[go: up one dir, main page]

CN101593786A - Temperature Compensation Circuit for Avalanche Photodiodes - Google Patents

Temperature Compensation Circuit for Avalanche Photodiodes Download PDF

Info

Publication number
CN101593786A
CN101593786A CN 200910053659 CN200910053659A CN101593786A CN 101593786 A CN101593786 A CN 101593786A CN 200910053659 CN200910053659 CN 200910053659 CN 200910053659 A CN200910053659 A CN 200910053659A CN 101593786 A CN101593786 A CN 101593786A
Authority
CN
China
Prior art keywords
apd
temperature
circuit
voltage
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200910053659
Other languages
Chinese (zh)
Other versions
CN101593786B (en
Inventor
杨斌
皋魏
席刚
周正仙
仝芳轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd
Shanghai Boom Fiber Sensing Technology Co Ltd
Original Assignee
Shanghai Boom Fiber Sensing Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Boom Fiber Sensing Technology Co Ltd filed Critical Shanghai Boom Fiber Sensing Technology Co Ltd
Priority to CN 200910053659 priority Critical patent/CN101593786B/en
Publication of CN101593786A publication Critical patent/CN101593786A/en
Application granted granted Critical
Publication of CN101593786B publication Critical patent/CN101593786B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种用于雪崩光电二极管的温度补偿电路,包括:高精度温度传感模块,用于将APD的管芯温度转换成模拟电压信号,其输入端连接APD光探测模块,其输出端连接APD偏压控制单元;APD偏压控制单元,用于将高精度温度传感模块输出的电压信号转换成控制APD的偏压信号;及APD光探测模块,用于反馈管芯温度,并受偏压信号控制使APD的增益恒定,其输入端连接APD偏压控制单元,其输出端连接高精度温度传感模块。本发明利用高压控制器件组成APD偏压控制单元及相关辅助电路模块设计了一种实用的高精度APD偏压控制温度补偿电路,使APD的恒增益工作温度范围:-0℃~+50℃,增益控制精度高于0.5%。

The invention discloses a temperature compensation circuit for an avalanche photodiode, comprising: a high-precision temperature sensing module, which is used to convert the temperature of the tube core of the APD into an analog voltage signal, whose input end is connected with the APD light detection module, and whose output The terminal is connected to the APD bias control unit; the APD bias control unit is used to convert the voltage signal output by the high-precision temperature sensing module into a bias signal for controlling the APD; and the APD light detection module is used to feed back the die temperature, and The gain of the APD is controlled by the bias signal to make it constant, its input end is connected to the APD bias voltage control unit, and its output end is connected to a high-precision temperature sensing module. The present invention uses high-voltage control devices to form an APD bias control unit and related auxiliary circuit modules to design a practical high-precision APD bias control temperature compensation circuit, so that the APD's constant gain operating temperature range: -0 ° C ~ +50 ° C, Gain control accuracy is better than 0.5%.

Description

用于雪崩光电二极管的温度补偿电路 Temperature Compensation Circuit for Avalanche Photodiodes

技术领域 technical field

本发明涉及一种光通信技术领域的基本电路,具体涉及一种用于高精度雪崩光电二极管(APD)的偏压控制温度补偿电路。The invention relates to a basic circuit in the technical field of optical communication, in particular to a bias control temperature compensation circuit for a high-precision avalanche photodiode (APD).

背景技术 Background technique

目前,APD作为一种高灵敏、能精确接收数据和测量光功率的光探测器件广泛应用于光纤传感、光纤通信网络中。它借助于内部强电场作用产生雪崩倍增效应,具有极高的内部增益(可达10~100量级)。然而,APD随温漂的变化严重影响其增益的稳定性,甚至引起测量精度的恶化。理论上可以证明APD的增益是其偏压V和温度T的函数,二者共同决定APD工作时的增益,而且在维持APD增益比较恒定的条件下,其偏压和温度之间存在一定的关系。因此,可以控制APD的偏压使之随温度按一定的规律改变。这样就可以维持APD增益基本恒定,保证其正常工作。这就是对APD温度漂移的偏压补偿原理。At present, APD is widely used in optical fiber sensing and optical fiber communication network as a kind of photodetection device with high sensitivity, which can accurately receive data and measure optical power. It produces an avalanche multiplication effect by means of an internal strong electric field, and has a very high internal gain (up to 10-100 orders of magnitude). However, the variation of APD with temperature drift seriously affects the stability of its gain, and even causes the deterioration of measurement accuracy. Theoretically, it can be proved that the gain of the APD is a function of its bias voltage V and temperature T, both of which determine the gain of the APD when it is working, and there is a certain relationship between the bias voltage and the temperature under the condition that the APD gain is relatively constant. . Therefore, the bias voltage of the APD can be controlled to change according to a certain rule with the temperature. In this way, the APD gain can be kept basically constant to ensure its normal operation. This is the principle of bias compensation for APD temperature drift.

由此可知,施加在APD上的偏置电压必须能够精确受控是保证光纤系统性能的首要要求。本设计针对该要求采用高压控制器件及相关辅助电路设计。给出了一种具有高精度的APD偏压控制/光探测功能的核心电路。It can be seen that the bias voltage applied to the APD must be accurately controlled to ensure the performance of the optical fiber system. This design uses high-voltage control devices and related auxiliary circuit design for this requirement. A core circuit with high precision APD bias voltage control/light detection function is presented.

发明内容 Contents of the invention

本发明所要解决的技术问题是提供一种用于雪崩光电二极管的温度补偿电路,它可以使APD雪崩光电二极管的恒增益工作温度范围:-0℃~+50℃,增益控制精度高于0.5%。The technical problem to be solved by the present invention is to provide a temperature compensation circuit for avalanche photodiodes, which can make the constant gain operating temperature range of APD avalanche photodiodes: -0°C ~ +50°C, and the gain control accuracy is higher than 0.5%. .

为了解决以上技术问题,本发明提供了一种用于雪崩光电二极管的温度补偿电路,包括:In order to solve the above technical problems, the present invention provides a temperature compensation circuit for avalanche photodiodes, including:

高精度温度传感模块,用于将APD的管芯温度转换成模拟电压信号,其输入端连接APD光探测模块,其输出端连接APD偏压控制单元;A high-precision temperature sensing module is used to convert the die temperature of the APD into an analog voltage signal, its input end is connected to the APD light detection module, and its output end is connected to the APD bias control unit;

所述的APD偏压控制单元,用于将所述高精度温度传感模块输出的电压信号转换成控制所述APD的偏压信号;The APD bias control unit is used to convert the voltage signal output by the high-precision temperature sensing module into a bias signal for controlling the APD;

及所述的APD光探测模块,用于反馈管芯温度,并受所述偏压信号控制使所述APD的增益恒定,其输入端连接所述的APD偏压控制单元,其输出端连接所述的高精度温度传感模块。and the APD photodetection module, which is used to feed back the die temperature, and is controlled by the bias signal to make the gain of the APD constant, its input end is connected to the APD bias control unit, and its output end is connected to the The high-precision temperature sensing module described above.

本发明利用高压控制器件组成APD偏压控制单元及相关辅助电路模块设计了一种实用的高精度APD偏压控制温度补偿电路,使APD雪崩光电二极管的恒增益工作温度范围:-0℃~+50℃,增益控制精度高于0.5%。The present invention uses high-voltage control devices to form an APD bias control unit and related auxiliary circuit modules to design a practical high-precision APD bias control temperature compensation circuit, so that the constant gain operating temperature range of the APD avalanche photodiode: -0 ° C ~ + 50℃, the gain control accuracy is higher than 0.5%.

附图说明 Description of drawings

下面结合附图和具体实施方式对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.

图1是本发明的总体电路结构图;Fig. 1 is an overall circuit structure diagram of the present invention;

图2是本发明的APD偏压控制单元的电路结构图。Fig. 2 is a circuit structure diagram of the APD bias voltage control unit of the present invention.

具体实施方式 Detailed ways

请参阅图1,本发明揭示了一种用于雪崩光电二极管的温度补偿电路,包括:高精度温度传感模块,APD偏压控制单元,APD光探测模块。Please refer to FIG. 1 , the present invention discloses a temperature compensation circuit for an avalanche photodiode, including: a high-precision temperature sensing module, an APD bias voltage control unit, and an APD light detection module.

高精度温度传感模块用高精度温度传感器(精度±0.1℃)以把APD光探测模块的管芯温度转换成模拟电压信号VT;VT与APD偏压控制单元的高压控制输入端相连接,APD偏压控制单元的高压输出端VG分别连接到APD光探测器的偏置电压输入脚,这样就形成了对APD光探测器的闭环温度补偿控制。The high-precision temperature sensing module uses a high-precision temperature sensor (accuracy ±0.1°C) to convert the core temperature of the APD light detection module into an analog voltage signal V T ; VT is connected to the high-voltage control input terminal of the APD bias control unit, The high-voltage output terminals V G of the APD bias voltage control unit are respectively connected to the bias voltage input pins of the APD photodetector, thus forming a closed-loop temperature compensation control for the APD photodetector.

本发明的用于雪崩光电二极管的温度补偿电路的APD偏压控制单元一个优选实施例,其中高精度温度传感模块的输出依序连接APD偏压控制单元的温度反馈控制电路输入端、RC滤波电路(图中未示,增加该块电路可起到限流保护和降低输出电压纹波的作用,另一种实施方式可将RC滤波电路设置在所述的高压调理电路之后,其输出端连接所述的APD光探测模块)、高压调理电路,温度反馈控制电路输出端与RC滤波电路的输入端相连,其输出端与高压调理电路的输入端相接,温度反馈控制电路由高精度温度传感器与相应补偿电路构成。其中,温度反馈控制电路,用于将APD的温度采集模拟电压转换为温度控制电压;高压调理电路,用于将所述温度反馈控制电路输出的温度控制电压转换为可控制APD偏压的高压信号。高压电源模块,用于为所述的高压调理电路提供高压电源。A preferred embodiment of the APD bias control unit for the temperature compensation circuit of the avalanche photodiode of the present invention, wherein the output of the high-precision temperature sensing module is sequentially connected to the input terminal of the temperature feedback control circuit of the APD bias control unit, RC filter circuit (not shown in the figure, adding this block circuit can play the role of current limiting protection and reduce output voltage ripple, another implementation mode can set the RC filter circuit after the high-voltage conditioning circuit, and its output terminal is connected to Described APD optical detection module), high-voltage conditioning circuit, temperature feedback control circuit output end is connected with the input end of RC filter circuit, and its output end is connected with the input end of high-voltage conditioning circuit, and temperature feedback control circuit is composed of high-precision temperature sensor Formed with the corresponding compensation circuit. Among them, the temperature feedback control circuit is used to convert the temperature acquisition analog voltage of the APD into a temperature control voltage; the high voltage conditioning circuit is used to convert the temperature control voltage output by the temperature feedback control circuit into a high voltage signal that can control the bias voltage of the APD . The high-voltage power supply module is used to provide high-voltage power supply for the high-voltage conditioning circuit.

如图2所示,温度反馈控制电路的一种较佳实施例:高精度温度传感器的电压输出端与一个超低噪声运算放大器A1的同相输入端相连,在放大器A1的反馈电阻R2子路上还串联有一个电位器W1,放大器A1的输出通过电阻R串联后与高压调理电路的输入端相连接;高精度参考电压源的电压输出端VREF与一个超低噪声运算放大器A2的同相输入端相连,在放大器A2的反馈电阻R4子路上还串联有一个电位器W2,放大器A2的输出通过电阻R5限流后和放大器A1的输出通过电阻R6限流后并联在一起输出电压VT0,VT0通过RC型滤波电路滤波与高压调理电路的输入端相连接。采用RC型滤波电路同时起到限流保护和降低输出电压纹波的效果。高压调理电路的输出端通过RC型滤波电路滤波后与APD光探测器的偏置电压输入脚相连接。As shown in Figure 2, a preferred embodiment of the temperature feedback control circuit: the voltage output terminal of the high-precision temperature sensor is connected to the non-inverting input terminal of an ultra-low noise operational amplifier A1, and the feedback resistor R2 sub-circuit of the amplifier A1 There is also a potentiometer W1 in series, and the output of the amplifier A1 is connected to the input terminal of the high-voltage conditioning circuit after being connected in series through a resistor R; the voltage output terminal V REF of the high-precision reference voltage source is connected to the non-inverting input terminal of an ultra-low noise operational amplifier A2 There is also a potentiometer W2 in series on the feedback resistor R4 sub-circuit of the amplifier A2, the output of the amplifier A2 is limited by the resistor R5 and the output of the amplifier A1 is connected in parallel to the output voltage V T0 after the current is limited by the resistor R6 . V T0 is filtered by an RC filter circuit and connected to the input end of the high voltage conditioning circuit. The RC type filter circuit is used to protect the current limit and reduce the output voltage ripple at the same time. The output end of the high-voltage conditioning circuit is filtered by an RC filter circuit and then connected to the bias voltage input pin of the APD photodetector.

优选地,本发明的APD元件利用安装孔位将其金属外壳底座固定在散热板上,缝隙用导热脂填充,可以起到更好地散热。Preferably, the APD element of the present invention uses mounting holes to fix its metal housing base on the heat dissipation plate, and the gaps are filled with thermal conductive grease, which can achieve better heat dissipation.

这里本发明的描述和应用是说明性的,并非想将本发明的范围限制在上述实施例中。这里所披露的实施例的变形和改变是可能的,对于那些本领域的普通技术人员来说实施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本发明的精神或本质特征的情况下,本发明可以以其他形式、结构、布置、比例,以及用其他元件、材料和部件来实现。在不脱离本发明范围和精神的情况下,可以对这里所披露的实施例进行其他变形和改变。The description and application of the invention herein is illustrative and is not intended to limit the scope of the invention to the above-described embodiments. Variations and changes to the embodiments disclosed herein are possible, and substitutions and equivalents for various components of the embodiments are known to those of ordinary skill in the art. It should be clear to those skilled in the art that the present invention can be realized in other forms, structures, arrangements, proportions, and with other elements, materials and components without departing from the spirit or essential characteristics of the present invention. Other modifications and changes may be made to the embodiments disclosed herein without departing from the scope and spirit of the invention.

Claims (7)

1、一种用于雪崩光电二极管的温度补偿电路;其特征在于,包括:1. A temperature compensation circuit for an avalanche photodiode; characterized in that it comprises: 高精度温度传感模块,用于将APD的管芯温度转换成模拟电压信号,其输入端连接APD光探测模块,其输出端连接APD偏压控制单元;A high-precision temperature sensing module is used to convert the die temperature of the APD into an analog voltage signal, its input end is connected to the APD light detection module, and its output end is connected to the APD bias control unit; 所述的APD偏压控制单元,用于将所述高精度温度传感模块输出的电压信号转换成控制所述APD的偏压信号;The APD bias control unit is used to convert the voltage signal output by the high-precision temperature sensing module into a bias signal for controlling the APD; 及所述的APD光探测模块,用于反馈管芯温度,并受所述偏压信号控制使所述APD的增益恒定,其输入端连接所述的APD偏压控制单元,其输出端连接所述的高精度温度传感模块。and the APD photodetection module, which is used to feed back the die temperature, and is controlled by the bias signal to make the gain of the APD constant, its input end is connected to the APD bias control unit, and its output end is connected to the The high-precision temperature sensing module described above. 2、如权利要求1所述的用于雪崩光电二极管的温度补偿电路,其特征在于,所述的APD偏压控制单元包括:2. The temperature compensation circuit for avalanche photodiodes according to claim 1, wherein the APD bias control unit comprises: 温度反馈控制电路,用于将APD的温度采集模拟电压转换为温度控制电压,其输入端连接所述高精度温度传感模块的输出端,其输出端连接高压调理电路;The temperature feedback control circuit is used to convert the temperature acquisition analog voltage of the APD into a temperature control voltage, its input end is connected to the output end of the high-precision temperature sensing module, and its output end is connected to the high-voltage conditioning circuit; 所述的高压调理电路,用于将所述温度反馈控制电路输出的温度控制电压转换为可控制APD偏压的的高压信号,其输入端连接所述温度反馈控制电路的输出端,其输出端连接所述APD光探测模块;The high-voltage conditioning circuit is used to convert the temperature control voltage output by the temperature feedback control circuit into a high-voltage signal that can control the bias voltage of the APD, its input end is connected to the output end of the temperature feedback control circuit, and its output end Connect the APD light detection module; 高压电源模块,用于为所述的高压调理电路提供高压电源,其输出端连接所述的高压调理电路。The high-voltage power supply module is used to provide high-voltage power for the high-voltage conditioning circuit, and its output terminal is connected to the high-voltage conditioning circuit. 3、如权利要求2所述的用于雪崩光电二极管的温度补偿电路,其特征在于,所述的APD偏压控制单元还包括至少一个RC滤波电路。3. The temperature compensation circuit for an avalanche photodiode according to claim 2, wherein said APD bias control unit further comprises at least one RC filter circuit. 4、如权利要求3所述的用于雪崩光电二极管的温度补偿电路,其特征在于,所述的RC滤波电路设置在所述的温度反馈控制电路与所述的高压调理电路之间。4. The temperature compensation circuit for an avalanche photodiode according to claim 3, wherein said RC filter circuit is arranged between said temperature feedback control circuit and said high voltage conditioning circuit. 5、如权利要求3所述的用于雪崩光电二极管的温度补偿电路,其特征在于,所述的RC滤波电路设置在所述的高压调理电路之后,所述RC滤波电路的输出端连接所述的APD光探测模块。5. The temperature compensation circuit for avalanche photodiodes according to claim 3, characterized in that, the RC filter circuit is arranged after the high voltage conditioning circuit, and the output terminal of the RC filter circuit is connected to the The APD light detection module. 6、如权利要求2所述的用于雪崩光电二极管的温度补偿电路,其特征在于,所述的温度反馈电路包括:6. The temperature compensation circuit for avalanche photodiodes as claimed in claim 2, wherein said temperature feedback circuit comprises: 第一运算放大器A1,其同相输入端连接所述高精度温度传感模块的输出端,其反馈电阻R2子路上串联一个第一电位器W1,其输出端通过电阻R6与所述高压调理电路连接;The first operational amplifier A1, its noninverting input terminal is connected to the output terminal of the high-precision temperature sensing module, a first potentiometer W1 is connected in series on its feedback resistor R2 sub-road, and its output terminal is connected to the high-voltage conditioning circuit through a resistor R6 connect; 第二运算放大器A2,其同相输入端连接一个参考电压源,其反馈电阻R4子路上串联一个第二电位器W2,其输出端通过电阻R5与所述高压调理电路连接。The second operational amplifier A2 is connected to a reference voltage source at its non-inverting input terminal, and a second potentiometer W2 is connected in series on its feedback resistor R4 sub-circuit, and its output terminal is connected to the high voltage conditioning circuit through a resistor R5. 7、如权利要求1或2所述的用于雪崩光电二极管的温度补偿电路,其特征在于,所述APD利用安装孔位将其金属外壳底座固定在散热板上,缝隙用导热脂填充。7. The temperature compensation circuit for avalanche photodiodes according to claim 1 or 2, wherein the APD uses mounting holes to fix its metal shell base on the heat sink, and the gaps are filled with thermal grease.
CN 200910053659 2009-06-23 2009-06-23 Temperature compensation circuit used for avalanche photodiode Expired - Fee Related CN101593786B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910053659 CN101593786B (en) 2009-06-23 2009-06-23 Temperature compensation circuit used for avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910053659 CN101593786B (en) 2009-06-23 2009-06-23 Temperature compensation circuit used for avalanche photodiode

Publications (2)

Publication Number Publication Date
CN101593786A true CN101593786A (en) 2009-12-02
CN101593786B CN101593786B (en) 2013-04-10

Family

ID=41408336

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910053659 Expired - Fee Related CN101593786B (en) 2009-06-23 2009-06-23 Temperature compensation circuit used for avalanche photodiode

Country Status (1)

Country Link
CN (1) CN101593786B (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012104448A1 (en) * 2011-01-31 2012-08-09 Universidad De Malaga Laser receiving apparatus based on an avalanche photodiode thermally regulated with embedded control
CN102798466A (en) * 2011-05-27 2012-11-28 上海华魏光纤传感技术有限公司 APD (Avalanche Photo Diode) reverse bias voltage control circuit with temperature compensation
CN103528678A (en) * 2013-10-30 2014-01-22 成都市宏山科技有限公司 Light intensity detection circuit
CN103837512A (en) * 2014-02-10 2014-06-04 中国科学院苏州生物医学工程技术研究所 High-voltage biasing circuit of avalanche photodiode applied to weak fluorescence measurement
CN104252194A (en) * 2014-08-29 2014-12-31 北京航天控制仪器研究所 APD (avalanche photo diode) bias voltage automatic adjusting device and APD bias voltage automatic adjusting method
CN105445747A (en) * 2014-09-10 2016-03-30 河南平原光电有限公司 Pulsed laser range finding detector APD adjustment circuit
CN106020321A (en) * 2016-07-31 2016-10-12 桂林理工大学 Bias voltage fully-automatic temperature compensation method for APD array chip
CN106094963A (en) * 2016-07-31 2016-11-09 桂林理工大学 APD array chip bias voltage Full-automatic temperature compensation system
CN106301592A (en) * 2016-08-23 2017-01-04 索尔思光电(成都)有限公司 The method and device of protection APD receptor
CN106525232A (en) * 2016-12-09 2017-03-22 中国科学院自动化研究所 Multichannel light detection apparatus
CN107222266A (en) * 2017-06-12 2017-09-29 青岛海信宽带多媒体技术有限公司 A kind of optical module
CN107342741A (en) * 2016-04-29 2017-11-10 苏州旭创科技有限公司 APD bias control circuits, opto-electronic receiver circuit and bias control method
CN107976667A (en) * 2016-11-04 2018-05-01 北京遥测技术研究所 A kind of APD detection devices for Full wave shape measurement laser radar
CN108445946A (en) * 2018-04-04 2018-08-24 安徽问天量子科技股份有限公司 The temperature self-adaptation control circuit and method of APD in quantum key dispatching system
CN109557866A (en) * 2019-01-24 2019-04-02 西安深瞳智控技术有限公司 A power supply assembly and method for auxiliary laser detection device to realize AGC function
CN110196430A (en) * 2019-05-15 2019-09-03 深圳市速腾聚创科技有限公司 A kind of temperature-compensation circuit and method applied to single photon sensor array
CN110275156A (en) * 2019-07-10 2019-09-24 北京富通芯科技有限公司 The bias voltage scaling method and device of avalanche photodide in laser radar
CN110417264A (en) * 2018-04-28 2019-11-05 中国科学院沈阳自动化研究所 Bias power supply device and method for adaptively adjusting pulse signal of four-quadrant detector
CN111505979A (en) * 2020-03-30 2020-08-07 宁波索拉科技有限公司 Self-adaptive gain adjustment APD
CN112000163A (en) * 2020-08-17 2020-11-27 湖北三江航天万峰科技发展有限公司 Bias power supply circuit of photoelectric detector
CN112000170A (en) * 2020-09-02 2020-11-27 合肥恒烁半导体有限公司 Temperature compensation circuit and application thereof
CN113220061A (en) * 2021-05-06 2021-08-06 中国科学院苏州生物医学工程技术研究所 Boosting type high-voltage bias circuit applied to avalanche diode APD
CN113778163A (en) * 2021-11-11 2021-12-10 深圳市时代速信科技有限公司 Gallium nitride device with temperature compensation function
CN115328260A (en) * 2022-08-15 2022-11-11 北京控制工程研究所 A PD Sensitivity Control Device Based on Temperature and Bias Closed-loop Feedback
CN115824274A (en) * 2021-12-01 2023-03-21 深圳市速腾聚创科技有限公司 Photodetection circuit and optoelectronic system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100566197B1 (en) * 2003-01-02 2006-03-29 삼성전자주식회사 APD optical receiver temperature compensation device
CN2627476Y (en) * 2003-01-06 2004-07-21 武汉电信器件公司 APD component temperature compensation circuit
JP2006303524A (en) * 2006-06-08 2006-11-02 Oki Comtec Ltd Bias voltage control circuit for avalanche photodiode and its adjusting method

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2386732A1 (en) * 2011-01-31 2012-08-28 Universidad De Málaga LASER RECEIVER DEVICE BASED ON THERMOREGULATED AVALANCHA PHOTODIOD WITH EMBEDDED CONTROL.
WO2012104448A1 (en) * 2011-01-31 2012-08-09 Universidad De Malaga Laser receiving apparatus based on an avalanche photodiode thermally regulated with embedded control
CN102798466A (en) * 2011-05-27 2012-11-28 上海华魏光纤传感技术有限公司 APD (Avalanche Photo Diode) reverse bias voltage control circuit with temperature compensation
CN103528678A (en) * 2013-10-30 2014-01-22 成都市宏山科技有限公司 Light intensity detection circuit
CN103837512B (en) * 2014-02-10 2016-06-29 苏州中科医疗器械产业发展有限公司 It is applied to the HVB high voltage bias circuit of the avalanche diode APD that week fluorescent is measured
CN103837512A (en) * 2014-02-10 2014-06-04 中国科学院苏州生物医学工程技术研究所 High-voltage biasing circuit of avalanche photodiode applied to weak fluorescence measurement
CN104252194A (en) * 2014-08-29 2014-12-31 北京航天控制仪器研究所 APD (avalanche photo diode) bias voltage automatic adjusting device and APD bias voltage automatic adjusting method
CN105445747A (en) * 2014-09-10 2016-03-30 河南平原光电有限公司 Pulsed laser range finding detector APD adjustment circuit
CN105445747B (en) * 2014-09-10 2018-02-27 河南平原光电有限公司 A kind of pulsed laser ranging detector APD adjustment circuits
CN107342741B (en) * 2016-04-29 2020-08-25 苏州旭创科技有限公司 APD bias voltage control circuit, photoelectric receiving circuit and bias voltage control method
CN107342741A (en) * 2016-04-29 2017-11-10 苏州旭创科技有限公司 APD bias control circuits, opto-electronic receiver circuit and bias control method
CN106020321A (en) * 2016-07-31 2016-10-12 桂林理工大学 Bias voltage fully-automatic temperature compensation method for APD array chip
CN106094963A (en) * 2016-07-31 2016-11-09 桂林理工大学 APD array chip bias voltage Full-automatic temperature compensation system
CN106301592A (en) * 2016-08-23 2017-01-04 索尔思光电(成都)有限公司 The method and device of protection APD receptor
CN106301592B (en) * 2016-08-23 2018-07-03 索尔思光电(成都)有限公司 Protect the method and device of APD receivers
CN107976667A (en) * 2016-11-04 2018-05-01 北京遥测技术研究所 A kind of APD detection devices for Full wave shape measurement laser radar
CN107976667B (en) * 2016-11-04 2020-04-10 北京遥测技术研究所 APD detection device for full-waveform measurement laser radar
CN106525232A (en) * 2016-12-09 2017-03-22 中国科学院自动化研究所 Multichannel light detection apparatus
CN107222266A (en) * 2017-06-12 2017-09-29 青岛海信宽带多媒体技术有限公司 A kind of optical module
CN108445946A (en) * 2018-04-04 2018-08-24 安徽问天量子科技股份有限公司 The temperature self-adaptation control circuit and method of APD in quantum key dispatching system
CN108445946B (en) * 2018-04-04 2024-07-19 安徽问天量子科技股份有限公司 Temperature self-adaptive control circuit and method for APD in quantum key distribution system
CN110417264A (en) * 2018-04-28 2019-11-05 中国科学院沈阳自动化研究所 Bias power supply device and method for adaptively adjusting pulse signal of four-quadrant detector
CN109557866A (en) * 2019-01-24 2019-04-02 西安深瞳智控技术有限公司 A power supply assembly and method for auxiliary laser detection device to realize AGC function
CN109557866B (en) * 2019-01-24 2023-08-18 西安深瞳智控技术有限公司 Power supply assembly and method for assisting laser detection device in realizing AGC function
CN110196430A (en) * 2019-05-15 2019-09-03 深圳市速腾聚创科技有限公司 A kind of temperature-compensation circuit and method applied to single photon sensor array
CN110275156A (en) * 2019-07-10 2019-09-24 北京富通芯科技有限公司 The bias voltage scaling method and device of avalanche photodide in laser radar
CN110275156B (en) * 2019-07-10 2021-11-19 北京富通芯科技有限公司 Method and device for calibrating bias voltage of avalanche photodiode in laser radar
CN111505979A (en) * 2020-03-30 2020-08-07 宁波索拉科技有限公司 Self-adaptive gain adjustment APD
CN112000163A (en) * 2020-08-17 2020-11-27 湖北三江航天万峰科技发展有限公司 Bias power supply circuit of photoelectric detector
CN112000163B (en) * 2020-08-17 2022-03-29 湖北三江航天万峰科技发展有限公司 Bias power supply circuit of photoelectric detector
CN112000170A (en) * 2020-09-02 2020-11-27 合肥恒烁半导体有限公司 Temperature compensation circuit and application thereof
CN113220061A (en) * 2021-05-06 2021-08-06 中国科学院苏州生物医学工程技术研究所 Boosting type high-voltage bias circuit applied to avalanche diode APD
CN113778163A (en) * 2021-11-11 2021-12-10 深圳市时代速信科技有限公司 Gallium nitride device with temperature compensation function
CN113778163B (en) * 2021-11-11 2022-02-15 深圳市时代速信科技有限公司 GaN device with temperature compensation
CN115824274A (en) * 2021-12-01 2023-03-21 深圳市速腾聚创科技有限公司 Photodetection circuit and optoelectronic system
CN115824274B (en) * 2021-12-01 2024-03-01 深圳市速腾聚创科技有限公司 Light detection circuit and photoelectric system
CN115328260B (en) * 2022-08-15 2023-06-30 北京控制工程研究所 APD sensitivity control device based on temperature and bias closed loop feedback
CN115328260A (en) * 2022-08-15 2022-11-11 北京控制工程研究所 A PD Sensitivity Control Device Based on Temperature and Bias Closed-loop Feedback

Also Published As

Publication number Publication date
CN101593786B (en) 2013-04-10

Similar Documents

Publication Publication Date Title
CN101593786B (en) Temperature compensation circuit used for avalanche photodiode
CN106017533B (en) A kind of quick tuning real time calibration fiber grating demodulation device and method of work
CN109638636B (en) Control and state monitoring device for semiconductor laser
CN100385756C (en) A stable light source optical power output device with all-fiber structure
CN104615054A (en) System and method for power invariability of laser
CN113701660B (en) Optical sensing demodulation module and optical sensing system
CN112461363A (en) Offset nulling for optical power meters
CN108896091A (en) A kind of scaling method and system of fiber Bragg grating (FBG) demodulator
CN104535498A (en) Organophosphorus detector
CN201607803U (en) Linear optical fiber heat fire detecting module and system thereof
CN202998097U (en) Optical module monitoring circuit
CN202857050U (en) SLED light source based on temperature and power feedback control
CN205655926U (en) Sensing system based on slope fiber grating
CN209102101U (en) A photoelectric detection unit and a photoelectric detection system
CN205787961U (en) Strontium atom light clock temperature control system signal regulating device
US6677570B1 (en) Wide dynamic range optical power detector
CN203422158U (en) Laser light power detection circuit
CN202216778U (en) Surface Acoustic Wave Temperature Sensor Based on Multiple Couplers
CN103323657A (en) Motor controller overcurrent judgment circuit
CN207439562U (en) A kind of cold junction compensation circuit applied in temperature survey
CN203191103U (en) Environment analog quantity acquisition module
Zalessky et al. Investigation of the optical communication channel throughput with an information receiver in the form of a silicon photomultiplier
US10845238B2 (en) Circuit and device for small photo currents and detection of small photo currents
CN202372185U (en) Adjustable automatic gain scanning and filtering system
CN111903211B (en) A remote temperature measuring device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: STATE GRID LIAONING ELECTRIC POWER CO., LTD. ELECT

Effective date: 20131203

C41 Transfer of patent application or patent right or utility model
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Yang Bin

Inventor after: Gao Wei

Inventor after: Xi Gang

Inventor after: Zhou Zhengxian

Inventor after: Tong Fangxuan

Inventor after: Zhao Qingqi

Inventor after: Bao Xinghui

Inventor after: Wu Ximao

Inventor after: Huang Yuxia

Inventor before: Yang Bin

Inventor before: Gao Wei

Inventor before: Xi Gang

Inventor before: Zhou Zhengxian

Inventor before: Tong Fangxuan

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: YANG BIN GAO WEI XI GANG ZHOU ZHENGXIAN TONG FANGXUAN TO: YANG BIN GAO WEI XI GANG ZHOU ZHENGXIAN TONG FANGXUAN ZHAO QINGQI BAO XINGHUI WU XIMAO HUANG YUXIA

TR01 Transfer of patent right

Effective date of registration: 20131203

Address after: Qingpu District of Shanghai city in 201700 Zhao Tun Zhen Zhao road 31 Lane 2, Yunfeng building 701 room B

Patentee after: SHANGHAI BOOM FIBER SENSING TECHNOLOGY Co.,Ltd.

Patentee after: STATE GRID LIAONING ELECTRIC POWER Research Institute

Address before: Qingpu District of Shanghai city in 201700 Zhao Tun Zhen Zhao road 31 Lane 2, Yunfeng building 701 room B

Patentee before: SHANGHAI BOOM FIBER SENSING TECHNOLOGY Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130410

CF01 Termination of patent right due to non-payment of annual fee