[go: up one dir, main page]

CN101577692A - Channel estimating method of orthogonal frequency division multiplexing system and device thereof - Google Patents

Channel estimating method of orthogonal frequency division multiplexing system and device thereof Download PDF

Info

Publication number
CN101577692A
CN101577692A CNA2009100872659A CN200910087265A CN101577692A CN 101577692 A CN101577692 A CN 101577692A CN A2009100872659 A CNA2009100872659 A CN A2009100872659A CN 200910087265 A CN200910087265 A CN 200910087265A CN 101577692 A CN101577692 A CN 101577692A
Authority
CN
China
Prior art keywords
msub
mrow
impulse response
channel
domain impulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100872659A
Other languages
Chinese (zh)
Other versions
CN101577692B (en
Inventor
崔琪楣
王轶
陶小峰
许晓东
张平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN2009100872659A priority Critical patent/CN101577692B/en
Publication of CN101577692A publication Critical patent/CN101577692A/en
Application granted granted Critical
Publication of CN101577692B publication Critical patent/CN101577692B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开一种正交频分复用系统的信道估计方法和装置。该方法包括:获得初始信道时域冲激响应;获得所述初始信道时域冲激响应中与有效多径时延位置对应的信道时域冲激响应,根据所述有效多径时延位置生成干扰矩阵;将所述干扰矩阵的逆和与所述多径时延位置对应的信道时域冲激响应相乘,获得修正后的信道时域冲激响应;对修正后的信道时域冲激响应进行傅里叶变换获得信道频域响应估计。本发明的方法和装置通过构造多径的干扰,将干扰矩阵的逆与有效信道时域冲激响应相乘以抑制能量泄漏,能有效消除虚拟子载波引入的能量泄漏问题,消除地板效应,提高信道估计精度,且可通过快速矩阵算法控制系统复杂度。

The invention discloses a channel estimation method and device for an orthogonal frequency division multiplexing system. The method includes: obtaining an initial channel time-domain impulse response; obtaining a channel time-domain impulse response corresponding to an effective multipath delay position in the initial channel time-domain impulse response, and generating a channel according to the effective multipath delay position An interference matrix; multiplying the inverse of the interference matrix by the channel time-domain impulse response corresponding to the multipath delay position to obtain a corrected channel time-domain impulse response; for the corrected channel time-domain impulse The response is Fourier transformed to obtain the channel frequency domain response estimate. The method and device of the present invention construct multipath interference, multiply the inverse of the interference matrix and the time-domain impulse response of the effective channel to suppress energy leakage, can effectively eliminate the energy leakage problem introduced by the virtual subcarrier, eliminate the floor effect, and improve Channel estimation accuracy, and the system complexity can be controlled by fast matrix algorithm.

Description

一种正交频分复用系统的信道估计方法和装置 A Channel Estimation Method and Device for an Orthogonal Frequency Division Multiplexing System

技术领域 technical field

本发明涉及无线移动通信技术领域,尤其涉及一种正交频分复用系统的信道估计方法和装置。The invention relates to the technical field of wireless mobile communication, in particular to a channel estimation method and device for an orthogonal frequency division multiplexing system.

背景技术 Background technique

正交频分复用(OFDM)技术将高速数据流串并变换后复用在不同正交子载波上,在减少数据间干扰的同时提高了频谱效率。而且,每个子载波对应的子信道为频率平坦衰落信道,有效减少了多径衰落造成的符号间干扰。目前,OFDM技术已在无线局域网、增强型第三代移动通信系统等中得以广泛应用。Orthogonal Frequency Division Multiplexing (OFDM) technology multiplexes high-speed data streams on different orthogonal sub-carriers after serial-to-parallel conversion, which improves spectral efficiency while reducing interference between data. Moreover, the subchannel corresponding to each subcarrier is a frequency flat fading channel, which effectively reduces intersymbol interference caused by multipath fading. At present, OFDM technology has been widely used in wireless local area networks, enhanced third-generation mobile communication systems, and so on.

为保证OFDM系统在无线移动通信环境中的良好性能,接收端需提供对无线衰落信道尽可能准确的估计。因此,信道估计是OFDM系统系带信号处理中无可缺少的重要环节。In order to ensure the good performance of the OFDM system in the wireless mobile communication environment, the receiver needs to provide an estimate of the wireless fading channel as accurately as possible. Therefore, channel estimation is an indispensable and important link in OFDM system tether signal processing.

图1示出正交频分复用系统中数据发送和接收的系统示意图。如图1所示,在发送端,数据经过信道编码、调制、空时编码,生成的信号和频域导频信号一起进行资源映射,再经过IFFT变化、成帧处理后进行发射。在接收端,经过FFT变换、导频数据分离后,分离的导频信号用于信道估计,根据信道估计的结果对分离出的数据信号进行空时译码,再经过解调、信道译码等操作还原发送的数据。Fig. 1 shows a system schematic diagram of data transmission and reception in an OFDM system. As shown in Figure 1, at the sending end, the data undergoes channel coding, modulation, and space-time coding, and the generated signal and frequency-domain pilot signal are resource-mapped together, and then transmitted after IFFT transformation and framing processing. At the receiving end, after FFT transformation and pilot data separation, the separated pilot signal is used for channel estimation, and the separated data signal is subjected to space-time decoding according to the result of channel estimation, and then demodulated, channel decoded, etc. The operation restores the data sent.

在实际的OFDM系统中,为避免发送信号受到低通滤波器的影响,通常预留系统所分配带宽边缘的部分子载波作为虚拟子载波。由于落入虚拟载波范围内的导频序列无法提供该频域范围内的信道信息,若对丢失部分频域信息的信道频域响应估计值进行傅立叶逆变换,得到的时域冲激响应将受到能量泄漏的影响而相互干扰,导致信道估计精度的下降。现有的信道估计技术大多未考虑能量泄漏的影响,在时域对有限个采样点进行截取,丢失了有效时域冲激响应,出现地板效应。因此,亟待一种有效消除能量泄漏影响的方法,提高实际系统中的信道估计精度。In an actual OFDM system, in order to prevent the transmitted signal from being affected by the low-pass filter, some subcarriers at the edge of the bandwidth allocated by the system are usually reserved as virtual subcarriers. Since the pilot sequence falling within the range of the virtual carrier cannot provide channel information in the frequency domain, if the inverse Fourier transform is performed on the estimated value of the channel frequency domain response that loses part of the frequency domain information, the obtained time domain impulse response will be affected by Due to the impact of energy leakage, they interfere with each other, resulting in a decrease in channel estimation accuracy. Most of the existing channel estimation techniques do not consider the impact of energy leakage, and intercept a limited number of sampling points in the time domain, thus losing the effective time domain impulse response and causing the floor effect. Therefore, there is an urgent need for a method to effectively eliminate the influence of energy leakage to improve the channel estimation accuracy in practical systems.

发明内容 Contents of the invention

本发明要解决的一个技术问题是提供一种正交频分复用系统的信道估计方法,能够提高系统中的信道估计精度。A technical problem to be solved by the present invention is to provide a channel estimation method for an OFDM system, which can improve the channel estimation accuracy in the system.

本发明提供一种正交频分复用系统的信道估计方法,包括:对位于有效子载波范围内的可用导频进行信道频域响应估计,进行傅里叶逆变换,获得初始信道时域冲激响应;获得初始信道时域冲激响应中与有效多径时延位置对应的信道时域冲激响应,根据有效多径时延位置生成干扰矩阵;将干扰矩阵的逆和与有效多径时延位置对应的信道时域冲激响应相乘,获得修正后的信道时域冲激响应;对修正后的信道时域冲激响应进行傅里叶变换,获得信道频域响应估计。The present invention provides a channel estimation method for an OFDM system, comprising: performing channel frequency domain response estimation on available pilots within the effective subcarrier range, performing Fourier inverse transform, and obtaining the initial channel time domain response obtain the channel time domain impulse response corresponding to the effective multipath delay position in the initial channel time domain impulse response, and generate an interference matrix according to the effective multipath delay position; combine the inverse sum of the interference matrix with the effective multipath time delay Multiply the channel time-domain impulse response corresponding to the delay position to obtain the corrected channel time-domain impulse response; perform Fourier transform on the corrected channel time-domain impulse response to obtain the channel frequency-domain response estimate.

根据本发明的信道估计方法的一个实施例,该方法还根据预设的有效径判决门限确定所述有效多径时延位置。其中,该预设的有效径判决门限Thr为:According to an embodiment of the channel estimation method of the present invention, the method further determines the effective multipath delay position according to a preset effective path decision threshold. Wherein, the preset effective path judgment threshold Thr is:

ThrThr == ρPρP 22 NN avav // ξξ

其中,ρ=J0(2πfDΔmTs),Ts为OFDM符号周期,fD为最大多普勒频移,ξ为信噪比估计值,P为导频符号功率,Nav为用以计算判决门限Thr需统计的OFDM符号数。Among them, ρ=J 0 (2πf D ΔmT s ), T s is the OFDM symbol period, f D is the maximum Doppler frequency shift, ξ is the estimated signal-to-noise ratio, P is the pilot symbol power, and N av is used to The number of OFDM symbols that need to be counted to calculate the decision threshold Thr.

根据本发明的信道估计方法的一个实施例,通过如下公式根据所述有效多径时延位置生成干扰矩阵:According to an embodiment of the channel estimation method of the present invention, the interference matrix is generated according to the effective multipath delay position by the following formula:

Figure A20091008726500072
Figure A20091008726500072

其中 δ i , j ( l p , l q ) = W N β l q , l p sin ( π ( l q - l p + α i ) N e / N ) sin ( π ( l q - l p + α i ) D f / N ) , W N β l q , l p = exp ( - j 2 π β l q , l p / N ) , l0,l1,...,lL’-1为所述有效多径时延位置,为不同发送天线时域冲激响应的相位旋转因子,αi为不同发送天线时域冲激响应的位移因子,N为IFFT长度,Ne为有效子载波数,Df为导频符号频域间隔。in δ i , j ( l p , l q ) = W N β l q , l p sin ( π ( l q - l p + α i ) N e / N ) sin ( π ( l q - l p + α i ) D. f / N ) , W N β l q , l p = exp ( - j 2 π β l q , l p / N ) , l 0 , l 1 ,..., l L'-1 is the effective multipath delay position, is the phase rotation factor of the time-domain impulse response of different transmitting antennas, α i is the displacement factor of the time-domain impulse response of different transmitting antennas, N is the length of IFFT, N e is the number of effective subcarriers, D f is the frequency domain of the pilot symbol interval.

进一步,对于频分多天线导频的OFDM系统, β l p , l q = l q i - ( l q - l p ) D f / 2 , αi=0;或者,对于码分多天线导频的OFDM系统, β l p , l q = ( l q - l p + α i ) / 2 , αi=(i-1)K0,Df=1,其中K0为各个发送天线的时域冲激响应在时间轴上的间距。Further, for the OFDM system with frequency division multi-antenna pilot, β l p , l q = l q i - ( l q - l p ) D. f / 2 , α i =0; or, for an OFDM system with code division multi-antenna pilot, β l p , l q = ( l q - l p + α i ) / 2 , α i =(i-1)K 0 , D f =1, where K 0 is the distance on the time axis of the time-domain impulse responses of each transmitting antenna.

根据本发明的信道估计方法的一个实施例,对修正后的信道时域冲激响应进行傅里叶变换获得信道频域响应估计的步骤包括:对修正后的信道时域冲激响应补0使样点数扩展至系统FFT/IFFT长度N;对扩展后的信道时域冲激响应序列进行FFT变换,获得各个子载波上的信道频域响应。According to an embodiment of the channel estimation method of the present invention, the step of performing Fourier transform on the corrected channel time-domain impulse response to obtain the channel frequency-domain response estimation includes: adding 0 to the corrected channel time-domain impulse response so that The number of samples is extended to the system FFT/IFFT length N; the FFT transformation is performed on the extended channel time domain impulse response sequence to obtain the channel frequency domain response on each subcarrier.

本发明要解决的另一个技术问题是提供一种正交频分复用系统的信道估计装置,能够提高系统中的信道估计精度。Another technical problem to be solved by the present invention is to provide a channel estimation device for an OFDM system, which can improve the channel estimation accuracy in the system.

本发明提供一种正交频分复用系统的信道估计装置,包括:初始时域冲激响应获取模块,用于对位于有效子载波范围内的可用导频进行信道频域响应估计,对所述信道频域响应估计进行傅里叶逆变换获得初始信道时域冲激响应,发送所述初始信道时域冲激响应;有效时域冲激响应获取模块,用于接收来自所述初始时域冲激响应获取模块的初始信道时域冲激响应,获得所述初始信道时域冲激响应中与有效多径时延位置对应的信道时域冲激响应,发送与所述有效多径时延位置对应的信道时域冲激响应;干扰矩阵获取模块,用于根据所述有效多径时延位置生成干扰矩阵,发送所述干扰矩阵;时域冲激响应修正模块,用于接收来自所述有效时域冲激响应获取模块的与所述有效多径时延位置对应的信道时域冲激响应,接收来自所述干扰矩阵获取模块的所述干扰矩阵,将所述干扰矩阵的逆和与所述多径时延位置对应的信道时域冲激响应相乘,获得修正后的信道时域冲激响应,发送所述修正后的信道时域冲激响应;频域响应估计获取模块,用于接收来自所述时域冲激响应修正模块的所述修正后的信道时域冲激响应,对所述修正后的信道时域冲激响应进行傅里叶变换,获得修正后的信道频域响应估计。The present invention provides a channel estimation device for an OFDM system, including: an initial time-domain impulse response acquisition module, which is used to perform channel frequency-domain response estimation on available pilots located within the effective sub-carrier range, and for all The channel frequency domain response is estimated to perform Fourier inverse transform to obtain the initial channel time domain impulse response, and the initial channel time domain impulse response is sent; the effective time domain impulse response acquisition module is used to receive the initial channel time domain impulse response from the initial time domain The initial channel time domain impulse response of the impulse response acquisition module obtains the channel time domain impulse response corresponding to the effective multipath time delay position in the initial channel time domain impulse response, and sends the The time-domain impulse response of the channel corresponding to the position; the interference matrix acquisition module is used to generate an interference matrix according to the effective multipath delay position, and send the interference matrix; the time-domain impulse response correction module is used to receive information from the The channel time domain impulse response corresponding to the effective multipath delay position of the effective time domain impulse response acquisition module receives the interference matrix from the interference matrix acquisition module, and combines the inverse sum of the interference matrix with The channel time domain impulse response corresponding to the multipath time delay position is multiplied to obtain the corrected channel time domain impulse response, and the corrected channel time domain impulse response is sent; the frequency domain response estimation acquisition module uses After receiving the corrected channel time domain impulse response from the time domain impulse response correction module, performing Fourier transform on the corrected channel time domain impulse response to obtain the corrected channel frequency domain Response estimates.

进一步,该信道估计装置还包括:有效多径时延位置获取模块,用于根据预设的有效径判决门限确定所述有效多径时延位置,发送所述有效多径时延位置;所述有效时域冲激响应获取模块还用于接收来自所述有效多径时延位置获取模块的所述有效多径时延位置;所述干扰矩阵获取模块还用于接收来自所述有效多径时延位置获取模块的所述有效多径时延位置。Further, the channel estimation device further includes: an effective multipath delay location acquisition module, configured to determine the effective multipath delay location according to a preset effective path decision threshold, and send the effective multipath delay location; The effective time domain impulse response acquisition module is also used to receive the effective multipath time delay position from the effective multipath time delay position acquisition module; the interference matrix acquisition module is also used to receive the time delay from the effective multipath time The delay position acquires the effective multipath delay position of the module.

进一步,上述频域响应估计获取模块对所述修正后的信道时域冲激响应补0使样点数扩展至系统FFT/IFFT长度N;对所述扩展后的信道时域冲激响应序列进行FFT变换,获得各个子载波上的修正后的信道频域响应。Further, the frequency domain response estimation acquisition module adds 0 to the corrected channel time domain impulse response to expand the number of samples to the system FFT/IFFT length N; performs FFT on the extended channel time domain impulse response sequence transform to obtain the corrected channel frequency domain response on each subcarrier.

本发明提供的信道估计方法和装置,通过构造多径的干扰,将干扰矩阵的逆与有效信道时域冲激响应相乘以抑制能量泄漏,消除地板效应,提高信道估计的精度。The channel estimation method and device provided by the present invention, by constructing multipath interference, multiply the inverse of the interference matrix and the effective channel time-domain impulse response to suppress energy leakage, eliminate the floor effect, and improve the accuracy of channel estimation.

附图说明 Description of drawings

图1示出正交频分复用系统中数据发送和接收的系统示意图;Fig. 1 shows a schematic diagram of a system for data transmission and reception in an OFDM system;

图2示出本发明的正交频分复用系统的信道估计方法的一个实施例的流程图;Fig. 2 shows the flowchart of an embodiment of the channel estimation method of the OFDM system of the present invention;

图3示出本发明的正交频分复用系统的信道估计方法的另一个实施例的流程图;Fig. 3 shows the flowchart of another embodiment of the channel estimation method of the OFDM system of the present invention;

图4示出本发明的正交频分复用系统的信道估计装置的一个实施例的框图;Fig. 4 shows the block diagram of an embodiment of the channel estimation device of the OFDM system of the present invention;

图5示出本发明的正交频分复用系统的信道估计装置的另一个实施例的框图。Fig. 5 shows a block diagram of another embodiment of the channel estimation device of the OFDM system of the present invention.

具体实施方式 Detailed ways

下面参照附图对本发明进行更全面的描述,其中说明本发明的示例性实施例。在附图中,相同的标号表示相同或者相似的组件或者元素。The present invention will be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are illustrated. In the drawings, the same reference numerals denote the same or similar components or elements.

图2示出本发明的正交频分复用系统的信道估计方法的一个实施例的流程图。Fig. 2 shows a flowchart of an embodiment of the channel estimation method of the OFDM system of the present invention.

如图2所示,在步骤202,对位于有效子载波范围内的可用导频进行信道频域响应估计,然后进行傅里叶逆变换,获得初始信道时域冲激响应。例如,信道频域估计可以通过在各个导频子载波上进行基于最小二乘或最小均方误差准则进行。As shown in FIG. 2 , in step 202 , channel frequency domain response estimation is performed on the available pilots within the effective subcarrier range, and then inverse Fourier transform is performed to obtain an initial channel time domain impulse response. For example, channel frequency domain estimation can be performed on each pilot subcarrier based on the least squares or minimum mean square error criterion.

在步骤204,获得初始信道时域冲激响应中与有效多径时延位置对应的信道时域冲激响应,并根据有效多径时延位置生成干扰矩阵。有效多径位置可以通过根据预先设定的有效径判决门限来确定;对于信道多径时延已知的系统,可以直接根据已知的多径时延信息确定有效多径时延位置。对于信道多径时延未知的系统,保留多径的方法还包括将前Lmax点均保留下来,其中Lmax为最大多径时延;或者,按幅度从大到小,保留L′个点,L′为经验值,在不同信道环境中不同。In step 204, the channel time domain impulse response corresponding to the effective multipath delay position in the initial channel time domain impulse response is obtained, and an interference matrix is generated according to the effective multipath delay position. The effective multipath position can be determined according to the preset effective path decision threshold; for a system with known channel multipath time delay, the effective multipath time delay position can be directly determined according to the known multipath time delay information. For a system with unknown channel multipath time delay, the method of retaining multipath also includes retaining the previous Lmax points, where Lmax is the maximum multipath time delay; or, according to the amplitude from large to small, retain L' points, L ' is an empirical value, which is different in different channel environments.

在步骤206,将干扰矩阵的逆和与有效多径时延位置对应的信道时域冲激响应相乘,获得修正后的信道时域冲激响应;In step 206, the inverse of the interference matrix is multiplied by the channel time-domain impulse response corresponding to the position of the effective multipath time delay to obtain the corrected channel time-domain impulse response;

在步骤208,对修正后的信道时域冲激响应进行傅里叶变换,获得修正后的信道频域响应估计。In step 208, Fourier transform is performed on the corrected channel time-domain impulse response to obtain a corrected channel frequency-domain response estimate.

图3示出本发明的正交频分复用系统的信道估计方法的另一个实施例的流程图。Fig. 3 shows a flow chart of another embodiment of the channel estimation method of the OFDM system of the present invention.

如图3所示,在步骤302,接收信号,将接收的信号进行FFT变换,将经过FFT变换的接收信号中将导频符号分离出来。As shown in FIG. 3 , in step 302, a signal is received, an FFT transform is performed on the received signal, and pilot symbols are separated from the received signal subjected to the FFT transform.

在步骤304,根据最小二乘或最小均方误差准则求得信道频域响应估计,经IFFT后得到初始时域冲激响应估计值

Figure A20091008726500101
i,j分别表示第i根发送天线和第j根接收天线。In step 304, the channel frequency domain response estimate is obtained according to the least square or minimum mean square error criterion, and the initial time domain impulse response estimate is obtained after IFFT
Figure A20091008726500101
i and j represent the i-th transmitting antenna and the j-th receiving antenna, respectively.

在步骤306,根据预先设定的有效径判决门限,寻找有效多径时延位置l0,l1,...,lL’-1,保留与有效多径时延位置对应的有效信道时域冲激响应 h ~ i , j = [ h ^ i , j ( l 0 ) , h ^ i , j ( l 1 ) , . . . h ^ i , j ( l L ′ - 1 ) ] T . In step 306, according to the preset effective path decision threshold, search for effective multipath delay positions l 0 , l 1 , ..., l L'-1 , and reserve the effective channel time corresponding to the effective multipath delay positions domain impulse response h ~ i , j = [ h ^ i , j ( l 0 ) , h ^ i , j ( l 1 ) , . . . h ^ i , j ( l L ′ - 1 ) ] T .

在步骤308,根据确定的有效多径时延位置重构各个多径时延对应的干扰δi,j,并构造干扰矩阵Ai,jIn step 308, reconstruct the interference δ i,j corresponding to each multipath delay according to the determined effective multipath delay position, and construct the interference matrix A i,j :

其中 δ i , j ( l p , l q ) = W N β l q , l p sin ( π ( l q - l p + α i ) N e / N ) sin ( π ( l q - l p + α i ) D f / N ) , W N β l q , l p = exp ( - j 2 π β l q , l p / N ) ,

Figure A20091008726500115
为不同发送天线时域冲激响应的相位旋转因子,αi为不同发送天线时域冲激响应的位移因子。根据不同的导频方式(例如,频分多天线导频、码分多天线导频),这两个参数有所不同。in δ i , j ( l p , l q ) = W N β l q , l p sin ( π ( l q - l p + α i ) N e / N ) sin ( π ( l q - l p + α i ) D. f / N ) , W N β l q , l p = exp ( - j 2 π β l q , l p / N ) ,
Figure A20091008726500115
is the phase rotation factor of the time-domain impulse response of different transmitting antennas, and α i is the displacement factor of the time-domain impulse response of different transmitting antennas. These two parameters are different according to different pilot schemes (for example, frequency division multi-antenna pilot, code division multi-antenna pilot).

用干扰矩阵Ai,j的逆乘以有效信道时域冲激响应 h ~ i , j = [ h ^ i , j ( l 0 ) , h ^ i , j ( l 1 ) , . . . h ^ i , j ( l L ′ - 1 ) ] T , 得到修正的时域冲激响应hi,jMultiply the effective channel time-domain impulse response by the inverse of the interference matrix Ai ,j h ~ i , j = [ h ^ i , j ( l 0 ) , h ^ i , j ( l 1 ) , . . . h ^ i , j ( l L ′ - 1 ) ] T , Get the corrected time-domain impulse response h i,j :

hh ‾‾ ii ,, jj == AA ii ,, jj -- 11 hh ~~ ii ,, jj -- -- -- (( 22 ))

在步骤310,将修正的时域冲激响应hi,j添0至N点,然后进行FFT变换,得到修正的信道频域响应估计。In step 310, add 0 to the modified time-domain impulse response h i,j to N points, and then perform FFT transformation to obtain a modified channel frequency-domain response estimate.

根据本发明的一个实施例,对于信道多径时延未知的系统,可根据如下公式获得预先设定的有效判决门限Thr,:According to an embodiment of the present invention, for a system with unknown channel multipath delay, the preset effective decision threshold Thr can be obtained according to the following formula:

ThrThr == ρPρP 22 NN avav // ξξ -- -- -- (( 33 ))

其中,ρ=J0(2πfDΔmTs),Ts为OFDM符号周期,fD为最大多普勒频移,ξ为信噪比估计值,P为导频符号功率,Nav为用以计算判决门限Thr需统计的OFDM符号数。根据公式(3)对初始信道时域冲激响应进行有效径保留:Among them, ρ=J 0 (2πf D ΔmT s ), T s is the OFDM symbol period, f D is the maximum Doppler frequency shift, ξ is the estimated signal-to-noise ratio, P is the pilot symbol power, and N av is used to The number of OFDM symbols that need to be counted to calculate the decision threshold Thr. According to the formula (3), the effective path is preserved for the initial channel time-domain impulse response:

hh ~~ ii ,, jj (( nno )) == hh ^^ ii ,, jj (( nno )) ,, || hh ^^ ii ,, jj (( nno )) || 22 ≥&Greater Equal; ThrThr 00 ,, elseelse -- -- -- (( 44 ))

根据本发明的一个实施例,对于信道多径时延未知的系统,根据预先设定的判决门限,寻找有效多径时延位置。并可以将多个收发天线对及多个导频符号联合统计,以确定有效多径时延位置l0,l1,...,lL’-1According to an embodiment of the present invention, for a system with unknown channel multipath time delay, an effective multipath time delay position is searched according to a preset decision threshold. In addition, multiple transmitting and receiving antenna pairs and multiple pilot symbols can be jointly counted to determine effective multipath delay positions l 0 , l 1 , . . . , l L'-1 .

根据本发明的一个实施例,对于信道多径时延已经的系统,可以直接根据已知的多径时延信息,确定有效多径时延位置l0,l1,...,lL’-1,并将有效多径时延位置对应的时域冲激响应保留:According to an embodiment of the present invention, for a system with channel multipath delay, the effective multipath delay positions l 0 , l 1 , ..., l L' can be determined directly according to the known multipath delay information -1 , and retain the time-domain impulse response corresponding to the effective multipath delay position:

hh ~~ ii ,, jj == [[ hh ^^ ii ,, jj (( ll 00 )) ,, hh ^^ ii ,, jj (( ll 11 )) ,, .. .. .. hh ^^ ii ,, jj (( ll LL ′′ -- 11 )) ]] TT ..

根据本发明的一个实施例,可将干扰矩阵Ai,j变型为复共轭对称矩阵,以乔里斯基(Cholesky)分解法求解更精确的信道时域冲激响应,从而达到降低计算复杂度的效果。According to an embodiment of the present invention, the interference matrix A i,j can be transformed into a complex conjugate symmetric matrix, and a more accurate time-domain impulse response of the channel can be solved by the Cholesky decomposition method, thereby reducing the computational complexity Effect.

需要指出,本发明的方法适用于单发单收、单发多收或者多发多收的OFDM通信系统。It should be pointed out that the method of the present invention is applicable to OFDM communication systems of single transmission and single reception, single transmission and multiple reception, or multiple transmission and multiple reception.

下面通过一个具体应用例对本发明的方法进行进一步的说明。The method of the present invention will be further described below through a specific application example.

在该应用例中,假设OFDM系统的FFT/IFFT长度为N,有效子载波数为Ne,虚拟子载波数为N-Ne。接收机第j根天线上收到的频域信号Yj[k]为:In this application example, it is assumed that the length of the FFT/IFFT of the OFDM system is N, the number of effective subcarriers is N e , and the number of virtual subcarriers is NN e . The frequency domain signal Y j [k] received on the jth antenna of the receiver is:

Yj[k]=Hj,i[k]Pi[k]+Vj[k],k∈Ωuc                (5)Y j [k] = H j, i [k] P i [k] + V j [k], k∈Ω uc (5)

其中,Hj,i[k]表示第i根发送天线至第j根接收天线的信道频域响应,Pi[k]为第i根发送天线的导频符号,Ωuc为有效子载波集合。Among them, H j, i [k] represents the channel frequency domain response from the i-th transmitting antenna to the j-th receiving antenna, P i [k] is the pilot symbol of the i-th transmitting antenna, and Ω uc is the effective subcarrier set .

第一步:在各个导频子载波上进行基于最小二乘或最小均方误差准则的信道频域估计,并进行IFFT变换得到初始的信道时域冲激响应

Figure A20091008726500123
Step 1: Perform channel frequency domain estimation based on the least squares or least mean square error criterion on each pilot subcarrier, and perform IFFT transformation to obtain the initial channel time domain impulse response
Figure A20091008726500123

对于频分多天线导频方法的OFDM系统,即在各个发送天线对应的子载波上除以各自的导频序列,得到各个发送天线的有噪信道频域响应估计值:For the OFDM system with the frequency division multi-antenna pilot method, the subcarriers corresponding to each transmit antenna are divided by their respective pilot sequences to obtain the estimated value of the noisy channel frequency domain response of each transmit antenna:

Hh ^^ jj ,, ii [[ kk ]] == YY jj [[ kk ]] // PP ii [[ kk ]] == Hh jj ,, ii [[ kk ]] ++ VV jj [[ kk ]] // PP ii [[ kk ]] ,, kk ∈∈ ΩΩ ucuc -- -- -- (( 66 ))

对各个发送天线的分别进行N/Df点IFFT变换,得到各个发送天线初始的信道时域冲激响应

Figure A20091008726500133
其中N为IFFT长度,Df为导频符号频域间隔。for each transmit antenna Perform N/D f -point IFFT transformation respectively to obtain the initial channel time-domain impulse response of each transmitting antenna
Figure A20091008726500133
Among them, N is the length of IFFT, and D f is the frequency domain interval of pilot symbols.

对于码分多天线导频方法的OFDM系统,以指数型导频为例,即将第一根发送天线导频符号的共轭乘以频域信号Yj[k],得到各个发送天线的有噪信道频域响应估计值的累加:For the OFDM system of the code division multi-antenna pilot method, taking the exponential pilot as an example, the conjugate of the pilot symbol of the first transmit antenna is multiplied by the frequency domain signal Y j [k] to obtain the noisy Accumulation of channel frequency domain response estimates:

Hh ^^ [[ kk ]] == YY jj [[ kk ]] PP ii ** [[ kk ]] // || PP ii [[ kk ]] || 22 == ΣΣ ii == 11 TT xx Hh jj ,, ii [[ kk ]] ee -- jj 22 πkπk (( ii -- 11 )) KK 00 // NN ++ VV ^^ jj [[ kk ]] ,, kk ∈∈ ΩΩ ucuc -- -- -- (( 77 ))

对频域信号

Figure A20091008726500135
进行N点IFFT变换,得到所有发送天线初始的信道时域冲激响应
Figure A20091008726500136
各个发送天线的时域冲激响应在时间轴上互不重叠,其间距为K0。For frequency domain signals
Figure A20091008726500135
Perform N-point IFFT transformation to obtain the initial channel time-domain impulse response of all transmit antennas
Figure A20091008726500136
The time-domain impulse responses of the transmitting antennas do not overlap each other on the time axis, and the distance between them is K 0 .

第二步:根据上述公式(3)设定有效径判决门限Thr,根据上述公式(4)从第一步所得的初始信道时域冲激响应中寻找有效多径时延位置l0,l1,...,lL’-1,并保留所述有效多径时延位置对应的时域冲激响应: h ~ i , j = [ h ^ i , j ( l 0 ) , h ^ i , j ( l 1 ) , . . . h ^ i , j ( l L ′ - 1 ) ] T . 为提高多径检测的准确度,可以通过对多个发送天线及多个导频符号的联合统计确定有效多径时延位置。The second step: set the effective path judgment threshold Thr according to the above formula (3), according to the above formula (4) from the initial channel time domain impulse response obtained in the first step Find effective multipath delay positions l 0 , l 1 , ..., l L'-1 in , and reserve the time-domain impulse response corresponding to the effective multipath delay positions: h ~ i , j = [ h ^ i , j ( l 0 ) , h ^ i , j ( l 1 ) , . . . h ^ i , j ( l L ′ - 1 ) ] T . In order to improve the accuracy of multipath detection, the effective multipath time delay position can be determined through the joint statistics of multiple transmit antennas and multiple pilot symbols.

第三步:根据上述步骤确定的有效多径时延位置重构各个多径时延对应的干扰 δ i , j ( l p , l q ) = W N β l q , l p sin ( π ( l q - l p + α i ) N e / N ) / sin ( π ( l q - l p + α i ) D f / N ) . Step 3: Reconstruct the interference corresponding to each multipath delay according to the effective multipath delay position determined in the above steps δ i , j ( l p , l q ) = W N β l q , l p sin ( π ( l q - l p + α i ) N e / N ) / sin ( π ( l q - l p + α i ) D. f / N ) .

对于不同的导频方式,干扰δi,j有所不同。例如,对于频分多天线导频方法的OFDM系统, β l p , l q = l q i - ( l q - l p ) D f / 2 , αi=0。对于码分多天线导频方法的OFDM系统, β l p , l q = ( l q - l p + α i ) / 2 , αi=(i-1)K0,Df=1。For different pilot modes, the interference δ i, j is different. For example, for an OFDM system with frequency division multi-antenna pilot method, β l p , l q = l q i - ( l q - l p ) D. f / 2 , α i =0. For the OFDM system with code division multi-antenna pilot method, β l p , l q = ( l q - l p + α i ) / 2 , α i =(i-1)K 0 , D f =1.

然后根据δi,j通过前面的公式(1)构造干扰矩阵Ai,jThen the interference matrix A i,j is constructed according to δ i, j through the previous formula (1).

将第二步中保留的时域冲激响应

Figure A200910087265001312
与干扰矩阵Ai,j的逆相乘(参见上面的公式(2)),以消除虚拟子载波引入的能量泄漏对信道估计造成的影响,得到更加准确的信道时域冲激响应hi,j。The time-domain impulse response retained in the second step
Figure A200910087265001312
Multiply with the inverse of the interference matrix A i, j (see the above formula (2)), to eliminate the impact of the energy leakage introduced by the virtual subcarrier on the channel estimation, and obtain a more accurate channel time-domain impulse response h i, j .

优选地,Ai,j变形为复共轭对称矩阵。以频分多天线导频方式为例,将

Figure A20091008726500141
Figure A20091008726500142
合并,新干扰矩阵
Figure A20091008726500143
第(p,q)个元素为 δ ~ i ( l p , l q ) = W N ( ( l q - l p ) D f / 2 ) sin ( π ( l q - l p ) N e / N ) / sin ( π ( l q - l p ) D f / N ) , 该干扰矩阵
Figure A20091008726500145
为复共轭对称矩阵。可利用Cholesky分解求解方程组代替矩阵求逆,从而达到降低计算复杂度的效果。Preferably, A i, j is transformed into a complex conjugate symmetric matrix. Taking the frequency division multi-antenna pilot method as an example, the
Figure A20091008726500141
and
Figure A20091008726500142
merged, new interference matrix
Figure A20091008726500143
The (p,q)th element is δ ~ i ( l p , l q ) = W N ( ( l q - l p ) D. f / 2 ) sin ( π ( l q - l p ) N e / N ) / sin ( π ( l q - l p ) D. f / N ) , The interference matrix
Figure A20091008726500145
is a complex conjugate symmetric matrix. Cholesky decomposition can be used to solve equations instead of matrix inversion, so as to achieve the effect of reducing computational complexity.

第四步:对第三步所得信道时域冲激响应估计 h ‾ i , j = [ h ‾ i , j ( l 0 ) , h ^ i , j ( l 1 ) , . . . , h ^ i , j ( l L ′ - 1 ) ] T 添0至N点后进行傅里叶变换,得到修正后的信道频域响应估计。Step 4: Estimating the channel time-domain impulse response obtained in the third step h ‾ i , j = [ h ‾ i , j ( l 0 ) , h ^ i , j ( l 1 ) , . . . , h ^ i , j ( l L ′ - 1 ) ] T After adding 0 to N points, perform Fourier transform to obtain the corrected channel frequency domain response estimate.

图4示出本发明的正交频分复用系统的信道估计装置的一个实施例的框图。如图4所示,该信道估计装置包括初始时域冲激响应获取模块41、有效时域冲激响应获取模块42、干扰矩阵获取模块43、时域冲激响应修正模块44和频域响应估计获取模块45。其中,初始时域冲激响应获取模块41用于对位于有效子载波范围内的可用导频进行信道频域响应估计,对信道频域响应估计进行傅里叶逆变换,获得初始信道时域冲激响应,发送获得的初始信道时域冲激响应到有效时域冲激响应获取模块42。有效时域冲激响应获取模块42,用于接收来自初始时域冲激响应获取模块41的初始信道时域冲激响应,获得初始信道时域冲激响应中与有效多径时延位置对应的信道时域冲激响应,发送与有效多径时延位置对应的信道时域冲激响应。干扰矩阵获取模块43,用于根据有效多径时延位置生成干扰矩阵,发送干扰矩阵。时域冲激响应修正模块44,用于接收来自有效时域冲激响应获取模块42的与有效多径时延位置对应的信道时域冲激响应,接收来自干扰矩阵获取模块43的干扰矩阵,将干扰矩阵的逆和与有效多径时延位置对应的信道时域冲激响应相乘,获得修正后的信道时域冲激响应,发送修正后的信道时域冲激响应到频域响应估计获取模块45。频域响应估计获取模块45,用于接收来自时域冲激响应修正模块44的修正后的信道时域冲激响应,对修正后的信道时域冲激响应进行傅里叶变换,获得修正后的信道频域响应估计。Fig. 4 shows a block diagram of an embodiment of the channel estimation device of the OFDM system of the present invention. As shown in Figure 4, the channel estimation device includes an initial time domain impulse response acquisition module 41, an effective time domain impulse response acquisition module 42, an interference matrix acquisition module 43, a time domain impulse response correction module 44 and a frequency domain response estimation Get module 45. Among them, the initial time-domain impulse response acquisition module 41 is used to perform channel frequency-domain response estimation on the available pilots located in the effective subcarrier range, perform Fourier inverse transform on the channel frequency-domain response estimation, and obtain the initial channel time-domain impulse response send the obtained initial channel time-domain impulse response to the effective time-domain impulse response acquisition module 42. The effective time domain impulse response acquisition module 42 is used to receive the initial channel time domain impulse response from the initial time domain impulse response acquisition module 41, and obtain the initial channel time domain impulse response corresponding to the effective multipath delay position Channel time-domain impulse response, sending the channel time-domain impulse response corresponding to the position of effective multipath delay. The interference matrix acquisition module 43 is configured to generate an interference matrix according to the position of the effective multipath time delay, and send the interference matrix. The time domain impulse response correction module 44 is used to receive the channel time domain impulse response corresponding to the effective multipath delay position from the effective time domain impulse response acquisition module 42, and receive the interference matrix from the interference matrix acquisition module 43, Multiply the inverse of the interference matrix with the channel time domain impulse response corresponding to the effective multipath delay position to obtain the corrected channel time domain impulse response, and send the corrected channel time domain impulse response to the frequency domain response estimation Get module 45. The frequency domain response estimation acquisition module 45 is used to receive the corrected channel time domain impulse response from the time domain impulse response correction module 44, perform Fourier transform on the corrected channel time domain impulse response, and obtain the corrected The frequency domain response estimation of the channel.

图5示出本发明的正交频分复用系统的信道估计装置的另一个实施例的框图。图5的信道估计装置和图4相比,增加了有效多径时延位置获取模块56,用于根据预设的有效径判决门限确定有效多径时延位置,发送有效多径时延位置到有效时域冲激响应获取模块42和干扰矩阵获取模块43。有效时域冲激响应获取模块43从有效多径时延位置获取模块56接收有效多径时延位置。干扰矩阵获取模块43从有效多径时延位置获取模块56的有效多径时延位置。其他的模块描述可以参见图4中对应模块的描述,为简洁起见,在此不再祥述。Fig. 5 shows a block diagram of another embodiment of the channel estimation device of the OFDM system of the present invention. Compared with the channel estimation device in Fig. 4, the channel estimation device in Fig. 5 adds an effective multipath time delay position acquisition module 56, which is used to determine the effective multipath time delay position according to the preset effective path decision threshold, and sends the effective multipath time delay position to An effective time-domain impulse response acquisition module 42 and an interference matrix acquisition module 43 . The effective time domain impulse response obtaining module 43 receives the effective multipath time delay position from the effective multipath time delay position obtaining module 56 . The interference matrix acquiring module 43 acquires the effective multipath delay position of the module 56 from the effective multipath delay position. For other module descriptions, please refer to the descriptions of the corresponding modules in Fig. 4, and for the sake of brevity, no further description is given here.

其中,图5中有效多径时延位置获取模块56采用的预设的有效径判决门限Thr为 Thr = ρP 2 N av / ξ . 其中,ρ=J0(2πfDΔmTs),Ts为OFDM符号周期,fD为最大多普勒频移,ξ为信噪比估计值,P为导频符号功率,Nav为用以计算判决门限Thr需统计的OFDM符号数。Wherein, the preset effective path judgment threshold Thr adopted by the effective multipath time delay position acquisition module 56 in FIG. 5 is Thr = ρP 2 N av / ξ . Among them, ρ=J 0 (2πf D ΔmT s ), T s is the OFDM symbol period, f D is the maximum Doppler frequency shift, ξ is the estimated signal-to-noise ratio, P is the pilot symbol power, and N av is used to The number of OFDM symbols that need to be counted to calculate the decision threshold Thr.

根据本发明的信道估计装置的一个实施例,有效多径时延位置获取模块根据预设的有效径判决门限通过对多个收发天线对及多个导频符号的联合统计确定所述有效多径时延位置。此外,干扰矩阵获取模块通过上面的公式(1)根据有效多径时延位置生成干扰矩阵Ai,jAccording to an embodiment of the channel estimation device of the present invention, the effective multipath delay position acquisition module determines the effective multipath through joint statistics of multiple transceiver antenna pairs and multiple pilot symbols according to the preset effective path decision threshold Latency location. In addition, the interference matrix acquisition module generates the interference matrix A i,j according to the effective multipath delay position through the above formula (1).

根据本发明的信道估计装置的一个实施例,时域冲激响应修正模块将干扰矩阵变型为复共轭对称矩阵,通过采用矩阵求逆的快速算法计算干扰矩阵的逆,以降低计算复杂度。According to an embodiment of the channel estimation device of the present invention, the time-domain impulse response modification module transforms the interference matrix into a complex conjugate symmetric matrix, and calculates the inverse of the interference matrix by using a fast matrix inversion algorithm to reduce computational complexity.

根据本发明的信道估计装置的一个实施例,频域响应估计获取模块对修正后的信道时域冲激响应补0使样点数扩展至系统FFT/IFFT长度N;对扩展后的信道时域冲激响应序列进行FFT变换,获得各个子载波上的修正后的信道频域响应。According to an embodiment of the channel estimation device of the present invention, the frequency domain response estimation acquisition module adds 0 to the corrected channel time domain impulse response to expand the number of samples to the system FFT/IFFT length N; for the extended channel time domain impulse response The stimulus response sequence is subjected to FFT transformation to obtain the corrected channel frequency domain response on each subcarrier.

本发明的方法和装置通过构造多径的干扰,将干扰矩阵的逆与有效信道时域冲激响应相乘以抑制能量泄漏,适用于单天线及多天线OFDM系统,可灵活的应用于已经或未知信道多径时延信息的系统。此方法能有效消除虚拟子载波引入的能量泄漏问题,消除地板效应,提高信道估计精度,且可通过快速矩阵算法控制系统复杂度。The method and device of the present invention construct multipath interference, multiply the inverse of the interference matrix and the time-domain impulse response of the effective channel to suppress energy leakage, are suitable for single-antenna and multi-antenna OFDM systems, and can be flexibly applied to existing or A system with unknown channel multipath delay information. This method can effectively eliminate the energy leakage problem introduced by the virtual subcarrier, eliminate the floor effect, improve the channel estimation accuracy, and control the system complexity through the fast matrix algorithm.

本发明的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and changes will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to better explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention and design various embodiments with various modifications as are suited to the particular use.

Claims (11)

1. A channel estimation method for an orthogonal frequency division multiplexing system, comprising:
performing channel frequency domain response estimation on available pilot frequency in the effective subcarrier range, and performing inverse Fourier transform to obtain initial channel time domain impulse response;
obtaining channel time domain impulse response corresponding to effective multipath time delay position in the initial channel time domain impulse response, and generating an interference matrix according to the effective multipath time delay position;
multiplying the inverse of the interference matrix with the channel time domain impulse response corresponding to the effective multipath time delay position to obtain the corrected channel time domain impulse response;
and carrying out Fourier transform on the corrected channel time domain impulse response to obtain channel frequency domain response estimation.
2. The channel estimation method of the orthogonal frequency division multiplexing system as claimed in claim 1, further comprising the steps of:
and determining the effective multipath time delay position according to a preset effective path judgment threshold.
3. The channel estimation method of the ofdm system according to claim 2, wherein the preset effective path decision threshold Thr is:
<math> <mrow> <mi>Thr</mi> <mo>=</mo> <mi>&rho;P</mi> <msqrt> <msub> <mrow> <mn>2</mn> <mi>N</mi> </mrow> <mi>av</mi> </msub> </msqrt> <mo>/</mo> <mi>&xi;</mi> </mrow> </math>
where ρ ═ J0(2πfDΔmTs) Ts is the OFDM symbol period, fD is the maximum doppler shift, ξ is the signal-to-noise ratio estimate, P is the pilot symbol power, and Nav is the number of OFDM symbols to be counted for calculating the decision threshold Thr.
4. The channel estimation method of orthogonal frequency division multiplexing system according to claim 2 or 3, wherein the step of determining the effective multipath delay position according to a preset effective path decision threshold comprises:
and determining the effective multipath time delay position through the joint statistics of a plurality of receiving and transmitting antenna pairs and a plurality of pilot symbols according to a preset effective path judgment threshold.
5. The channel estimation method of the ofdm system according to claim 1, wherein the interference matrix is generated according to the effective multipath delay position by the following formula:
Figure A2009100872650003C1
wherein <math> <mrow> <msub> <mi>&delta;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>p</mi> </msub> <mo>,</mo> <msub> <mi>l</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>W</mi> <mi>N</mi> <msub> <mi>&beta;</mi> <mrow> <msub> <mi>l</mi> <mi>q</mi> </msub> <mo>,</mo> <msub> <mi>l</mi> <mi>p</mi> </msub> </mrow> </msub> </msubsup> <mfrac> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>q</mi> </msub> <mo>-</mo> <msub> <mi>l</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>N</mi> <mi>e</mi> </msub> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>q</mi> </msub> <mo>-</mo> <msub> <mi>l</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>D</mi> <mi>f</mi> </msub> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>W</mi> <mi>N</mi> <msub> <mi>&beta;</mi> <mrow> <msub> <mi>l</mi> <mi>q</mi> </msub> <mo>,</mo> <msub> <mi>l</mi> <mi>p</mi> </msub> </mrow> </msub> </msubsup> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&pi;</mi> <msub> <mi>&beta;</mi> <mrow> <msub> <mi>l</mi> <mi>q</mi> </msub> <mo>,</mo> <msub> <mi>l</mi> <mi>p</mi> </msub> </mrow> </msub> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> l0,l1,...,lL’-1For the effective multi-path delay position in question,
Figure A2009100872650003C4
phase rotation factor, alpha, for the time-domain impulse responses of different transmit antennasiFor the displacement factors of the impulse response of different sending antennas time domain, N is the IFFT length, NeIs the effective number of subcarriers, DfIs a pilot symbol frequency domain interval.
6. The channel estimation method of the ofdm system according to claim 1, wherein the step of performing fourier transform on the modified channel time-domain impulse response to obtain the channel frequency-domain response estimate comprises:
compensating 0 for the corrected channel time domain impulse response to expand the number of sampling points to the system FFT/IFFT length N;
and performing FFT (fast Fourier transform) on the expanded channel time domain impulse response sequence to obtain channel frequency domain responses on each subcarrier.
7. A channel estimation apparatus for an orthogonal frequency division multiplexing system, comprising:
an initial time domain impulse response obtaining module, configured to perform channel frequency domain impulse response estimation on an available pilot frequency located in an effective subcarrier range, perform inverse fourier transform on the channel frequency domain impulse response estimation to obtain an initial channel time domain impulse response, and send the initial channel time domain impulse response;
an effective time domain impulse response obtaining module, configured to receive an initial channel time domain impulse response from the initial time domain impulse response obtaining module, obtain a channel time domain impulse response corresponding to an effective multipath time delay position in the initial channel time domain impulse response, and send a channel time domain impulse response corresponding to the effective multipath time delay position;
an interference matrix obtaining module, configured to generate an interference matrix according to the effective multipath delay position, and send the interference matrix;
a time domain impulse response modification module, configured to receive the channel time domain impulse response corresponding to the effective multipath time delay position from the effective time domain impulse response obtaining module, receive the interference matrix from the interference matrix obtaining module, multiply an inverse of the interference matrix with the channel time domain impulse response corresponding to the effective multipath time delay position to obtain a modified channel time domain impulse response, and send the modified channel time domain impulse response;
and the frequency domain response estimation obtaining module is used for receiving the corrected channel time domain impulse response from the time domain impulse response correcting module, and carrying out Fourier transform on the corrected channel time domain impulse response to obtain the corrected channel frequency domain response estimation.
8. The channel estimation device of the ofdm system according to claim 7, further comprising:
an effective multipath time delay position obtaining module, configured to determine the effective multipath time delay position according to a preset effective path decision threshold, and send the effective multipath time delay position;
the effective time domain impulse response obtaining module is further used for receiving the effective multipath time delay position from the effective multipath time delay position obtaining module; the interference matrix obtaining module is further configured to receive the effective multipath delay location from the effective multipath delay location obtaining module.
9. The channel estimation device of claim 8, wherein the effective multipath delay position obtaining module determines the effective multipath delay position according to a preset effective path decision threshold through joint statistics on a plurality of transceiving antenna pairs and a plurality of pilot symbols.
10. The apparatus of claim 7, wherein the interference matrix obtaining module generates the interference matrix according to the effective multipath delay position by the following formula:
Figure A2009100872650004C1
wherein <math> <mrow> <msub> <mi>&delta;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>p</mi> </msub> <mo>,</mo> <msub> <mi>l</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>W</mi> <mi>N</mi> <msub> <mi>&beta;</mi> <mrow> <msub> <mi>l</mi> <mi>q</mi> </msub> <mo>,</mo> <msub> <mi>l</mi> <mi>p</mi> </msub> </mrow> </msub> </msubsup> <mfrac> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>q</mi> </msub> <mo>-</mo> <msub> <mi>l</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>N</mi> <mi>e</mi> </msub> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>q</mi> </msub> <mo>-</mo> <msub> <mi>l</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>D</mi> <mi>f</mi> </msub> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>W</mi> <mi>N</mi> <msub> <mi>&beta;</mi> <mrow> <msub> <mi>l</mi> <mi>q</mi> </msub> <mo>,</mo> <msub> <mi>l</mi> <mi>p</mi> </msub> </mrow> </msub> </msubsup> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&pi;</mi> <msub> <mi>&beta;</mi> <mrow> <msub> <mi>l</mi> <mi>q</mi> </msub> <mo>,</mo> <msub> <mi>l</mi> <mi>p</mi> </msub> </mrow> </msub> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> l0,l1,...,lL’-1For the effective multi-path delay position in question,phase rotation factor, alpha, for the time-domain impulse responses of different transmit antennasiFor the displacement factors of the impulse response of different sending antennas time domain, N is the IFFT length, NeIs the effective number of subcarriers, DfIs a pilot symbol frequency domain interval.
11. The channel estimation device of the ofdm system according to claim 7, wherein the frequency domain response estimation obtaining module complements 0 to the modified channel time domain impulse response to expand the number of sampling points to a system FFT/IFFT length N; and performing FFT (fast Fourier transform) on the expanded channel time domain impulse response sequence to obtain the corrected channel frequency domain response on each subcarrier.
CN2009100872659A 2009-06-15 2009-06-15 Channel estimating method of orthogonal frequency division multiplexing system and device thereof Expired - Fee Related CN101577692B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100872659A CN101577692B (en) 2009-06-15 2009-06-15 Channel estimating method of orthogonal frequency division multiplexing system and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100872659A CN101577692B (en) 2009-06-15 2009-06-15 Channel estimating method of orthogonal frequency division multiplexing system and device thereof

Publications (2)

Publication Number Publication Date
CN101577692A true CN101577692A (en) 2009-11-11
CN101577692B CN101577692B (en) 2012-06-13

Family

ID=41272481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100872659A Expired - Fee Related CN101577692B (en) 2009-06-15 2009-06-15 Channel estimating method of orthogonal frequency division multiplexing system and device thereof

Country Status (1)

Country Link
CN (1) CN101577692B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143098A (en) * 2010-12-03 2011-08-03 无锡物联网产业研究院 Channel estimation method and channel estimation device in orthogonal frequency division multiplexing system
CN102790737A (en) * 2011-05-17 2012-11-21 中兴通讯股份有限公司 Synchronization method and device of system
CN103067134A (en) * 2012-03-14 2013-04-24 王晓安 Signal channel feedback method in orthogonal frequency division multiplexing system
CN103701736A (en) * 2013-12-31 2014-04-02 大唐移动通信设备有限公司 Interference inhibiting method and device in LTE (long term evolution) system
CN103905350A (en) * 2014-04-08 2014-07-02 电子科技大学 S-IFFT-based channel estimation method for OFDM system
WO2015061953A1 (en) * 2013-10-28 2015-05-07 华为技术有限公司 Chanel estimation method and apparatus
CN104935534A (en) * 2015-06-23 2015-09-23 北京北方烽火科技有限公司 Channel estimation method and device based on demodulation reference signal
CN106559362A (en) * 2015-09-24 2017-04-05 联芯科技有限公司 The combined channel and data estimation method and system of fast time variant OFDM channels
CN103813344B (en) * 2012-11-12 2017-06-20 中国移动通信集团浙江有限公司 A kind of interference matrix establishment method and system
CN107302392A (en) * 2016-04-14 2017-10-27 中兴通讯股份有限公司 The method and device that antenna data merges under a kind of time delay channel
CN108599914A (en) * 2018-03-12 2018-09-28 西安电子科技大学 Co-channel full duplex bi-directional relaying transmission method while based on orthogonal frequency division multiplexing
CN108768567A (en) * 2018-06-01 2018-11-06 北京邮电大学 A kind of multipath cluster-dividing method, device, electronic equipment and readable storage medium storing program for executing
CN109150783A (en) * 2017-06-28 2019-01-04 大唐移动通信设备有限公司 A kind of channel estimation methods and device
WO2020216056A1 (en) * 2019-04-26 2020-10-29 中兴通讯股份有限公司 Channel estimation method and apparatus
CN112235223A (en) * 2020-09-11 2021-01-15 北京邮电大学 Anti-interference communication method and electronic equipment
CN113037590A (en) * 2021-03-02 2021-06-25 成都爱瑞无线科技有限公司 Time delay estimation method and device used in communication system
CN115118358A (en) * 2021-03-17 2022-09-27 大唐移动通信设备有限公司 Method, device, equipment and storage medium for estimating angle of interference source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064571B (en) * 2006-04-29 2010-09-29 上海贝尔阿尔卡特股份有限公司 Apparatus for enhancing channel evaluation in OFDM receiver and its method
CN101127753B (en) * 2007-09-29 2011-12-14 北京邮电大学 A channel estimation method applicable to multi-carrier system
CN101227440B (en) * 2008-02-14 2010-07-21 北京创毅视讯科技有限公司 Apparatus and method for eliminating zero-frequency interference in channel estimation

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143098A (en) * 2010-12-03 2011-08-03 无锡物联网产业研究院 Channel estimation method and channel estimation device in orthogonal frequency division multiplexing system
CN102143098B (en) * 2010-12-03 2014-03-05 无锡物联网产业研究院 Channel estimation method and channel estimation device in orthogonal frequency division multiplexing system
CN102790737A (en) * 2011-05-17 2012-11-21 中兴通讯股份有限公司 Synchronization method and device of system
CN103067134A (en) * 2012-03-14 2013-04-24 王晓安 Signal channel feedback method in orthogonal frequency division multiplexing system
CN103067134B (en) * 2012-03-14 2016-01-20 王晓安 Channel feedback method in ofdm system
CN103813344B (en) * 2012-11-12 2017-06-20 中国移动通信集团浙江有限公司 A kind of interference matrix establishment method and system
WO2015061953A1 (en) * 2013-10-28 2015-05-07 华为技术有限公司 Chanel estimation method and apparatus
CN105264849A (en) * 2013-10-28 2016-01-20 华为技术有限公司 Chanel estimation method and apparatus
CN103701736A (en) * 2013-12-31 2014-04-02 大唐移动通信设备有限公司 Interference inhibiting method and device in LTE (long term evolution) system
CN103701736B (en) * 2013-12-31 2017-08-25 大唐移动通信设备有限公司 Disturbance restraining method and device in LTE system
CN103905350A (en) * 2014-04-08 2014-07-02 电子科技大学 S-IFFT-based channel estimation method for OFDM system
CN103905350B (en) * 2014-04-08 2017-01-04 电子科技大学 Channel estimation methods based on S IFFT in a kind of ofdm system
CN104935534B (en) * 2015-06-23 2018-04-27 北京北方烽火科技有限公司 A kind of channel estimation methods and device based on demodulated reference signal
CN104935534A (en) * 2015-06-23 2015-09-23 北京北方烽火科技有限公司 Channel estimation method and device based on demodulation reference signal
CN106559362A (en) * 2015-09-24 2017-04-05 联芯科技有限公司 The combined channel and data estimation method and system of fast time variant OFDM channels
CN106559362B (en) * 2015-09-24 2019-09-20 联芯科技有限公司 The combined channel sum number of fast time variant OFDM channel method and system according to estimates
CN107302392A (en) * 2016-04-14 2017-10-27 中兴通讯股份有限公司 The method and device that antenna data merges under a kind of time delay channel
CN107302392B (en) * 2016-04-14 2020-11-27 中兴通讯股份有限公司 A method and device for combining antenna data under a delay channel
CN109150783A (en) * 2017-06-28 2019-01-04 大唐移动通信设备有限公司 A kind of channel estimation methods and device
CN108599914A (en) * 2018-03-12 2018-09-28 西安电子科技大学 Co-channel full duplex bi-directional relaying transmission method while based on orthogonal frequency division multiplexing
CN108768567A (en) * 2018-06-01 2018-11-06 北京邮电大学 A kind of multipath cluster-dividing method, device, electronic equipment and readable storage medium storing program for executing
WO2020216056A1 (en) * 2019-04-26 2020-10-29 中兴通讯股份有限公司 Channel estimation method and apparatus
CN112235223A (en) * 2020-09-11 2021-01-15 北京邮电大学 Anti-interference communication method and electronic equipment
CN113037590A (en) * 2021-03-02 2021-06-25 成都爱瑞无线科技有限公司 Time delay estimation method and device used in communication system
CN115118358A (en) * 2021-03-17 2022-09-27 大唐移动通信设备有限公司 Method, device, equipment and storage medium for estimating angle of interference source
CN115118358B (en) * 2021-03-17 2023-10-27 大唐移动通信设备有限公司 Method, device, equipment and storage medium for estimating interference source angle

Also Published As

Publication number Publication date
CN101577692B (en) 2012-06-13

Similar Documents

Publication Publication Date Title
CN101577692A (en) Channel estimating method of orthogonal frequency division multiplexing system and device thereof
CN107426120B (en) An Underwater Acoustic OFDM-MFSK Channel Equalization Method Based on Minimum Mean Square Error
CN101005475A (en) Method and system for synchronizing time and frequency in orthogonal frequency division multiplex communication
CN101064571B (en) Apparatus for enhancing channel evaluation in OFDM receiver and its method
CN101599939B (en) Method and device for estimating reference signal received power of orthogonal frequency division multiplexing system
CN102291351B (en) Timing synchronization method of receiver in OFDM wireless communication system
CN102739573A (en) Method of channel estimation and a channel estimator
CN101026606A (en) Orthogonal pilot frequency sequence design method
CN104486266B (en) A kind of channel estimation methods and device based on MIMO-OFDM systems
CN106534030B (en) A kind of channel estimation methods based on joint training sequence and pilot tone in 802.11n multiple antennas ofdm system
CN102970270A (en) Estimation method for plurality of Doppler frequency offsets of OFDM (orthogonal frequency division multiplexing) system in high-speed mobile environment
CN105680924A (en) Frequency offset estimation method for MIMO-OFDM system based on frequency domain differential phase in the presence of very-high mobility
CN101291311B (en) Synchronization implementing method and device for multi-input multi-output orthogonal frequency division multiplexing system
CN103916342B (en) Signal-to-noise-ratio estimation method
CN102291342A (en) OFDM (Orthogonal Frequency Division Multiplexing) channel estimating method based on multipath resolution
CN101207596A (en) A synchronization method and receiver device
CN103414678A (en) Doubly selective channel transform domain equalization method based on Vector OFDM
CN1921463B (en) Communication channel estimation method and realizing device for crossing frequency division multiplexing mobile communication system
CN106100692A (en) MIMO OFDM underwater sound communication system doppler spread method of estimation
CN106330251A (en) Doppler Extended Estimation Method for Underwater Acoustic Communication System Based on Zero Correlation Band Sequence
CN102487364B (en) Channel estimation method and apparatus thereof
CN104717173B (en) Sub-carriers complex balancing wireless communication method based on channel decoupling
CN101374130B (en) Synchronization method for multi-input multi-output OFDM system
Niranjane et al. Performance analysis of different channel estimation techniques
CN115842611A (en) Mapping method, device, equipment and storage medium

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120613

Termination date: 20180615