxide, cadmium tin oxide, antimony tin oxide, zinc aluminum oxide and zinc tin oxide; it can also be replaced by a dielectric layer, which can be Inorganic dielectric materials, such as silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), silicon nitride (SiNx), or spin-on glass, etc., or organic dielectric materials, such as Epoxy resin (epoxy), polyimide (polyimide) or BCB resin (benzocyclobutene), etc.

如图3所示为本发明的第三实施例。本实施例是一利用基板转移方法所形成的发光二极管结构,其具有一导电基板300;其下方设置有一第一电极370;其上方透过一连结层310连接一多层结构,包括连结层310上方的金属反射层320;金属反射层320上方的透明导电层330;以及透明导电层330上方的外延叠层,包括一第一半导体层340,并在第一半导体层340上形成一有源层350,以及在有源层350上形成一第二半导体层360,其中第一半导体层340与第二半导体层360两者的电性相异;最后在第二半导体层360的上方形成一第二电极380。其中在第一半导体层340与透明导电层330接触的界面处,在第一半导体层340的表面形成多个凹陷342,且透明导电层330并不会将凹陷342填满,而形成多个孔341,其中大致包括空气(折射系数约为1),其中本实施例的孔341的形成方法、大小、形状、与排列方式与前述的实施例相同。由第一半导体层340、透明导电层330与金属反射层320,所形成的全方向性反射层(omni-direction reflector:ODR)具有高反射效率,可以使由发光叠层所产生的光往下发射时,经由全方向性反射层(ODR)的反射作用而反射出光,以避免光为下方的基板所吸收,进而提高出光效率。As shown in Figure 3 is the third embodiment of the present invention. This embodiment is a light-emitting diode structure formed by using a substrate transfer method, which has a conductive substrate 300; a first electrode 370 is arranged below it; The metal reflective layer 320 above; the transparent conductive layer 330 above the metal reflective layer 320; and the epitaxial stack above the transparent conductive layer 330, including a first semiconductor layer 340, and an active layer is formed on the first semiconductor layer 340 350, and a second semiconductor layer 360 is formed on the active layer 350, wherein the electrical properties of the first semiconductor layer 340 and the second semiconductor layer 360 are different; finally, a second semiconductor layer 360 is formed above the second semiconductor layer 360 electrode 380 . Wherein at the interface where the first semiconductor layer 340 is in contact with the transparent conductive layer 330, a plurality of depressions 342 are formed on the surface of the first semiconductor layer 340, and the transparent conductive layer 330 does not fill the depressions 342, but forms a plurality of holes 341, which roughly includes air (refractive index is about 1), wherein the forming method, size, shape, and arrangement of the holes 341 in this embodiment are the same as those in the previous embodiment. The omni-directional reflector (omni-direction reflector: ODR) formed by the first semiconductor layer 340, the transparent conductive layer 330 and the metal reflective layer 320 has high reflection efficiency, which can make the light generated by the light-emitting stack downward When emitting, the light is reflected through the reflection effect of the omnidirectional reflective layer (ODR), so as to prevent the light from being absorbed by the substrate below, thereby improving the light extraction efficiency.

本实施例中基板300,为具有导电特性的基板,例如硅基板、铜基板及SiC所构成的材料组中至少一种材料或其它可代替的材料取代之;第一半导体层340、有源层350以及第二半导体层360可选自于GaN、AlGaN、InGaN、AlGaInP及AlInGaN所构成材料组中的一种材料;第一电极370与一第二电极380选自于Al、Ti、Ti/Al、Cr/Al、Ti/Au、Cr/Au、Ni/Au、TiW、TiN、WSi、Au/Ge、Pt、Pd及Rb所构成材料组中的至少一种材料;透明导电层330选自于氧化铟锡、氧化镉锡、氧化锑锡、氧化锌铝及氧化锌锡所构成材料组中的至少一种材料;金属反射层320,为具有高反射率的导电性的材料,例如铝(Al)或银(Ag);粘结层310选自于环氧树脂(epoxy)、聚亚酰胺(polyimide)或BCB树脂(benzocyclobutene)所构成材料组中的至少一种材料。In this embodiment, the substrate 300 is a substrate with conductive properties, such as at least one material in the material group composed of a silicon substrate, a copper substrate, and SiC or other replaceable materials; the first semiconductor layer 340, the active layer 350 and the second semiconductor layer 360 can be selected from a material group consisting of GaN, AlGaN, InGaN, AlGaInP and AlInGaN; the first electrode 370 and a second electrode 380 can be selected from Al, Ti, Ti/Al , Cr/Al, Ti/Au, Cr/Au, Ni/Au, TiW, TiN, WSi, Au/Ge, Pt, Pd and Rb constitute at least one material in the material group; the transparent conductive layer 330 is selected from At least one material in the material group consisting of indium tin oxide, cadmium tin oxide, antimony tin oxide, zinc aluminum oxide and zinc tin oxide; the metal reflective layer 320 is a conductive material with high reflectivity, such as aluminum (Al ) or silver (Ag); the adhesive layer 310 is at least one material selected from the material group consisting of epoxy resin (epoxy), polyimide (polyimide) or BCB resin (benzocyclobutene).

上述的所有实施例并不局限于发光二极管元件,可以将具有孔结构设计的全方向性反射层(ODR),应用于任何需要反射层的光电元件的任何适当位置,如太阳能电池(Solar Cell)或激光二极管(Laser Diode)等。All the above-mentioned embodiments are not limited to light-emitting diode elements, and the omnidirectional reflective layer (ODR) with hole structure design can be applied to any suitable position of any photoelectric element that needs a reflective layer, such as a solar cell (Solar Cell) Or laser diode (Laser Diode), etc.

图4显示本发明的背光模块结构。其中背光模块装置600包括:由本发明上述任意实施例的发光元件611所构成的一光源装置610;一光学装置620置于光源装置610的出光路径上,将光做适当处理后出光;以及一电源供应系统630,提供上述光源装置610所需的电源。FIG. 4 shows the structure of the backlight module of the present invention. Wherein the backlight module device 600 includes: a light source device 610 composed of the light-emitting element 611 of any of the above-mentioned embodiments of the present invention; an optical device 620 placed on the light output path of the light source device 610, which emits light after proper processing; and a power supply The supply system 630 provides the power required by the above-mentioned light source device 610 .

图5显示本发明的照明装置结构。上述照明装置700可以是车灯、街灯、手电筒、路灯、指示灯等等。其中照明装置700包括:一光源装置710,由本发明上述的任意实施例的发光元件711所构成;一电源供应系统720,提供光源装置710所需的电源;以及一控制元件730控制电源输入光源装置710。Fig. 5 shows the structure of the lighting device of the present invention. The aforementioned illuminating device 700 may be a vehicle lamp, a street lamp, a flashlight, a street lamp, an indicator lamp, and the like. Wherein the lighting device 700 comprises: a light source device 710, constituted by the light-emitting element 711 of any embodiment of the present invention; a power supply system 720, providing the power required by the light source device 710; and a control element 730 to control the power input to the light source device 710.

虽然发明已通过各实施例说明如上,然其并非用以限制本发明的权利要求。对于本发明所作的各种修饰与变更,皆不脱本发明的精神与范围。Although the invention has been described above through various embodiments, it is not intended to limit the claims of the present invention. Various modifications and changes made to the present invention do not depart from the spirit and scope of the present invention.

Claims (11)

1. photoelectric cell comprises:
The luminous lamination of semiconductor has one first semiconductor layer, an active layer and one second semiconductor layer, a surface of this one first semiconductor layer wherein, and this surface has a plurality of depressions;
One transparency conducting layer is formed on this surface of this first semiconductor layer, makes those be recessed to form a plurality of holes; And
One metallic reflector is formed on this transparency conducting layer,
Wherein, these a plurality of holes are formed between this transparency conducting layer and this first semiconductor layer.
2. photoelectric cell as claimed in claim 1, wherein the maximum gauge in this hole is less than 200nm.
3. photoelectric cell as claimed in claim 1, wherein the refraction coefficient in this hole is 1.
4. photoelectric cell as claimed in claim 1, wherein the shape in this hole can be hexagon hole, inverted pyramid shape or irregular polygon.
5. photoelectric cell as claimed in claim 1, wherein this hole can be periodic arrangement or irregular alignment.
6. photoelectric cell as claimed in claim 1, the method that wherein forms this depression can be epitaxy, wet etching, nano print method, nanometer spheroid distribution method, high temperature alloy ball method, mechanical type roughening method or dry-etching method.
7. photoelectric cell as claimed in claim 1, wherein this transparency conducting layer can be replaced by an inorganic dielectric layer or organic dielectric layer.
8. photoelectric cell manufacturing approach, its step comprises:
Formation has the luminous lamination of semiconductor of one first semiconductor layer, an active layer and one second semiconductor layer;
Form on a plurality of surfaces that are depressed in this one first semiconductor layer;
Form a transparency conducting layer on this surface of this first semiconductor layer, and make those be recessed to form a plurality of holes; And
Form a metallic reflector on this transparency conducting layer,
Wherein, these a plurality of holes are formed between this transparency conducting layer and this first semiconductor layer.
9. photoelectric cell manufacturing approach as claimed in claim 8, the method that wherein forms these a plurality of depressions are epitaxy, wet etching, nano print method, nanometer spheroid distribution method, high temperature alloy ball method, mechanical type roughening method or dry-etching method.
10. back light module device comprises:
One light supply apparatus, one of them institute forms by the described photoelectric cell of claim 1~9;
One Optical devices place the going out on the light path of this light supply apparatus; And
One power system provides this light supply apparatus required power supply.
11. a lighting device comprises:
One light supply apparatus, one of them institute forms by the described photoelectric cell of claim 1~9;
One power system provides this light supply apparatus required power supply; And
One control element is controlled this this light supply apparatus of power supply input.
CN2008101298347A 2008-08-07 2008-08-07 Photoelectric element, manufacturing method thereof, backlight module device, and lighting device Active CN101645474B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008101298347A CN101645474B (en) 2008-08-07 2008-08-07 Photoelectric element, manufacturing method thereof, backlight module device, and lighting device
CN201210006818.5A CN102522486B (en) 2008-08-07 2008-08-07 Photoelectric components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101298347A CN101645474B (en) 2008-08-07 2008-08-07 Photoelectric element, manufacturing method thereof, backlight module device, and lighting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201210006818.5A Division CN102522486B (en) 2008-08-07 2008-08-07 Photoelectric components

Publications (2)

Publication Number Publication Date
CN101645474A CN101645474A (en) 2010-02-10
CN101645474B true CN101645474B (en) 2012-03-21

Family

ID=41657258

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201210006818.5A Active CN102522486B (en) 2008-08-07 2008-08-07 Photoelectric components
CN2008101298347A Active CN101645474B (en) 2008-08-07 2008-08-07 Photoelectric element, manufacturing method thereof, backlight module device, and lighting device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201210006818.5A Active CN102522486B (en) 2008-08-07 2008-08-07 Photoelectric components

Country Status (1)

Country Link
CN (2) CN102522486B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808444A (en) * 2018-06-19 2018-11-13 扬州乾照光电有限公司 A kind of upside-down mounting VCSEL chips and production method
WO2020000408A1 (en) * 2018-06-29 2020-01-02 天津三安光电有限公司 Led chip structure
CN109545936A (en) * 2018-11-30 2019-03-29 武汉华星光电技术有限公司 A kind of area source chip and its light emitting diode
CN111883625A (en) * 2020-07-08 2020-11-03 扬州乾照光电有限公司 LED chip structure and preparation method thereof
CN112331753B (en) * 2020-11-06 2022-11-11 业成科技(成都)有限公司 Light Emitting Diode Structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819283A (en) * 2005-02-08 2006-08-16 晶元光电股份有限公司 Light-emitting diode and method of making the same
CN1877874A (en) * 2005-06-06 2006-12-13 日立电线株式会社 Light emitting diode and manufacturing method thereof
CN101222009A (en) * 2007-01-12 2008-07-16 清华大学 led
DE102007003282A1 (en) * 2007-01-23 2008-07-24 Osram Opto Semiconductors Gmbh LED chip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054381A (en) * 2004-08-16 2006-02-23 Sony Corp Semiconductor light emitting element, manufacturing method thereof, integrated semiconductor light emitting device, manufacturing method thereof, image display device, manufacturing method thereof, illumination device, and manufacturing method thereof
TWI239668B (en) * 2004-10-21 2005-09-11 Formosa Epitaxy Inc Structure of gallium-nitride based (GaN-based) light-emitting diode with high luminance
JP4765415B2 (en) * 2005-06-02 2011-09-07 日立電線株式会社 Light emitting diode and manufacturing method thereof
TW200717843A (en) * 2005-10-19 2007-05-01 Epistar Corp Light-emitting element with high-light-extracting-efficiency
CN100490196C (en) * 2006-06-12 2009-05-20 武东星 Solid-state light-emitting element with high light extraction rate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819283A (en) * 2005-02-08 2006-08-16 晶元光电股份有限公司 Light-emitting diode and method of making the same
CN1877874A (en) * 2005-06-06 2006-12-13 日立电线株式会社 Light emitting diode and manufacturing method thereof
CN101222009A (en) * 2007-01-12 2008-07-16 清华大学 led
DE102007003282A1 (en) * 2007-01-23 2008-07-24 Osram Opto Semiconductors Gmbh LED chip

Also Published As

Publication number Publication date
CN101645474A (en) 2010-02-10
CN102522486B (en) 2015-11-18
CN102522486A (en) 2012-06-27

Similar Documents

Publication Publication Date Title
TWI420694B (en) Opto-electrical device
JP4919624B2 (en) Light emitting diode with an omnidirectional reflector including a transparent conductive layer
US9553233B2 (en) Light emitting diode
US7413918B2 (en) Method of making a light emitting diode
GB2447091A (en) Vertical LED
CN102931304B (en) High-efficiency light-emitting device and manufacturing method thereof
WO2011030789A1 (en) Light-emitting device
CN204088355U (en) A kind of light emitting diode construction
CN100379043C (en) GaN-based light-emitting diode with omni-angle mirror structure and manufacturing method
CN101645474B (en) Photoelectric element, manufacturing method thereof, backlight module device, and lighting device
KR20140134420A (en) Method for manufacturing semiconductor light emitting device package
US20080277681A1 (en) Light emitting diode
US9276164B2 (en) Optoelectronic device and method for manufacturing the same
KR101233768B1 (en) Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method
US7915621B2 (en) Inverted LED structure with improved light extraction
WO2021115473A1 (en) Substrate and manufacturing method therefor, and led and manufacturing method therefor
TWI481084B (en) Optical device and manufacturing method thereof
WO2012045222A1 (en) Light emitting device and manufacturing method thereof
TWI509832B (en) Opto-electrical device
CN101340752B (en) Light emitting element
KR20160137476A (en) Light emitting diode
CN102544287B (en) Photoelectric element and its manufacturing method
TWI398968B (en) Light emitting diode structure and method of manufacturing the same
Lee et al. Enhanced light extraction in wafer-bonded AlGaInP-based light-emitting diodes via micro-and nanoscale surface textured
Robidas et al. Improved light extraction efficiency of InGaN/GaN blue LED by patterning free surfaces

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant