[go: up one dir, main page]

CN101499438B - Light-transmitting thin-film solar cell module and manufacturing method thereof - Google Patents

Light-transmitting thin-film solar cell module and manufacturing method thereof Download PDF

Info

Publication number
CN101499438B
CN101499438B CN 200810004995 CN200810004995A CN101499438B CN 101499438 B CN101499438 B CN 101499438B CN 200810004995 CN200810004995 CN 200810004995 CN 200810004995 A CN200810004995 A CN 200810004995A CN 101499438 B CN101499438 B CN 101499438B
Authority
CN
China
Prior art keywords
electrode
solar cell
light
cell module
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200810004995
Other languages
Chinese (zh)
Other versions
CN101499438A (en
Inventor
吴建树
翁得期
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to CN 200810004995 priority Critical patent/CN101499438B/en
Publication of CN101499438A publication Critical patent/CN101499438A/en
Application granted granted Critical
Publication of CN101499438B publication Critical patent/CN101499438B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention discloses a light-transmitting thin-film solar cell module and a manufacturing method thereof. According to the manufacturing method, the cutting channels in two directions are formed in the first electrode material layer on the opaque substrate, so that the problem of short circuit caused by a subsequent high-temperature laser cutting process can be avoided, and the process yield is influenced. In addition, the light-transmitting thin-film solar cell module is provided with the hole penetrating through the opaque substrate, so that the light transmittance of the cell can be improved.

Description

透光型薄膜太阳能电池模块及其制造方法 Light-transmitting thin-film solar cell module and manufacturing method thereof

技术领域technical field

本发明涉及一种太阳能电池(photovoltaic)模块及其制造方法,且特别涉及一种透光型薄膜太阳能电池模块及其制造方法。 The present invention relates to a solar cell (photovoltaic) module and its manufacturing method, and in particular to a light-transmitting thin-film solar cell module and its manufacturing method. the

背景技术Background technique

太阳能是一种具有永不耗尽且无污染的能源,在解决目前石化能源所面临的污染与短缺的问题时,一直是最受瞩目的焦点。其中,又以太阳能电池(solar cell)可直接将太阳能转换为电能,而成为目前相当重要的研究课题。 Solar energy is an energy source that is inexhaustible and non-polluting. It has always been the focus of attention when solving the problems of pollution and shortage of petrochemical energy. Among them, the solar cell (solar cell) can directly convert solar energy into electric energy, and has become a very important research topic at present. the

目前,在太阳能电池市场中,使用单晶硅与多晶硅的电池约占百分的九十以上。但是,这些太阳能电池需使用厚度约150微米至350微米的硅芯片作为材料,其成本较高。再者,由于太阳能电池的原材料采用高品质的硅晶锭,近年来因使用量的明显成长,已日渐不足。因此,薄膜太阳能电池(thinfilm solar cell)的研发乃成为新的发展方向。而且,薄膜太阳能电池具有低成本、容易大面积生产,且模块化工艺简单等优点。 At present, in the solar cell market, cells using monocrystalline silicon and polycrystalline silicon account for more than 90 percent. However, these solar cells need to use silicon chips with a thickness of about 150 microns to 350 microns as materials, and the cost is relatively high. Furthermore, since high-quality silicon crystal ingots are used as raw materials for solar cells, due to the obvious growth in usage in recent years, it has become increasingly insufficient. Therefore, the research and development of thin film solar cells has become a new development direction. Moreover, thin-film solar cells have the advantages of low cost, easy large-area production, and simple modularization process. the

请参照图1,其是绘示已知一种薄膜太阳能电池模块的示意图。薄膜太阳能电池模块150包括玻璃基板152、透明电极154、光电转换层156以及金属电极158。其中,透明电极154配置于玻璃基板152上。光电转换层156是以对应透明电极154位置偏移一距离的方式配置于透明电极154上。另外,金属电极158是以对应光电转换层156位置偏移一距离的方式配置于光电转换层156上,且与下方的透明电极154接触。在薄膜太阳能电池模块150中,光电转换层通常是由p型半导体、本征(intrinsic)半导体、n型半导体堆叠形成p-i-n的结构,光线由玻璃基板152下方入射进来,透过光电转换层156吸收产生电子及空穴对,经由内建电场将电子与空穴对分离而形成电压与电流,再经由导线传输至负载使用。为了提升电池的效率,已知薄膜太阳能电池模块150会将透明电极154的表面制成金字塔形(pyramid)结构或粗纹化(textured)结构(未绘示),以减少光的反射量。光电转换层通常使用非晶(amorphous)硅薄膜,但因为其能隙通常介于1.7至1.8eV之间,只能吸收波 长小于800nm的太阳光,为了增加光的利用,通常会再堆叠一层微晶(micro-crystalline or nano-crystalline)硅薄膜,形成p-i-n/p-i-n的堆叠型(tandem)太阳能电池,微晶硅的能隙通常介于1.1至1.2eV之间,可以吸收波长小于1100nm的太阳光。 Please refer to FIG. 1 , which is a schematic diagram illustrating a known thin film solar cell module. The thin film solar cell module 150 includes a glass substrate 152 , a transparent electrode 154 , a photoelectric conversion layer 156 and a metal electrode 158 . Wherein, the transparent electrode 154 is disposed on the glass substrate 152 . The photoelectric conversion layer 156 is disposed on the transparent electrode 154 in a manner that the position corresponding to the transparent electrode 154 is shifted by a distance. In addition, the metal electrode 158 is disposed on the photoelectric conversion layer 156 in a manner of offsetting a distance corresponding to the position of the photoelectric conversion layer 156 , and is in contact with the transparent electrode 154 below. In the thin-film solar cell module 150, the photoelectric conversion layer is usually a p-i-n structure formed by stacking p-type semiconductors, intrinsic semiconductors, and n-type semiconductors. Electron and hole pairs are generated, and the electrons and hole pairs are separated through the built-in electric field to form voltage and current, which are then transmitted to the load through wires for use. In order to improve the efficiency of the battery, it is known that the thin film solar cell module 150 makes the surface of the transparent electrode 154 into a pyramid structure or a textured structure (not shown) to reduce light reflection. The photoelectric conversion layer usually uses amorphous silicon thin film, but because its energy gap is usually between 1.7 and 1.8eV, it can only absorb sunlight with a wavelength of less than 800nm. In order to increase the utilization of light, it is usually stacked again. A layer of micro-crystalline (micro-crystalline or nano-crystalline) silicon film to form a p-i-n/p-i-n stacked (tandem) solar cell, the energy gap of microcrystalline silicon is usually between 1.1 and 1.2eV, and can absorb light with a wavelength of less than 1100nm sunshine. the

早期,太阳能电池的造价昂贵且制作不易,而仅能应用于太空等特殊领域中。现今,太阳能电池的应用已可扩展至一般的民宅、高楼建筑,甚至露营车、移动式小冰箱,都可以利用它可转换太阳光为电能的特性普遍地随处运用。但是在一些特定应用上面,硅晶片太阳能电池并不适合,例如需有透光性的玻璃帷幕,与其他太阳能电池结合建筑物(building integratedphotovoltaic,BIPV)的应用。透光型薄膜太阳能电池(thin film solar cell ofsee-through type)在这些应用当中具有节能与美观等优点,且更符合人性居住的需求。 In the early days, solar cells were expensive and difficult to manufacture, and could only be used in special fields such as space. Today, the application of solar cells can be extended to ordinary residential buildings, high-rise buildings, even campers, and mobile small refrigerators. They can be used everywhere by taking advantage of their ability to convert sunlight into electrical energy. However, in some specific applications, silicon wafer solar cells are not suitable, such as the need for light-transmitting glass curtains, and the application of building integrated photovoltaic (BIPV) combined with other solar cells. Thin film solar cell of see-through type has the advantages of energy saving and aesthetics in these applications, and is more in line with the needs of human living. the

目前,在一些美国专利上已有披露关于透光型薄膜太阳能电池及其制造方法的相关技术。 At present, some US patents have disclosed related technologies about light-transmissive thin-film solar cells and their manufacturing methods. the

在美国专利第6,858,461号(US 6,858,461 B2)中,提出一种部分透明的太阳能电池模块(“PARTIALLY TRANSPARENT PHOTOVOLATICMODULES”)。如图2所示,太阳能电池模块110包括透明基板114、透明导电层118、背面电极122以及位于透明导电层118与金属电极122之间的光电转换层。同样地,光线会由透明基板114下方照射进去。在此太阳能电池模块110中,会利用激光切割(laser scribing)方式移除部分金属电极122与光电转换层,而形成至少一条沟槽(groove)140,以使太阳能电池模块110可达到部分透光的目的。但是,由于激光切割方法是在高温下进行,因此容易使金属电极122产生金属颗粒或熔融而堆积在沟槽内部,造成上、下电极短路(short);或者非晶硅光电转换层于高温下在沟槽侧壁产生再结晶,形成低阻值的微晶硅,使得漏电流增加,进而影响工艺成品率(yield)与太阳电池的效率。另一方面,在透明导电层118表面通常会制成金字塔型结构或粗纹化表面结构,以提升电池的效率,如此当光线由透明基板114下方照射进去时会产生散射,以致使透光率未能有效提高。 In US Patent No. 6,858,461 (US 6,858,461 B2), a partially transparent solar cell module ("PARTIALLY TRANSPARENT PHOTOVOLATICMODULES") is proposed. As shown in FIG. 2 , the solar cell module 110 includes a transparent substrate 114 , a transparent conductive layer 118 , a back electrode 122 and a photoelectric conversion layer located between the transparent conductive layer 118 and the metal electrode 122 . Likewise, light will be irradiated from below the transparent substrate 114 . In the solar cell module 110, laser cutting (laser scribing) is used to remove part of the metal electrode 122 and the photoelectric conversion layer to form at least one groove (groove) 140, so that the solar cell module 110 can achieve partial light transmission. the goal of. However, since the laser cutting method is carried out at high temperature, it is easy to make the metal electrode 122 produce metal particles or melt and accumulate in the groove, causing the upper and lower electrodes to be short-circuited (short); or the amorphous silicon photoelectric conversion layer is exposed to high temperature Recrystallization occurs on the sidewall of the trench to form low-resistance microcrystalline silicon, which increases the leakage current, thereby affecting the process yield and the efficiency of the solar cell. On the other hand, the surface of the transparent conductive layer 118 is usually made into a pyramidal structure or a roughened surface structure to improve the efficiency of the battery, so that light will be scattered when it is irradiated from the bottom of the transparent substrate 114, so that the light transmittance failed to improve effectively. the

承上述,为了使太阳能电池达成某一程度的透光率,则需要有更多的金属电极与光电转换层被剥除。请参照表1,其为日本MakMax TAIYO KOGYO公司的多种透光型薄膜电池的产品规格。由表1可知,为了提高透光率,很 明显地需去除相当大面积的金属电极与光电转换层,如此一来使得最大输出、效率和填满系数(fill factor,FF)会下降。 Based on the above, in order to achieve a certain degree of light transmittance in the solar cell, more metal electrodes and photoelectric conversion layers need to be stripped. Please refer to Table 1, which is the product specification of various light-transmitting thin-film batteries of MakMax TAIYO KOGYO in Japan. It can be seen from Table 1 that in order to increase the light transmittance, it is obvious that a considerable area of metal electrodes and photoelectric conversion layers needs to be removed, so that the maximum output, efficiency and fill factor (FF) will decrease. the

表1 Table 1

型号model     KN-38KN-38     KN-45KN-45     KN-60KN-60 尺寸(mm)Dimensions (mm)     980×950980×950     980×950980×950     980×950980×950 透光率(%)Transmittance(%)     1010     55     <1<1 最大输出(W)Maximum output (W)     38.038.0     45.045.0     58.058.0 Vpm(V)Vpm(V)     58.658.6     64.464.4     68.068.0 Ipm(A)Ipm(A)     0.6480.648     0.6990.699     0.8530.853 Voc(V)Voc(V)     91.891.8     91.891.8     91.891.8 Isc(A)Isc(A)     0.9720.972     1.0901.090     1.1401.140 效率(%)efficiency(%)     4.14.1     4.84.8     6.26.2 FFFF     0.430.43     0.450.45     0.550.55

另外,美国专利第4,795,500号(US 4795500)提出一种太阳能电池元件(“PHOTOVOLATIC DEVICE”)。如图3所示,太阳能电池元件包括透明基板1、透明导电层3、光电转换层4、金属电极5以及光致抗蚀剂8。此太阳能电池元件在金属电极5与光电转换层4中,或甚至包括在透明导电层3中,会形成孔洞(hole)6,以达到透光的目的。然而,此专利需使用到黄光工艺,其相关设备相当昂贵,如此会增加成本。而且,若此专利使用激光切割方式以直接形成孔洞6,则同样会造成金属颗粒污染以及短路问题,而影响工艺成品率。 In addition, US Patent No. 4,795,500 (US 4795500) proposes a solar cell device ("PHOTOVOLATIC DEVICE"). As shown in FIG. 3 , the solar cell element includes a transparent substrate 1 , a transparent conductive layer 3 , a photoelectric conversion layer 4 , a metal electrode 5 and a photoresist 8 . In the solar cell element, holes 6 are formed in the metal electrode 5 and the photoelectric conversion layer 4 , or even included in the transparent conductive layer 3 , to achieve the purpose of light transmission. However, this patent needs to use a yellow light process, and its related equipment is quite expensive, which will increase the cost. Moreover, if the patent uses laser cutting to directly form the hole 6, it will also cause metal particle pollution and short circuit problems, which will affect the process yield. the

发明内容Contents of the invention

有鉴于此,本发明的目的就是在提供一种透光型薄膜太阳能电池模块及其制造方法,能够提高电池模块的透光率,且可避免已知工艺所造成短路与漏电流的问题,进而可提高工艺成品率与太阳能电池效率。 In view of this, the purpose of the present invention is to provide a light-transmitting thin-film solar cell module and its manufacturing method, which can improve the light transmittance of the cell module, and can avoid the problems of short circuit and leakage current caused by known processes, and further Process yield and solar cell efficiency can be improved. the

本发明提出一种透光型薄膜太阳能电池模块的制造方法。首先,在不透明基板上形成第一电极材料层。然后,移除部分第一电极材料层,以形成可将第一电极材料层分隔成多个带状电极材料层且的多条第一Y方向切割道,以及相交于第一Y方向切割道的多条第一X方向切割道,使第一电极材料层分隔成第一梳型电极与二维排列的多个块状第一电极。接着,形成光电转换层,覆盖不透明基板、第一电极与部分第一梳型电极。随后,移除部分光电转换层,以于第一电极上方形成相对平行第一Y方向切割道的多条第二Y方向切割道。之后,形成第二电极材料层,覆盖光电转换层、第一电极与不透明基板。继之,移除部分第二电极材料层与部分光电转换层,以形成曝露出第一电极表面的多条第三Y方向切割道,以及于第一X方向切割道中形成多条第二X方向切割道,裸露出该不透明基板,使第二电极材料层分隔成第二梳型电极与二维排列的多个块状第二电极。之后,移除部分第二X方向切割道以及第三Y方向切割道所裸露的不透明基板,以在不透明基板中形成多个孔洞。光电转换层在孔洞周围包覆第一电极。The invention provides a method for manufacturing a light-transmitting thin-film solar cell module. First, a first electrode material layer is formed on an opaque substrate. Then, remove part of the first electrode material layer to form a plurality of first Y-direction cutting lines that can separate the first electrode material layer into a plurality of strip-shaped electrode material layers, and a plurality of first Y-direction cutting lines that intersect with the first Y-direction cutting lines. A plurality of first X-direction cutting lines separates the first electrode material layer into a first comb-shaped electrode and a plurality of block-shaped first electrodes arranged two-dimensionally. Next, a photoelectric conversion layer is formed to cover the opaque substrate, the first electrode and part of the first comb-shaped electrode. Subsequently, a part of the photoelectric conversion layer is removed to form a plurality of second Y-direction cutting lines parallel to the first Y-direction cutting lines above the first electrode. After that, a second electrode material layer is formed to cover the photoelectric conversion layer, the first electrode and the opaque substrate. Next, part of the second electrode material layer and part of the photoelectric conversion layer are removed to form a plurality of third Y-direction cutting lines exposing the surface of the first electrode, and a plurality of second X-direction cutting lines are formed in the first X-direction cutting lines. The cutting line exposes the opaque substrate, and separates the second electrode material layer into a second comb-shaped electrode and a plurality of block-shaped second electrodes arranged two-dimensionally. Afterwards, removing part of the opaque substrate exposed by the second X-direction scribe line and the third Y-direction scribe line to form a plurality of holes in the opaque substrate. The photoelectric conversion layer covers the first electrode around the hole.

在上述的透光型薄膜太阳能电池模块的制造方法中,在移除部分光电转换层以形成第二Y方向切割道时,还包括于第一X方向切割道中形成多条第三X方向切割道。第一、第二、第三Y方向切割道以及第一、第二、第三X方向切割道是利用激光切割方式制备。而且,上述的透光型薄膜太阳能电池模块的第一电极材料层为透明导电氧化物层,其材料例如是氧化锌、二氧化锡、氧化铟锡或氧化铟。第一电极材料层也可以是金属层,其材料例如是铝、银、铜、钼或其他适合的金属或合金。光电转换层为单层结构或堆叠层结构。光电转换层的材料例如是非结晶硅及其合金、硫化镉、铜铟镓二硒、铜铟二硒、碲化镉或有机材料。第二电极材料层为透明导电氧化物层,其材料例如是氧化锌、二氧化锡、氧化铟锡或氧化铟。 In the above-mentioned manufacturing method of the light-transmissive thin film solar cell module, when removing part of the photoelectric conversion layer to form the second Y-direction scribe, it also includes forming a plurality of third X-direction scribes in the first X-direction scribe . The first, second and third Y-direction cutting lines and the first, second and third X-direction cutting lines are prepared by laser cutting. Moreover, the first electrode material layer of the light-transmitting thin-film solar cell module is a transparent conductive oxide layer, and its material is, for example, zinc oxide, tin dioxide, indium tin oxide or indium oxide. The first electrode material layer can also be a metal layer, such as aluminum, silver, copper, molybdenum or other suitable metals or alloys. The photoelectric conversion layer has a single-layer structure or a stacked-layer structure. The material of the photoelectric conversion layer is, for example, amorphous silicon and its alloys, cadmium sulfide, copper indium gallium diselenide, copper indium gallium diselenide, cadmium telluride or organic materials. The second electrode material layer is a transparent conductive oxide layer, such as zinc oxide, tin dioxide, indium tin oxide or indium oxide. the

本发明另提出一种透光型薄膜太阳能电池模块,其具有彼此串联的多颗电池,配置于不透明基板上。在这些电池之间具有多个贯穿该不透明基板的孔洞。透光型薄膜太阳能电池模块包括第一电极、第二电极以及光电转换层。其中,第一电极配置在不透明基板上,且第一电极是由第一梳型电极与二维排列的多个块状第一电极组成。第二电极配置在第一电极上方,且第二电极是由第二梳型电极与二维排列的多个块状第二电极组成,第二梳型电极与前述块状第二电极彼此之间裸露出部分之前述第一块状电极、部分的不透明基板、或前述孔洞。上述,第二梳型电极与第一梳型电极是以左右方式配置,而第一块状电极与第二块状电极是以平行位移方式配置。另外,光电转换层配置于第一电极与第二电极之间。光电转换层是由二维排列的多个光电转换材料层所组成。光电转换层该孔洞周围包覆第一电极。 The present invention further provides a light-transmitting thin-film solar cell module, which has a plurality of cells connected in series and arranged on an opaque substrate. Between the cells there are holes through the opaque substrate. The light-transmissive thin-film solar cell module includes a first electrode, a second electrode and a photoelectric conversion layer. Wherein, the first electrode is arranged on the opaque substrate, and the first electrode is composed of a first comb-shaped electrode and a plurality of block-shaped first electrodes arranged two-dimensionally. The second electrode is arranged above the first electrode, and the second electrode is composed of a second comb-shaped electrode and a plurality of block-shaped second electrodes arranged two-dimensionally, and the gap between the second comb-shaped electrode and the aforementioned block-shaped second electrodes A part of the aforementioned first bulk electrode, a part of the opaque substrate, or the aforementioned hole is exposed. As mentioned above, the second comb-shaped electrodes and the first comb-shaped electrodes are arranged in a left-right manner, while the first block-shaped electrodes and the second block-shaped electrodes are arranged in a parallel displacement manner. In addition, the photoelectric conversion layer is disposed between the first electrode and the second electrode. The photoelectric conversion layer is composed of multiple photoelectric conversion material layers arranged two-dimensionally. The photoelectric conversion layer covers the first electrode around the hole. the

上述的透光型薄膜太阳能电池模块的第一电极为透明导电氧化物层,其材料例如是氧化锌、二氧化锡、氧化铟锡或氧化铟。第一电极也可以是金属层,其材料例如是铝、银、铜、钼或其他适合的金属或合金。光电转换层为单层结构或堆叠层结构。光电转换层的材料例如是非结晶硅及其合金、硫化镉、铜铟镓二硒、铜铟二硒、碲化镉或有机材料。另外,第二电极为透明导电氧化物层,其材料例如是氧化锌、二氧化锡、氧化铟锡或氧化铟。 The first electrode of the above light-transmissive thin film solar cell module is a transparent conductive oxide layer, and its material is, for example, zinc oxide, tin dioxide, indium tin oxide or indium oxide. The first electrode can also be a metal layer, and its material is, for example, aluminum, silver, copper, molybdenum or other suitable metals or alloys. The photoelectric conversion layer has a single-layer structure or a stacked-layer structure. The material of the photoelectric conversion layer is, for example, amorphous silicon and its alloys, cadmium sulfide, copper indium gallium diselenide, copper indium gallium diselenide, cadmium telluride or organic materials. In addition, the second electrode is a transparent conductive oxide layer, and its material is, for example, zinc oxide, tin dioxide, indium tin oxide or indium oxide. the

本发明又提出一种透光型薄膜太阳能电池模块的制造方法。首先,在不透明基板上形成第一电极材料层。然后,移除部分第一电极材料层,以形成可将第一电极材料层分隔成多个带状电极材料层的多条第一Y方向切割道,以及呈二维排列的多个第一X方向切割窗口,使第一电极材料层成为多个第一窗型电极。接着,形成光电转换层,以覆盖第一窗型电极与不透明基板。随后,移除部分光电转换层,以于第一窗型电极上方形成相对平行第一Y方向切割道的多条第二Y方向切割道。之后,于光电转换层上形成第二电极材料层。继之,移除部分第二电极材料层与部分光电转换层,以形成曝露出第一窗型电极表面的多条第三Y方向切割道,以及于每个第一X方向切割窗口中形成一个第二X方向切割窗口,使第二电极材料层成为多个裸露出不透明基板的第二窗型电极。之后,移除第二X方向切割窗口所裸露的该不透明基板,以在该不透明基板中形成多个孔洞。光电转换层该孔洞周围包覆第一电极。 The invention further proposes a method for manufacturing a light-transmitting thin-film solar cell module. First, a first electrode material layer is formed on an opaque substrate. Then, part of the first electrode material layer is removed to form a plurality of first Y-direction slits that can separate the first electrode material layer into a plurality of strip-shaped electrode material layers, and a plurality of first X in a two-dimensional arrangement. The window is cut in the same direction, so that the first electrode material layer becomes a plurality of first window-type electrodes. Next, a photoelectric conversion layer is formed to cover the first window electrode and the opaque substrate. Subsequently, a part of the photoelectric conversion layer is removed to form a plurality of second Y-direction cutting lines parallel to the first Y-direction cutting lines above the first window electrode. Afterwards, a second electrode material layer is formed on the photoelectric conversion layer. Next, removing part of the second electrode material layer and part of the photoelectric conversion layer to form a plurality of third Y-direction cutting lines exposing the surface of the first window-shaped electrode, and forming a third Y-direction cutting line in each first X-direction cutting window. The window is cut in the second X direction, so that the second electrode material layer becomes a plurality of second window-shaped electrodes exposing the opaque substrate. Afterwards, the opaque substrate exposed by the second X-direction cutting window is removed to form a plurality of holes in the opaque substrate. The photoelectric conversion layer covers the first electrode around the hole. the

在上述的透光型薄膜太阳能电池模块的制造方法中,于移除部分该光电转换层以形成该第二Y方向切割道时,可进一步于第一X方向切割窗口中形成多条第三X方向切割窗口。 In the above-mentioned manufacturing method of the light-transmissive thin-film solar cell module, when removing part of the photoelectric conversion layer to form the second Y-direction dicing line, a plurality of third X-cutting lines can be further formed in the first X-direction cutting window. Direction cut window. the

在上述的透光型薄膜太阳能电池模块的制造方法中,第一、第二、第三Y方向切割道以及第一、第二、第三X方向切割窗口是利用激光切割方式制备。而且,上述的透光型薄膜太阳能电池模块的第一电极材料层为透明导电氧化物层,其材料例如是氧化锌、二氧化锡、氧化铟锡或氧化铟。第一电极材料层也可以是金属层,其材料例如是铝、银、铜、钼或其他适合的金属或合金。光电转换层为单层结构或堆叠层结构。光电转换层的材料例如是非结晶硅及其合金、硫化镉、铜铟镓二硒、铜铟二硒、碲化镉或有机材料。第二电极材料层为透明导电氧化物层,其材料例如是氧化锌、二氧化锡、氧化铟锡或氧化铟。 In the above-mentioned manufacturing method of the light-transmitting thin film solar cell module, the first, second, and third Y-direction cutting lines and the first, second, and third X-direction cutting windows are prepared by laser cutting. Moreover, the first electrode material layer of the light-transmitting thin-film solar cell module is a transparent conductive oxide layer, and its material is, for example, zinc oxide, tin dioxide, indium tin oxide or indium oxide. The first electrode material layer can also be a metal layer, such as aluminum, silver, copper, molybdenum or other suitable metals or alloys. The photoelectric conversion layer has a single-layer structure or a stacked-layer structure. The material of the photoelectric conversion layer is, for example, amorphous silicon and its alloys, cadmium sulfide, copper indium gallium diselenide, copper indium gallium diselenide, cadmium telluride or organic materials. The second electrode material layer is a transparent conductive oxide layer, such as zinc oxide, tin dioxide, indium tin oxide or indium oxide. the

本发明再提出一种透光型薄膜太阳能电池模块,其具有在X方向彼此串联且在Y方向彼此并联的多颗电池,且在这些电池之间具有多个贯穿不透明基板的贯孔。透光型薄膜太阳能电池模块包括不透明基板、第一电极、第二电极以及光电转换层。其中,不透明基板,具有多个孔洞。第一电极配置在不透明基板上,且第一电极是由多个块状第一窗形电极组成。前述块状第一窗形电极在对应于前述孔洞处具有多个第一切割窗口。第二电极配置在第一电极上方,且第二电极是由多个块状第二窗形电极组成。前述块状第二窗形电极具有多个第二切割窗口,其与前述孔洞与前述第一切割窗处相对应且共同构成前述贯孔。前述的第二窗型电极与第一窗型电极是以平行位移方式配置。另外,光电转换层配置于第一电极与第二电极之间。光电转换层是由多个窗形光电转换材料层所组成。光电转换层该孔洞周围包覆第一电极。 The present invention further proposes a light-transmitting thin-film solar cell module, which has a plurality of cells connected in series in the X direction and parallel in the Y direction, and has a plurality of through holes penetrating through the opaque substrate between the cells. The light-transmitting thin-film solar cell module includes an opaque substrate, a first electrode, a second electrode and a photoelectric conversion layer. Wherein, the opaque substrate has a plurality of holes. The first electrode is arranged on the opaque substrate, and the first electrode is composed of a plurality of bulk first window-shaped electrodes. The aforementioned block-shaped first window-shaped electrode has a plurality of first cutting windows corresponding to the aforementioned holes. The second electrode is arranged above the first electrode, and the second electrode is composed of a plurality of bulk second window-shaped electrodes. The block-shaped second window-shaped electrode has a plurality of second cutting windows corresponding to the holes and the first cutting windows and jointly forming the through hole. The aforementioned second window-type electrodes and the first window-type electrodes are arranged in a parallel displacement manner. In addition, the photoelectric conversion layer is disposed between the first electrode and the second electrode. The photoelectric conversion layer is composed of multiple window-shaped photoelectric conversion material layers. The photoelectric conversion layer covers the first electrode around the hole. the

上述的透光型薄膜太阳能电池模块的第一电极为透明导电氧化物层,其材料例如是氧化锌、二氧化锡、氧化铟锡或氧化铟。第一电极也可以是金属层,其材料例如是铝、银、铜、钼或其他适合的金属或合金。光电转换层为单层结构或堆叠层结构。光电转换层的材料例如是非结晶硅及其合金、硫化镉、铜铟镓二硒、铜铟二硒、碲化镉或有机材料。另外,第二电极为透明导电氧化物层,其材料例如是氧化锌、二氧化锡、氧化铟锡或氧化铟。 The first electrode of the above light-transmissive thin film solar cell module is a transparent conductive oxide layer, and its material is, for example, zinc oxide, tin dioxide, indium tin oxide or indium oxide. The first electrode can also be a metal layer, and its material is, for example, aluminum, silver, copper, molybdenum or other suitable metals or alloys. The photoelectric conversion layer has a single-layer structure or a stacked-layer structure. The material of the photoelectric conversion layer is, for example, amorphous silicon and its alloys, cadmium sulfide, copper indium gallium diselenide, copper indium gallium diselenide, cadmium telluride or organic materials. In addition, the second electrode is a transparent conductive oxide layer, and its material is, for example, zinc oxide, tin dioxide, indium tin oxide or indium oxide. the

本发明的透光型薄膜太阳能电池模块及其制造方法,在制作第一电极时已同时形成二方向的切割道或切割窗口,因此可使得所制备的透光型薄膜太阳能电池模块不会存在有因高温的激光切割工艺而导致短路与漏电流的问题,进而可提高工艺成品率与太阳能电池效率。另外,相较于已知透光型薄膜太阳能电池模块,本发明的透光型薄膜太阳能电池模块具有多个贯穿不透明基板的贯孔,不会因为透明氧化物电极表面制成金字塔形结构或粗糙结构,造成光散射,因此可大为提高元件的透光率。 In the light-transmitting thin-film solar cell module and the manufacturing method thereof of the present invention, cutting lines or cutting windows in two directions have been formed at the same time when the first electrode is made, so that the prepared light-transmitting thin-film solar cell module does not have defects. Problems of short circuit and leakage current caused by high temperature laser cutting process can improve process yield and solar cell efficiency. In addition, compared with the known light-transmissive thin-film solar cell module, the light-transmissive thin-film solar cell module of the present invention has a plurality of through holes penetrating through the opaque substrate, and will not be made into a pyramid-shaped structure or rough due to the surface of the transparent oxide electrode. The structure causes light scattering, so the light transmittance of the element can be greatly improved. the

为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举优选实施例,并配合附图,作详细说明如下。 In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments are described below in detail together with accompanying drawings. the

附图说明Description of drawings

图1是绘示已知一种薄膜太阳能电池模块的示意图。 FIG. 1 is a schematic diagram illustrating a known thin film solar cell module. the

图2是绘示已知一种太阳能电池模块的示意图。 FIG. 2 is a schematic diagram illustrating a known solar cell module. the

图3是绘示已知一种太阳能电池元件的示意图。 FIG. 3 is a schematic diagram illustrating a known solar cell element. the

图4至图9为依照本发明的实施例所绘示的透光型薄膜太阳能电池模块的制造方法的流程示意图。其中,图4至8的子图4(a)、5(a)、6(a)、7(a)、8(a)是绘示上视示意图,子图4(b)、5(b)、6(b)、7(b)、8(b)是绘示沿剖面线I-I’的剖面示意图;图9的子图9(a)与9(a’)是绘示两种不同实施例的上视示意图,子图9(b)和子图9(b’)是沿剖面线I-I’所绘示的两种不同实施例的剖面示意图,子图9(c)是绘示沿剖面线II-II’的剖面示意图。4 to 9 are schematic flowcharts of the manufacturing method of the light-transmissive thin-film solar cell module according to the embodiment of the present invention. Wherein, the sub-figures 4(a), 5(a), 6(a), 7(a), and 8(a) of Figures 4 to 8 are schematic diagrams showing top views, and the sub-figures 4(b), 5(b ), 6(b), 7(b), and 8(b) are schematic cross-sectional views along the section line II'; sub-figures 9(a) and 9(a') of Fig. The top view schematic diagrams of different embodiments, sub-figure 9 (b) and sub-figure 9 (b') are schematic cross-sectional views of two different embodiments shown along the section line II', sub-figure 9 (c) is a drawing A schematic cross-sectional view along the section line II-II' is shown.

图10至图15为依照本发明的另一实施例所绘示的透光型薄膜太阳能电池模块的制造方法的流程示意图。其中,图10至15的子图10(a)、11(a)、12(a)、13(a)、14(a)、15(a)是绘示上视示意图,子图10(b)、11(b)、12(b)、13(b)、14(b)、15(b)是绘示沿剖面线I-I’的剖面示意图;图11至15的子图11(c)、12(c)、13(c)、14(c)、15(c)是绘示沿剖面线II-II’的剖面示意图。 10 to 15 are schematic flowcharts of a manufacturing method of a light-transmissive thin film solar cell module according to another embodiment of the present invention. Wherein, sub-figures 10(a), 11(a), 12(a), 13(a), 14(a), and 15(a) of FIGS. 10 to 15 are schematic diagrams showing top views, and sub-figures 10(b ), 11(b), 12(b), 13(b), 14(b), 15(b) are schematic cross-sectional views along section line II'; ), 12(c), 13(c), 14(c), and 15(c) are schematic cross-sectional views along the section line II-II'. the

附图标记说明 Explanation of reference signs

1、114、402、502:不透明基板    3、118:透明导电层 1, 114, 402, 502: opaque substrate 3, 118: transparent conductive layer

4、156:光电转换层              5、158:金属电极 4, 156: photoelectric conversion layer 5, 158: metal electrode

6:孔洞                         8:光致抗蚀剂 6: Hole 8: Photoresist

110:太阳能电池模块             122:背面电极 110: Solar cell module 122: Back electrode

140:沟槽                       150:薄膜太阳能电池模块 140: Groove 150: Thin Film Solar Cell Module

152:玻璃基板                   154:第一电极 152: Glass substrate 154: First electrode

400、500:透光型薄膜太阳能电池模块 400, 500: light-transmitting thin-film solar cell module

401、501:电池                  404、418、504、520:电极材料层 401, 501: battery 404, 418, 504, 520: electrode material layer

406、416、420、506、514、522:Y方向切割道 406, 416, 420, 506, 514, 522: cutting lanes in Y direction

408、422:X方向切割道           410、424、424’、426’:块状电极 408, 422: cutting lines in X direction 410, 424, 424’, 426’: block electrodes

412、426:梳型电极              414、512:光电转换层 412, 426: Comb electrode 414, 512: Photoelectric conversion layer

425:连接部                     450、550:孔洞 425: Connecting part 450, 550: Hole

460、560:光线                  470、570:第一电极 460, 560: light 470, 570: first electrode

480、580:第二电极              510、526:窗型电极 480, 580: second electrode 510, 526: window electrode

508、516、524:切割窗口         555:贯孔 508, 516, 524: cutting window 555: through hole

具体实施方式Detailed ways

图4至图9为依照本发明的一实施例所绘示的透光型薄膜太阳能电池模块的制造方法的流程示意图。其中,图4至图9的子图(a)、(a’)分别是绘示上视示意图,子图(b)和子图(b’)是绘示沿剖面线I-I’的剖面示意图,子图(c) 是绘示沿剖面线II-II’的剖面示意图。 4 to 9 are schematic flowcharts of a manufacturing method of a light-transmissive thin-film solar cell module according to an embodiment of the present invention. Wherein, the sub-figures (a) and (a') of Fig. 4 to Fig. 9 are schematic diagrams showing top views respectively, and sub-figures (b) and sub-figures (b') are schematic cross-sectional views along the section line II' , sub-figure (c) is a schematic cross-sectional view along the section line II-II'. the

首先,请参照图9(a)、图9(b)、图9(b’)与图9(c),本实施例的透光型薄膜太阳能电池模块400是由彼此串联的多个电池(cell)401所组成。这些电池401是由第一电极470、光电转换层414与第二电极480组成。这些电池401排列成阵列。列与列的多个电池401之间以X方向切割道422、408分隔开;行与行的多个电池401之间则通过Y方向切割道420与Y方向切割道406分隔开。 First, please refer to FIG. 9(a), FIG. 9(b), FIG. 9(b') and FIG. 9(c), the light-transmissive thin-film solar cell module 400 of this embodiment is composed of a plurality of cells connected in series ( cell) 401. These batteries 401 are composed of a first electrode 470 , a photoelectric conversion layer 414 and a second electrode 480 . These cells 401 are arranged in an array. The batteries 401 in the columns are separated by the X-direction cutting lines 422 and 408 ; the batteries 401 in the rows are separated by the Y-direction cutting lines 420 and the Y-direction cutting lines 406 . the

换言之,X方向切割道408、422可将第一电极470以及第二电极480分隔成数列,裸露出不透明基板402。Y方向切割道420则将第二电极480分隔开成数行,其裸露出部分的第一电极470以及部分的不透明基板402。Y方向切割道406则将第一电极470分隔开成数行,裸露出不透明基板402。并且,X方向切割道422与Y方向切割道420所裸露的不透明基板402中具有多个贯穿其两个表面402a与402b的孔洞450。 In other words, the X-direction cutting lines 408 and 422 can separate the first electrode 470 and the second electrode 480 into several rows, exposing the opaque substrate 402 . The Y-direction cutting lines 420 separate the second electrodes 480 into several rows, exposing part of the first electrodes 470 and part of the opaque substrate 402 . The Y-direction cutting lines 406 separate the first electrodes 470 into several rows, exposing the opaque substrate 402 . Moreover, the opaque substrate 402 exposed by the X-direction cutting line 422 and the Y-direction cutting line 420 has a plurality of holes 450 passing through the two surfaces 402a and 402b thereof. the

更具体地说,透光型薄膜太阳能电池模块400包括不透明基板402以及配置于其上方的第一电极470、光电转换层414与第二电极480。其中,第一电极470是直接配置在不透明基板402上,其是由X向切割道408以及Y方向切割道406所切割出的梳型电极412与二维排列的多个块状电极410所组成。第一电极470的材料为透明导电氧化物薄膜或是金属层。TCO的材料例如是氧化锌(ZnO)、二氧化锡(SnO2)、氧化铟锡(ITO)或氧化铟(In2O3)。金属层的材料例如是铝(Al)、银(Ag)、钼(Mo)、铜(Cu)或其他适合的金属或合金。 More specifically, the light-transmissive thin-film solar cell module 400 includes an opaque substrate 402 and a first electrode 470 , a photoelectric conversion layer 414 and a second electrode 480 disposed thereon. Wherein, the first electrode 470 is directly arranged on the opaque substrate 402, which is composed of a comb-shaped electrode 412 cut out by the X-direction cutting line 408 and the Y-direction cutting line 406 and a plurality of block electrodes 410 arranged two-dimensionally. . The material of the first electrode 470 is a transparent conductive oxide film or a metal layer. The material of the TCO is, for example, zinc oxide (ZnO), tin dioxide (SnO 2 ), indium tin oxide (ITO) or indium oxide (In 2 O 3 ). The material of the metal layer is, for example, aluminum (Al), silver (Ag), molybdenum (Mo), copper (Cu) or other suitable metals or alloys.

第二电极480是配置在第一电极470上方,其是由X向切割道422以及Y方向切割道422切割出的梳型电极426与二维排列的多个块状电极424所组成。而且,梳型电极412、426是以左右方式配置,而块状电极410、424是以平行位移方式配置。第二电极480的材料为透明导电氧化物薄膜。TCO的材料例如是氧化锌、二氧化锡、氧化铟锡(ITO)或氧化铟(In2O3)。 The second electrode 480 is disposed above the first electrode 470 and is composed of a comb-shaped electrode 426 cut by the X-direction cutting line 422 and the Y-direction cutting line 422 and a plurality of block electrodes 424 arranged two-dimensionally. Moreover, the comb-shaped electrodes 412 and 426 are arranged in a left-right manner, and the block-shaped electrodes 410 and 424 are arranged in a parallel displacement manner. The material of the second electrode 480 is a transparent conductive oxide film. The material of the TCO is, for example, zinc oxide, tin dioxide, indium tin oxide (ITO) or indium oxide (In 2 O 3 ).

另外,光电转换层414是配置于第一电极470与第二电极480之间,而光电转换层414是由二维排列的多个光电转换材料层所组成。光电转换层414可以是单层结构或堆叠层结构。光电转换层414的材料例如是非结晶硅及其合金、硫化镉(CdS)、铜铟镓二硒(CuInGaSe2,CIGS)、铜铟二硒(CuInSe2,CIS)、碲化镉(CdTe)、有机材料或上述材料堆叠的多层结构。 In addition, the photoelectric conversion layer 414 is disposed between the first electrode 470 and the second electrode 480 , and the photoelectric conversion layer 414 is composed of a plurality of photoelectric conversion material layers arranged two-dimensionally. The photoelectric conversion layer 414 may have a single layer structure or a stacked layer structure. The material of the photoelectric conversion layer 414 is, for example, amorphous silicon and its alloys, cadmium sulfide (CdS), copper indium gallium diselenide (CuInGaSe 2 , CIGS), copper indium diselenide (CuInSe 2 , CIS), cadmium telluride (CdTe), Multilayer structure of organic materials or stacks of the above materials.

在上述的切割道中,用来分割第一电极470的Y方向切割道406被光电转换层414以及第二电极480所覆盖。用来分割第二电极480的Y方向切割道420则裸露出部分的第一电极470以及不透明基板402。用来分割第一电极470的X方向切割道408以及用来分割第二电极480的Y方向切割道422的位置对应且裸露出不透明基板402。 Among the above-mentioned cutting lines, the Y-direction cutting lines 406 for dividing the first electrode 470 are covered by the photoelectric conversion layer 414 and the second electrode 480 . The Y-direction cutting line 420 for dividing the second electrode 480 exposes part of the first electrode 470 and the opaque substrate 402 . The positions of the X-direction cutting lines 408 for dividing the first electrodes 470 and the Y-direction cutting lines 422 for dividing the second electrodes 480 correspond to and expose the opaque substrate 402 . the

特别值得注意的是,在本发明中,X方向切割道422、406与Y方向切割道420不仅裸露出不透明基板402,而且所裸露的不透明基板402中还具有多个贯穿两个表面402a与402b的孔洞450。 It is particularly worth noting that in the present invention, the X-direction cutting lines 422, 406 and the Y-direction cutting line 420 not only expose the opaque substrate 402, but also have a plurality of penetrating two surfaces 402a and 402b in the exposed opaque substrate 402. The hole 450. the

这些孔洞440在不透明基板402的表面402a的尺寸,与其贯穿到表面402b的尺寸可以相同如或不相同。例如,这些孔洞440的尺寸可以是从不透明基板402的表面402a延伸到表面402b的逐渐变大,或逐渐变小。此外,不透明基板402上的孔洞440的图案并无特别的限制,其在不透明基板402表面402a与402b上的图案可以呈现各种的形状,如圆形、方形、矩形、三角形、多角形等,或呈不规则状。 The size of the holes 440 on the surface 402a of the opaque substrate 402 may be the same as or different from the size extending to the surface 402b. For example, the size of the holes 440 may be gradually larger or smaller extending from the surface 402a to the surface 402b of the opaque substrate 402 . In addition, the pattern of the holes 440 on the opaque substrate 402 is not particularly limited, and the patterns on the surfaces 402a and 402b of the opaque substrate 402 can present various shapes, such as circles, squares, rectangles, triangles, polygons, etc. or irregular. the

由于本实施例的透光型薄膜太阳能电池模块400具有可曝露出不透明基板402的X方向切割道422、406以及Y方向切割道420且不透明基板402中具有多个孔洞450,因此,当光线(太阳光)由不透明基板402表面402a上方的第二电极480照射进去时,可通过X方向切割道422与Y方向切割道420以及不透明基板402中的孔洞,而使透光型薄膜太阳能电池模块400达到更高的透光特性。相较于已知透光型薄膜太阳能电池模块,本实施例的透光型薄膜太阳能电池模块400可大为提高元件的透光率。 Since the light-transmissive thin-film solar cell module 400 of this embodiment has the X-direction cutting lines 422, 406 and the Y-direction cutting lines 420 that can expose the opaque substrate 402, and the opaque substrate 402 has a plurality of holes 450, when the light ( When sunlight) is irradiated by the second electrode 480 above the surface 402a of the opaque substrate 402, it can pass through the X-direction cutting line 422 and the Y-direction cutting line 420 and the holes in the opaque substrate 402 to make the light-transmitting thin film solar cell module 400 Achieve higher light transmission characteristics. Compared with the known light-transmissive thin-film solar cell module, the light-transmissive thin-film solar cell module 400 of this embodiment can greatly improve the light transmittance of the element. the

另一方面,如图9(c)所示,由于第一电极会由光电转换层414所包覆,因此形成X方向切割道422时,高温的激光切割工艺并不会使的第二电极所产生的残留而与第一电极接触,进而导致短路(short)问题;或者非晶硅光电转换层于高温下在沟槽侧壁产生再结晶,形成低阻值的微晶硅,使得漏电流增加,进而影响工艺成品率(yield)与太阳电池的效率。 On the other hand, as shown in FIG. 9(c), since the first electrode will be covered by the photoelectric conversion layer 414, when forming the X-direction cutting line 422, the high-temperature laser cutting process will not make the second electrode The generated residue contacts the first electrode, which causes a short circuit (short) problem; or the amorphous silicon photoelectric conversion layer recrystallizes at the side wall of the trench at high temperature, forming a low-resistance microcrystalline silicon, which increases the leakage current , and then affect the process yield (yield) and the efficiency of solar cells. the

以下,以图4至图9详细说明本实施例的透光型薄膜太阳能电池模块400的制造方法。 Hereinafter, the manufacturing method of the light-transmissive thin-film solar cell module 400 of this embodiment will be described in detail with reference to FIGS. 4 to 9 . the

首先,请参照图4(a)与图4(b),提供不透明基板402。此不透明基板402的材料例如是金属薄板、塑胶基板、陶瓷基板或其他合适的不透明材料。或其他合适的不透明材料。接着,在不透明基板402上形成电极材料层404。 电极材料层404为透明导电氧化物(TCO)薄膜或是金属层。TCO的材料例如是氧化锌(ZnO)、二氧化锡(SnO2)、氧化铟锡(ITO)或氧化铟(In2O3)。金属层的材料例如是铝(Al)、银(Ag)、钼(Mo)、铜(Cu)或其他适合的金属或合金。电极材料层404的形成方法例如是可利用化学气相沉积法(CVD method)、溅射法(sputtering method)或其他合适的方法来制备。 First, referring to FIG. 4( a ) and FIG. 4( b ), an opaque substrate 402 is provided. The material of the opaque substrate 402 is, for example, a thin metal plate, a plastic substrate, a ceramic substrate or other suitable opaque materials. or other suitable opaque material. Next, an electrode material layer 404 is formed on the opaque substrate 402 . The electrode material layer 404 is a transparent conductive oxide (TCO) film or a metal layer. The material of the TCO is, for example, zinc oxide (ZnO), tin dioxide (SnO 2 ), indium tin oxide (ITO) or indium oxide (In 2 O 3 ). The material of the metal layer is, for example, aluminum (Al), silver (Ag), molybdenum (Mo), copper (Cu) or other suitable metals or alloys. The electrode material layer 404 can be formed by, for example, a chemical vapor deposition method (CVD method), a sputtering method or other suitable methods.

当然,为了提升电池的效率,亦可对电极材料进行粗纹化(textured)表面处理,以减少光的反射量。粗纹化表面处理会使造成凹凸不平的表面使光线产生散射(scattering),减少入射光的反射,与增加入射光在光电转换层中的行进距离,其通常会将电极材料的表面制成V字型沟槽、金字塔形(pyramid)结构(未绘示)或逆金字塔形。 Of course, in order to improve the efficiency of the battery, the electrode material can also be treated with a textured surface to reduce light reflection. Rough surface treatment will cause uneven surface to cause light scattering (scattering), reduce the reflection of incident light, and increase the travel distance of incident light in the photoelectric conversion layer, which usually makes the surface of the electrode material V Font groove, pyramid structure (not shown) or reverse pyramid. the

然后,请参照图5(a)与图5(b),移除部分电极材料层404,以形成多条Y方向切割道406与相交这些Y方向切割道406的多条X方向切割道408。其中,在仅形成Y方向切割道406时,可将电极材料层404分隔成多个带状电极材料层(未绘示)。在形成Y方向切割道406与X方向切割道408之后,可使电极材料层404分隔成梳型电极412与二维排列的多个块状电极410,以构成电池模块的第一电极470。承上述,Y方向切割道406与X方向切割道408的形成方法,例如是利用激光切割(laser scribing)工艺来移除部分电极材料层404而形成。 Then, referring to FIG. 5( a ) and FIG. 5( b ), part of the electrode material layer 404 is removed to form a plurality of Y-direction cutting lines 406 and a plurality of X-direction cutting lines 408 intersecting these Y-direction cutting lines 406 . Wherein, when only the cutting lines 406 in the Y direction are formed, the electrode material layer 404 can be divided into a plurality of strip-shaped electrode material layers (not shown). After forming the Y-direction cutting lines 406 and the X-direction cutting lines 408 , the electrode material layer 404 can be divided into comb-shaped electrodes 412 and a plurality of block electrodes 410 arranged two-dimensionally to form the first electrodes 470 of the battery module. Based on the above, the method for forming the Y-direction cutting line 406 and the X-direction cutting line 408 is, for example, using a laser scribing process to remove part of the electrode material layer 404 . the

之后,请参照图6(a)与图6(b),在不透明基板402上方形成一层光电转换层414。此光电转换层414会覆盖住不透明基板402、块状电极410与部分梳型电极412。光电转换层414可以是单层结构或堆叠层结构。光电转换层414的材料例如是非结晶硅及其合金、硫化镉(CdS)、铜铟镓二硒(CuInGaSe2,CIGS)、铜铟二硒(CuInSe2,CIS)、碲化镉(CdTe)、有机材料或上述材料堆叠的多层结构。光电转换层414的形成方法例如是可利用化学气相沉积法、溅射法或其他合适的方法来制备。另外,要说明的是,上述的非结晶硅合金是指,在非结晶硅中加入氢原子(H)、氟原子(F)、氯原子(Cl)、锗原子(Ge)、氧原子(O)、碳原子(C)或氮原子(N)等原子。若在非结晶硅中加入氢原子、氟原子、氯原子,可以修补硅薄膜中的缺陷,而得到较佳的薄膜品质;若在非结晶硅中加入锗原子,则可以使硅薄膜能隙变小,吸收较长波长的太阳光线;若在非结晶硅中加入氧原子、碳原子、氮原子,则可以使硅薄膜能隙变大,吸收较短波长的太阳光线。 After that, referring to FIG. 6( a ) and FIG. 6( b ), a photoelectric conversion layer 414 is formed on the opaque substrate 402 . The photoelectric conversion layer 414 covers the opaque substrate 402 , the bulk electrodes 410 and part of the comb electrodes 412 . The photoelectric conversion layer 414 may have a single layer structure or a stacked layer structure. The material of the photoelectric conversion layer 414 is, for example, amorphous silicon and its alloys, cadmium sulfide (CdS), copper indium gallium diselenide (CuInGaSe 2 , CIGS), copper indium diselenide (CuInSe 2 , CIS), cadmium telluride (CdTe), Multilayer structure of organic materials or stacks of the above materials. The photoelectric conversion layer 414 can be formed by, for example, chemical vapor deposition, sputtering or other suitable methods. In addition, it should be noted that the above-mentioned amorphous silicon alloy refers to adding hydrogen atoms (H), fluorine atoms (F), chlorine atoms (Cl), germanium atoms (Ge), oxygen atoms (O ), carbon atoms (C) or nitrogen atoms (N) and other atoms. If hydrogen atoms, fluorine atoms, and chlorine atoms are added to amorphous silicon, the defects in the silicon film can be repaired to obtain better film quality; if germanium atoms are added to amorphous silicon, the energy gap of the silicon film can be changed. Small, absorbing longer-wavelength solar rays; if oxygen atoms, carbon atoms, and nitrogen atoms are added to amorphous silicon, the energy gap of the silicon film can be enlarged to absorb shorter-wavelength solar rays.

接着,请参照图7(a)与图7(b),移除部分光电转换层414,以形成多条Y方向切割道416。这些Y方向切割道416相对平行Y方向切割道406且裸露出下方的块状电极410。上述,Y方向切割道416的形成方法,例如是利用激光切割工艺移除部分光电转换层414而形成。 Next, referring to FIG. 7( a ) and FIG. 7( b ), part of the photoelectric conversion layer 414 is removed to form a plurality of cutting lines 416 in the Y direction. These Y-direction cutting lines 416 are relatively parallel to the Y-direction cutting lines 406 and expose the underlying bulk electrodes 410 . As mentioned above, the method for forming the Y-direction cutting line 416 is, for example, to remove part of the photoelectric conversion layer 414 by using a laser cutting process. the

随后,请参照图8(a)与图8(b),在不透明基板402上方形成一层电极材料层418。此电极材料层418会覆盖住光电转换层414、电极410与不透明基板402。电极材料层418为透明导电氧化物(TCO)薄膜。TCO的材料例如是氧化锌(ZnO)、二氧化锡(SnO2)、氧化铟锡(ITO)或氧化铟(In2O3)。电极材料层418的形成方法例如是可利用化学气相沉积法、溅射法或其他合适的方法来制备。 Subsequently, referring to FIG. 8( a ) and FIG. 8( b ), an electrode material layer 418 is formed on the opaque substrate 402 . The electrode material layer 418 covers the photoelectric conversion layer 414 , the electrode 410 and the opaque substrate 402 . The electrode material layer 418 is a transparent conductive oxide (TCO) film. The material of the TCO is, for example, zinc oxide (ZnO), tin dioxide (SnO 2 ), indium tin oxide (ITO) or indium oxide (In 2 O 3 ). The electrode material layer 418 can be formed by, for example, chemical vapor deposition, sputtering or other suitable methods.

继之,请参照图9(a)、图9(b)、图9(b’)与图9(c),形成多条Y方向切割道420与相交于这些Y方向切割道420的多条X方向切割道422。在一实施例中,Y方向切割道420沿着Y方向断开电极材料层418,且X方向切割道422沿着X方向断开电极材料层418,使得电极材料层418分隔成梳型电极426与二维排列的多个块状电极424,以构成电池模块的第二电极480。在另一实施例中,Y方向切割道420断开电极材料层418,而X方向切割道422并未断开电极材料层418,如图9(a’)所示,而将电极材料层418分隔成多个块状电极424与块状电极426’,以构成电池模块的第二电极480。换言之,X方向切割道422并未断开电极材料层418,而是使得图9(a)中的二维排列的多个块状电极424中,Y方向上的多个并排的块状电极424还透过连接部425来电性连接,而梳型电极426的梳部也透过连接部425’连接,以分别构成图9(a’)所中的块状电极424’以及426’。连接部425的形状与数量并不以图式为限,其可以是各种的形状或数量,只要X方向切割道422并未断开电极材料层418都是本发明涵盖的范围。X方向切割道422是,移除X方向切割道408中的部分电极材料层418与部分光电转换层414,至曝露出不透明基板402表面而形成。另外,Y方向切割道420是,通过移除Y方向切割道416中的部分电极材料层418,直至曝露出电极410以及不透明基板402表面而形成的。 Next, please refer to FIG. 9(a), FIG. 9(b), FIG. 9(b') and FIG. 9(c), forming a plurality of Y-direction cutting lines 420 and a plurality of cutting lines 420 intersecting these Y-direction cutting lines 420 X-direction cutting line 422 . In one embodiment, the Y direction cutting line 420 cuts off the electrode material layer 418 along the Y direction, and the X direction cutting line 422 cuts off the electrode material layer 418 along the X direction, so that the electrode material layer 418 is separated into comb-shaped electrodes 426 A plurality of bulk electrodes 424 arranged two-dimensionally form the second electrode 480 of the battery module. In another embodiment, the Y-direction cutting line 420 disconnects the electrode material layer 418, while the X-direction cutting line 422 does not disconnect the electrode material layer 418, as shown in FIG. 9(a'), but the electrode material layer 418 Separated into a plurality of block electrodes 424 and block electrodes 426 ′ to form the second electrode 480 of the battery module. In other words, the cutting line 422 in the X direction does not break the electrode material layer 418, but makes the plurality of block electrodes 424 arranged two-dimensionally in FIG. They are also electrically connected through the connection part 425, and the comb parts of the comb-shaped electrode 426 are also connected through the connection part 425' to form block electrodes 424' and 426' in FIG. 9(a'). The shape and quantity of the connecting portion 425 are not limited by the drawing, and can be in various shapes or quantities, as long as the X-direction cutting line 422 does not disconnect the electrode material layer 418 , it is within the scope of the present invention. The X-direction cutting line 422 is formed by removing part of the electrode material layer 418 and part of the photoelectric conversion layer 414 in the X-direction cutting line 408 until the surface of the opaque substrate 402 is exposed. In addition, the Y-direction cutting line 420 is formed by removing part of the electrode material layer 418 in the Y-direction cutting line 416 until the electrode 410 and the surface of the opaque substrate 402 are exposed. the

在又一实施例中,如图9(b’)所示,Y方向切割道420还可以是,移除部分电极材料层418与光电转换层414,直至曝露出电极410表面,而形成于相对Y方向切割道416位置偏移处。同样地,Y方向切割道420与X方向 切割道422可以利用激光切割工艺,移除部分电极材料层418与部分光电转换层414而形成。 In yet another embodiment, as shown in FIG. 9(b'), the Y-direction cutting line 420 can also be formed by removing part of the electrode material layer 418 and the photoelectric conversion layer 414 until the surface of the electrode 410 is exposed, and formed on the opposite Where the position of the cutting line 416 in the Y direction is offset. Similarly, the Y-direction cutting line 420 and the X-direction cutting line 422 can be formed by removing part of the electrode material layer 418 and part of the photoelectric conversion layer 414 by using a laser cutting process. the

之后,在X方向切割道422以及Y方向切割道420所裸露的不透明基板402中形成多个孔洞450。这些孔洞450的图案并无特别的限制,在不透明基板402表面402a与402b上的图案可以呈现各种的形状,如圆形、方形、矩形、多角形、沟槽状等,或呈不规则状。此外,从不透明基板402的表面402a贯穿到表面402b的这些孔洞450的尺寸可以相同或不相同。例如可以是从不透明基板402的表面402a延伸到表面402b的这些孔洞450的尺寸逐渐变大或变小。形成孔洞450的方法例如是使用激光切割法,利用其高温将基板移除,亦可以使用蚀刻方式移除基板。 Afterwards, a plurality of holes 450 are formed in the opaque substrate 402 exposed by the X-direction cutting lines 422 and the Y-direction cutting lines 420 . The patterns of these holes 450 are not particularly limited, and the patterns on the surfaces 402a and 402b of the opaque substrate 402 can present various shapes, such as circles, squares, rectangles, polygons, grooves, etc., or irregular shapes. . Furthermore, the sizes of the holes 450 extending from the surface 402a to the surface 402b of the opaque substrate 402 may be the same or different. For example, the holes 450 may gradually increase or decrease in size extending from the surface 402a to the surface 402b of the opaque substrate 402 . The method of forming the hole 450 is, for example, using a laser cutting method to remove the substrate by utilizing its high temperature, or removing the substrate by etching. the

承上述,在进行上面的各个步骤之后,即可完成本实施例的透光型薄膜太阳能电池模块400。在使用时,光线(太阳光)460是从第二电极480照射进来,部分的光线经由各电池401的光电转换层414吸收,产生光电转换作用,以产生电压;而另一部分的光线460则穿过X方向切割道422以及Y方向切割道420,再通过不透明基板402的孔洞450,到达不透明基板402表面402b处。 Based on the above, after performing the above steps, the light-transmissive thin film solar cell module 400 of this embodiment can be completed. When in use, light (sunlight) 460 is irradiated from the second electrode 480, and part of the light is absorbed by the photoelectric conversion layer 414 of each cell 401 to generate a photoelectric conversion effect to generate voltage; while the other part of the light 460 passes through Pass through the X-direction cutting line 422 and the Y-direction cutting line 420 , and then pass through the hole 450 of the opaque substrate 402 to reach the surface 402 b of the opaque substrate 402 . the

此外,本实施例的透光型薄膜太阳能电池模块400还可利用其他方式来制备。承上述,在光电转换层414中形成Y方向切割道416(如图7(a)与图7(b)所示)时,可一并形成垂直Y方向切割道416的多条X方向切割道(未绘示),以使光电转换层414成为多个块状光电转换层(未绘示)。接下来,后续的步骤与上述实施例相同,于此不赘述。 In addition, the light-transmissive thin-film solar cell module 400 of this embodiment can also be prepared in other ways. Based on the above, when forming the Y-direction cutting lines 416 in the photoelectric conversion layer 414 (as shown in FIGS. (not shown), so that the photoelectric conversion layer 414 becomes a plurality of bulk photoelectric conversion layers (not shown). Next, subsequent steps are the same as those in the above-mentioned embodiment, and will not be repeated here. the

本发明除了上述实施例之外,尚具有其他的实施型态。 In addition to the above-mentioned embodiments, the present invention also has other implementation forms. the

图10至图15为依照本发明的另一实施例所绘示的透光型薄膜太阳能电池模块的制造方法的流程示意图。其中,图10至图15的子图(a)是绘示上视示意图,子图(b)是绘示沿剖面线I-I’的剖面示意图,子图(c)是绘示沿剖面线H-II’的剖面示意图。在图10至图15中,与图4至图9相同的构件省略可能重复的说明。 10 to 15 are schematic flowcharts of a manufacturing method of a light-transmissive thin film solar cell module according to another embodiment of the present invention. Among them, the sub-figure (a) of Fig. 10 to Fig. 15 is a schematic diagram showing a top view, the sub-figure (b) is a schematic sectional view along the section line II', and the sub-figure (c) is a schematic diagram along the section line Schematic cross-section of H-II'. In FIGS. 10 to 15 , possible overlapping descriptions of components that are the same as those in FIGS. 4 to 9 are omitted. the

首先,请参照图15(a)、图15(b)与图15(c),本实施例的透光型薄膜太阳能电池模块500具有在X方向彼此串联且在Y方向彼此并联的多颗电池501。而且,在这些电池501之间具有曝露出不透明基板502的多条X方向切割窗口524。当光线(太阳光)560由不透明基板502上方照射进去时,可通 过X方向切割窗口524,而使透光型薄膜太阳能电池模块500达到透光的目的。 First, please refer to FIG. 15(a), FIG. 15(b) and FIG. 15(c), the light-transmissive thin-film solar cell module 500 of this embodiment has a plurality of cells connected in series in the X direction and in parallel with each other in the Y direction. 501. Moreover, there are a plurality of X-direction cut windows 524 exposing the opaque substrate 502 between the cells 501 . When light (sunlight) 560 is irradiated from above the opaque substrate 502, it can pass through the cut window 524 in the X direction, so that the light-transmissive thin-film solar cell module 500 can achieve the purpose of light transmission. the

透光型薄膜太阳能电池模块500包括不透明基板502以及配置于其上方的第一电极570、第二电极580与光电转换层512。其中,不透明基板502具有多个孔洞550。第一电极570是直接配置在不透明基板502上,其是由平行排列的具有多个切割窗508的多块窗形电极510所组成。第一电极570为透明导电氧化物薄膜或是金属层。TCO的材料例如是氧化锌(ZnO)、二氧化锡(SnO2)、氧化铟锡(ITO)或氧化铟(In2O3)。金属层的材料例如是铝(Al)、银(Ag)、钼(Mo)、铜(Cu)或其他适合的金属或合金。第二电极580是配置在第一电极570上方,其是由平行排列的具有多个切割窗524的多块窗形电极526所组成。而且,窗型电极510、526是以平行位移方式配置。第二电极580为透明导电氧化物薄膜。TCO的材料例如是氧化锌(ZnO)、二氧化锡(SnO2)、氧化铟锡(ITO)或氧化铟(In2O3)。另外,光电转换层512是配置于第一电极570与第二电极580之间,而光电转换层512是由平行排列的具有多个切割窗516的多个窗形光电转换材料层所组成。光电转换层512可以是单层结构或堆叠层结构。光电转换层512的材料例如是非结晶硅及其合金、硫化镉(CdS)、铜铟镓二硒(CuInGaSe2,CIGS)、铜铟二硒(CuInSe2,CIS)、碲化镉(CdTe)、有机材料或上述材料堆叠的多层结构。切割窗516与切割窗508以及切割窗524均对应于不透明基板502的多个孔洞550,因此,可构成多个贯孔555。贯孔555的形状并无特别的限制,其可以是各种的形状,如圆形、方形、矩形、多角形,或不规则状等。 The light-transmissive thin-film solar cell module 500 includes an opaque substrate 502 and a first electrode 570 , a second electrode 580 and a photoelectric conversion layer 512 disposed thereon. Wherein, the opaque substrate 502 has a plurality of holes 550 . The first electrode 570 is directly disposed on the opaque substrate 502 and is composed of a plurality of window-shaped electrodes 510 arranged in parallel and having a plurality of cutting windows 508 . The first electrode 570 is a transparent conductive oxide film or a metal layer. The material of the TCO is, for example, zinc oxide (ZnO), tin dioxide (SnO 2 ), indium tin oxide (ITO) or indium oxide (In 2 O 3 ). The material of the metal layer is, for example, aluminum (Al), silver (Ag), molybdenum (Mo), copper (Cu) or other suitable metals or alloys. The second electrode 580 is disposed above the first electrode 570 and is composed of a plurality of window-shaped electrodes 526 with a plurality of cutting windows 524 arranged in parallel. Moreover, the window electrodes 510 and 526 are arranged in a parallel displacement manner. The second electrode 580 is a transparent conductive oxide film. The material of the TCO is, for example, zinc oxide (ZnO), tin dioxide (SnO 2 ), indium tin oxide (ITO) or indium oxide (In 2 O 3 ). In addition, the photoelectric conversion layer 512 is disposed between the first electrode 570 and the second electrode 580 , and the photoelectric conversion layer 512 is composed of a plurality of window-shaped photoelectric conversion material layers with a plurality of cutting windows 516 arranged in parallel. The photoelectric conversion layer 512 may have a single layer structure or a stacked layer structure. The material of the photoelectric conversion layer 512 is, for example, amorphous silicon and its alloys, cadmium sulfide (CdS), copper indium gallium diselenide (CuInGaSe 2 , CIGS), copper indium diselenide (CuInSe 2 , CIS), cadmium telluride (CdTe), Multilayer structure of organic materials or stacks of the above materials. The cutting window 516 , the cutting window 508 and the cutting window 524 all correspond to the plurality of holes 550 of the opaque substrate 502 , and therefore, a plurality of through holes 555 can be formed. The shape of the through hole 555 is not particularly limited, and it can be in various shapes, such as circular, square, rectangular, polygonal, or irregular.

这些孔洞550在不透明基板502的表面502a的尺寸,与其贯穿到表面502b的尺寸,可以相同如或不相同。例如,这些孔洞550的尺寸可以是从不透明基板502的表面502a延伸到表面502b的逐渐变大,或逐渐变小。此外,不透明基板502上的孔洞550的图案并无特别的限制,其在不透明基板502表面502a与502b上的图案可以呈现各种的形状,如圆形、方形、矩形、多角形等,或呈不规则状。 The size of the holes 550 on the surface 502 a of the opaque substrate 502 may be the same as or different from the size extending to the surface 502 b. For example, the size of the holes 550 may be gradually larger or smaller extending from the surface 502a to the surface 502b of the opaque substrate 502 . In addition, the pattern of the holes 550 on the opaque substrate 502 is not particularly limited, and the patterns on the surfaces 502a and 502b of the opaque substrate 502 can present various shapes, such as circles, squares, rectangles, polygons, etc., or in the form of Irregular shape. the

由于,本实施例的透光型薄膜太阳能电池模块500具有多个贯孔555,其可使电池模块增加透光率。因此,相较于已知透光型薄膜太阳能电池模块,本实施例的透光型薄膜太阳能电池模块可大为提高元件的透光率。另外,如图15(c)所示,由于第一电极570会由光电转换层512所包覆,因此可避免 在形成X方向切割窗口524时,高温的激光切割工艺会使第二电极580产生金属颗粒或熔融而与第一电极570接触造成短路与漏电流问题,进而影响工艺成品率与太阳能电池的效率。 Because the light-transmissive thin-film solar cell module 500 of this embodiment has a plurality of through holes 555, which can increase the light transmittance of the cell module. Therefore, compared with the known light-transmissive thin-film solar cell module, the light-transmissive thin-film solar cell module of this embodiment can greatly improve the light transmittance of the element. In addition, as shown in Figure 15(c), since the first electrode 570 will be covered by the photoelectric conversion layer 512, it can be avoided that the high-temperature laser cutting process will cause the second electrode 580 to be formed when the X-direction cutting window 524 is formed. The metal particles may melt and come into contact with the first electrode 570 to cause problems of short circuit and leakage current, thereby affecting the process yield and the efficiency of the solar cell. the

以下,以图10至图15详细说明本实施例的透光型薄膜太阳能电池模块500的制造方法。 Hereinafter, the manufacturing method of the light-transmissive thin-film solar cell module 500 of this embodiment will be described in detail with reference to FIGS. 10 to 15 . the

首先,请参照图10(a)与图10(b),提供不透明基板502。此不透明基板502的材料例如是金属薄板、塑胶基板、陶瓷基板或其他合适的不透明材料。接着,在不透明基板502上形成电极材料层504。电极材料层504为透明导电氧化物薄膜或是金属层。TCO的材料例如是氧化锌(ZnO)、二氧化锡(SnO2)、氧化铟锡(ITO)或氧化铟(In2O3)。金属层的材料例如是铝(Al)、银(Ag)、钼(Mo)、铜(Cu)或其他适合的金属或合金。 First, referring to FIG. 10( a ) and FIG. 10( b ), an opaque substrate 502 is provided. The material of the opaque substrate 502 is, for example, a thin metal plate, a plastic substrate, a ceramic substrate or other suitable opaque materials. Next, an electrode material layer 504 is formed on the opaque substrate 502 . The electrode material layer 504 is a transparent conductive oxide film or a metal layer. The material of the TCO is, for example, zinc oxide (ZnO), tin dioxide (SnO 2 ), indium tin oxide (ITO) or indium oxide (In 2 O 3 ). The material of the metal layer is, for example, aluminum (Al), silver (Ag), molybdenum (Mo), copper (Cu) or other suitable metals or alloys.

然后,请参照图11(a)、图11(b)与图11(c),在电极材料层504中,形成可将电极材料层504分隔成多个带状电极材料层的多条Y方向切割道506,以及呈二维排列的多条X方向切割窗口508。Y方向切割道506与X方向切割窗口508可将电极材料层504成为多块窗型电极510。 Then, please refer to FIG. 11(a), FIG. 11(b) and FIG. 11(c), in the electrode material layer 504, a plurality of Y-direction strips that can separate the electrode material layer 504 into a plurality of strip-shaped electrode material layers are formed. A cutting line 506 and a plurality of X-direction cutting windows 508 arranged two-dimensionally. The Y-direction cutting lines 506 and the X-direction cutting windows 508 can form the electrode material layer 504 into a plurality of window-shaped electrodes 510 . the

接着,请参照图12(a)、图12(b)与图12(c),在不透明基板502上方形成一层光电转换层512。此光电转换层512会覆盖住不透明基板502与窗型电极510。 Next, referring to FIG. 12( a ), FIG. 12( b ) and FIG. 12( c ), a photoelectric conversion layer 512 is formed on the opaque substrate 502 . The photoelectric conversion layer 512 covers the opaque substrate 502 and the window electrode 510 . the

之后,请参照图13(a)、图13(b)与图13(c),移除部分光电转换层512,以形成多条Y方向切割道514与多条X方向切割窗口516。其中,多条Y方向切割道514是形成于窗型电极510上方,且相对平行Y方向切割道506;X方向切割窗口516是形成于X方向切割窗口508中,且呈二维排列。 After that, referring to FIG. 13( a ), FIG. 13( b ) and FIG. 13( c ), part of the photoelectric conversion layer 512 is removed to form a plurality of Y-direction cutting lines 514 and a plurality of X-direction cutting windows 516 . Among them, a plurality of Y-direction cutting lines 514 are formed above the window electrode 510 and are relatively parallel to the Y-direction cutting lines 506; X-direction cutting windows 516 are formed in the X-direction cutting windows 508 and arranged two-dimensionally. the

在此步骤工艺中,亦可以移除部分光电转换层512,而仅形成多条Y方向切割道514,但未形成图13(a)、图13(b)与图13(c)的X方向切割窗口516。上述实施例的图形未绘示于此,因其为熟习此领域技术人员可知。 In this step process, part of the photoelectric conversion layer 512 can also be removed, and only a plurality of cutting lines 514 in the Y direction are formed, but the X direction in FIG. 13(a), FIG. 13(b) and FIG. 13(c) is not formed. The window 516 is cut. The figures of the above-mentioned embodiments are not shown here because they are known to those skilled in the art. the

继之,请参照图14(a)、图14(b)与图14(c),在不透明基板502上方形成一层电极材料层520。此电极材料层520会覆盖住光电转换层512、窗型电极510与不透明基板502。电极材料层520为透明导电氧化物(TCO)薄膜。TCO的材料例如是氧化锌(ZnO)、二氧化锡(SnO2)、氧化铟锡(ITO)或氧化铟(In2O3)。 Next, referring to FIG. 14( a ), FIG. 14( b ) and FIG. 14( c ), an electrode material layer 520 is formed on the opaque substrate 502 . The electrode material layer 520 covers the photoelectric conversion layer 512 , the window electrode 510 and the opaque substrate 502 . The electrode material layer 520 is a transparent conductive oxide (TCO) film. The material of the TCO is, for example, zinc oxide (ZnO), tin dioxide (SnO 2 ), indium tin oxide (ITO) or indium oxide (In 2 O 3 ).

随后,请参照图15(a)、图15(b)与图15(c),形成多条Y方向切割道522 与多条X方向切割窗口524,以使电极材料层520成为多个窗型电极526。其中,Y方向切割道522是通过移除部分电极材料层520与部分光电转换层512,直至曝露出窗型电极510表面而形成。X方向切割窗口524是通过移除X方向切割窗口516中的部分电极材料层520,裸露出下方的不透明基板502而形成。 Subsequently, please refer to Fig. 15 (a), Fig. 15 (b) and Fig. 15 (c), form a plurality of Y direction cutting lines 522 and a plurality of X direction cutting windows 524, so that the electrode material layer 520 becomes a plurality of window shapes Electrode 526. Wherein, the Y-direction cutting line 522 is formed by removing part of the electrode material layer 520 and part of the photoelectric conversion layer 512 until the surface of the window electrode 510 is exposed. The X-direction cutting window 524 is formed by removing part of the electrode material layer 520 in the X-direction cutting window 516 to expose the underlying opaque substrate 502 . the

承上述,若上一步骤为仅形成多条Y方向切割道514,则在此步骤工艺中X方向切割窗口524需以移除X方向切割窗口516中的部分电极材料层520与部分光电转换层512而形成。 Based on the above, if the last step is to only form a plurality of Y-direction cutting lines 514, then in this step process, the X-direction cutting window 524 needs to remove part of the electrode material layer 520 and part of the photoelectric conversion layer in the X-direction cutting window 516. 512 and formed. the

接着,移除X方向切割窗口516所裸露的不透明基板502,以在其中形成贯穿两个表面502a、502b的孔洞550。不透明基板502的多个孔洞550,与切割窗516与切割窗508以及切割窗524对应,而构成多个贯孔555。形成孔洞550的方法例如是使用激光切割法,利用其高温将基板移除,亦可以使用蚀刻方式移除基板。 Next, the opaque substrate 502 exposed by the X-direction cutting window 516 is removed to form a hole 550 penetrating the two surfaces 502a, 502b therein. The plurality of holes 550 of the opaque substrate 502 correspond to the cutting window 516 , the cutting window 508 and the cutting window 524 to form a plurality of through holes 555 . The method of forming the hole 550 is, for example, using a laser cutting method to remove the substrate by utilizing its high temperature, or removing the substrate by etching. the

在进行上面的各个步骤之后,即可完成本实施例的具有多个贯孔555的透光型薄膜太阳能电池模块500。 After performing the above steps, the light-transmissive thin-film solar cell module 500 with a plurality of through holes 555 in this embodiment can be completed. the

综上所述,本发明的透光型薄膜太阳能电池模块及其制造方法,在制作第一电极时已同时形成二方向的切割道或切割窗口,因此可使得所制备的透光型薄膜太阳能电池模块不会存在有因高温的激光切割工艺而导致短路与漏电流的问题,而影响工艺成品率与太阳能电池效率。另外,相较于已知透光型薄膜太阳能电池模块,本发明的透光型薄膜太阳能电池模块具有可曝露出不透明基板的开口,可大为提高电池模块的透光率。 In summary, the light-transmissive thin-film solar cell module and its manufacturing method of the present invention have simultaneously formed cutting lines or cutting windows in two directions when making the first electrode, so that the prepared light-transmitting thin-film solar cell can The module will not have the problems of short circuit and leakage current caused by the high temperature laser cutting process, which will affect the process yield and solar cell efficiency. In addition, compared with the known light-transmissive thin-film solar cell module, the light-transmissive thin-film solar cell module of the present invention has an opening that can expose the opaque substrate, which can greatly improve the light transmittance of the battery module. the

虽然本发明已以优选实施例披露如上,然其并非用以限定本发明,本领域技术人员在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视后附的权利要求所界定的为准。 Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope is to be determined as defined by the appended claims. the

Claims (37)

1.一种透光型薄膜太阳能电池模块的制造方法,包括:1. A method for manufacturing a light-transmissive thin-film solar cell module, comprising: 在不透明基板上形成第一电极材料层;forming a first electrode material layer on an opaque substrate; 移除部分该第一电极材料层,以形成将该第一电极材料层分隔成多个带状电极材料层的多条第一Y方向切割道,以及相交于该第一Y方向切割道的多条第一X方向切割道,使该第一电极材料层分隔成第一梳型电极与二维排列的多个第一块状电极;Removing part of the first electrode material layer to form a plurality of first Y-direction cutting lines separating the first electrode material layer into a plurality of strip-shaped electrode material layers, and a plurality of cutting lines intersecting the first Y-direction cutting lines A first X-direction cutting line, so that the first electrode material layer is separated into a first comb-shaped electrode and a plurality of first bulk electrodes arranged two-dimensionally; 形成光电转换层,覆盖该不透明基板、该第一电极与部分该第一梳型电极;forming a photoelectric conversion layer covering the opaque substrate, the first electrode and part of the first comb-shaped electrode; 移除部分该光电转换层,以于该第一电极上方形成相对平行该第一Y方向切割道的多条第二Y方向切割道;removing part of the photoelectric conversion layer to form a plurality of second Y-direction cutting lines relatively parallel to the first Y-direction cutting lines above the first electrode; 形成第二电极材料层,覆盖该光电转换层、该第一电极与该不透明基板;forming a second electrode material layer covering the photoelectric conversion layer, the first electrode and the opaque substrate; 移除部分该第二电极材料层与部分该光电转换层,以形成曝露出该第一块状电极表面以及该不透明基板表面的多条第三Y方向切割道,以及于该第一X方向切割道中形成多条第二X方向切割道,裸露出该不透明基板,使该第二电极材料层分隔成第二梳型电极与二维排列的多个第二块状电极;以及removing part of the second electrode material layer and part of the photoelectric conversion layer to form a plurality of third Y-direction cutting lines exposing the surface of the first bulk electrode and the surface of the opaque substrate, and cutting in the first X-direction A plurality of second X-direction cutting lines are formed in the line to expose the opaque substrate, so that the second electrode material layer is separated into a second comb-shaped electrode and a plurality of second bulk electrodes arranged two-dimensionally; and 移除部分该第二X方向切割道以及该第三Y方向切割道所裸露的该不透明基板,以在该不透明基板中形成多个孔洞,该光电转换层在该孔洞周围包覆该第一电极。removing part of the opaque substrate exposed by the second X-direction scribe line and the third Y-direction scribe line to form a plurality of holes in the opaque substrate, and the photoelectric conversion layer wraps the first electrode around the holes . 2.如权利要求1所述的透光型薄膜太阳能电池模块的制造方法,其中在移除部分该光电转换层以形成该第二Y方向切割道时,还包括于该第一X方向切割道中形成多条第三X方向切割道。2. The manufacturing method of the light-transmissive thin-film solar cell module according to claim 1, wherein when removing part of the photoelectric conversion layer to form the second Y-direction scribe, it is also included in the first X-direction scribe A plurality of third X-direction cutting lines are formed. 3.如权利要求2所述的透光型薄膜太阳能电池模块的制造方法,其中该第三X方向切割道是利用激光切割方式制备。3. The manufacturing method of the light-transmissive thin-film solar cell module as claimed in claim 2, wherein the third X-direction scribe line is prepared by laser cutting. 4.如权利要求1所述的透光型薄膜太阳能电池模块的制造方法,其中该第一、第二、第三Y方向切割道以及该第一、第二X方向切割道是利用激光切割方式制备。4. The manufacturing method of the light-transmitting thin film solar cell module as claimed in claim 1, wherein the first, second, third Y-direction scribes and the first and second X-direction scribes are made by laser cutting preparation. 5.如权利要求1所述的透光型薄膜太阳能电池模块的制造方法,其中该第一电极材料层为透明导电氧化物层或是金属层。5. The method for manufacturing a light-transmissive thin-film solar cell module as claimed in claim 1, wherein the first electrode material layer is a transparent conductive oxide layer or a metal layer. 6.如权利要求5所述的透光型薄膜太阳能电池模块的制造方法,其中该透明导电氧化物层的材料包括氧化锌、二氧化锡、氧化铟锡或氧化铟;金属层的材料包括铝、银、铜、钼或其合金。6. The manufacturing method of the light-transmissive thin-film solar cell module as claimed in claim 5, wherein the material of the transparent conductive oxide layer comprises zinc oxide, tin dioxide, indium tin oxide or indium oxide; the material of the metal layer comprises aluminum , silver, copper, molybdenum or their alloys. 7.如权利要求1所述的透光型薄膜太阳能电池模块的制造方法,其中该光电转换层为单层结构或堆叠层结构。7. The method for manufacturing a light-transmissive thin-film solar cell module as claimed in claim 1, wherein the photoelectric conversion layer has a single-layer structure or a stacked-layer structure. 8.如权利要求1所述的透光型薄膜太阳能电池模块的制造方法,其中该光电转换层的材料包括非结晶硅及其合金、硫化镉、铜铟镓二硒、铜铟二硒、碲化镉或有机材料。8. The manufacturing method of the light-transmissive thin-film solar cell module as claimed in claim 1, wherein the material of the photoelectric conversion layer comprises amorphous silicon and its alloys, cadmium sulfide, copper indium gallium diselenide, copper indium diselenide, tellurium cadmium chloride or organic materials. 9.如权利要求1所述的透光型薄膜太阳能电池模块的制造方法,其中该第二电极材料层为透明导电氧化物层。9. The method for manufacturing a light-transmissive thin-film solar cell module as claimed in claim 1, wherein the second electrode material layer is a transparent conductive oxide layer. 10.如权利要求9所述的透光型薄膜太阳能电池模块的制造方法,其中该透明导电氧化物层的材料包括氧化锌、二氧化锡、氧化铟锡或氧化铟。10. The manufacturing method of the light-transmissive thin-film solar cell module as claimed in claim 9, wherein the material of the transparent conductive oxide layer comprises zinc oxide, tin dioxide, indium tin oxide or indium oxide. 11.如权利要求9所述的透光型薄膜太阳能电池模块的制造方法,其中在该不透明基板中形成该孔洞的方法包括激光切割法或蚀刻法。11. The manufacturing method of the light-transmissive thin-film solar cell module as claimed in claim 9, wherein the method of forming the hole in the opaque substrate comprises a laser cutting method or an etching method. 12.如权利要求1所述的透光型薄膜太阳能电池模块的制造方法,其中该第二梳型电极的多个梳部之间以及Y方向并排的该第二块状电极之间分别以多个连接部连接。12. The manufacturing method of the light-transmitting thin film solar cell module according to claim 1, wherein between the multiple comb portions of the second comb-shaped electrode and between the second block-shaped electrodes arranged side by side in the Y direction, multiple A connecting part is connected. 13.一种透光型薄膜太阳能电池模块,其具有彼此串联的多颗电池配置于不透明基板上,在该电池之间具有多个贯穿该不透明基板的孔洞,该模块包括:13. A light-transmissive thin-film solar cell module, which has a plurality of cells connected in series on an opaque substrate, with a plurality of holes penetrating through the opaque substrate between the cells, the module comprising: 该不透明基板,具有该孔洞;the opaque substrate having the hole; 第一电极,配置在该不透明基板上,且该第一电极是由第一梳型电极与二维排列的多个第一块状电极组成;The first electrode is arranged on the opaque substrate, and the first electrode is composed of a first comb-shaped electrode and a plurality of first block electrodes arranged two-dimensionally; 第二电极,配置在该第一电极上方,且该第二电极是由第二梳型电极与二维排列的多数块状第二电极组成,该第二梳型电极与该块状第二电极彼此之间裸露出部分该第一块状电极、部分该不透明基板、或该孔洞,The second electrode is arranged above the first electrode, and the second electrode is composed of a second comb-shaped electrode and a plurality of block-shaped second electrodes arranged two-dimensionally, the second comb-shaped electrode and the block-shaped second electrode part of the first bulk electrode, part of the opaque substrate, or the hole are exposed to each other, 其中该第二梳型电极与该第一梳型电极是以左右方式配置,而该第一、第二块状电极是以平行位移方式配置;以及Wherein the second comb-shaped electrode and the first comb-shaped electrode are arranged in a left-right manner, and the first and second block electrodes are arranged in a parallel displacement manner; and 光电转换层,配置于该第一电极与该第二电极之间,该光电转换层是由二维排列的多个光电转换材料层所组成,该光电转换层在该孔洞周围包覆该第一电极。The photoelectric conversion layer is arranged between the first electrode and the second electrode. The photoelectric conversion layer is composed of a plurality of photoelectric conversion material layers arranged two-dimensionally. The photoelectric conversion layer wraps the first electrode around the hole. electrode. 14.如权利要求13所述的透光型薄膜太阳能电池模块,其中该第一电极为透明导电氧化物层或金属层。14. The light-transmitting thin film solar cell module as claimed in claim 13, wherein the first electrode is a transparent conductive oxide layer or a metal layer. 15.如权利要求14所述的透光型薄膜太阳能电池模块,其中该透明导电氧化物层的材料包括氧化锌、二氧化锡、氧化铟锡或氧化铟;该金属层的材料包括铝、银、铜、钼或其合金。15. The light-transmitting thin film solar cell module as claimed in claim 14, wherein the material of the transparent conductive oxide layer comprises zinc oxide, tin dioxide, indium tin oxide or indium oxide; the material of the metal layer comprises aluminum, silver , copper, molybdenum or their alloys. 16.如权利要求13所述的透光型薄膜太阳能电池模块,其中该光电转换层为单层结构或堆叠层结构。16. The light-transmissive thin-film solar cell module as claimed in claim 13, wherein the photoelectric conversion layer is a single-layer structure or a stacked-layer structure. 17.如权利要求13所述的透光型薄膜太阳能电池模块,其中该光电转换层的材料包括非结晶硅及其合金、硫化镉、铜铟镓二硒、铜铟二硒、碲化镉或有机材料。17. The light-transmitting thin film solar cell module as claimed in claim 13, wherein the material of the photoelectric conversion layer comprises amorphous silicon and its alloys, cadmium sulfide, copper indium gallium diselenide, copper indium diselenide, cadmium telluride or organic material. 18.如权利要求13所述的透光型薄膜太阳能电池模块,其中该第二电极为透明导电氧化物层。18. The light-transmitting thin film solar cell module as claimed in claim 13, wherein the second electrode is a transparent conductive oxide layer. 19.如权利要求18所述的透光型薄膜太阳能电池模块,其中透明导电氧化物层的材料包括氧化锌、二氧化锡、氧化铟锡或氧化铟。19. The light-transmitting thin film solar cell module as claimed in claim 18, wherein the material of the transparent conductive oxide layer comprises zinc oxide, tin dioxide, indium tin oxide or indium oxide. 20.如权利要求18所述的透光型薄膜太阳能电池模块,其中该第二梳型电极的多个梳部之间以及Y方向并排的该第二块状电极之间分别以多个连接部连接。20. The light-transmissive thin-film solar cell module according to claim 18, wherein a plurality of connection parts are respectively arranged between the plurality of comb parts of the second comb-shaped electrode and between the second block-shaped electrodes arranged side by side in the Y direction connect. 21.一种透光型薄膜太阳能电池模块的制造方法,包括:21. A method for manufacturing a light-transmissive thin-film solar cell module, comprising: 在不透明基板上形成第一电极材料层;forming a first electrode material layer on an opaque substrate; 移除部分该第一电极材料层,以形成将该第一电极材料层分隔成多个带状电极材料层的多条第一Y方向切割道,以及与该第一Y方向切割道呈二维排列的多条第一X方向切割窗口,使该第一电极材料层成为多个第一窗型电极;removing part of the first electrode material layer to form a plurality of first Y-direction cutting lines separating the first electrode material layer into a plurality of strip-shaped electrode material layers, and forming two-dimensional lines with the first Y-direction cutting lines A plurality of first X-direction cut windows arranged so that the first electrode material layer becomes a plurality of first window-type electrodes; 形成光电转换层,以覆盖该第一窗型电极与该不透明基板;forming a photoelectric conversion layer to cover the first window electrode and the opaque substrate; 移除部分该光电转换层,以于该第一窗型电极上方形成相对平行该第一Y方向切割道的多个第二Y方向切割道;removing part of the photoelectric conversion layer to form a plurality of second Y-direction slits relatively parallel to the first Y-direction slits above the first window electrode; 于该光电转换层上形成第二电极材料层;以及forming a second electrode material layer on the photoelectric conversion layer; and 移除部分该第二电极材料层与部分该光电转换层,以形成曝露出该第一窗型电极表面的多条第三Y方向切割道,以及于每个该第一X方向切割窗口中形成一个裸露出该不透明基板的第二X方向切割窗口,使该第二电极材料层成为多个第二窗型电极;以及removing part of the second electrode material layer and part of the photoelectric conversion layer to form a plurality of third Y-direction cutting lines exposing the surface of the first window-type electrode, and forming a plurality of third Y-direction cutting lines in each of the first X-direction cutting windows A second X-direction cut window exposing the opaque substrate, so that the second electrode material layer becomes a plurality of second window-type electrodes; and 移除该第二X方向切割窗口所裸露的该不透明基板,以在该不透明基板中形成多个孔洞,该光电转换层在该孔洞周围包覆该第一电极。The opaque substrate exposed by the second X-direction cutting window is removed to form a plurality of holes in the opaque substrate, and the photoelectric conversion layer wraps the first electrode around the holes. 22.如权利要求21所述的透光型薄膜太阳能电池模块的制造方法,其中在移除部分该光电转换层以形成该第二Y方向切割道时,还包括:于该第一X方向切割窗口中形成多条第三X方向切割窗口。22. The manufacturing method of the light-transmitting thin-film solar cell module as claimed in claim 21, wherein when removing part of the photoelectric conversion layer to form the second Y-direction scribe line, further comprising: cutting in the first X-direction Multiple third X-direction cutting windows are formed in the window. 23.如权利要求21所述的透光型薄膜太阳能电池模块的制造方法,其中该第一、第二、第三Y方向切割道以及该第一、第二、第三X方向切割窗口是利用激光切割方式制备。23. The manufacturing method of the light-transmitting thin film solar cell module as claimed in claim 21, wherein the first, second, and third Y-direction cutting lines and the first, second, and third X-direction cutting windows are made by using Prepared by laser cutting. 24.如权利要求21所述的透光型薄膜太阳能电池模块的制造方法,其中该第一电极材料层为透明导电氧化物层或金属层。24. The method of manufacturing a light-transmissive thin-film solar cell module as claimed in claim 21, wherein the first electrode material layer is a transparent conductive oxide layer or a metal layer. 25.如权利要求24所述的透光型薄膜太阳能电池模块的制造方法,其中该透明导电氧化物层的材料包括氧化锌、二氧化锡、氧化铟锡或氧化铟;该金属层的材料包括铝、银、铜、钼或其合金。25. The manufacturing method of the light-transmissive thin-film solar cell module as claimed in claim 24, wherein the material of the transparent conductive oxide layer comprises zinc oxide, tin dioxide, indium tin oxide or indium oxide; the material of the metal layer comprises Aluminum, silver, copper, molybdenum or their alloys. 26.如权利要求21所述的透光型薄膜太阳能电池模块的制造方法,其中该光电转换层为单层结构或堆叠层结构。26. The method for manufacturing a light-transmissive thin-film solar cell module as claimed in claim 21, wherein the photoelectric conversion layer has a single-layer structure or a stacked-layer structure. 27.如权利要求21所述的透光型薄膜太阳能电池模块的制造方法,其中该光电转换层的材料包括非结晶硅及其合金、硫化镉、铜铟镓二硒、铜铟二硒、碲化镉或有机材料。27. The manufacturing method of the light-transmissive thin-film solar cell module as claimed in claim 21, wherein the material of the photoelectric conversion layer comprises amorphous silicon and its alloys, cadmium sulfide, copper indium gallium diselenide, copper indium diselenide, tellurium cadmium chloride or organic materials. 28.如权利要求21所述的透光型薄膜太阳能电池模块的制造方法,其中该第二电极材料层为透明导电氧化物层。28. The method for manufacturing a light-transmissive thin-film solar cell module as claimed in claim 21, wherein the second electrode material layer is a transparent conductive oxide layer. 29.如权利要求28所述的透光型薄膜太阳能电池模块的制造方法,其中该透明导电氧化物层的材料包括氧化锌、二氧化锡、氧化铟锡或氧化铟。29. The manufacturing method of the light-transmissive thin-film solar cell module as claimed in claim 28, wherein the material of the transparent conductive oxide layer comprises zinc oxide, tin dioxide, indium tin oxide or indium oxide. 30.如权利要求21所述的透光型薄膜太阳能电池模块的制造方法,其中在该不透明基板中形成该孔洞的方法包括激光切割法或蚀刻法。30. The manufacturing method of the light-transmissive thin-film solar cell module as claimed in claim 21, wherein the method of forming the hole in the opaque substrate comprises a laser cutting method or an etching method. 31.一种透光型薄膜太阳能电池模块,其具有在X方向彼此串联且在Y方向彼此并联的多颗电池,且在该电池之间具有多个贯穿不透明基板的贯孔,该模块包括:31. A light-transmissive thin-film solar cell module, which has a plurality of cells connected in series in the X direction and in parallel with each other in the Y direction, and has a plurality of through holes penetrating through the opaque substrate between the cells, the module comprising: 该不透明基板,具有多个孔洞;The opaque substrate has a plurality of holes; 第一电极,配置在该不透明基板上,且该第一电极是由多个块状第一窗形电极组成,该块状第一窗形电极在对应于该孔洞处具有多个第一切割窗口;The first electrode is arranged on the opaque substrate, and the first electrode is composed of a plurality of block-shaped first window-shaped electrodes, and the block-shaped first window-shaped electrodes have a plurality of first cutting windows corresponding to the holes ; 第二电极,配置在该第一电极上方,且该第二电极是由多个块状第二窗形电极组成,该块状第二窗形电极具有多个第二切割窗口,其与该孔洞与该第一切割窗处相对应且共同构成该贯孔,其中该第二窗型电极与该第一窗型电极是以平行位移方式配置;以及The second electrode is arranged above the first electrode, and the second electrode is composed of a plurality of block-shaped second window-shaped electrodes, and the block-shaped second window-shaped electrode has a plurality of second cutting windows, which are connected with the hole Corresponding to the first cutting window and jointly forming the through hole, wherein the second window-shaped electrode and the first window-shaped electrode are arranged in a parallel displacement manner; and 光电转换层,配置于该第一电极与该第二电极之间,该光电转换层是由多个窗形光电转换材料层所组成,该光电转换层在该孔洞周围包覆该第一电极。The photoelectric conversion layer is disposed between the first electrode and the second electrode. The photoelectric conversion layer is composed of a plurality of window-shaped photoelectric conversion material layers. The photoelectric conversion layer covers the first electrode around the hole. 32.如权利要求31所述的透光型薄膜太阳能电池模块,其中该第一电极为透明导电氧化物层或金属层。32. The light-transmitting thin film solar cell module as claimed in claim 31, wherein the first electrode is a transparent conductive oxide layer or a metal layer. 33.如权利要求32所述的透光型薄膜太阳能电池模块,其中该透明导电氧化物层的材料包括氧化锌、二氧化锡、氧化铟锡或氧化铟;该金属层的材料包括铝、银、铜、钼或其合金。33. The light-transmitting thin film solar cell module as claimed in claim 32, wherein the material of the transparent conductive oxide layer comprises zinc oxide, tin dioxide, indium tin oxide or indium oxide; the material of the metal layer comprises aluminum, silver , copper, molybdenum or their alloys. 34.如权利要求31所述的透光型薄膜太阳能电池模块,其中该光电转换层为单层结构或堆叠层结构。34. The light-transmissive thin-film solar cell module as claimed in claim 31, wherein the photoelectric conversion layer is a single-layer structure or a stacked-layer structure. 35.如权利要求31所述的透光型薄膜太阳能电池模块,其中该光电转换层的材料包括非结晶硅及其合金、硫化镉、铜铟镓二硒、铜铟二硒、碲化镉或有机材料。35. The light-transmitting thin film solar cell module as claimed in claim 31, wherein the material of the photoelectric conversion layer comprises amorphous silicon and its alloys, cadmium sulfide, copper indium gallium diselenide, copper indium diselenide, cadmium telluride or organic material. 36.如权利要求31所述的透光型薄膜太阳能电池模块,其中该第二电极为透明导电氧化物层。36. The light-transmissive thin film solar cell module as claimed in claim 31, wherein the second electrode is a transparent conductive oxide layer. 37.如权利要求36所述的透光型薄膜太阳能电池模块,其中该透明导电氧化物层的材料包括氧化锌、二氧化锡、氧化铟锡或氧化铟。37. The light-transmitting thin film solar cell module as claimed in claim 36, wherein the material of the transparent conductive oxide layer comprises zinc oxide, tin dioxide, indium tin oxide or indium oxide.
CN 200810004995 2008-01-31 2008-01-31 Light-transmitting thin-film solar cell module and manufacturing method thereof Expired - Fee Related CN101499438B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810004995 CN101499438B (en) 2008-01-31 2008-01-31 Light-transmitting thin-film solar cell module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810004995 CN101499438B (en) 2008-01-31 2008-01-31 Light-transmitting thin-film solar cell module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN101499438A CN101499438A (en) 2009-08-05
CN101499438B true CN101499438B (en) 2011-02-09

Family

ID=40946430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810004995 Expired - Fee Related CN101499438B (en) 2008-01-31 2008-01-31 Light-transmitting thin-film solar cell module and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN101499438B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050578B (en) * 2013-01-04 2015-09-16 普尼太阳能(杭州)有限公司 A kind of cutting equipment of flexible thin-film solar cell and cutting method
CN111538190B (en) * 2020-05-19 2022-04-26 Tcl华星光电技术有限公司 Color film substrate and liquid crystal display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514579A (en) * 1984-01-30 1985-04-30 Energy Conversion Devices, Inc. Large area photovoltaic cell and method for producing same
US4795500A (en) * 1985-07-02 1989-01-03 Sanyo Electric Co., Ltd. Photovoltaic device
US5176758A (en) * 1991-05-20 1993-01-05 United Solar Systems Corporation Translucent photovoltaic sheet material and panels
US5254179A (en) * 1991-02-21 1993-10-19 Solems S.A. Photovoltaic device and solar module having a partial transparency
CN1723573A (en) * 2003-01-10 2006-01-18 株式会社钟化 Light-transmitting thin-film solar cell module and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514579A (en) * 1984-01-30 1985-04-30 Energy Conversion Devices, Inc. Large area photovoltaic cell and method for producing same
US4795500A (en) * 1985-07-02 1989-01-03 Sanyo Electric Co., Ltd. Photovoltaic device
US5254179A (en) * 1991-02-21 1993-10-19 Solems S.A. Photovoltaic device and solar module having a partial transparency
US5176758A (en) * 1991-05-20 1993-01-05 United Solar Systems Corporation Translucent photovoltaic sheet material and panels
CN1723573A (en) * 2003-01-10 2006-01-18 株式会社钟化 Light-transmitting thin-film solar cell module and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平11-312816A 1999.11.09

Also Published As

Publication number Publication date
CN101499438A (en) 2009-08-05

Similar Documents

Publication Publication Date Title
CN100524846C (en) Light-transmitting thin-film solar cell module and method for manufacturing same
US7982127B2 (en) Thin film solar cell module of see-through type
TWI330891B (en) Thin film solar cell module of see-through type
KR101031246B1 (en) Thin film type solar cell, manufacturing method thereof, and thin film type solar cell module and solar power generation system using same
CN102386273A (en) Integrated thin film photovoltaic device and method of manufacturing the same
KR20120063324A (en) Bifacial solar cell
US20130152999A1 (en) Photovoltaic component for use under concentrated solar flux
JP2016029675A (en) Light-transmissible insulation board for thin film solar battery and integration type thin film silicon solar battery
KR101428146B1 (en) Solar cell module and method of fabricating the same
JP5232362B2 (en) A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method.
JP3240825U (en) thin film solar cell
CN102201480B (en) Cadmium telluride semiconductor thin-film heterojunction solar cell based on N-shaped silicon slice
TWI379423B (en) Thin film solar cell module of see-through type and method of fabricating the same
JP2013509707A (en) Solar cell and manufacturing method thereof
CN101499438B (en) Light-transmitting thin-film solar cell module and manufacturing method thereof
KR101189415B1 (en) Solar cell apparatus and method of fabricating the same
KR20110001795A (en) Solar cell and manufacturing method thereof
CN102576760A (en) Photovoltaic device and manufacturing method thereof
KR101081251B1 (en) Solar cell and method of fabricating the same
CN101236998A (en) Perspective amorphous silicon photovoltaic glass window
KR20130061346A (en) Solar cell and method of manufacturing the same
JP2003298090A (en) Solar cell element and its fabricating method
TWI395337B (en) Solar cell structure
CN102479855B (en) Solar cell module with current control and manufacturing method thereof
KR101765922B1 (en) Solar cell apparatus and method of fabricating the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110209