CN101503113A - Shape memory spring driven hinder margin camber variable wing - Google Patents
Shape memory spring driven hinder margin camber variable wing Download PDFInfo
- Publication number
- CN101503113A CN101503113A CNA2009100716133A CN200910071613A CN101503113A CN 101503113 A CN101503113 A CN 101503113A CN A2009100716133 A CNA2009100716133 A CN A2009100716133A CN 200910071613 A CN200910071613 A CN 200910071613A CN 101503113 A CN101503113 A CN 101503113A
- Authority
- CN
- China
- Prior art keywords
- shape memory
- memory spring
- sheet metal
- trailing edge
- wing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Springs (AREA)
Abstract
一种形状记忆弹簧驱动的可变后缘弯度机翼,它涉及一种可变后缘弯度机翼。针对传统飞机控制面存在机构复杂、笨重、气流分离过早、气动效率低下的问题。上金属薄板的前、后端面与连接板和机翼后缘的前端面固接,下金属薄板的前、后端面与连接板和机翼后缘的前端面固接,上、下金属薄板的同一侧表面上固定有上、下支柱,第一形状记忆弹簧的两端与固定板和上金属薄板固接,第二形状记忆弹簧的两端与上支柱和机翼后缘的前端面固接,第三形状记忆弹簧的两端与固定板和下金属薄板固接,第四形状记忆弹簧的两端与下支柱和机翼后缘的前端面固接。本发明具有质量轻、结构简单、气动效率高的优点。
A variable trailing edge camber wing driven by a shape memory spring relates to a variable trailing edge camber wing. Aiming at the problems of complex mechanism, bulky structure, premature airflow separation and low aerodynamic efficiency in traditional aircraft control surfaces. The front and rear end faces of the upper sheet metal are fixedly connected to the connecting plate and the front end face of the rear edge of the wing, the front and rear end faces of the lower sheet metal are fixedly connected to the front end face of the connecting plate and the rear edge of the wing, and the upper and lower sheet metal The upper and lower pillars are fixed on the same side surface, the two ends of the first shape memory spring are affixed to the fixed plate and the upper metal sheet, and the two ends of the second shape memory spring are affixed to the upper pillar and the front end of the rear edge of the wing , both ends of the third shape memory spring are affixed to the fixing plate and the lower metal sheet, and both ends of the fourth shape memory spring are affixed to the lower strut and the front end of the rear edge of the wing. The invention has the advantages of light weight, simple structure and high aerodynamic efficiency.
Description
技术领域 technical field
本发明涉及一种可变后缘弯度机翼。The invention relates to a variable trailing edge camber wing.
背景技术 Background technique
目前,大多数飞机的控制面(如副翼和襟翼),均通过机械驱动机构来改变机翼弯度,为飞机提供操纵所需的气动力。但是这种采用机械驱动机构来的控制面存在机构复杂、笨重、气流分离过早、气动效率低下的问题。At present, the control surfaces (such as ailerons and flaps) of most aircraft use mechanical drive mechanisms to change the camber of the wings to provide the aircraft with the aerodynamic force required for maneuvering. However, the control surface using a mechanical drive mechanism has the problems of complex mechanism, heavy weight, premature separation of airflow, and low aerodynamic efficiency.
发明内容 Contents of the invention
本发明的目的是提供一种形状记忆弹簧驱动的可变后缘弯度机翼,取代传统的机械驱动机构,以解决现有的飞机控制面机构复杂、笨重、气流分离过早、气动效率低下的问题。The purpose of the present invention is to provide a variable trailing edge camber wing driven by a shape memory spring, which replaces the traditional mechanical drive mechanism, so as to solve the problems of complex and heavy control surface mechanism of the existing aircraft, premature airflow separation and low aerodynamic efficiency. question.
本发明为解决上述技术问题采取的技术方案是:本发明的可变后缘弯度机翼包括机翼后缘;本发明的可变后缘弯度机翼还包括上金属薄板、第一形状记忆弹簧、上支柱、第二形状记忆弹簧、第三形状记忆弹簧、下支柱、第四形状记忆弹簧、下金属薄板和连接板;所述上金属薄板的前端面与连接板的上端固定连接,上金属薄板的后端面与机翼后缘的前端面的上端固定连接,所述下金属薄板的前端面与连接板的下端固定连接,下金属薄板的后端面与机翼后缘的前端面的下端固定连接,上金属薄板和下金属薄板的同一侧表面沿竖直方向上分别固定有上支柱和下支柱,所述第一形状记忆弹簧的两端分别与固定板和上金属薄板固定连接,所述第二形状记忆弹簧的两端分别与上支柱和机翼后缘的前端面固定连接,所述第三形状记忆弹簧的两端分别与固定板和下金属薄板固定连接,所述第四形状记忆弹簧的两端分别与下支柱和机翼后缘的前端面固定连接。The technical scheme that the present invention takes for solving the above-mentioned technical problem is: the airfoil with variable trailing edge camber of the present invention comprises the trailing edge of the wing; the airfoil with variable trailing edge camber of the present invention also includes an upper sheet metal, a first shape memory spring , the upper pillar, the second shape memory spring, the third shape memory spring, the lower pillar, the fourth shape memory spring, the lower metal sheet and the connection plate; the front end of the upper metal sheet is fixedly connected with the upper end of the connection plate, and the upper metal The rear end surface of the thin plate is fixedly connected to the upper end of the front end surface of the wing trailing edge, the front end surface of the lower metal sheet is fixedly connected to the lower end of the connecting plate, and the rear end surface of the lower metal sheet is fixed to the lower end of the front end surface of the wing trailing edge connection, the same side surfaces of the upper metal sheet and the lower metal sheet are respectively fixed with an upper pillar and a lower pillar along the vertical direction, and the two ends of the first shape memory spring are respectively fixedly connected with the fixing plate and the upper metal sheet, and the The two ends of the second shape memory spring are respectively fixedly connected with the upper strut and the front end of the rear edge of the wing, the two ends of the third shape memory spring are respectively fixedly connected with the fixing plate and the lower metal sheet, and the fourth shape memory The two ends of the spring are respectively fixedly connected with the lower strut and the front end of the rear edge of the wing.
本发明的有益效果是:在本发明中采用了光滑、连续的可变弯度机翼技术,取消了机械式铰链,使得机翼在变形过程中,机翼表面光滑连续无缝,这样避免控制面偏转时,由于机翼表面斜率发生突变,产生气流分离,从而改善机翼的压力分布。机翼弯度的光滑连续改变还可以提高现有飞行条件下的升阻比,通过调整最大升阻比,提高了最大升力系数,从而扩展了巡航范围。改变机翼弯度的另一个效果是在巡航马赫数范围内的抖振边界拓宽了,使飞机可以在飞行中得到更高的升力系数。这样就可以使飞机在更高的海拔高度上飞行,而避免机翼设计时采用低翼载荷对重量过大的限制。另外,可变后缘弯度机翼在变形过程中机翼表面始终保持光滑连续无缝,大大地减少了雷达回波,从根本上提高了飞机的隐身性能。对侦察机而言,采用可变后缘弯度机翼可以提高其巡航能力和增加航程,同时其隐身性能也大为提高;对民用客机而言,采用可变后缘弯度机翼减少了其燃油消耗,提高了客机的经济性。因此,本发明同现在广泛采用的机械驱动机构相比,具有质量轻、结构简单、维修方便、机翼后缘连续偏转的优点,从而可以大大地降低飞机维修成本、提高武器系统的作战机动性和安全性,减少了武器装备在服役过程中的风险性。从长远来看,这种飞机外形上的变化能够使飞机达到更大的升阻比,并且拥有高燃油效率、高飞行质量、高安全性能以及更好的可操作性、更快的着陆速度,适应各种条件的起飞场。The beneficial effects of the present invention are: in the present invention, the smooth and continuous variable camber wing technology is adopted, and the mechanical hinge is canceled, so that the wing surface is smooth, continuous and seamless during the deformation process, so that the control surface is avoided. When deflecting, the airflow separation occurs due to the sudden change in the slope of the wing surface, thereby improving the pressure distribution of the wing. The smooth and continuous change of the wing camber can also improve the lift-to-drag ratio under the existing flight conditions. By adjusting the maximum lift-to-drag ratio, the maximum lift coefficient is increased, thereby extending the cruising range. Another effect of changing the camber of the wing is that the buffet boundary in the cruise Mach range is widened, allowing the aircraft to obtain a higher lift coefficient in flight. This allows the aircraft to fly at higher altitudes without excessive weight constraints imposed by low wing loads in wing designs. In addition, the variable trailing edge camber wing surface remains smooth, continuous and seamless during the deformation process, which greatly reduces radar echoes and fundamentally improves the stealth performance of the aircraft. For reconnaissance aircraft, the use of variable trailing edge camber wings can improve its cruising capability and range, and its stealth performance is also greatly improved; for civil airliners, the use of variable trailing edge camber wings reduces its fuel consumption Consumption, improve the economy of passenger aircraft. Therefore, compared with the mechanical drive mechanism widely used at present, the present invention has the advantages of light weight, simple structure, convenient maintenance, and continuous deflection of the trailing edge of the wing, thereby greatly reducing the maintenance cost of the aircraft and improving the combat maneuverability of the weapon system and safety, reducing the risk of weapons and equipment in service. In the long run, this change in the shape of the aircraft can enable the aircraft to achieve a greater lift-to-drag ratio, and have high fuel efficiency, high flight quality, high safety performance, better maneuverability, and faster landing speed. A take-off field for all conditions.
附图说明 Description of drawings
图1是本发明的整体结构主视示意图(机翼后缘5未变形状态下),图2是本发明的整体结构主视示意图(机翼后缘5变形状态下)。Fig. 1 is a schematic front view of the overall structure of the present invention (under the undeformed state of the trailing edge of the wing 5), and Fig. 2 is a schematic front view of the overall structure of the present invention (under the deformed state of the trailing edge of the wing 5).
具体实施方式 Detailed ways
具体实施方式一:结合图1说明本实施方式,本实施方式的可变后缘弯度机翼包括机翼后缘5;所述可变后缘弯度机翼还包括上金属薄板1、第一形状记忆弹簧2、上支柱3、第二形状记忆弹簧4、第三形状记忆弹簧6、下支柱7、第四形状记忆弹簧8、下金属薄板9和连接板10;所述上金属薄板1的前端面与连接板10的上端固定连接,上金属薄板1的后端面与机翼后缘5的前端面的上端固定连接,所述下金属薄板9的前端面与连接板10的下端固定连接,下金属薄板9的后端面与机翼后缘5的前端面的下端固定连接,上金属薄板1和下金属薄板9的同一侧表面沿竖直方向上分别固定有上支柱3和下支柱7,所述第一形状记忆弹簧2的两端分别与固定板10和上金属薄板1固定连接,所述第二形状记忆弹簧4的两端分别与上支柱3和机翼后缘5的前端面固定连接,所述第三形状记忆弹簧6的两端分别与固定板10和下金属薄板9固定连接,所述第四形状记忆弹簧8的两端分别与下支柱7和机翼后缘5的前端面固定连接。Embodiment 1: This embodiment is described in conjunction with FIG. 1. The variable trailing edge camber wing of this embodiment includes a wing
具体实施方式二:结合图1说明本实施方式,本实施方式与具体实施方式一的不同点是:本实施方式的第一形状记忆弹簧2的两端分别固定板10的中部和上金属薄板1的中部固定连接,所述第二形状记忆弹簧4的两端分别与上支柱3的上端和机翼后缘5的前端面的中部固定连接,所述第三形状记忆弹簧6的两端分别与固定板10的中部和下金属薄板9的中部固定连接,所述第四形状记忆弹簧8的两端分别与下支柱7的下端和机翼后缘5的前端面的中部固定连接。如此设置,可以使机翼后缘5弯度达到最佳状态,而且最容易弯曲变形。Specific Embodiment 2: This embodiment is described in conjunction with FIG. 1 . The difference between this embodiment and Embodiment 1 is that: the two ends of the first shape memory spring 2 of this embodiment respectively fix the middle part of the
具体实施方式三:结合图1说明本实施方式,本实施方式的第一形状记忆弹簧2、第二形状记忆弹簧4、第三形状记忆弹簧6和第四形状记忆弹簧8的材质均为TiNi形状记忆合金,具有较好的形状记忆效果。其它与具体实施方式一或二相同。Specific Embodiment Three: This embodiment is described in conjunction with FIG. 1. The materials of the first shape memory spring 2, the second
具体实施方式四:结合图1说明本实施方式,本实施方式的上金属薄板1和下金属薄板9的材质均为钢、铁或铝金属材料,可根据使用的需要选择。其它与具体实施方式一或二相同。Embodiment 4: This embodiment is described in conjunction with FIG. 1 . The materials of the upper sheet metal 1 and the lower sheet metal 9 in this embodiment are all steel, iron or aluminum metal materials, which can be selected according to the needs of use. Others are the same as in the first or second embodiment.
具体实施方式五:结合图1说明本实施方式,本实施方式的上金属薄板1的厚度和下金属薄板9的厚度相等并均为0.1mm~0.5mm。如此设置,可满足可变后缘弯度机翼的强度要求。其它与具体实施方式一、二、三或四相同。Embodiment 5: This embodiment is described with reference to FIG. 1 . In this embodiment, the thickness of the upper thin metal plate 1 and the thickness of the lower metal thin plate 9 are equal and both are 0.1 mm to 0.5 mm. Such setting can meet the strength requirement of the variable trailing edge camber wing. Others are the same as the
具体实施方式六:结合图1说明本实施方式,本实施方式的上金属薄板1的厚度和下金属薄板9的厚度均为0.3mm。在保证可变后缘弯度机翼的强度要求的前提下,还可减轻整体重量。其它与具体实施方式五相同。Embodiment 6: This embodiment is described with reference to FIG. 1 . In this embodiment, the thickness of the upper thin metal plate 1 and the thickness of the lower metal thin plate 9 are both 0.3mm. On the premise of ensuring the strength requirements of the variable trailing edge camber wing, the overall weight can also be reduced. Others are the same as in the fifth embodiment.
具体实施方式七:结合图1说明本实施方式,本实施方式的上支柱3和下支柱7同轴。如此设置,便于机翼弯曲。其它与具体实施方式一相同。Embodiment 7: This embodiment is described with reference to FIG. 1 . The
工作原理:一个完整的变形机翼变弯度的过程为:①对第三形状记忆弹簧6进行加热;②经过一段时间加热后,第三形状记忆弹簧6开始收缩变形;③下金属薄板9在第三形状记忆弹簧6收缩力的作用下,产生弯曲变形;④上金属薄板1将绕着上支柱3作弯曲运动,从而使机翼后缘5发生向下的偏转(参见附图2)。反之,若要想使机翼后缘5发生向上的偏转,只需对第一形状记忆弹簧2进行加热,经过一段时间加热后,第一形状记忆弹簧2开始收缩变形,上金属薄板1在第一形状记忆弹簧2收缩力的作用下,产生弯曲变形,下金属薄板9将绕着下支柱7作弯曲运动,从而使机翼后缘5发生向上的偏转。Working principle: The process of a complete deformed wing changing the camber is: ① heating the third
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2009100716133A CN101503113A (en) | 2009-03-23 | 2009-03-23 | Shape memory spring driven hinder margin camber variable wing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2009100716133A CN101503113A (en) | 2009-03-23 | 2009-03-23 | Shape memory spring driven hinder margin camber variable wing |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101503113A true CN101503113A (en) | 2009-08-12 |
Family
ID=40975513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2009100716133A Pending CN101503113A (en) | 2009-03-23 | 2009-03-23 | Shape memory spring driven hinder margin camber variable wing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101503113A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103387048A (en) * | 2013-07-27 | 2013-11-13 | 哈尔滨工业大学 | Variant flexible tail edge structure based on bionic conception |
CN103419925A (en) * | 2012-05-16 | 2013-12-04 | 波音公司 | Shape memory alloy active spars for blade twist |
CN104139847A (en) * | 2014-07-25 | 2014-11-12 | 哈尔滨工业大学深圳研究生院 | Trailing edge and leading edge with adjustable degrees of curvature for aircraft wing |
CN104379445A (en) * | 2012-04-30 | 2015-02-25 | 空中客车营运有限公司 | Morphing aerofoil |
CN104443354A (en) * | 2014-11-21 | 2015-03-25 | 南京航空航天大学 | Wing with self-adaptive variable camber trailing edge |
US9457887B2 (en) | 2014-03-05 | 2016-10-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | Smart material trailing edge variable chord morphing wing |
CN106005367A (en) * | 2016-05-16 | 2016-10-12 | 中国航空工业集团公司西安飞机设计研究所 | Flutter model with active flexible front edge |
US9856012B2 (en) | 2012-06-21 | 2018-01-02 | Bombardier Inc. | Morphing wing for an aircraft |
CN107628228A (en) * | 2017-08-28 | 2018-01-26 | 中国航空工业集团公司沈阳飞机设计研究所 | A kind of leading edge of a wing continuously bent structure |
CN107628229A (en) * | 2017-08-28 | 2018-01-26 | 中国航空工业集团公司沈阳飞机设计研究所 | A kind of continuous variable camber structure of the truss-like leading edge of a wing |
CN108100228A (en) * | 2017-11-30 | 2018-06-01 | 中国航空工业集团公司沈阳飞机设计研究所 | A kind of active flexible Telescopic truss structure |
CN108839788A (en) * | 2018-07-05 | 2018-11-20 | 西北工业大学 | A kind of variable camber trailing edge based on compliant mechanism |
CN109572997A (en) * | 2018-11-19 | 2019-04-05 | 南京航空航天大学 | Using the aircraft wing of marmem and motor composite drive |
CN110116803A (en) * | 2019-04-30 | 2019-08-13 | 南京航空航天大学 | A kind of change chord length system for blade |
CN110758715A (en) * | 2019-12-06 | 2020-02-07 | 中国民航大学 | Deformable wing based on shape memory alloy driving |
CN111717368A (en) * | 2020-07-01 | 2020-09-29 | 电子科技大学 | Flexible wing structure based on shape memory alloy and its manufacturing method |
CN113232833A (en) * | 2021-05-14 | 2021-08-10 | 南京航空航天大学 | Shape memory alloy stay wire driven variable camber wing and design method thereof |
CN113247237A (en) * | 2020-02-11 | 2021-08-13 | 波音公司 | adaptive airfoil |
-
2009
- 2009-03-23 CN CNA2009100716133A patent/CN101503113A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104379445A (en) * | 2012-04-30 | 2015-02-25 | 空中客车营运有限公司 | Morphing aerofoil |
CN104379445B (en) * | 2012-04-30 | 2016-05-11 | 空中客车营运有限公司 | Distortion aerofoil |
CN103419925A (en) * | 2012-05-16 | 2013-12-04 | 波音公司 | Shape memory alloy active spars for blade twist |
CN103419925B (en) * | 2012-05-16 | 2018-12-28 | 波音公司 | Marmem active spar for blade twist |
US9856012B2 (en) | 2012-06-21 | 2018-01-02 | Bombardier Inc. | Morphing wing for an aircraft |
CN103387048A (en) * | 2013-07-27 | 2013-11-13 | 哈尔滨工业大学 | Variant flexible tail edge structure based on bionic conception |
CN103387048B (en) * | 2013-07-27 | 2016-01-06 | 哈尔滨工业大学 | The variant flexible trailing edge structure of pneumatic actuation/distortion/carrying integration |
US9457887B2 (en) | 2014-03-05 | 2016-10-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | Smart material trailing edge variable chord morphing wing |
CN104139847A (en) * | 2014-07-25 | 2014-11-12 | 哈尔滨工业大学深圳研究生院 | Trailing edge and leading edge with adjustable degrees of curvature for aircraft wing |
CN104139847B (en) * | 2014-07-25 | 2016-05-18 | 哈尔滨工业大学深圳研究生院 | A kind of for the variable trailing edge of the camber of aircraft wing and the leading edge of a wing |
CN104443354A (en) * | 2014-11-21 | 2015-03-25 | 南京航空航天大学 | Wing with self-adaptive variable camber trailing edge |
CN106005367A (en) * | 2016-05-16 | 2016-10-12 | 中国航空工业集团公司西安飞机设计研究所 | Flutter model with active flexible front edge |
CN107628229A (en) * | 2017-08-28 | 2018-01-26 | 中国航空工业集团公司沈阳飞机设计研究所 | A kind of continuous variable camber structure of the truss-like leading edge of a wing |
CN107628228A (en) * | 2017-08-28 | 2018-01-26 | 中国航空工业集团公司沈阳飞机设计研究所 | A kind of leading edge of a wing continuously bent structure |
CN108100228A (en) * | 2017-11-30 | 2018-06-01 | 中国航空工业集团公司沈阳飞机设计研究所 | A kind of active flexible Telescopic truss structure |
CN108839788A (en) * | 2018-07-05 | 2018-11-20 | 西北工业大学 | A kind of variable camber trailing edge based on compliant mechanism |
CN108839788B (en) * | 2018-07-05 | 2021-08-03 | 西北工业大学 | A variable camber trailing edge of a wing based on a compliance mechanism |
CN109572997A (en) * | 2018-11-19 | 2019-04-05 | 南京航空航天大学 | Using the aircraft wing of marmem and motor composite drive |
CN110116803A (en) * | 2019-04-30 | 2019-08-13 | 南京航空航天大学 | A kind of change chord length system for blade |
CN110758715A (en) * | 2019-12-06 | 2020-02-07 | 中国民航大学 | Deformable wing based on shape memory alloy driving |
CN110758715B (en) * | 2019-12-06 | 2022-11-25 | 中国民航大学 | Deformable wing based on shape memory alloy drive |
CN113247237A (en) * | 2020-02-11 | 2021-08-13 | 波音公司 | adaptive airfoil |
CN111717368A (en) * | 2020-07-01 | 2020-09-29 | 电子科技大学 | Flexible wing structure based on shape memory alloy and its manufacturing method |
CN111717368B (en) * | 2020-07-01 | 2024-04-02 | 电子科技大学 | Flexible wing structure based on shape memory alloy and manufacturing method thereof |
CN113232833A (en) * | 2021-05-14 | 2021-08-10 | 南京航空航天大学 | Shape memory alloy stay wire driven variable camber wing and design method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101503113A (en) | Shape memory spring driven hinder margin camber variable wing | |
US4146200A (en) | Auxiliary flaperon control for aircraft | |
CN102282070B (en) | Horizontal stabilising surface of an aircraft | |
CN102458988B (en) | There is the aircraft of the box-like wing structure of λ | |
US9856012B2 (en) | Morphing wing for an aircraft | |
EP2844555B1 (en) | Morphing aerofoil | |
US8651431B1 (en) | Aircraft with movable winglets and method of control | |
US4729528A (en) | Aeroelastic control flap | |
CN103552682B (en) | A kind of all-wing aircraft and buzzard-type wing connection wing airplane | |
CN102251879B (en) | Differential adjustable unilateral expansion nozzle | |
CN211252992U (en) | Light flexible wing with variable trailing edge camber | |
CN105905277B (en) | A kind of aerodynamic configuration of aircraft using the rear edge support wing | |
CN110834714B (en) | Light flexible wing with variable trailing edge camber | |
CN109823534B (en) | Flapping wing for ornithopter | |
CN104139847A (en) | Trailing edge and leading edge with adjustable degrees of curvature for aircraft wing | |
CN107187599A (en) | A kind of HAE aerodynamic configuration of aircraft of use two-shipper height rear wing Three-wing-surface | |
CN105346705A (en) | Self-adaptive wing with variable wing surface curvature and control manner of aircraft thereof | |
CN105523169B (en) | A kind of wing rudder face of Variable-Bend | |
CN113415409A (en) | Non-control surface aircraft wing with variable camber | |
CN104943850A (en) | Main wing retractable type fixed wing airplane | |
CN112278238B (en) | Wing and aircraft that can warp in succession | |
CN107054625A (en) | Raised aircraft wing is controlled with adaptive shock wave | |
CN109263855B (en) | Aerodynamic layout of a super-aspect-ratio aircraft using trailing edge support wings | |
CN115848613A (en) | Distributed seamless active flexible wing | |
CN201525500U (en) | Wing-type non-vertical fin aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20090812 |