CN101599564A - Controllable Electromagnetic Coupling Microstrip Split Ring Resonator Filter - Google Patents
Controllable Electromagnetic Coupling Microstrip Split Ring Resonator Filter Download PDFInfo
- Publication number
- CN101599564A CN101599564A CNA200910040985XA CN200910040985A CN101599564A CN 101599564 A CN101599564 A CN 101599564A CN A200910040985X A CNA200910040985X A CN A200910040985XA CN 200910040985 A CN200910040985 A CN 200910040985A CN 101599564 A CN101599564 A CN 101599564A
- Authority
- CN
- China
- Prior art keywords
- coupling
- resonator
- filter
- electromagnetic coupling
- controllable electromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
技术领域 technical field
本发明涉及微带滤波器,尤其涉及一种具有可控电磁耦合的微带开口环谐振器滤波器。The invention relates to a microstrip filter, in particular to a microstrip split ring resonator filter with controllable electromagnetic coupling.
背景技术 Background technique
微波滤波器在无线信号处理中起着十分重要的作用,它可以滤除干扰信号,通过有用的信号。由于具备体积小、重量轻、易于加工、易于集成的优点,具有准椭圆函数响应的微带滤波器被广泛应用于各种无线通信系统的电路模块中。高温超导薄膜具有近乎为零的表面电阻,具有极高的品质因数(Q值),采用高温超导薄膜制成的准椭圆函数微带滤波器,具有极低的通带损耗,适用于移动通信基站系统。移动通信基站使用高温超导滤波器后,可以提高系统容量,降低邻频干扰,提高移动通话质量,降低基站和手机的发射功率,减少空间的电磁辐射和电磁污染。Microwave filters play a very important role in wireless signal processing, which can filter out interference signals and pass useful signals. Due to the advantages of small size, light weight, easy processing, and easy integration, microstrip filters with quasi-elliptic function responses are widely used in circuit modules of various wireless communication systems. The high-temperature superconducting film has a surface resistance close to zero and has a very high quality factor (Q value). The quasi-elliptic function microstrip filter made of the high-temperature superconducting film has extremely low passband loss and is suitable for mobile Communication base station system. After the mobile communication base station uses high-temperature superconducting filters, it can increase the system capacity, reduce adjacent frequency interference, improve the quality of mobile calls, reduce the transmission power of base stations and mobile phones, and reduce electromagnetic radiation and electromagnetic pollution in space.
准椭圆函数响应是具有有限频率传输零点的滤波器响应,传输零点可以出现在滤波器通带的一侧或两侧,以提高带外抑制并产生对称或非对称的滤波器响应。利用传输零点可以使低阶准椭圆函数滤波器获得的特性等同于甚至优于高阶切比雪夫滤波器的特性。但在现有技术条件下的滤波器综合设计中,只具有主耦合路径的微带滤波器只能实现普通的切比雪夫函数滤波器响应而无法实现具有传输零点的准椭圆函数滤波器响应。实现传输零点最常用的方法是采用交叉耦合技术。交叉耦合技术是指电磁信号从滤波器的输入端到输出端不仅通过了主耦合路径,还通过了交叉耦合路径。主耦合是指滤波器中输入端到输出端之间的谐振单元按顺序依次耦合,每个谐振单元只与按顺序与之相邻的谐振单元具有耦合关系;交叉耦合是指非相邻的谐振单元之间具有的耦合关系,具有交叉耦合设置的滤波器称为交叉耦合滤波器。目前大部分准椭圆函数滤波特性都是由交叉耦合滤波器实现的,但传统的交叉耦合滤波器存在阶数仍然较高,尺寸仍然较大,传输零点位置对各谐振器间的耦合十分敏感,设计难度高的缺点。而且在现有的微带滤波器中,所有相邻或非相邻的谐振单元之间都只存在单一的可控电耦合或磁耦合,而不存在可控的电磁混和耦合。因此,有必要提出一种可实现准椭圆函数滤波特性的可控电磁混合耦合的主耦合滤波器。A quasi-elliptic function response is a filter response with finite frequency transmission zeros that can appear on one or both sides of the filter passband to improve out-of-band rejection and produce a symmetrical or asymmetrical filter response. The characteristics obtained by the low-order quasi-elliptic function filter are equal to or even better than those of the high-order Chebyshev filter by using the transmission zero. However, in the filter synthesis design under the current technical conditions, the microstrip filter with only the main coupling path can only realize the common Chebyshev function filter response but cannot realize the quasi-elliptic function filter response with transmission zero. The most common way to achieve transmission nulls is to use cross-coupling techniques. The cross-coupling technology means that the electromagnetic signal not only passes through the main coupling path but also passes through the cross-coupling path from the input end to the output end of the filter. The main coupling means that the resonant units between the input end and the output end of the filter are coupled in sequence, and each resonant unit only has a coupling relationship with the resonant units adjacent to it in sequence; cross coupling refers to non-adjacent resonant units There is a coupling relationship between units, and a filter with a cross-coupling setting is called a cross-coupling filter. At present, most of the quasi-elliptic function filtering characteristics are realized by cross-coupled filters, but the order of traditional cross-coupled filters is still high, the size is still large, and the transmission zero position is very sensitive to the coupling between resonators. The disadvantage of high design difficulty. Moreover, in the existing microstrip filter, there is only a single controllable electrical coupling or magnetic coupling between all adjacent or non-adjacent resonant units, and there is no controllable electromagnetic hybrid coupling. Therefore, it is necessary to propose a controllable electromagnetic hybrid coupling main coupling filter that can realize quasi-elliptic function filtering characteristics.
资料显示的一种典型的具有准椭圆函数滤波响应的微带开口环半波长谐振器滤波器如图1所示,请参考Jia-Sheng Hong and Michael J.Lancaster,“Couplings of microstrip square open-loop resonators for cross-coupledplanar microwave filters,”IEEE Transactions on Microwave Theory andTechniques,vol.44,no.12,pp.2099-2109,(December 1996)。此设计包括四个设有开口12的方形开口环谐振器11、输入微带线13、输出微带线14。在此设计中,每个谐振器的有效长度为半波长,输入谐振器到输出谐振器之间的耦合为交叉耦合,其耦合极性为电耦合。其它耦合均为主耦合,其极性为磁耦合。电磁信号经过不同的耦合路径产生相差,使滤波器的响应呈现出具有传输零点的准椭圆函数特性。此设计的两个传输零点对称,输入谐振器和输出谐振器之间的交叉耦合的大小同时决定两个传输零点的位置,改变交叉耦合会同时改变两个传输零点的位置,因此两个传输零点不能被独立控制,另外,零点的位置对于交叉耦合大小的变化十分敏感,难以设计应用。A typical microstrip split ring half-wavelength resonator filter with quasi-elliptic function filtering response shown in the data is shown in Figure 1, please refer to Jia-Sheng Hong and Michael J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Transactions on Microwave Theory and Techniques, vol.44, no.12, pp.2099-2109, (December 1996). The design includes four square
发明内容 Contents of the invention
本发明的目的在于克服现有主耦合滤波器无法实现准椭圆函数滤波特性的问题,克服现有交叉耦合滤波器体积仍然较大且传输零点不能被独立控制的问题,提供一种可控电磁耦合微带开口环滤波器,其用主耦合滤波器实现准椭圆函数滤波特性,且结构紧凑,体积小,成本低,特性好,适用于各种无线通信的需要。The purpose of the present invention is to overcome the problem that the existing main coupling filter cannot realize the quasi-elliptic function filtering characteristics, overcome the problem that the existing cross-coupling filter is still large and the transmission zero point cannot be independently controlled, and provide a controllable electromagnetic coupling The microstrip split-ring filter uses a main coupling filter to realize quasi-elliptic function filtering characteristics, and has a compact structure, small volume, low cost, and good characteristics, and is suitable for various wireless communication needs.
为实现本发明的目的采用的技术方案:一种可控电磁耦合微带开口环谐振器滤波器,包括输入微带线、输出微带线和微带谐振器组,其特征是,所述微带谐振器组是指一个或一个以上可控电磁耦合滤波单元;所述可控电磁耦合滤波单元由两个相互耦合的谐振器组成,所述每个谐振器的有效长度为所述可控电磁耦合微带开口环谐振器滤波器的半个工作波长;在同一个可控电磁耦合滤波单元中,每个谐振器一边的顶部或底部设有一个开口,两个谐振器上的开口位置同时位于谐振器的顶部或同时位于谐振器的底部,所述开口所在的边与两个谐振器的耦合边相邻,且两个开口的位置相对于两条耦合边的中心线中心对称,所述两条耦合边由高阻抗线构成。The technical solution adopted for the purpose of realizing the present invention: a controllable electromagnetic coupling microstrip split ring resonator filter, including input microstrip line, output microstrip line and microstrip resonator group, it is characterized in that the microstrip The band resonator group refers to one or more controllable electromagnetic coupling filter units; the controllable electromagnetic coupling filter unit is composed of two mutually coupled resonators, and the effective length of each resonator is the controllable electromagnetic coupling filter unit. Coupling the half working wavelength of the microstrip split ring resonator filter; in the same controllable electromagnetic coupling filter unit, there is an opening at the top or bottom of one side of each resonator, and the opening positions on the two resonators are located at the same time The top of the resonator or at the bottom of the resonator at the same time, the side where the opening is located is adjacent to the coupling sides of the two resonators, and the positions of the two openings are symmetrical to the center line of the two coupling sides, the two The coupled edges consist of high-impedance lines.
作为一种简单的结构,所述微带谐振器组是指一个可控电磁耦合滤波单元;所述可控电磁耦合滤波单元由两个相互耦合的谐振器组成,所述每个谐振器的有效长度为所述可控电磁耦合微带开口环谐振器滤波器的半个工作波长,每个谐振器一边的顶部或底部设有一个开口,两个谐振器上的开口位置同时位于谐振器的顶部或同时位于谐振器的底部,所述开口所在的边与两个谐振器的耦合边相邻,且两个开口的位置相对于两条耦合边的中心线中心对称,所述两条耦合边由高阻抗线构成。As a simple structure, the microstrip resonator group refers to a controllable electromagnetic coupling filter unit; the controllable electromagnetic coupling filter unit is composed of two mutually coupled resonators, and the effective The length is half of the operating wavelength of the controllable electromagnetic coupling microstrip split ring resonator filter, and an opening is provided on the top or bottom of one side of each resonator, and the positions of the openings on the two resonators are located at the top of the resonator at the same time Or at the bottom of the resonator at the same time, the side where the opening is located is adjacent to the coupling sides of the two resonators, and the positions of the two openings are symmetrical to the center line of the two coupling sides, and the two coupling sides are composed of high-impedance lines.
更具体地说,所述微带谐振器组中的谐振器为矩形谐振器或三角形谐振器。More specifically, the resonators in the microstrip resonator group are rectangular resonators or triangular resonators.
上述微带谐振器组中的谐振器呈直线排列,这样的结构比交叉耦合滤波器更适合于双工、多工器应用。The resonators in the microstrip resonator group are arranged in a straight line, and this structure is more suitable for duplex and multiplexer applications than cross-coupled filters.
本发明的主要工作原理是:本发明的滤波器通过在每个谐振器一边的顶部或底部开口,可使开口附近形成很强的电场分布,而相邻两个谐振器的两条耦合边由高阻抗线构成,可在高阻抗线附近的区域形成较强的磁场分布,这样的结构就便于相邻两个谐振器实现较强的电磁耦合。调整两个相互耦合的谐振器上的两个开口在所在边的位置,即调整两个开口之间的相对距离就可以改变电耦合和磁耦合的比例:两个开口位置的距离越近,则电耦合相对于磁耦合越大,反之则磁耦合相对于电耦合越大。因此,两个相邻的谐振器通过电磁混合耦合就构成了一个单独的可控电磁耦合滤波单元。电磁信号通过任意一个电磁耦合滤波单元都会产生一个传输零点,控制两个开口位置的相对距离从而控制两个相互耦合的谐振器之间的电磁耦合比例,就可以控制所述电磁耦合滤波单元所产生的传输零点位置以实现所需要的准椭圆函数滤波特性。当两个开口相对距离较大时,则磁耦合大于电耦合时,所述可控电磁耦合滤波单元可以实现一个通带左侧的传输零点;当两个开口相对距离较小时,则磁耦合小于电耦合时,所述的可控电磁耦合滤波单元可以实现一个通带右侧的传输零点。The main working principle of the present invention is: the filter of the present invention can form a strong electric field distribution near the opening by opening at the top or bottom of one side of each resonator, and the two coupling sides of two adjacent resonators are formed by The high-impedance line structure can form a strong magnetic field distribution in the area near the high-impedance line. Such a structure facilitates strong electromagnetic coupling between two adjacent resonators. Adjusting the positions of the two openings on the sides of the two mutually coupled resonators, that is, adjusting the relative distance between the two openings can change the ratio of electrical coupling to magnetic coupling: the closer the two openings are, the The greater the electrical coupling is relative to the magnetic coupling, and vice versa the greater the magnetic coupling is relative to the electrical coupling. Therefore, two adjacent resonators constitute a single controllable electromagnetic coupling filter unit through electromagnetic hybrid coupling. When the electromagnetic signal passes through any electromagnetic coupling filter unit, a transmission zero point will be generated, and the relative distance between the two opening positions can be controlled to control the electromagnetic coupling ratio between the two mutually coupled resonators, and the electromagnetic coupling filter unit can be controlled. The position of the transmission zero to achieve the required quasi-elliptic function filtering characteristics. When the relative distance between the two openings is large, the magnetic coupling is greater than the electrical coupling, and the controllable electromagnetic coupling filter unit can realize a transmission zero on the left side of the passband; when the relative distance between the two openings is small, the magnetic coupling is less than When electrically coupled, the controllable electromagnetic coupling filter unit can realize a transmission zero on the right side of the passband.
每个可控电磁耦合滤波单元可以独立工作构成一个具有单个传输零点的二阶准椭圆函数滤波器,也可以与其它混合耦合单元或谐振单元相互耦合并且协同工作以构成具有多个传输零点的高阶准椭圆函数滤波器。Each controllable electromagnetic coupling filter unit can work independently to form a second-order quasi-elliptic function filter with a single transmission zero, and can also be coupled with other hybrid coupling units or resonant units and work together to form a high-frequency filter with multiple transmission zeros. order quasi-elliptic function filter.
与现有的技术相比,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:
1、传统的主耦合微带滤波器只能实现普通的切比雪夫滤波响应,而本发明通过对相邻微带谐振器之间主耦合中电磁混合耦合的控制可以实现性能更好的准椭圆函数滤波器,减少了所需谐振单元的数目,从而减小了滤波器的尺寸,降低了生产成本。1. The traditional main-coupled microstrip filter can only realize the common Chebyshev filter response, but the present invention can realize the quasi-elliptic with better performance by controlling the electromagnetic hybrid coupling in the main coupling between adjacent microstrip resonators The function filter reduces the number of required resonance units, thereby reducing the size of the filter and reducing the production cost.
2、与现有的交叉耦合滤波器相比,本发明具有更低的阶数、更小的体积以及更灵活的传输零点设置。传统的交叉耦合滤波器需要至少三个谐振单元才能产生一个传输零点;而本发明只需要一个包含两个谐振单元的电磁耦合滤波单元就可以产生一个传输零点。交叉耦合滤波器的传输零点需要整体设计,其中每个传输零点位置的变化都会导致其他传输零点的变化,并且传输零点的位置对交叉耦合大小的变化十分敏感;而在本发明中,每个传输零点都是由单个的可控电磁混合耦合单元独立创造的,因此在高阶的混合耦合滤波器中,单个传输零点变化不会引起其它传输零点的变化,很容易实现非对称的滤波器响应。2. Compared with the existing cross-coupling filter, the present invention has lower order, smaller volume and more flexible transmission zero setting. A traditional cross-coupling filter needs at least three resonant units to generate a transmission zero; while the present invention only needs one electromagnetic coupling filter unit including two resonant units to generate a transmission zero. The transmission zeros of the cross-coupling filter require an overall design, wherein changes in the position of each transmission zero will cause changes in other transmission zeros, and the position of the transmission zeros is very sensitive to changes in the cross-coupling magnitude; and in the present invention, each transmission The zero points are independently created by a single controllable electromagnetic hybrid coupling unit, so in a high-order hybrid coupling filter, the change of a single transmission zero point will not cause changes in other transmission zero points, and it is easy to achieve an asymmetric filter response.
3、在本发明中,由于谐振器沿直线排列,因此本发明比交叉耦合滤波器更适合于双工、多工器应用。3. In the present invention, since the resonators are arranged in a straight line, the present invention is more suitable for duplex and multiplexer applications than cross-coupling filters.
4、本发明可以与现有的交叉耦合技术相结合,创造出体积更小,性能更优越的准椭圆函数滤波器。4. The present invention can be combined with the existing cross-coupling technology to create a quasi-elliptic function filter with smaller volume and better performance.
5、本发明不仅可以用于传统的平面型普通金属微带滤波器,更适合于制造具有高品质因数的高温超导滤波器。5. The present invention can not only be used for traditional planar ordinary metal microstrip filters, but also suitable for manufacturing high-temperature superconducting filters with high quality factors.
附图说明 Description of drawings
图1是现有技术中一种典型的具有准椭圆函数滤波响应的微带开口环半波长谐振器滤波器的结构示意图;Fig. 1 is the structural representation of a kind of typical microstrip split-ring half-wavelength resonator filter with quasi-elliptic function filtering response in the prior art;
图2a是实施例1中采用的二阶可控电磁耦合矩形微带开口环谐振器滤波器的结构示意图;Fig. 2 a is the structural representation of the second-order controllable electromagnetic coupling rectangular microstrip split ring resonator filter adopted in
图2b是实施例1采用的二阶可控电磁耦合三角形微带开口环谐振器滤波器的结构示意图;Fig. 2 b is the structural representation of the second-order controllable electromagnetic coupling triangular microstrip split ring resonator filter adopted in
图3是实施例2中采用的四阶可控电磁耦合矩形微带开口环谐振器滤波器的结构示意图;Fig. 3 is the structural representation of the fourth-order controllable electromagnetic coupling rectangular microstrip split ring resonator filter adopted in embodiment 2;
图4是实施例3中采用的二阶可控电磁耦合三角形微带开口环谐振器滤波器与一个阶梯阻抗微带谐振单元构成的三阶可控电磁耦合三角形微带开口环谐振器滤波器;Fig. 4 is the third-order controllable electromagnetic coupling triangular microstrip split-ring resonator filter formed by the second-order controllable electromagnetic coupling triangular microstrip split-ring resonator filter and a stepped impedance microstrip resonator unit used in embodiment 3;
图5是图2b所示二阶可控电磁耦合三角形微带开口环谐振器滤波器的频率响应的电磁仿真曲线示意图,其具有一个可控传输零点;Fig. 5 is a schematic diagram of the electromagnetic simulation curve of the frequency response of the second-order controllable electromagnetic coupling triangular microstrip split-ring resonator filter shown in Fig. 2b, which has a controllable transmission zero point;
图6是图3所示四阶可控电磁耦合矩形微带开口环谐振器滤波器的频率响应的电磁仿真曲线和实验测试曲线示意图,其同时具有一个低阻带传输零点和一个高阻带传输零点;Figure 6 is a schematic diagram of the electromagnetic simulation curve and the experimental test curve of the frequency response of the fourth-order controllable electromagnetic coupling rectangular microstrip split-ring resonator filter shown in Figure 3, which has a low-stop band transmission zero point and a high-stop band transmission zero point;
图7是图4所示三阶可控电磁耦合三角形微带开口环谐振器滤波器的频率响应的电磁仿真曲线和实验测试曲线示意图,其具有一个可控高阻带传输零点。Fig. 7 is a schematic diagram of the electromagnetic simulation curve and the experimental test curve of the frequency response of the third-order controllable electromagnetic coupling triangular microstrip split ring resonator filter shown in Fig. 4, which has a controllable high-stop band transmission zero.
具体实施方式 Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述。The present invention will be further described in detail below in conjunction with the embodiments and accompanying drawings.
实施例1Example 1
本发明的二阶可控电磁耦合微带开口环谐振器滤波器的结构如图2a~图2b所示,其中图2a是二阶可控电磁耦合矩形微带开口环谐振器滤波器的结构示意图,图2b是二阶可控电磁耦合三角形微带开口环谐振器滤波器的结构示意图,包括两个谐振器21、26,信号输入微带线24和信号输出微带线25。谐振器21、26的有效长度为所述二阶可控电磁耦合微带开口环谐振器滤波器的半个工作波长,谐振器21中与耦合边23相邻的一边的顶部设有一个开口22,谐振器26中与耦合边28相邻的一边的顶部设有一个开口27,开口22和27的位置可以根据滤波器所需要的电、磁耦合的比例在其所在边上调整;所述开口22和27的位置相对于两条耦合边23、28的中心线中心对称(或近似对称即可),耦合边23和28由高阻抗线构成,便于实现较强的电磁耦合。谐振器21、26的形状可以是矩形,如图2a,也可以是三角形,如图2b。通过可控电磁耦合而相互耦合的两个谐振器21和26构成一个单独的可控电磁耦合滤波单元,简称电磁耦合滤波单元。电磁信号通过任意一个电磁耦合滤波单元都会产生一个传输零点,通过控制电磁耦合的比例大小可以控制该传输零点的位置。在工作频率,由于谐振器21、26顶部的开口22和27附近具有很强的电场分布E,因此相邻两个谐振器21、26的顶部开口22和27之间的区域形成了强电场耦合;由于两个谐振器21、26的耦合边23、28由高阻抗线构成,因此在高阻抗线附近的区域具有较强的磁场分布H,因此相邻两个谐振器21、26的耦合边23、28一侧的区域形成了强磁场耦合。调整两个开口22和27在其边上的位置,即调整两个开口间的相对距离就可以改变电耦合和磁耦合的比例。两个开口距离越近,则电耦合相对于磁耦合越大,反之则磁耦合相对于电耦合越大。控制两个谐振器21、26之间的电磁耦合比例,就可以控制所述电磁耦合滤波单元所产生的传输零点位置以实现所需要的准椭圆函数滤波特性。当两个开口相对距离较大时,则磁耦合大于电耦合时,所述可控电磁耦合滤波单元可以实现一个通带左侧的传输零点;当两个开口相对距离较小时,则磁耦合小于电耦合时,所述的可控电磁耦合滤波单元可以实现一个通带右侧的传输零点。The structure of the second-order controllable electromagnetic coupling microstrip split-ring resonator filter of the present invention is shown in Figure 2a to Figure 2b, wherein Figure 2a is a structural schematic diagram of the second-order controllable electromagnetic coupling rectangular microstrip split-ring resonator filter , FIG. 2b is a schematic structural diagram of a second-order controllable electromagnetic coupling triangular microstrip split ring resonator filter, including two
采用图2b中所示的二阶可控电磁耦合三角形微带开口环谐振器滤波器,当两个开口22和27间的相对距离约大于单个谐振器的宽度时,则磁耦合大于电耦合,由其构成的可控电磁耦合滤波单元的仿真响应曲线如图5中的曲线51所示,可控电磁耦合滤波单元可以实现一个通带左侧的传输零点52;当两个开口22和27间的相对距离约小于单个谐振器的宽度时,则磁耦合小于电耦合,由其构成的可控电磁耦合滤波单元的仿真响应曲线如图5中的曲线53所示,可控电磁耦合滤波单元可以实现一个通带右侧的传输零点54;可见,该滤波器可以实现一个位置可控的传输零点。Using the second-order controllable electromagnetic coupling triangular microstrip split ring resonator filter shown in Figure 2b, when the relative distance between the two
实施例2Example 2
包含两个可控电磁耦合滤波单元的四阶可控电磁耦合矩形微带开口环谐振器滤波器如图3所示,包括四个谐振器31~34,信号输入微带线24和信号输出微带线25,谐振器31和32组成一个可控电磁耦合滤波单元,谐振器33和34组成另一个可控电磁耦合滤波单元,四个谐振器31~34沿直线排列。谐振器31~34的有效长度均为所述滤波器的半个工作波长,谐振器31与耦合边35相邻的一边的顶部设有一个开口39,谐振器32与耦合边36相邻的一边的顶部设有一个开口40,开口39和40的位置可以根据滤波器所需要的电、磁耦合比例在其所在的边上调整,开口39、40相对于两条耦合边35、36的中心线中心对称(或近似对称即可);同样的,在谐振器33与耦合边37相邻的一边的底部设有一个开口41,谐振器34与耦合边38相邻的一边的底部设有一个开口42,开口41和42的位置可以根据滤波器所需要的电、磁耦合比例在其所在的边上调整,开口41、42相对于两条耦合边37、38的中心线中心对称(或近似对称即可);耦合边35~38由高阻抗线构成,便于实现较强的电磁耦合。The fourth-order controllable electromagnetic coupling rectangular microstrip split ring resonator filter including two controllable electromagnetic coupling filter units is shown in Figure 3, including four resonators 31-34, signal
谐振器31~34的形状是矩形,该滤波器的仿真和实测响应曲线如图6所示。图6中,S11表示滤波器输入端到输出端之间的反射系数,S21表示滤波器输入端到输出端的传输系数。当谐振器31、32上的开口39、40间的距离约大于单个谐振器的宽度时,则磁耦合大于电耦合,其组成的可控电磁耦合滤波单元实现了通带左侧的可控传输零点61;当谐振器33、34上的开口41、42间的距离约小于单个谐振器的宽度时,则磁耦合小于电耦合,其组成的可控电磁耦合滤波单元实现了通带右侧的可控传输零点62。因此,该滤波器具有一左一右两个可控传输零点。The resonators 31-34 are rectangular in shape, and the simulated and measured response curves of the filter are shown in FIG. 6 . In FIG. 6 , S11 represents the reflection coefficient between the filter input end and the output end, and S21 represents the transmission coefficient between the filter input end and the output end. When the distance between the
实施例3:Example 3:
包含一个可控电磁耦合滤波单元的三阶可控电磁耦合三角形微带开口环谐振器滤波器如图4所示,包括一个阶梯阻抗谐振单元43、两个三角形开口环谐振器44、45,信号输入微带线24和信号输出微带线25,两个谐振器44、45组成一个可控电磁耦合滤波单元。谐振器44、45的有效长度均为滤波器的半个工作波长,谐振器44与耦合边46相邻的一边的顶部设有一个开口48,开口48的位置可以根据滤波器所需要的电、磁耦合比例在其所在边上调整;谐振器45与耦合边47相邻的一边的顶部设有一个开口49,开口49的位置可以根据滤波器所需要的电、磁耦合比例在其所在边上调整;开口48、49的位置相对于耦合边46和47的中心线中心对称(或近似对称即可),耦合边46和47由高阻抗线构成,便于实现较强的电磁耦合。谐振器44、45的形状是三角形,该滤波器的仿真和实测响应曲线如图7所示,图7中,S11表示滤波器输入端到输出端之间的反射系数,S21表示滤波器输入端到输出端的传输系数。当两个谐振器44、45的开口48和49间距离约小于单个谐振器的宽度,则磁耦合小于电耦合,其组成的可控电磁耦合滤波单元实现了通带右侧的可控传输零点71。The third-order controllable electromagnetic coupling triangular microstrip split-ring resonator filter comprising a controllable electromagnetic coupling filtering unit is shown in Figure 4, including a ladder impedance resonance unit 43, two triangular split-ring resonators 44, 45, signal The
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,例如,每个可控电磁耦合滤波单元还可以与多个可控电磁混合耦合滤波单元相互耦合并协同工作,构成具有多个传输零点的高阶椭圆函数滤波器滤波器,或者与其它谐振单元相互耦合并协同工作,构成具有不少于一个传输零点的高阶椭圆函数滤波器等等,任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-described embodiment is a preferred implementation mode of the present invention, but the implementation mode of the present invention is not limited by the above-mentioned embodiment. For example, each controllable electromagnetic coupling filter unit can also interact with a plurality of controllable electromagnetic hybrid coupling filter units. Coupling and working together to form a high-order elliptic function filter with multiple transmission zeros, or coupling with other resonant units and working together to form a high-order elliptic function filter with no less than one transmission zero, etc., Any changes, modifications, substitutions, combinations, and simplifications made without departing from the spirit and principles of the present invention shall be equivalent replacements and shall be included within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA200910040985XA CN101599564A (en) | 2009-07-09 | 2009-07-09 | Controllable Electromagnetic Coupling Microstrip Split Ring Resonator Filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA200910040985XA CN101599564A (en) | 2009-07-09 | 2009-07-09 | Controllable Electromagnetic Coupling Microstrip Split Ring Resonator Filter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101599564A true CN101599564A (en) | 2009-12-09 |
Family
ID=41420892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA200910040985XA Pending CN101599564A (en) | 2009-07-09 | 2009-07-09 | Controllable Electromagnetic Coupling Microstrip Split Ring Resonator Filter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101599564A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916893A (en) * | 2010-08-11 | 2010-12-15 | 东南大学 | Dual-band bandpass filter based on double-branch loaded stepped impedance resonators |
CN104332682A (en) * | 2014-11-14 | 2015-02-04 | 南京波而特电子科技有限公司 | Band-pass filter based on split ring microstrip line |
CN104966872A (en) * | 2015-07-20 | 2015-10-07 | 成都顺为超导科技股份有限公司 | High-temperature superconducting filter device with controllable transmission zero |
CN106711556A (en) * | 2017-02-14 | 2017-05-24 | 华南理工大学 | Miniaturized microstrip quadruplexing device |
CN108717994A (en) * | 2018-04-18 | 2018-10-30 | 西安电子科技大学 | A kind of novel planar double frequency band-pass filter antenna applied to WLAN frequency ranges |
CN110556614A (en) * | 2019-08-22 | 2019-12-10 | 中国电子科技集团公司第二十九研究所 | Microstrip filter composed of C-shaped resonance pairs |
CN111883888A (en) * | 2020-08-07 | 2020-11-03 | 安徽华东光电技术研究所有限公司 | W-band reconfigurable microstrip filter based on intercalated graphene and manufacturing method thereof |
WO2021093016A1 (en) * | 2019-11-12 | 2021-05-20 | 郴州世通科技有限公司 | Microstrip line filter |
CN113178669A (en) * | 2021-05-13 | 2021-07-27 | 云南大学 | 5G millimeter wave band-pass filter based on integrated substrate gap waveguide |
CN117638437A (en) * | 2024-01-25 | 2024-03-01 | 中天通信技术有限公司 | Waveguide bandpass filters and electrical equipment |
-
2009
- 2009-07-09 CN CNA200910040985XA patent/CN101599564A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916893B (en) * | 2010-08-11 | 2013-01-09 | 东南大学 | Double frequency band-pass filter based on double branch line loading stepped -impedance resonator |
CN101916893A (en) * | 2010-08-11 | 2010-12-15 | 东南大学 | Dual-band bandpass filter based on double-branch loaded stepped impedance resonators |
CN104332682A (en) * | 2014-11-14 | 2015-02-04 | 南京波而特电子科技有限公司 | Band-pass filter based on split ring microstrip line |
CN104966872A (en) * | 2015-07-20 | 2015-10-07 | 成都顺为超导科技股份有限公司 | High-temperature superconducting filter device with controllable transmission zero |
CN106711556A (en) * | 2017-02-14 | 2017-05-24 | 华南理工大学 | Miniaturized microstrip quadruplexing device |
CN106711556B (en) * | 2017-02-14 | 2020-09-22 | 华南理工大学 | Miniaturized microstrip quadruplex ware |
CN108717994A (en) * | 2018-04-18 | 2018-10-30 | 西安电子科技大学 | A kind of novel planar double frequency band-pass filter antenna applied to WLAN frequency ranges |
CN110556614B (en) * | 2019-08-22 | 2022-06-07 | 中国电子科技集团公司第二十九研究所 | Microstrip filter composed of C-shaped resonance pairs |
CN110556614A (en) * | 2019-08-22 | 2019-12-10 | 中国电子科技集团公司第二十九研究所 | Microstrip filter composed of C-shaped resonance pairs |
WO2021093016A1 (en) * | 2019-11-12 | 2021-05-20 | 郴州世通科技有限公司 | Microstrip line filter |
CN111883888A (en) * | 2020-08-07 | 2020-11-03 | 安徽华东光电技术研究所有限公司 | W-band reconfigurable microstrip filter based on intercalated graphene and manufacturing method thereof |
CN111883888B (en) * | 2020-08-07 | 2021-07-06 | 安徽华东光电技术研究所有限公司 | W-band reconfigurable microstrip filter based on intercalated graphene and manufacturing method thereof |
CN113178669A (en) * | 2021-05-13 | 2021-07-27 | 云南大学 | 5G millimeter wave band-pass filter based on integrated substrate gap waveguide |
CN113178669B (en) * | 2021-05-13 | 2022-05-24 | 云南大学 | 5G millimeter wave band-pass filter based on integrated substrate gap waveguide |
CN117638437A (en) * | 2024-01-25 | 2024-03-01 | 中天通信技术有限公司 | Waveguide bandpass filters and electrical equipment |
CN117638437B (en) * | 2024-01-25 | 2024-04-09 | 中天通信技术有限公司 | Waveguide bandpass filter and electrical equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101599564A (en) | Controllable Electromagnetic Coupling Microstrip Split Ring Resonator Filter | |
CN101694899A (en) | Microstrip bandpass filter with sector open-circuit structure | |
CN201450087U (en) | Controllable Electromagnetic Coupling Microstrip Split Ring Resonator Filter | |
CN108390137B (en) | A Coupled Structure Dielectric Resonator Filter | |
CN105070986B (en) | Dielectric dual-mode bandpass filter based on patch structure | |
CN105280996A (en) | Artificial surface plasmon broadband bandstop filter based on composite U-shaped groove structure | |
CN105390780B (en) | A Novel Dielectric Dual-mode Bandpass Filter | |
CN201503900U (en) | A Source-Coupled Microstrip Filter | |
CN103107391A (en) | Compact type microwave distributed double module band-pass filter | |
CN110400995A (en) | Miniaturized wide stopband HMSIW single-cavity triple-mode bandpass filter | |
CN101667671B (en) | Microstrip dual-mode filter with features of wide stop band and low spurious | |
CN108493534A (en) | A kind of four mould chip integrated waveguide broad-band filters | |
CN104659451B (en) | The four modular belt bandpass filters based on 1/3 equilateral triangle substrate integrated resonator | |
CN103579723A (en) | High-selectivity bandpass filter based on I-shaped dual-mode resonator | |
CN110350275A (en) | A kind of 4 mould SIW double-passband filters | |
CN108281738A (en) | Bicyclic mode filter is coupled based on the cascade all-wave length of parallel coupled line head and the tail | |
CN103219570B (en) | Ultra wide band coplanar waveguide filter adopting terminal short circuit H-type resonator | |
CN107887676A (en) | One kind miniaturization balance double-passband filter | |
CN105720340A (en) | Compact type band-pass filter containing low-frequency transmission zero | |
CN105896008A (en) | Compact-type band-pass filter comprising transmission zero points at high and low frequencies | |
CN201518346U (en) | Micro-strip band pass filter having sector shaped open circuit structure | |
CN116706480A (en) | Compact high-selectivity substrate integrated waveguide triangular cavity wide stop band filter | |
CN207719373U (en) | Bicyclic mode filter is coupled based on the cascade all-wave length of parallel coupled line head and the tail | |
CN116505219A (en) | Resonant Cavity, Filter and Design Method Based on Multimode Folded Substrate Integrated Waveguide | |
CN204156068U (en) | A kind of microstrip bimodule band-pass filter of square resonant ring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20091209 |