CN101537398A - An artificial simulated rainfall device - Google Patents
An artificial simulated rainfall device Download PDFInfo
- Publication number
- CN101537398A CN101537398A CN200910021960A CN200910021960A CN101537398A CN 101537398 A CN101537398 A CN 101537398A CN 200910021960 A CN200910021960 A CN 200910021960A CN 200910021960 A CN200910021960 A CN 200910021960A CN 101537398 A CN101537398 A CN 101537398A
- Authority
- CN
- China
- Prior art keywords
- water supply
- rainfall
- water
- artificially
- supply tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 93
- 238000004891 communication Methods 0.000 claims abstract description 5
- 241001465754 Metazoa Species 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000004088 simulation Methods 0.000 abstract description 7
- 239000008400 supply water Substances 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 abstract description 2
- 241000428199 Mustelinae Species 0.000 description 19
- 238000012360 testing method Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004162 soil erosion Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
Images
Landscapes
- Instructional Devices (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
本发明公开了一种人工模拟降雨装置,该装置包括:一个供水支架和一个降雨支架,供水支架上设有马氏瓶供水箱,马氏瓶供水箱上方设有排气管,在马氏瓶供水箱的底部设有压力传感器,马氏瓶供水箱上方设有通气管,通气管的底部位于雨强-水位标定线上,压力传感器通过通气管内的通讯线与马氏瓶供水箱外部的实时测定、记录雨强的上位机连接;马氏瓶供水箱两侧设有进水管路和出水管路,其中,进水管路用于给马氏瓶供水箱供水,出水管路用于给降雨器供水,降雨器通过连接件设置在所述的降雨器支架上。本发明能适应较大范围的坡度,可调节降雨高度,可调节降雨小区面积大小,能较真实的模拟天然降雨。
The invention discloses an artificial rainfall simulation device, which comprises: a water supply bracket and a rainfall bracket, a Malchnitz flask water supply box is arranged on the water supply bracket, an exhaust pipe is arranged above the Malchnitz flask water supply box, a pressure sensor is arranged at the bottom of the Malchnitz flask water supply box, a vent pipe is arranged above the Malchnitz flask water supply box, the bottom of the vent pipe is located on the rainfall intensity-water level calibration line, the pressure sensor is connected to a host computer for real-time measurement and recording rainfall intensity outside the Malchnitz flask water supply box through a communication line in the vent pipe; water inlet pipes and water outlet pipes are arranged on both sides of the Malchnitz flask water supply box, wherein the water inlet pipe is used to supply water to the Malchnitz flask water supply box, and the water outlet pipe is used to supply water to a rainmaker, and the rainmaker is arranged on the rainmaker bracket through a connector. The invention can adapt to a wide range of slopes, can adjust the rainfall height, can adjust the size of the rainfall cell area, and can simulate natural rainfall more realistically.
Description
技术领域 technical field
本发明专利涉及一种降雨装置,特别是一种人工模拟降雨装置,该装置可用于坡地,采用马氏瓶原理能较高精度保证雨强的均匀性,并可实时记录雨强。The patent of the present invention relates to a rainfall device, especially an artificial simulated rainfall device, which can be used on slopes, adopts the principle of a Martens bottle, can ensure the uniformity of rain intensity with high precision, and can record rain intensity in real time.
背景技术 Background technique
水土流失、养分改变、土壤水变化、土壤渗透性能等是我国水土保持科研、试验和监测的重要内容,目前对上述指标的观测主要是坡地降雨中(后)对坡地径流、泥沙、养分和污染物等进行观测,而后对观测数据科学分析,探索表面自然现象后的内部规律。Soil erosion, nutrient change, soil water change, soil permeability, etc. are the important contents of soil and water conservation research, experiment and monitoring in my country. At present, the observation of the above indicators is mainly the impact of runoff, sediment, nutrients and Conduct observations of pollutants, etc., and then scientifically analyze the observation data to explore the internal laws behind the surface natural phenomena.
然而单纯依靠天然降雨来收集所需科研资料则具有很大的局限性。经验表明:单纯利用天然降雨在径流小区开展研究,从获得有代表性的降雨样本,到得出明确的结论一般需要15~25年的时间。自然降雨的时空随机性变化剧烈,多数情况下并不能满足实验要求,例如,在干旱半干旱地区,一是年内发生降雨的次数本来就不多,而在这些降雨中,能够产生径流的降雨就更加稀少,因此单纯依靠自然降雨来获得科研数据的方法并不是十分的有效。However, purely relying on natural rainfall to collect the required scientific research data has great limitations. Experience shows that it generally takes 15 to 25 years to obtain representative rainfall samples and draw clear conclusions when conducting research on runoff plots purely using natural rainfall. The temporal and spatial randomness of natural rainfall varies drastically, and in most cases it cannot meet the experimental requirements. For example, in arid and semi-arid areas, the number of rainfalls in a year is not much, and among these rainfalls, the rainfall that can generate runoff is Therefore, it is not very effective to rely solely on natural rainfall to obtain scientific research data.
而基于实验室尺度和利用人工模拟降雨方法研究上述内容,具有经济性、便捷性、可控性和重复性等优点,已成为该领域重要技术手段,自20世纪20年代开始,已经在世界范围内得到广泛运用。使用人工模拟降雨装置可以控制实验进程,缩短实验周期,获得更多的实验数据,利用人工模拟降雨装置进行室内与野外试验已成为水土保持研究的一个重要手段。用人工模拟降雨方法可以加速土壤侵蚀、降雨产流及入渗等试验,避免自然因素的影响,在既定时间内迅速获得试验所需数据,顺利完成计划试验。到目前为止,研究的人工模拟降雨装置不能够大量生产,还不能真实模拟天然降雨情况。However, based on the laboratory scale and using the method of artificially simulated rainfall to study the above content, it has the advantages of economy, convenience, controllability and repeatability, and has become an important technical means in this field. Since the 1920s, it has been used worldwide. widely used within. The use of artificial simulated rainfall devices can control the experimental process, shorten the experimental period, and obtain more experimental data. The use of artificial simulated rainfall devices for indoor and field experiments has become an important means of soil and water conservation research. The method of artificially simulating rainfall can accelerate soil erosion, rainfall runoff and infiltration tests, avoid the influence of natural factors, quickly obtain the data required for the test within a predetermined time, and successfully complete the planned test. So far, the artificial rainfall simulation devices studied cannot be mass-produced, nor can they truly simulate natural rainfall conditions.
发明内容 Contents of the invention
本发明的目的在于,在借鉴国内外人工模拟降雨装置的基础上,提供一种人工模拟降雨装置,该装置可用于坡地,并能够实时记录降雨强度,使用方便可靠,成本较低。The purpose of the present invention is to provide an artificial rainfall simulation device on the basis of referring to artificial rainfall simulation devices at home and abroad. The device can be used on slopes and can record rainfall intensity in real time. It is convenient and reliable to use and low in cost.
为了实现上述任务,本发明采取如下的技术解决方案:In order to realize above-mentioned task, the present invention takes following technical solution:
一种人工模拟降雨装置,其特征在于,该装置包括:一个供水支架和一个降雨支架,所述的供水支架上设有马氏瓶供水箱,马氏瓶供水箱上方设有排气管,在马氏瓶供水箱的底部设有水位压力传感器,马氏瓶供水箱上方设有通气管,通气管的底部位于“雨强-水位标定线”上,传感器通过通气管内的通讯线与外部上位机通过串口连接实时记录马氏瓶变化的水位,通过换算得到实时的雨强;马氏瓶供水箱两侧设有进水管路和出水管路,其中,进水管路用于给马氏瓶供水箱供水,出水管路用于给降雨器供水,降雨器通过连接件设置在所述的降雨器支架上。An artificial rainfall simulation device, characterized in that the device comprises: a water supply bracket and a rainfall bracket, the water supply bracket is provided with a Martens bottle water supply tank, and an exhaust pipe is arranged above the Martens bottle water supply tank. A water level pressure sensor is installed at the bottom of the Martens bottle water supply tank, and a vent pipe is provided above the Marlson bottle water supply tank. The bottom of the vent pipe is located on the "rain intensity-water level calibration line". Record the changing water level of the Martens bottle in real time through the serial port connection, and obtain the real-time rain intensity through conversion; there are water inlet pipes and outlet pipes on both sides of the Martens bottle water supply tank, and the water inlet pipe is used for the water supply tank of the Marsh bottle. The water supply and outlet pipelines are used to supply water to the rainer, and the rainer is arranged on the rainer bracket through the connecting piece.
本发明的人工模拟降雨装置,能适应较大范围的坡度,可调节降雨高度,可调节降雨小区面积大小,能较真实的模拟天然降雨。The artificial rainfall simulation device of the present invention can adapt to a wide range of slopes, can adjust the rainfall height, can adjust the size of the rainfall area, and can more realistically simulate natural rainfall.
附图说明 Description of drawings
图1是本发明的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the present invention;
图2是降雨器结构示意图,其中(a)是主视图,(b)是(a)的A-A剖视图,(c)是(b)的C处局部放大图,(d)是(a)的B处局部放大图;Figure 2 is a schematic diagram of the structure of the rainfall device, where (a) is the front view, (b) is the A-A sectional view of (a), (c) is the partial enlarged view of C in (b), and (d) is the B of (a) Partial enlarged view;
图3是马氏瓶供水箱结构示意图;其中(a)是主视图,(b)是(a)的C-C剖视图,(c)是(a)的D向局部视图;Fig. 3 is a schematic diagram of the structure of a Martens bottle water supply tank; wherein (a) is a front view, (b) is a C-C sectional view of (a), and (c) is a partial view of (a) toward D;
图4是降雨器在降雨支架连接结构示意图。其中(a)是主视图(局部),(b)是(a)的俯视图,(c)是(a)的A处局部放大图。Fig. 4 is a schematic diagram of the connection structure of the rainfall device on the rainfall support. (a) is the front view (partial), (b) is the top view of (a), and (c) is the partial enlarged view of A in (a).
以下结合附图对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
具体实施方式 Detailed ways
一、结构设计:1. Structural design:
参见附图,本发明的人工模拟降雨装置,包括一个供水支架1和一个降雨器支架11,供水支架1上设有马氏瓶供水箱5,其原理采用物理学中的马氏瓶原理,它能够在保证降雨器12水位基本恒定情况下为降雨器12供水,这样就保证了雨强较高水平的一致性,在马氏瓶供水箱的底部设有水位压力传感器3(陕西西安安森智能仪器有限公司生产的:ACS-L数字液位传感器),马氏瓶供水箱上方设有通气管,通气管的底部位于“雨强-水位标定线”上,马氏瓶供水箱5上方设有通气管6,通气管6的底部位于“雨强-水位标定线”7上,ACS-L传感器3通过通气管6内的通讯线9(RS485)与马氏瓶供水箱5外部的实时测定、记录雨强的上位机14连通;马氏瓶供水箱5上方设有排气管8,马氏瓶供水箱5两侧设有进水管路4和出水管路10,其中,进水管路4用于给马氏瓶供水箱5供水,出水管路10用于给降雨器12供水,降雨器12通过连接件13设置在降雨器支架11上。Referring to the accompanying drawings, the artificial simulated rainfall device of the present invention comprises a water supply support 1 and a rainfall device support 11, and the water supply support 1 is provided with a Marsh bottle
上述的“雨强-水位标定线”7是通过降雨器12中的水位来率定和换算出来的目标雨强,用于保证降雨器12中水位的稳定,从而得到均匀性较高的雨强。通过降雨器12内壁上的标签,可以根据雨强大小来给降雨器12供水,为试验提供便利。The above-mentioned "rain intensity-water level calibration line" 7 is the target rain intensity calibrated and converted by the water level in the
供水支架1与马氏瓶供水箱5之间设有高度微调器2。高度微调器2用来细微调节马氏瓶供水箱5的高度,保证通气管6的底端与降雨器12中的“雨强-水位标定线”7较高水平一致,确保降雨器12中的水位为目标水位并得到目标雨强。A height trimmer 2 is arranged between the water supply bracket 1 and the Marsh bottle
降雨器12上设有振动器22和交叉设置的整平装置25。振动器22是用来给降雨器产生微小振动,更加真实的模拟天然降雨。整平装置25是用来给降雨器12整平的,以保证降雨高度的一致性。整平装置25是由两个条形整平气泡组成,分别安装在降雨器12的两个相邻的边框上,每个条形整平气泡均可以确定一条水平直线,而由两个整平装置确定出的两条交叉的水平直线则组成了一个水平面,这样可以确定降雨器12处于一个水平面上,保证小区内的降雨高度一致。The
连接件13上有由底座31和支杆32组成半球形连接装置,以保证降雨器12与降雨器支架11可靠的连接。The connecting
马氏瓶供水箱的外体上有透明水位刻度尺26(图3C)。Transparent water level scale 26 (Fig. 3C) is arranged on the outer body of the martensitic bottle water supply tank.
降雨器支架11四周还有防风帘15。防风帘15是针对野外试验设置的,野外自然风对试验的影响较大,防风帘15的目的就是降低风对试验的影响,防止雨滴飘拂。防风帘15采用软材料、卷帘式,平时无风试验时,卷上去;若风的影响超过了允许范围,则放下防风帘,削减试验不利因素。Rainfall support 11 also has windproof curtain 15 around. The windproof curtain 15 is set at the field test, and the natural wind in the field has a greater impact on the test, and the purpose of the windproof curtain 15 is to reduce the influence of the wind on the test and prevent raindrops from blowing. Windproof curtain 15 adopts soft material, roll-up curtain type, when there is no wind test at ordinary times, roll up; If the impact of wind exceeds the allowable range, then put down the windproof curtain, reduce test unfavorable factors.
降雨器12上排列有多个雨滴发生器21,所述的雨滴发生器21由针头23和橡皮塞24组成,针头23选择6#、7#或8#兽用针头,不同型号的针头可以获得不同大小的雨滴,可以使得雨滴大小与自然情景更为接近。
供水支架1和降雨器支架11分别由四个圆柱形可伸缩钢管组成,其高度可以较大范围调节,这使得降雨器能够适应更大范围的坡度。供水支架1用来调节马氏瓶供水箱5高度,以适应不同坡度的地形。The water supply support 1 and the rain device support 11 are respectively composed of four cylindrical telescopic steel pipes, and their height can be adjusted in a wide range, which enables the rain device to adapt to a wider range of slopes. The water supply bracket 1 is used for adjusting the height of the Marsh bottle
实时记录雨强的上位机14可以有多种选择(如单片机、PC机),本设计中选用能记录、处理试验数据的PC机,记录ACS-L传感器3测得的数据并后期处理。The upper computer 14 for real-time recording of rain intensity can have multiple choices (such as single-chip microcomputer, PC machine). In this design, a PC machine capable of recording and processing test data is selected to record the data measured by the ACS-L sensor 3 and post-process it.
二、工作原理:2. Working principle:
本发明的人工模拟降雨装置之所以能够比较真实的模拟自然状况下的降雨,在于以下几个主要的方面:一是降雨器12上的雨滴发生器21,通过更换不同型号的针头可以调整雨滴的大小;二是通过调整马氏瓶供水箱的高度能够得到不同大小的雨强;三是降雨器12上设置的振动器22能够产生微小振动,使得雨滴更加真实并接近自然降雨;四是系统采用马氏瓶供水箱,能够保证降雨器中的水位在整个降雨过程中保持基本恒定而得到比较均以稳定的雨强;最后通过ACS-L传感器3与实时观测、记录雨强的上位机14的进行通讯,记录并保存数据,供后期处理。Why the artificial simulated rainfall device of the present invention can more realistically simulate the rainfall under natural conditions lies in the following main aspects: the one is that the
三.装置使用方法:3. How to use the device:
1、根据试验小区的坡度初步安装人工模拟降雨装置,结合降雨器12上的两个交叉设置的整平装置25对降雨器进行调平;1. Preliminary installation of an artificial simulated rainfall device according to the slope of the test plot, combined with two
2、结合降雨器中不同雨强所标定的“雨强-基本水位线”给降雨器加水,通过马氏瓶供水箱高度微调器调整供水高度,保证通气管6的底端与降雨器12中的“雨强-水位标定线”高度基本一致;2. Combine the "rain intensity-basic water level line" calibrated by different rain intensities in the rainfall device to add water to the rainfall device, adjust the height of the water supply through the height trimmer of the Martens bottle water supply tank, and ensure that the bottom end of the ventilation pipe 6 is in line with the middle of the
3、暂时关闭马氏瓶供水箱出水管路10上的阀门,打开排气阀8,通过马氏瓶供水箱进水管路4给马氏瓶供水箱加水至上限水位线,然后关闭排气阀门8和进水管路4,初始化上位机14的记录软件;打开出水管路10的阀门开始模拟人工降雨。3. Temporarily close the valve on the
本发明的人工模拟降雨装置,整个装置为组装式,较为轻便、易于组装、分拆及搬运;该装置使用方便,维护简单;造价比较低廉,较以往模拟降雨装置省水;ACS-L传感器3能感知供水箱5实时的变化水位,通讯线9(RS485)与上位机14进行数据通讯,并将ACS-L传感器3记录的实时数据上载到上位机14中,以供后期处理,由于采用了水位实时观测、记录,通过换算得到实时雨强,故能进行实时雨强的控制及调整;设置有防风帘,可以降低野外自然风对实验的影响;能适应较大范围的坡度,可调节降雨高度,可一定范围调节降雨小区面积大小,能较真实的模拟天然降雨。The artificial rainfall simulation device of the present invention is an assembled device, which is relatively light, easy to assemble, disassemble and transport; the device is easy to use and easy to maintain; the cost is relatively low, and it saves water compared with the previous simulated rainfall device; ACS-L sensor 3 Can perceive the real-time changing water level of the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100219605A CN101537398B (en) | 2009-04-09 | 2009-04-09 | Artificially-simulated rainfall device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100219605A CN101537398B (en) | 2009-04-09 | 2009-04-09 | Artificially-simulated rainfall device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101537398A true CN101537398A (en) | 2009-09-23 |
CN101537398B CN101537398B (en) | 2011-04-20 |
Family
ID=41120917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100219605A Expired - Fee Related CN101537398B (en) | 2009-04-09 | 2009-04-09 | Artificially-simulated rainfall device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101537398B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102087126A (en) * | 2010-11-12 | 2011-06-08 | 西北农林科技大学 | Method for measuring flow and mud content of artificial rainfall runoff plot and control system |
CN102266830A (en) * | 2011-05-19 | 2011-12-07 | 中国农业大学 | rainfall simulating device and rainfall method thereof |
CN103477926A (en) * | 2013-09-29 | 2014-01-01 | 清华大学 | Intelligent artificial rainfall simulator |
CN104126463A (en) * | 2014-07-15 | 2014-11-05 | 昆明理工大学 | Adjustable and controllable simulated rainfall device |
CN105496269A (en) * | 2016-01-26 | 2016-04-20 | 湖州职业技术学院 | Foot-pedal pressure-boosting water-saving bathroom system |
CN105527406A (en) * | 2016-01-29 | 2016-04-27 | 朱乾德 | Wind-proof device for outdoor manual simulated rainfall as well as mounting and using method of wind-proof device |
CN106409113A (en) * | 2016-10-12 | 2017-02-15 | 天津理工大学 | Nitrogen deposition simulation device and intertidal zone nitrogen deposition simulation system and method thereof |
CN106771087A (en) * | 2017-03-08 | 2017-05-31 | 河海大学 | A kind of simulation rainfall in field analogue means and its application process |
CN107014978A (en) * | 2017-04-10 | 2017-08-04 | 中国农业大学 | A kind of method and device for controlling raindrop diameter in artificially-simulated rainfall and being distributed |
CN107247116A (en) * | 2017-05-25 | 2017-10-13 | 浙江海洋大学 | A kind of LNAPLs underground migration process experimental device and method |
CN107807225A (en) * | 2017-11-06 | 2018-03-16 | 王攀峰 | Debris flow testing manually rainfall simulation method |
CN107843713A (en) * | 2017-11-06 | 2018-03-27 | 河南理工大学 | Mud-rock flow firing test rainfall simulation method |
CN107843714A (en) * | 2017-11-06 | 2018-03-27 | 王攀峰 | Debris flow testing manually rainfall simulator |
CN107843715A (en) * | 2017-11-06 | 2018-03-27 | 王攀峰 | A kind of rainfall simulation method for debris flow testing |
CN108896437A (en) * | 2018-01-26 | 2018-11-27 | 甘肃省林业科学研究院 | A kind of full automatic atmospheric evaporation capacity analyzer |
CN108931623A (en) * | 2018-04-19 | 2018-12-04 | 中国地质大学(武汉) | Study the bath scaled model experimental device of the soil-water characteristic curve of unsaturated soil under rainfall infiltration |
CN110595843A (en) * | 2019-09-17 | 2019-12-20 | 安徽理工大学 | An efficient and precise detachable runoff cell |
-
2009
- 2009-04-09 CN CN2009100219605A patent/CN101537398B/en not_active Expired - Fee Related
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102087126B (en) * | 2010-11-12 | 2013-06-05 | 西北农林科技大学 | Method for measuring flow and mud content of artificial rainfall runoff plot and control system |
CN102087126A (en) * | 2010-11-12 | 2011-06-08 | 西北农林科技大学 | Method for measuring flow and mud content of artificial rainfall runoff plot and control system |
CN102266830A (en) * | 2011-05-19 | 2011-12-07 | 中国农业大学 | rainfall simulating device and rainfall method thereof |
CN102266830B (en) * | 2011-05-19 | 2013-06-26 | 中国农业大学 | Simulated rainfall device and its rainfall method |
CN103477926B (en) * | 2013-09-29 | 2016-05-18 | 清华大学 | A kind of intelligent artificial rain simulating device |
CN103477926A (en) * | 2013-09-29 | 2014-01-01 | 清华大学 | Intelligent artificial rainfall simulator |
CN104126463A (en) * | 2014-07-15 | 2014-11-05 | 昆明理工大学 | Adjustable and controllable simulated rainfall device |
CN104126463B (en) * | 2014-07-15 | 2016-01-20 | 昆明理工大学 | A kind of regulatable artificially-simulated rainfall device |
CN105496269B (en) * | 2016-01-26 | 2018-08-28 | 湖州职业技术学院 | Foot-operated pressurized water-saving bathroom accessory system |
CN105496269A (en) * | 2016-01-26 | 2016-04-20 | 湖州职业技术学院 | Foot-pedal pressure-boosting water-saving bathroom system |
CN105527406A (en) * | 2016-01-29 | 2016-04-27 | 朱乾德 | Wind-proof device for outdoor manual simulated rainfall as well as mounting and using method of wind-proof device |
CN106409113A (en) * | 2016-10-12 | 2017-02-15 | 天津理工大学 | Nitrogen deposition simulation device and intertidal zone nitrogen deposition simulation system and method thereof |
CN106771087A (en) * | 2017-03-08 | 2017-05-31 | 河海大学 | A kind of simulation rainfall in field analogue means and its application process |
CN107014978A (en) * | 2017-04-10 | 2017-08-04 | 中国农业大学 | A kind of method and device for controlling raindrop diameter in artificially-simulated rainfall and being distributed |
CN107014978B (en) * | 2017-04-10 | 2019-06-04 | 中国农业大学 | A method and device for controlling the diameter and distribution of raindrops in artificially simulated rainfall |
CN107247116A (en) * | 2017-05-25 | 2017-10-13 | 浙江海洋大学 | A kind of LNAPLs underground migration process experimental device and method |
CN107843714A (en) * | 2017-11-06 | 2018-03-27 | 王攀峰 | Debris flow testing manually rainfall simulator |
CN107843715A (en) * | 2017-11-06 | 2018-03-27 | 王攀峰 | A kind of rainfall simulation method for debris flow testing |
CN107843713A (en) * | 2017-11-06 | 2018-03-27 | 河南理工大学 | Mud-rock flow firing test rainfall simulation method |
CN107807225A (en) * | 2017-11-06 | 2018-03-16 | 王攀峰 | Debris flow testing manually rainfall simulation method |
CN107843713B (en) * | 2017-11-06 | 2020-07-31 | 河南理工大学 | Artificial rainfall simulation method for debris flow start-up test |
CN107843715B (en) * | 2017-11-06 | 2020-08-14 | 绍兴兰卡智能科技有限公司 | Artificial rainfall simulation method for debris flow test |
CN108896437A (en) * | 2018-01-26 | 2018-11-27 | 甘肃省林业科学研究院 | A kind of full automatic atmospheric evaporation capacity analyzer |
CN108931623A (en) * | 2018-04-19 | 2018-12-04 | 中国地质大学(武汉) | Study the bath scaled model experimental device of the soil-water characteristic curve of unsaturated soil under rainfall infiltration |
CN110595843A (en) * | 2019-09-17 | 2019-12-20 | 安徽理工大学 | An efficient and precise detachable runoff cell |
Also Published As
Publication number | Publication date |
---|---|
CN101537398B (en) | 2011-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101537398B (en) | Artificially-simulated rainfall device | |
CN106324226B (en) | Monitor seepage action of ground water, sedimentation perfusion one laboratory testing rig and method | |
CN103344538B (en) | A kind of unsaturated soil Multifunctional permeameter and method of testing thereof | |
CN204945001U (en) | A kind of test unit of lab simulation rainfall infiltration | |
CN201222060Y (en) | Apparatus for testing eluviation, migration and inversion of foreign material in soil | |
CN203587588U (en) | Improved water-salt monitoring device for greenhouse soil | |
CN201615869U (en) | A device for in-situ measurement of field soil saturated hydraulic conductivity | |
CN101598587B (en) | Multi-water level vegetation evapotranspiration measuring device | |
CN107665270B (en) | Dam downstream Riparian Zone hot-fluid coupled simulation construction method based on Lu models | |
CN109147541A (en) | Soil body penetration crash simulation device and application method | |
CN103604734B (en) | The unsaturated soil rain infiltration simulation system that raininess is controlled | |
CN103969419A (en) | Indoor simulation system applied to pollutant migration process researches under artificial rainfall | |
CN105004646A (en) | Indoor artificial rainfall-simulation testing system | |
CN105862933B (en) | The foundation model experimental rig of dynamic artesian water effect | |
CN110186831A (en) | Controllable and simulated atmosphere natural environment atmosphere-vegetation-soil body pilot system | |
CN206223619U (en) | A kind of permeability coefficient of cement soil tester | |
CN106680460A (en) | Pollutant transport model device under saturated-unsaturated soil medium conditions | |
CN102680374B (en) | Test device for determining non-saturated soil osmotic parameter | |
CN106033046B (en) | A kind of saturated hydraulic conductivity in soil apparatus for automatically measuring | |
CN204694602U (en) | A kind of measurement capillary soil water climbing height test unit | |
CN202994785U (en) | Experimental device for researching migration and transformation of water and fertilizer in soil under condition of drip fertilization | |
CN201969632U (en) | Mini-type portable artificial rainfall simulating device | |
CN108196036A (en) | One-dimensional island underground water desalination simulation test device and its method | |
CN108801589A (en) | Two-dimentional Soil Slope, earth's surface, ground water movement experimental system for simulating | |
CN202648912U (en) | Artificial rainfall radial flow soil water motion simulation experiment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110420 Termination date: 20120409 |