[go: up one dir, main page]

CN101612734A - Pipeline spraying robot and operation track planning method thereof - Google Patents

Pipeline spraying robot and operation track planning method thereof Download PDF

Info

Publication number
CN101612734A
CN101612734A CN200910090827A CN200910090827A CN101612734A CN 101612734 A CN101612734 A CN 101612734A CN 200910090827 A CN200910090827 A CN 200910090827A CN 200910090827 A CN200910090827 A CN 200910090827A CN 101612734 A CN101612734 A CN 101612734A
Authority
CN
China
Prior art keywords
robot
spraying
joint
workpiece
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910090827A
Other languages
Chinese (zh)
Other versions
CN101612734B (en
Inventor
邵君奕
杨向东
刘召
吴丹
陈恳
张传清
陈雁
吴聊
付成龙
刘莉
杨东超
曹文敦
陈明启
路敦民
李金泉
付铁
刘宗政
徐家球
郑林斌
王力强
颜华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Chengdu Aircraft Industrial Group Co Ltd
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN2009100908275A priority Critical patent/CN101612734B/en
Publication of CN101612734A publication Critical patent/CN101612734A/en
Application granted granted Critical
Publication of CN101612734B publication Critical patent/CN101612734B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

本发明公开了一种具有多冗余自由度的管道喷涂机器人及其作业轨迹规划方法,该方法包括步骤:S1,将被喷涂表面的几何模型导入绘图软件的特定模块,所述特定模块自动生成机器人的喷涂工件在管道内的无碰喷涂路径;S2,基于投影梯度法进行迭代运算,规划所述机器人的关节连续运动轨迹;S3,根据所述关节连续运动轨迹进行碰撞检验,若有碰撞,则修改优化函数的权重系数,返回步骤S2重新规划所述关节连续运动轨迹;否则结束规划。本发明的方法计算量小,且在利用该方法进行轨迹规划后再进行异形狭长管道内壁喷涂时能够保证不碰壁,具有高的喷涂质量。

Figure 200910090827

The invention discloses a pipeline spraying robot with multiple redundant degrees of freedom and its operation trajectory planning method. The method includes steps: S1, importing the geometric model of the surface to be sprayed into a specific module of the drawing software, and the specific module automatically generates The non-collision spraying path of the spraying workpiece of the robot in the pipeline; S2, perform iterative calculation based on the projected gradient method, and plan the continuous motion trajectory of the joints of the robot; S3, perform collision inspection according to the continuous motion trajectory of the joints, if there is a collision, Then modify the weight coefficient of the optimization function, and return to step S2 to replan the continuous motion trajectory of the joint; otherwise, end the planning. The calculation amount of the method of the invention is small, and the inner wall of the special-shaped narrow and long pipeline can be sprayed after trajectory planning by using the method, which can ensure that the wall does not hit the wall, and has high spraying quality.

Figure 200910090827

Description

管道喷涂机器人及其作业轨迹规划方法 Pipeline spraying robot and its operation trajectory planning method

技术领域 technical field

本发明涉及机器人技术领域,具体涉及一种具有多冗余自由度的管道喷涂机器人及其作业轨迹规划方法。The invention relates to the technical field of robots, in particular to a pipeline spraying robot with multiple redundant degrees of freedom and an operation trajectory planning method thereof.

背景技术 Background technique

在特种工业领域,许多复杂工件的狭长管内壁需要喷涂作业,由于这些狭长管的内表面较为复杂,内部空间极为狭小,喷涂技师难以进入,因此必须采用机器人自动喷涂。In the field of special industries, the inner walls of the narrow and long tubes of many complex workpieces need to be sprayed. Because the inner surfaces of these long and narrow tubes are relatively complex and the internal space is extremely narrow, it is difficult for spraying technicians to enter, so robots must be used for automatic spraying.

现有技术中一般采用冗余自由度机器人进行管道喷涂作业。“冗余”的意义在于,为了让机器人在狭窄复杂的管道内完成喷涂作业,就必须增加机器人的自由度,以实现机器人末端在跟踪喷涂轨迹的同时,机器人本体不会与环境约束发生冲突。在进行机器人作业轨迹规划时,通常采用逆运动学求解,分为两大类方法:局部优化法和全局优化法。局部优化法依赖于当前的机器人位形,即从当前的机器人位形出发,以事先约定好的步长,搜索优化目标的极值点,并以此作为下一步的初始点,则局部优化法的可行域为当前位形的一个领域U(q);全局优化法的可行域是满足约束的整个位形空间C(q),在C(q)找到全局最优的解。比较局部优化和全局优化,前者计算量少,在小范围内保证收敛和稳定,但是在较大范围内可能出现不稳定;后者保证了全局的最优,但是计算量较大,收敛速度慢,甚至不收敛。对于实际的工程来说,采用局部优化法更好。In the prior art, redundant degree-of-freedom robots are generally used for pipeline spraying operations. The meaning of "redundancy" is that in order for the robot to complete the spraying operation in the narrow and complicated pipeline, the degree of freedom of the robot must be increased, so that the robot body will not conflict with the environmental constraints while the robot end is tracking the spraying trajectory. In the trajectory planning of robot operations, inverse kinematics is usually used to solve the problem, which can be divided into two categories: local optimization method and global optimization method. The local optimization method depends on the current robot configuration, that is, starting from the current robot configuration, with the step size agreed in advance, searching for the extreme point of the optimization goal, and using it as the initial point of the next step, the local optimization method The feasible region of is a field U(q) of the current configuration; the feasible region of the global optimization method is the entire configuration space C(q) that satisfies the constraints, and the global optimal solution is found in C(q). Comparing local optimization and global optimization, the former requires less calculation and ensures convergence and stability in a small range, but may be unstable in a larger range; the latter guarantees global optimization, but has a large amount of calculation and slow convergence speed , does not even converge. For actual engineering, it is better to use local optimization method.

现有技术的方法如扩展雅可比法、二次规划法,以及关键点避障法,都很难找到一个合适的优化准则,因此不适合异形狭长管道内壁喷涂作业规划。例如关键点避障法,机器人在狭长管道内壁作业,那么机器人与狭长管道内壁的碰撞危险点肯定有很多,而且这些危险点不是固定的,是随机器人的位形发生变化的,那么每一次要先寻找危险点,然后再进行优化,这样是不可行的。又如,扩展雅可比法是针对冗余自由度为1的机器人,显然对于多冗余自由度机器人是不适用的。又如,二次规划法,要写二次优化函数,其中包含矩阵,因此运算复杂。The methods in the prior art, such as extended Jacobian method, quadratic programming method, and key point obstacle avoidance method, are difficult to find a suitable optimization criterion, so they are not suitable for the planning of spraying operations on the inner wall of special-shaped narrow and long pipelines. For example, in the key point obstacle avoidance method, if the robot works on the inner wall of the narrow and long pipe, there must be many dangerous points of collision between the robot and the inner wall of the narrow and long pipe, and these dangerous points are not fixed, but change with the configuration of the robot. It is not feasible to find the danger point first and then optimize it. As another example, the extended Jacobian method is aimed at the robot with one redundant degree of freedom, which is obviously not applicable to the robot with multiple redundant degrees of freedom. As another example, in the quadratic programming method, it is necessary to write a quadratic optimization function, which contains a matrix, so the operation is complicated.

因此上述方法不适用于多冗余自由度机器人对异形狭长管道进行喷涂作业规划。Therefore, the above method is not suitable for the multi-redundant degree of freedom robot to plan the spraying operation of the special-shaped narrow and long pipeline.

发明内容 Contents of the invention

本发明的目的是针对现有技术的不足,提供一种多冗余自由度喷涂机器人以及利用此种机器人对异形狭长管道进行喷涂作业的轨迹规划方法。The object of the present invention is to provide a multi-redundant degree of freedom spraying robot and a trajectory planning method for spraying special-shaped long and narrow pipelines by using the robot to address the shortcomings of the prior art.

为达到上述目的,本发明提供了一种具有多冗余自由度的管道喷涂机器人作业的轨迹规划方法,该轨迹规划方法是指机器人在变截面复杂曲面围成的异形管道内壁寻找一条从起点到终点的路径,使机器人能在尽量不碰撞管道内壁的情况下完成管道内壁喷涂作业。对于冗余机器人,其关节空间维数a大于任务空间维数b,给定了冗余机器人的末端位姿,关节空间有无穷多点与之对应,这些点的集合是关节空间的一个a-b维流形,使得冗余度机器人可以在实现给定末端姿态的同时,还可以通过在这个子空间变动,满足如改善机器人灵活性避免奇异、避开障碍、避开关节限位及改善动力学性能等二次目标。In order to achieve the above object, the present invention provides a trajectory planning method for pipeline spraying robots with multiple redundant degrees of freedom. The trajectory planning method refers to that the robot searches for a path from the starting point to The path of the end point enables the robot to complete the spraying operation on the inner wall of the pipeline without colliding with the inner wall of the pipeline as much as possible. For a redundant robot, the joint space dimension a is greater than the task space dimension b, given the end pose of the redundant robot, there are infinitely many points in the joint space corresponding to it, and the set of these points is an a-b dimension of the joint space Manifold, so that the redundant robot can achieve a given terminal posture, and can also change in this subspace to meet the requirements such as improving the flexibility of the robot, avoiding singularities, avoiding obstacles, avoiding joint limits and improving dynamic performance. Wait for the second goal.

上述方法包括以下步骤:The above method comprises the following steps:

S1,将被喷涂表面的几何模型导入绘图软件的特定模块,特定模块自动生成机器人的喷涂工件在管道内的无碰喷涂路径;S1, the geometric model of the surface to be sprayed is imported into a specific module of the drawing software, and the specific module automatically generates a non-collision spraying path of the robot's sprayed workpiece in the pipeline;

S2,基于投影梯度法进行迭代运算,规划机器人的关节连续运动轨迹;S2, perform iterative calculation based on the projection gradient method, and plan the continuous motion trajectory of the robot's joints;

S3,根据关节连续运动轨迹进行碰撞检验,若有碰撞,则修改优化函数的权重系数,返回步骤S2重新规划关节连续运动轨迹;否则结束规划。S3. Carry out a collision check according to the joint continuous motion trajectory. If there is a collision, modify the weight coefficient of the optimization function, and return to step S2 to replan the joint continuous motion trajectory; otherwise, end the planning.

其中,步骤S1中“特定模块自动生成机器人的喷涂工件在管道内的无碰喷涂路径”的步骤具体可以为:Wherein, the step of "the specific module automatically generates the non-collision spraying path of the robot's spraying workpiece in the pipeline" in step S1 can be specifically:

A1,载入机器人的喷涂工件模型,并根据喷涂工艺参数绘制出被喷涂表面的辅助面;A1, load the sprayed workpiece model of the robot, and draw the auxiliary surface of the sprayed surface according to the spraying process parameters;

A2,选择辅助面和喷涂工件,生成两者的交线,从而得到喷涂工件的喷涂路径;A2, select the auxiliary surface and the sprayed workpiece, and generate the intersection line of the two, so as to obtain the spraying path of the sprayed workpiece;

A3,选择插值方式,确定喷涂工件的路径点的个数,将路径点按序组成路径点序列X0,X1,…,Xi,…,Xn,将路径点序列导出,以备对机器人进行关节轨迹的规划,其中Xi=[xi,yi,zi],xi、yi、zi分别为路径点Xi在X、Y、Z三个坐标轴的坐标值,i=1,…,n,n为整数。A3, select the interpolation method, determine the number of path points for spraying the workpiece, form the path points in order into a path point sequence X 0 , X 1 ,...,X i ,...,X n , export the path point sequence for future reference The robot plans the joint trajectory, where X i =[xi , y i , zi ], xi , y i , zi are the coordinate values of the path point X i on the X, Y, and Z coordinate axes respectively, i=1,...,n, n is an integer.

其中,步骤S2具体可以包括:Wherein, step S2 specifically may include:

B1,拟合出管道的中心轴,中心轴的函数为B1, fit the central axis of the pipeline, the function of the central axis is

ythe y == 00 zz == ff (( xx )) ,, xx LL ≤≤ xx ≤≤ xx Uu ,, -- -- -- (( 11 ))

其中,xL、xU分别为管道的起点与终点;Among them, x L and x U are the starting point and the end point of the pipeline respectively;

B2,令迭代次数j的初值为0,迭代步长为ΔT,机器人的关节角度的初值为q0,其中 q 0 = [ q 1 0 , q 2 0 , . . . , q N 0 ] T , N为关节的个数;B2. Let the initial value of the iteration number j be 0, the iteration step size be ΔT, and the initial value of the joint angle of the robot be q 0 , where q 0 = [ q 1 0 , q 2 0 , . . . , q N 0 ] T , N is the number of joints;

B3,令喷涂工件的第一个路径点的位置X0=Xj,根据前向运动学方程求得对应于机器人的关节角度的初值q0的喷涂工件的第一个路径点的位置为

Figure G2009100908275D00033
对X0求导得到 X · = X 0 - X ^ Δt ; 在公式X0=Xj中,0代表路径点的序号,j代表迭代次数;B3, let the position of the first path point of the sprayed workpiece X 0 =X j , according to the forward kinematics equation, the position of the first path point of the sprayed workpiece corresponding to the initial value q 0 of the joint angle of the robot is obtained as
Figure G2009100908275D00033
Taking the derivative with respect to X 0 gives x · = x 0 - x ^ Δt ; In the formula X 0 =X j , 0 represents the serial number of the path point, and j represents the number of iterations;

B4,求得机器人的各关节与中心轴的距离之和H,并以H为优化函数:B4, obtain the sum H of the distances between each joint of the robot and the central axis, and use H as the optimization function:

Hh == ΣΣ ii == 11 NN ww ii (( ythe y ii 22 ++ (( zz ii -- ff (( xx ii )) )) 22 )) -- -- -- (( 22 )) ,,

其中wi为权重系数;Where w i is the weight coefficient;

B5,取v为优化函数H的负梯度方向,并取合适的增益k,极小化优化函数H,则B5, take v as the negative gradient direction of the optimization function H, and take an appropriate gain k to minimize the optimization function H, then

vv == -- kk ▿▿ Hh == -- kk [[ ∂∂ Hh ∂∂ qq ii ]] NN ×× 11 -- -- -- (( 33 ))

根据投影梯度法的逆运动学方程Inverse Kinematics Equations According to the Projected Gradient Method

将式(3)代入式(4),得到Substituting formula (3) into formula (4), we get

Figure G2009100908275D00043
Figure G2009100908275D00043

B6,将机器人的关节角度的初值q0和喷涂工件的第一个路径点的位置X0的导数

Figure G2009100908275D00044
代入式(4),得到
Figure G2009100908275D00045
则新的关节角度值 q 1 = q 0 + q · ΔT ; B6, the derivative of the initial value q0 of the joint angle of the robot and the position X0 of the first path point of the sprayed workpiece
Figure G2009100908275D00044
Substituting into formula (4), we get
Figure G2009100908275D00045
Then the new joint angle value q 1 = q 0 + q &Center Dot; ΔT ;

B7,根据前向运动学方程计算出对应于新的关节角度值q1的新的喷涂工件位置 X ^ 1 = f ( q 1 ) ; B7, calculate the new spraying workpiece position corresponding to the new joint angle value q1 according to the forward kinematics equation x ^ 1 = f ( q 1 ) ;

B8,计算 &Delta;X = | | X 0 - X ^ 1 | | , 如果ΔX>ξ,则返回步骤B2,直至ΔX<ξ,得到喷涂工件的第一个路径点的位置Xj对应的机器人的关节角度的值;其中ξ为预设的可接受误差值;B8, calculate &Delta;X = | | x 0 - x ^ 1 | | , If ΔX>ξ, then return to step B2 until ΔX<ξ to obtain the value of the joint angle of the robot corresponding to the position X j of the first path point of the sprayed workpiece; where ξ is a preset acceptable error value;

B9,令j=j+1,求得喷涂工件的下一个路径点对应的机器人的关节角度的值,直至求得所有路径点对应的机器人的关节角度的值;B9, make j=j+1, obtain the value of the joint angle of the robot corresponding to the next path point of the sprayed workpiece, until obtaining the value of the joint angle of the robot corresponding to all path points;

B10,根据插值方式对各关节进行插值,得到关节连续运动轨迹;B10, perform interpolation on each joint according to the interpolation method, and obtain the continuous motion trajectory of the joint;

B11,根据机器人的末端位姿和末端速度,检验喷涂距离和喷涂速度的波动是否满足约束,并通过动力学方程验证喷涂距离和喷涂速度是否满足关节力矩约束,若上述条件均满足,则结束步骤S2,否则返回步骤S1。B11. According to the terminal pose and terminal velocity of the robot, check whether the fluctuations of the spraying distance and spraying speed meet the constraints, and verify whether the spraying distance and spraying speed meet the joint torque constraints through the dynamic equation. If the above conditions are met, the end of the step S2, otherwise return to step S1.

其中,机器人可以具有多冗余自由度,例如2个冗余自由度。Wherein, the robot may have multiple redundant degrees of freedom, for example, 2 redundant degrees of freedom.

其中,绘图软件可以为DELMIA软件,相应地,特定模块为ArcWelding模块。Wherein, the drawing software may be DELMIA software, and correspondingly, the specific module is an ArcWelding module.

其中,插值方式为五次样条插值。Among them, the interpolation method is quintic spline interpolation.

其中,喷涂工艺参数包括喷涂距离、喷幅宽度及喷幅搭接。Among them, the spraying process parameters include spraying distance, spraying width and spraying width.

其中,喷涂工件为末端喷枪。Among them, the spraying workpiece is the end spray gun.

本发明还提供一种利用上述轨迹规划方法进行作业规划的具有多冗余自由度的管道喷涂机器人,包括喷涂工件和与喷涂工件连接的多个关节。The present invention also provides a pipeline spraying robot with multiple redundant degrees of freedom for operation planning using the above trajectory planning method, including a spraying workpiece and multiple joints connected with the spraying workpiece.

上述技术方案具有如下优点:The above-mentioned technical scheme has the following advantages:

1、本发明的方案属于局部优化法,计算量小;1. The scheme of the present invention belongs to the local optimization method, and the amount of calculation is small;

2、本发明的方案适用于多冗余自由度机器人对异形狭长管道进行喷涂作业规划,因此一方面能够保证不碰壁,另一方面能够实现高的喷涂质量,如喷涂均匀,精确度高。2. The solution of the present invention is suitable for multi-redundant degree-of-freedom robots to plan spraying operations for special-shaped narrow and long pipes. Therefore, on the one hand, it can ensure that it does not hit the wall, and on the other hand, it can achieve high spraying quality, such as uniform spraying and high accuracy.

附图说明 Description of drawings

图1是本发明实施例的方法流程图;Fig. 1 is the method flowchart of the embodiment of the present invention;

图2是本发明实施例的具有多冗余自由度的管道喷涂机器人的逆运动学求解模型。Fig. 2 is an inverse kinematics solution model of a pipeline spraying robot with multiple redundant degrees of freedom according to an embodiment of the present invention.

具体实施方式 Detailed ways

下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.

图1是本发明实施例的方法流程图;图2是本发明实施例的具有多冗余自由度的管道喷涂机器人的逆运动学求解模型。如图1和图2所示,依据本发明的具有多冗余自由度的管道喷涂机器人的作业轨迹规划方法包括以下步骤:Fig. 1 is a method flow chart of an embodiment of the present invention; Fig. 2 is an inverse kinematics solution model of a pipeline spraying robot with multiple redundant degrees of freedom according to an embodiment of the present invention. As shown in Fig. 1 and Fig. 2, the operation trajectory planning method of the pipeline spraying robot with multiple redundant degrees of freedom according to the present invention comprises the following steps:

S1,将被喷涂表面的几何模型导入绘图软件的特定模块,例如DELMIA软件的Arc Welding模块,Arc Welding模块自动生成机器人的喷涂工件(例如末端喷枪)在管道内的无碰喷涂路径;S1, import the geometric model of the surface to be sprayed into a specific module of the drawing software, such as the Arc Welding module of DELMIA software, and the Arc Welding module automatically generates the non-collision spraying path of the spraying workpiece (such as the end spray gun) of the robot in the pipeline;

S2,基于投影梯度法进行迭代运算,规划机器人的关节连续运动轨迹;S2, perform iterative calculation based on the projection gradient method, and plan the continuous motion trajectory of the robot's joints;

S3,根据关节连续运动轨迹进行碰撞检验,若有碰撞,则修改优化函数的权重系数,返回步骤S2重新规划关节连续运动轨迹;否则结束规划。举例来说,可以进行ProE环境下的碰撞检验,若有碰撞则修改优化函数H中碰撞关节对应的权重系数,再进行步骤S2的机器人关节连续运动轨迹规划,直到通过碰撞检验,最后将结果送往机器人控制系统,由其生成机器人控制指令。S3. Carry out a collision check according to the continuous motion trajectory of the joints. If there is a collision, modify the weight coefficient of the optimization function, and return to step S2 to replan the continuous motion trajectory of the joints; otherwise, end the planning. For example, the collision test in the ProE environment can be carried out. If there is a collision, the weight coefficient corresponding to the collision joint in the optimization function H is modified, and then the continuous motion trajectory planning of the robot joint is carried out in step S2 until the collision test is passed, and finally the result is sent to to the robot control system, which generates robot control commands.

在本实施例中,步骤S1中“Arc Welding模块自动生成机器人的末端喷枪在管道内的无碰喷涂路径”的步骤具体可以包括:In this embodiment, the step of "the Arc Welding module automatically generates the non-collision spraying path of the end spray gun of the robot in the pipeline" in step S1 may specifically include:

A1,载入机器人的末端喷枪模型,并根据喷涂工艺参数(例如,喷涂距离、喷幅宽度及喷幅搭接)绘制出被喷涂表面的辅助面;A1, load the end spray gun model of the robot, and draw the auxiliary surface of the sprayed surface according to the spraying process parameters (for example, spraying distance, spray width and spray overlap);

A2,选择辅助面和末端喷枪,生成两者的交线,从而得到末端喷枪的喷涂路径;A2, select the auxiliary surface and the end spray gun, and generate the intersection line of the two, so as to obtain the spraying path of the end spray gun;

A3,根据需要(例如根据末端喷枪的运动速度)选择插值方式(例如五次样条插值),确定末端喷枪的路径点的个数,将路径点按序组成路径点序列X0,X1,…,Xi,…,Xn,将路径点序列导出,以备对机器人进行关节轨迹的规划,其中Xi=[xi,yi,zi],xi、yi、zi分别为路径点Xi在X、Y、Z三个坐标轴(如图2所示)的坐标值,i=1,…,n,n为整数。A3, select an interpolation method (such as quintic spline interpolation) according to needs (for example, according to the movement speed of the end spray gun), determine the number of path points of the end spray gun, and form the path point sequence X 0 , X 1 in order, …,X i ,…,X n , export the sequence of waypoints for planning the joint trajectory of the robot, where Xi i =[xi , y i , zi ], xi , y i , zi respectively is the coordinate value of the path point X i on the three coordinate axes of X, Y, and Z (as shown in FIG. 2 ), i=1, . . . , n, where n is an integer.

在本实施例中,步骤S2具体可以包括:In this embodiment, step S2 may specifically include:

B1,拟合出管道的中心轴,中心轴距离管道内壁最远,其函数为B1, fit the central axis of the pipeline, the central axis is farthest from the inner wall of the pipeline, and its function is

ythe y == 00 zz == ff (( xx )) ,, xx LL &le;&le; xx &le;&le; xx Uu ,, -- -- -- (( 11 ))

其中,xL、xU分别为管道的起点与终点;Among them, x L and x U are the starting point and the end point of the pipeline respectively;

B2,令迭代次数j的初值为0,迭代步长为ΔT,机器人的关节角度的初值为q0,其中 q 0 = [ q 1 0 , q 2 0 , . . . , q N 0 ] T , N为关节的个数,本实施例中N=8,如图2所示,各关节分别为关节1~关节8;B2. Let the initial value of the iteration number j be 0, the iteration step size be ΔT, and the initial value of the joint angle of the robot be q 0 , where q 0 = [ q 1 0 , q 2 0 , . . . , q N 0 ] T , N is the number of joints. In this embodiment, N=8. As shown in FIG. 2, each joint is joint 1 to joint 8;

B3,令末端喷枪的第一个路径点的位置X0=Xj,根据前向运动学方程求得对应于机器人的关节角度的初值q0的末端喷枪的第一个路径点的位置为

Figure G2009100908275D00063
对X0求导得到 X &CenterDot; = X 0 - X ^ &Delta;t ; 在公式X0=Xj中,0代表路径点的序号,j代表迭代次数;B3, let the position of the first path point of the end spray gun X 0 =X j , according to the forward kinematics equation, the position of the first path point of the end spray gun corresponding to the initial value q 0 of the joint angle of the robot is obtained as
Figure G2009100908275D00063
Taking the derivative with respect to X 0 gives x &Center Dot; = x 0 - x ^ &Delta;t ; In the formula X 0 =X j , 0 represents the serial number of the path point, and j represents the number of iterations;

B4,求得机器人的各关节与中心轴的距离之和H,并以H为优化函数:B4, obtain the sum H of the distances between each joint of the robot and the central axis, and use H as the optimization function:

Hh == &Sigma;&Sigma; ii == 11 NN ww ii (( ythe y ii 22 ++ (( zz ii -- ff (( xx ii )) )) 22 )) -- -- -- (( 22 )) ,,

其中wi为权重系数;Where w i is the weight coefficient;

B5,取v为优化函数H的负梯度方向,并取合适的增益k,极小化优化函数H,则B5, take v as the negative gradient direction of the optimization function H, and take an appropriate gain k to minimize the optimization function H, then

vv == -- kk &dtri;&dtri; Hh == -- kk [[ &PartialD;&PartialD; Hh &PartialD;&PartialD; qq ii ]] NN &times;&times; 11 -- -- -- (( 33 ))

根据投影梯度法的逆运动学方程Inverse Kinematics Equations According to the Projected Gradient Method

Figure G2009100908275D00073
Figure G2009100908275D00073

将式(3)代入式(4),得到Substituting formula (3) into formula (4), we get

Figure G2009100908275D00074
Figure G2009100908275D00074

B6,将机器人的关节角度的初值q0和末端喷枪的第一个路径点的位置X0的导数

Figure G2009100908275D00075
代入式(4),得到
Figure G2009100908275D00076
则新的关节角度值 q 1 = q 0 + q &CenterDot; &Delta;T ; B6, the derivative of the initial value q 0 of the joint angle of the robot and the position X 0 of the first path point of the end spray gun
Figure G2009100908275D00075
Substituting into formula (4), we get
Figure G2009100908275D00076
Then the new joint angle value q 1 = q 0 + q &Center Dot; &Delta;T ;

B7,根据前向运动学方程计算出对应于新的关节角度值q1的新的末端喷枪位置 X ^ 1 = f ( q 1 ) ; B7, calculate the new tip gun position corresponding to the new joint angle value q1 according to the forward kinematics equation x ^ 1 = f ( q 1 ) ;

B8,计算 &Delta;X = | | X 0 - X ^ 1 | | , 如果ΔX>ξ,则返回步骤B2,直至ΔX<ξ,得到末端喷枪的第一个路径点的位置Xj对应的机器人的关节角度的值;其中ξ为预设的可接受误差值;B8, calculate &Delta;X = | | x 0 - x ^ 1 | | , If ΔX>ξ, then return to step B2 until ΔX<ξ, to obtain the value of the joint angle of the robot corresponding to the position X j of the first path point of the end spray gun; where ξ is a preset acceptable error value;

B9,令j=j+1,求得末端喷枪的下一个路径点对应的机器人的关节角度的值,直至求得所有路径点对应的机器人的关节角度的值;B9, make j=j+1, obtain the value of the joint angle of the robot corresponding to the next path point of the end spray gun, until obtaining the value of the joint angle of the robot corresponding to all path points;

B10,根据插值方式对各关节进行插值,得到关节连续运动轨迹;B10, perform interpolation on each joint according to the interpolation method, and obtain the continuous motion trajectory of the joint;

B11,根据机器人的末端位姿和末端速度,检验喷涂距离和喷涂速度的波动是否满足约束,并通过动力学方程验证喷涂距离和喷涂速度是否满足关节力矩约束,若上述条件均满足,则结束步骤S2,否则返回步骤S1。B11. According to the terminal pose and terminal velocity of the robot, check whether the fluctuations of the spraying distance and spraying speed meet the constraints, and verify whether the spraying distance and spraying speed meet the joint torque constraints through the dynamic equation. If the above conditions are met, the end of the step S2, otherwise return to step S1.

在本实施例中,机器人可以具有多冗余自由度,例如2个冗余自由度。In this embodiment, the robot may have multiple redundant degrees of freedom, for example, 2 redundant degrees of freedom.

本发明还提供一种利用上述轨迹规划方法进行作业规划的具有多冗余自由度的管道喷涂机器人,包括喷涂工件和与喷涂工件连接的多个关节。The present invention also provides a pipeline spraying robot with multiple redundant degrees of freedom for operation planning using the above trajectory planning method, including a spraying workpiece and multiple joints connected with the spraying workpiece.

由以上实施例可以看出,本发明的实施例的轨迹规划方法适用于多冗余自由度机器人对异形狭长管道进行喷涂作业规划,因此一方面能够保证不碰壁,另一方面能够实现高的喷涂质量,如喷涂均匀,精确度高。且该方法属于局部优化法,计算量小。It can be seen from the above embodiments that the trajectory planning method of the embodiment of the present invention is suitable for the multi-redundant degree of freedom robot to plan the spraying operation of the special-shaped narrow and long pipeline, so on the one hand, it can ensure that it does not hit the wall, and on the other hand, it can achieve high spraying efficiency. Quality, such as uniform spraying, high precision. And this method belongs to the local optimization method, and the calculation amount is small.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and modifications can also be made, these improvements and modifications It should also be regarded as the protection scope of the present invention.

Claims (10)

1、一种具有多冗余自由度的机器人进行管道喷涂作业的轨迹规划方法,包括以下步骤:1. A trajectory planning method for a robot with multiple redundant degrees of freedom to carry out pipeline spraying operations, comprising the following steps: S1,将被喷涂表面的几何模型导入绘图软件的特定模块,所述特定模块自动生成机器人的喷涂工件在管道内的无碰喷涂路径;S1, importing the geometric model of the surface to be sprayed into a specific module of the drawing software, the specific module automatically generates a non-collision spraying path of the robot's sprayed workpiece in the pipeline; S2,基于投影梯度法进行迭代运算,规划所述机器人的关节连续运动轨迹;S2, performing iterative calculations based on the projection gradient method, and planning the continuous motion trajectory of the joints of the robot; S3,根据所述关节连续运动轨迹进行碰撞检验,若有碰撞,则修改优化函数的权重系数,返回步骤S2重新规划所述关节连续运动轨迹;否则结束规划。S3, performing a collision check according to the continuous motion trajectory of the joint, if there is a collision, modify the weight coefficient of the optimization function, return to step S2 and replan the continuous motion trajectory of the joint; otherwise, end the planning. 2、如权利要求1所述的轨迹规划方法,其特征在于,所述步骤S1中“所述特定模块自动生成机器人的喷涂工件在管道内的无碰喷涂路径”的步骤包括:2. The trajectory planning method according to claim 1, characterized in that the step of "the specific module automatically generates the collision-free spraying path of the robot's spraying workpiece in the pipeline" in the step S1 comprises: A1,载入所述机器人的喷涂工件模型,并根据喷涂工艺参数绘制出所述被喷涂表面的辅助面;A1, loading the spraying workpiece model of the robot, and drawing the auxiliary surface of the sprayed surface according to the spraying process parameters; A2,选择所述辅助面和所述喷涂工件,生成两者的交线,从而得到所述喷涂工件的喷涂路径;A2, select the auxiliary surface and the sprayed workpiece, and generate the intersection line of the two, so as to obtain the spraying path of the sprayed workpiece; A3,选择插值方式,确定所述喷涂工件的路径点的个数,将所述路径点按序组成路径点序列X0,X1,…,Xi,…,Xn,将所述路径点序列导出,以备对所述机器人进行关节轨迹的规划,其中Xi=[xi,yi,zi],xi、yi、zi分别为路径点Xi在X、Y、Z三个坐标轴的坐标值,i=1,…,n,n为整数。A3, select the interpolation mode, determine the number of path points of the sprayed workpiece, form the path points in order into a path point sequence X 0 , X 1 ,...,X i ,...,X n , and combine the path points The sequence is derived in preparation for the planning of the joint trajectory of the robot, where X i =[xi , y i , zi ], xi , y i , zi are respectively the path point Xi in X, Y, Z The coordinate values of the three coordinate axes, i=1,...,n, where n is an integer. 3、如权利要求2所述的轨迹规划方法,其特征在于,所述步骤S2包括:3. The trajectory planning method according to claim 2, wherein said step S2 comprises: B1,拟合出所述管道的中心轴;B1, fitting the central axis of the pipeline; B2,令迭代次数j的初值为0,迭代步长为ΔT,所述机器人的关节角度的初值为q0B2, the initial value of the number of iterations j is 0, the iteration step size is ΔT, and the initial value of the joint angle of the robot is q 0 ; B3,令喷涂工件的第一个路径点的位置X0=Xj,其中0代表路径点的序号,j代表迭代次数,根据前向运动学方程求得对应于所述机器人的关节角度的初值q0的喷涂工件的第一个路径点的位置为 X ^ = f ( q 0 ) ; B3, let the position of the first path point of the sprayed workpiece X 0 =X j , wherein 0 represents the sequence number of the path point, j represents the number of iterations, and obtain the initial joint angle corresponding to the robot according to the forward kinematics equation The position of the first path point of the sprayed workpiece with value q 0 is x ^ = f ( q 0 ) ; B4,求得机器人的各关节与所述中心轴的距离之和H,并以H为优化函数;B4, obtain the sum H of the distances between each joint of the robot and the central axis, and use H as an optimization function; B5,取v为优化函数H的负梯度方向,并取合适的增益k,极小化优化函数H,并根据投影梯度法的逆运动学方程计算
Figure A2009100908270003C3
B5, take v as the negative gradient direction of the optimization function H, and take the appropriate gain k, minimize the optimization function H, and calculate according to the inverse kinematic equation of the projected gradient method
Figure A2009100908270003C3
B6,代入所述机器人的关节角度的初值q0和喷涂工件的第一个路径点的位置X0的导数
Figure A2009100908270003C4
得到
Figure A2009100908270003C5
则新的关节角度值 q 1 = q 0 + q &CenterDot; &Delta;T ;
B6, substitute the initial value q0 of the joint angle of the robot and the derivative of the position X0 of the first path point of the sprayed workpiece
Figure A2009100908270003C4
get
Figure A2009100908270003C5
Then the new joint angle value q 1 = q 0 + q &Center Dot; &Delta;T ;
B7,根据前向运动学方程计算出对应于所述新的关节角度值q1的新的喷涂工件位置 X ^ 1 = f ( q 1 ) ; B7, calculate the new spraying workpiece position corresponding to the new joint angle value q1 according to the forward kinematics equation x ^ 1 = f ( q 1 ) ; B8,计算 &Delta;X = | | X 0 - X ^ 1 | | , 如果ΔX>ξ,则返回步骤B2,直至ΔX<ξ,得到喷涂工件的第一个路径点的位置Xj对应的机器人的关节角度的值;其中ξ为预设的可接受误差值;B8, calculate &Delta;X = | | x 0 - x ^ 1 | | , If ΔX>ξ, then return to step B2 until ΔX<ξ to obtain the value of the joint angle of the robot corresponding to the position X j of the first path point of the sprayed workpiece; where ξ is a preset acceptable error value; B9,令j=j+1,求得喷涂工件的下一个路径点对应的机器人的关节角度的值,直至求得所有路径点对应的机器人的关节角度的值;B9, make j=j+1, obtain the value of the joint angle of the robot corresponding to the next path point of the sprayed workpiece, until obtaining the value of the joint angle of the robot corresponding to all path points; B10,根据所述插值方式对各关节进行插值,得到关节连续运动轨迹;B10, performing interpolation on each joint according to the interpolation method to obtain a continuous motion track of the joint; B11,检验喷涂距离和喷涂速度的波动是否满足约束,并通过动力学方程验证喷涂距离和喷涂速度是否满足关节力矩约束,若上述条件均满足,则结束步骤S2,否则返回步骤S1。B11. Check whether the fluctuation of spraying distance and spraying speed satisfies the constraint, and verify whether the spraying distance and spraying speed satisfy the joint torque constraint through the dynamic equation. If the above conditions are satisfied, end step S2, otherwise return to step S1.
4、如权利要求1所述的轨迹规划方法,其特征在于,所述机器人具有多冗余自由度。4. The trajectory planning method according to claim 1, wherein the robot has multiple redundant degrees of freedom. 5、如权利要求4所述的轨迹规划方法,其特征在于,所述机器人具有2个冗余自由度。5. The trajectory planning method according to claim 4, wherein the robot has two redundant degrees of freedom. 6、如权利要求1所述的轨迹规划方法,其特征在于,所述绘图软件为DELMIA软件,所述特定模块为Arc Welding模块。6. The trajectory planning method according to claim 1, wherein the drawing software is DELMIA software, and the specific module is an Arc Welding module. 7、如权利要求2所述的轨迹规划方法,其特征在于,所述插值方式为五次样条插值。7. The trajectory planning method according to claim 2, wherein the interpolation method is quintic spline interpolation. 8、如权利要求1所述的轨迹规划方法,其特征在于,所述喷涂工艺参数包括喷涂距离、喷幅宽度及喷幅搭接。8. The trajectory planning method according to claim 1, wherein the spraying process parameters include spraying distance, spraying width and spraying width. 9、如权利要求1-8中任一项所述的轨迹规划方法,其特征在于,所述喷涂工件为末端喷枪。9. The trajectory planning method according to any one of claims 1-8, characterized in that, the sprayed workpiece is an end spray gun. 10、一种具有多冗余自由度的管道喷涂机器人,利用权利要求1至8中任一项所述的轨迹规划方法进行作业规划,该机器人包括喷涂工件和与所述喷涂工件连接的多个关节。10. A pipeline spraying robot with multiple redundant degrees of freedom, using the trajectory planning method described in any one of claims 1 to 8 for job planning, the robot includes a spraying workpiece and multiple joint.
CN2009100908275A 2009-08-07 2009-08-07 Pipeline spraying robot and its operation trajectory planning method Expired - Fee Related CN101612734B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100908275A CN101612734B (en) 2009-08-07 2009-08-07 Pipeline spraying robot and its operation trajectory planning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100908275A CN101612734B (en) 2009-08-07 2009-08-07 Pipeline spraying robot and its operation trajectory planning method

Publications (2)

Publication Number Publication Date
CN101612734A true CN101612734A (en) 2009-12-30
CN101612734B CN101612734B (en) 2011-01-26

Family

ID=41492706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100908275A Expired - Fee Related CN101612734B (en) 2009-08-07 2009-08-07 Pipeline spraying robot and its operation trajectory planning method

Country Status (1)

Country Link
CN (1) CN101612734B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011150534A1 (en) * 2010-06-04 2011-12-08 中国科学院自动化研究所 Method and system for generating trajectory of robot with continuous acceleration
CN102298391A (en) * 2011-04-27 2011-12-28 哈尔滨工业大学 Motion trail planning method for heavy-duty industrial robot in operating space
CN102500498A (en) * 2011-11-11 2012-06-20 江苏科技大学 Optimization method for spray gun track of spraying robot on irregular polyhedron
CN102527554A (en) * 2012-02-29 2012-07-04 清华大学 Spray gun track planning method for free-form surface spraying robot
CN103383251A (en) * 2012-05-04 2013-11-06 中国石油天然气股份有限公司 Method for bending pipeline back and forth at any angle in space and discharging
CN103568012A (en) * 2013-10-24 2014-02-12 安徽埃夫特智能装备有限公司 Method for planning biplanar swing arc track of arc welding robot
CN104029203A (en) * 2014-06-18 2014-09-10 大连大学 Path planning method for implementation of obstacle avoidance for space manipulators
CN104331542A (en) * 2014-08-12 2015-02-04 清华大学 Painting robot position planning method for large-scale free-form surface
CN105045098A (en) * 2015-05-29 2015-11-11 芜湖希美埃机器人技术有限公司 Control method of robot spraying track automatic generation system
CN105478285A (en) * 2016-02-14 2016-04-13 中国人民解放军后勤工程学院 Air spraying irregular curved tube inner wall thick coating track planning method
CN107876333A (en) * 2017-10-30 2018-04-06 广州汽车集团乘用车有限公司 A kind of glue spreader control method and device
CN108555904A (en) * 2018-01-10 2018-09-21 苏州工业职业技术学院 A kind of surface is modified the optimization method of machine personal performance
CN109079780A (en) * 2018-08-08 2018-12-25 北京理工大学 Distributed mobile mechanical arm task hierarchy optimization control method based on generalized coordinates
CN109541997A (en) * 2018-11-08 2019-03-29 东南大学 It is a kind of towards the quick, intelligent programmed method of plane/almost plane workpiece spray robot
CN109623206A (en) * 2018-12-19 2019-04-16 清华大学 Method for optimizing the welding gun pose of segregation reasons in the welding of robot pipeline
CN109865621A (en) * 2019-03-20 2019-06-11 青岛金光鸿智能机械电子有限公司 A kind of spraying pose method for splitting and application
CN110405765A (en) * 2019-07-29 2019-11-05 苏州工业职业技术学院 Orthogonal test method for plasma torch robot with redundant degrees of freedom
CN110826242A (en) * 2019-11-14 2020-02-21 兰州理工大学 System and method for optimizing spraying track in pipeline
CN111300409A (en) * 2020-02-16 2020-06-19 上海柴孚机器人有限公司 Industrial robot path planning method
CN111571586A (en) * 2020-05-07 2020-08-25 江苏原力数字科技股份有限公司 Dynamic constraint method for inverse dynamics freedom degree
CN111801717A (en) * 2017-07-28 2020-10-20 高通股份有限公司 Automatic exploration control of robotic vehicles
CN114571475A (en) * 2022-02-24 2022-06-03 中山市鸿之远工业机器人有限公司 Control memory programming method, spraying device, control device and storage medium
CN116371696A (en) * 2023-04-12 2023-07-04 福州大学 A curved surface spraying method and system based on a plane pattern of an industrial robot
CN118769209A (en) * 2024-09-11 2024-10-15 东南大学 An adaptive variable-configuration pipeline robot motion control method based on environment perception

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8600554B2 (en) 2010-06-04 2013-12-03 Institute Of Automation, Chinese Academy Of Sciences System and method for robot trajectory generation with continuous accelerations
WO2011150534A1 (en) * 2010-06-04 2011-12-08 中国科学院自动化研究所 Method and system for generating trajectory of robot with continuous acceleration
CN102298391A (en) * 2011-04-27 2011-12-28 哈尔滨工业大学 Motion trail planning method for heavy-duty industrial robot in operating space
CN102500498A (en) * 2011-11-11 2012-06-20 江苏科技大学 Optimization method for spray gun track of spraying robot on irregular polyhedron
CN102500498B (en) * 2011-11-11 2014-06-04 江苏科技大学 Optimization method for spray gun track of spraying robot on irregular polyhedron
CN102527554A (en) * 2012-02-29 2012-07-04 清华大学 Spray gun track planning method for free-form surface spraying robot
CN102527554B (en) * 2012-02-29 2013-10-30 清华大学 Spray gun track planning method for free-form surface spraying robot
CN103383251B (en) * 2012-05-04 2016-04-06 中国石油天然气股份有限公司 Method for bending pipeline back and forth at any angle in space and discharging
CN103383251A (en) * 2012-05-04 2013-11-06 中国石油天然气股份有限公司 Method for bending pipeline back and forth at any angle in space and discharging
CN103568012A (en) * 2013-10-24 2014-02-12 安徽埃夫特智能装备有限公司 Method for planning biplanar swing arc track of arc welding robot
CN104029203A (en) * 2014-06-18 2014-09-10 大连大学 Path planning method for implementation of obstacle avoidance for space manipulators
CN104331542A (en) * 2014-08-12 2015-02-04 清华大学 Painting robot position planning method for large-scale free-form surface
CN104331542B (en) * 2014-08-12 2017-10-03 清华大学 A kind of spray robot erect-position planing method of large-scale free form surface
CN105045098A (en) * 2015-05-29 2015-11-11 芜湖希美埃机器人技术有限公司 Control method of robot spraying track automatic generation system
CN105045098B (en) * 2015-05-29 2017-11-21 希美埃(芜湖)机器人技术有限公司 A kind of control method of Control During Paint Spraying by Robot track automatic creation system
CN105478285A (en) * 2016-02-14 2016-04-13 中国人民解放军后勤工程学院 Air spraying irregular curved tube inner wall thick coating track planning method
CN105478285B (en) * 2016-02-14 2017-08-25 中国人民解放军后勤工程学院 A kind of irregular curved tube inwall thick coating method for planning track of aerial spraying
CN111801717A (en) * 2017-07-28 2020-10-20 高通股份有限公司 Automatic exploration control of robotic vehicles
CN107876333A (en) * 2017-10-30 2018-04-06 广州汽车集团乘用车有限公司 A kind of glue spreader control method and device
CN107876333B (en) * 2017-10-30 2019-07-16 广州汽车集团乘用车有限公司 A method and device for controlling a glue coating machine
CN108555904A (en) * 2018-01-10 2018-09-21 苏州工业职业技术学院 A kind of surface is modified the optimization method of machine personal performance
CN108555904B (en) * 2018-01-10 2020-12-01 苏州工业职业技术学院 A method for optimizing the operating performance of a surface-modified robot
CN109079780A (en) * 2018-08-08 2018-12-25 北京理工大学 Distributed mobile mechanical arm task hierarchy optimization control method based on generalized coordinates
CN109079780B (en) * 2018-08-08 2020-11-10 北京理工大学 Task Hierarchical Optimal Control Method of Distributed Mobile Manipulator Based on Generalized Coordinates
CN109541997A (en) * 2018-11-08 2019-03-29 东南大学 It is a kind of towards the quick, intelligent programmed method of plane/almost plane workpiece spray robot
CN109623206A (en) * 2018-12-19 2019-04-16 清华大学 Method for optimizing the welding gun pose of segregation reasons in the welding of robot pipeline
CN109865621A (en) * 2019-03-20 2019-06-11 青岛金光鸿智能机械电子有限公司 A kind of spraying pose method for splitting and application
CN110405765A (en) * 2019-07-29 2019-11-05 苏州工业职业技术学院 Orthogonal test method for plasma torch robot with redundant degrees of freedom
CN110826242A (en) * 2019-11-14 2020-02-21 兰州理工大学 System and method for optimizing spraying track in pipeline
CN111300409A (en) * 2020-02-16 2020-06-19 上海柴孚机器人有限公司 Industrial robot path planning method
CN111571586A (en) * 2020-05-07 2020-08-25 江苏原力数字科技股份有限公司 Dynamic constraint method for inverse dynamics freedom degree
CN114571475A (en) * 2022-02-24 2022-06-03 中山市鸿之远工业机器人有限公司 Control memory programming method, spraying device, control device and storage medium
CN114571475B (en) * 2022-02-24 2024-07-16 中山市鸿之远工业机器人有限公司 Control memory programming method, spraying device, control device and storage medium
CN116371696A (en) * 2023-04-12 2023-07-04 福州大学 A curved surface spraying method and system based on a plane pattern of an industrial robot
CN116371696B (en) * 2023-04-12 2023-11-07 福州大学 A method and system for curved surface spraying of flat patterns based on industrial robots
CN118769209A (en) * 2024-09-11 2024-10-15 东南大学 An adaptive variable-configuration pipeline robot motion control method based on environment perception

Also Published As

Publication number Publication date
CN101612734B (en) 2011-01-26

Similar Documents

Publication Publication Date Title
CN101612734A (en) Pipeline spraying robot and operation track planning method thereof
Lu et al. Collision-free and smooth joint motion planning for six-axis industrial robots by redundancy optimization
CN107490965B (en) Multi-constraint trajectory planning method for space free floating mechanical arm
CN108908331B (en) Obstacle avoidance method and system for hyper-redundant flexible robot, and computer storage medium
CN105773620B (en) The trajectory planning control method of industrial robot free curve based on Double quaternions
CN103009389B (en) Track planning method of redundant space mechanical arm for on-track catching
CN103901898B (en) A kind of inverse kinematics general method for solving of multi-freedom robot
Choi et al. Dual-arm robot motion planning for collision avoidance using B-spline curve
CN105183009B (en) A kind of redundant mechanical arm method for controlling trajectory
CN107053176A (en) A kind of error modeling method of six-DOF robot end spaces curvilinear path
CN106826829A (en) A kind of industrial robot fairing trace generator method of Controllable Error
De Graaf et al. Real-time seam tracking for robotic laser welding using trajectory-based control
CN104827479A (en) Pipeline insertion intersecting line track planning method orientated to laser machining robot
CN106393106A (en) Parameter adapting and calibrating robot NURBS curvilinear motion interpolation method
CN114932549B (en) Motion planning method and device for spatial redundant manipulator
CN104076685B (en) A kind of space manipulator paths planning method for reducing pedestal attitude disturbance
Erdős et al. Optimized joint motion planning for redundant industrial robots
Lu et al. High-order joint-smooth trajectory planning method considering tool-orientation constraints and singularity avoidance for robot surface machining
CN116533244A (en) Double-arm cooperative motion planning method and system for closed-chain singular point avoidance
Yang et al. Collision avoidance trajectory planning for a dual-robot system: Using a modified APF method
Zhao et al. Spot-welding path planning method for the curved surface workpiece of body-in-white based on a memetic algorithm
Zhao et al. A novel inverse kinematics for solving repetitive motion planning of 7-DOF SRS manipulator
CN111421552B (en) A collaborative control method of double manipulators for inspection robots
Lyu et al. Tool path interpolation and redundancy optimization of manipulator
CN113867260B (en) A Method of Generating Joint Trajectory for Robot Surface Machining Using Numerical Integration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20100108

Address after: 100084-82 mailbox, Tsinghua Yuan, Haidian District, Beijing, Beijing

Applicant after: Tsinghua University

Co-applicant after: Chengdu aircraft industry (Group) Co., Ltd.

Address before: Tsinghua Yuan, Beijing, Beijing, 100084-82 mailbox

Applicant before: Tsinghua University

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110126

Termination date: 20170807