CN101481263B - 一种制备负载型钯或钯合金膜的方法 - Google Patents
一种制备负载型钯或钯合金膜的方法 Download PDFInfo
- Publication number
- CN101481263B CN101481263B CN200910025153.0A CN200910025153A CN101481263B CN 101481263 B CN101481263 B CN 101481263B CN 200910025153 A CN200910025153 A CN 200910025153A CN 101481263 B CN101481263 B CN 101481263B
- Authority
- CN
- China
- Prior art keywords
- palladium
- porous ceramic
- pencil
- lead
- graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/5122—Pd or Pt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0069—Inorganic membrane manufacture by deposition from the liquid phase, e.g. electrochemical deposition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/105—Support pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/022—Metals
- B01D71/0223—Group 8, 9 or 10 metals
- B01D71/02231—Palladium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/88—Metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1644—Composition of the substrate porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
- C23C18/165—Multilayered product
- C23C18/1651—Two or more layers only obtained by electroless plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1689—After-treatment
- C23C18/1692—Heat-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
- C23C18/1872—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
- C23C18/1886—Multistep pretreatment
- C23C18/1889—Multistep pretreatment with use of metal first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
- C23C18/40—Coating with copper using reducing agents
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
- C23C18/44—Coating with noble metals using reducing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/16—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/108—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/04—Characteristic thickness
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00793—Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
- C04B2111/00801—Membranes; Diaphragms
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Analytical Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemically Coating (AREA)
Abstract
本发明涉及一种制备负载型钯或钯合金膜的方法,其特征在于用铅笔在多孔陶瓷表面涂划以形成均匀、平滑的修饰层,再通过化学镀法在修饰后的多孔陶瓷表面制备钯或钯合金膜。用铅笔修饰多孔陶瓷表面的好处是减少表面粗糙度和消除表面缺陷,从而大大改善膜的均匀性和透氢性。铅笔修饰法操作简便、成本低,对大孔径的普通多孔陶瓷修饰效果尤其好。该修饰法不存在三废问题,是环境友好工艺。
Description
技术领域
本发明涉及多孔陶瓷基体的一种表面修饰法,并将其应用于负载型透氢钯或钯合金膜的制备。
背景技术
金属钯膜(包括钯合金膜)具有优异的的透氢性和选择性,除氢气外,其它任何气体都不能透过钯膜,它已被用作氢气分离器和纯化器。钯膜还有着良好的高温稳定性,在氢分离领域有着广阔的应用前景。将钯或钯合金层负载于多孔基体材料可形成负载型钯膜,又叫复合钯膜,这样可以大大降低膜厚度,不仅节约了贵金属钯而且提高了透氢率,因为钯膜的透氢率与其厚度成反比。钯膜的基体材料主要是多孔陶瓷和多孔金属,但以前者为主,这要归功于其优异的稳定性和广泛的市场来源。负载型钯膜的制备方法很多,但化学镀法被公认为最好的方法,化学镀之前,一般需要在基体表面沉积一层金属微粒作为催化剂[黄彦,李雪,范益群,徐南平.透氢钯复合膜的研究进展:原理、制备及表征.化学进展,2006,18(2-3):230;俞健,胡小娟,黄彦.多孔不锈钢表面的陶瓷修饰及所负载的透氢钯膜.化学进展.2008,20(7-8):1208.]。
钯膜应用过程中面临的一个瓶颈问题是成本,除贵金属钯本身的成本之外,多孔陶瓷基体的成本也很高。市面上多孔陶瓷的种类繁多,主要用途是固液分离。多孔陶瓷表面的孔径和粗糙度对钯膜的制备和性能有巨大的影响:表面越光滑、孔径越小,则越有利于制备出无缺陷的钯膜,而且能把膜厚控制在一个较低的水平。但是,这样的多孔陶瓷往往价格昂贵,以这样的基体来开发钯膜则失去使用价值。选用孔径大、表面较粗糙的普通多孔陶瓷则需要对其进行表面修饰。另一方面,多孔陶瓷基体上往往有一些缺陷(如裂纹、孔洞等),这些缺陷在固液分离时由于滤饼的形成可能不会造成太大的问题,但用于气体分离则不同。多孔基体的表面缺陷最终引起钯膜的缺陷,导致氢气的分离选择性下降。
多孔陶瓷表面修饰的目的是使表面产生一层无缺陷、均匀、粗糙度低的表面层,其中涂层法最为常用,涂层材料为Al2O3、ZrO2、SiO2、MgO、TiO2等,涂层的实施主要是溶胶-凝胶法。具体做法是将陶瓷前驱体制成溶胶并涂覆于基体表面,干燥后使其形成凝胶,最后进行高温处理使凝胶分解为多孔陶瓷薄层[X.L.Zhang,G.X.Xiong,W.S.Yang,A modified electroless plating technique for thindense palladium composite membranes with enhanced stability,J.Membr.Sci.,314(2008)226][H.B.Zhao,K.Pflanz,J.H.Gu,Preparation of palladium compositemembranes by modified electroless plating procedure,J.Membr.Sci.,142(1998)147]。溶胶-凝胶工艺条件极其复杂、成本较高,容易出现裂纹、脱落,而且孔径较大的多孔陶瓷通过这种方法很难奏效。徐恒泳等[徐恒泳,侯守福,李文钊,江魁,袁立祥.一种复合金属钯膜或合金钯膜及其制备方法.CN1327942C,2007]将上述溶胶-凝胶法略作了改动,即在多孔陶瓷表面沉积胶体后暂不进行高温处理,而是先通过化学镀法在胶体层上制备钯膜,最后再进行高温热处理,将胶体分解。但是化学镀过程中,活化液呈酸性,镀液则呈强碱性且含有高浓度的鳌合剂,胶体的稳定性较弱,难免会被侵蚀,而且热处理过程中胶体的分解也可能使钯膜丧失附着力。
发明内容
本专利发明目的是针对负载型钯膜(包括钯合金膜)对多孔基体的要求,开发一种用石墨铅笔修饰多孔陶瓷表面以制备负载型钯或钯合金膜的方法,本发明中用石墨铅笔修饰多孔陶瓷表面是一种简便有效的多孔陶瓷表面修饰技术,以取代缺点较多的溶胶-凝胶法。
本发明的具体技术方案为:一种制备负载型钯或钯合金膜的方法,其具体步骤如下:
A.将石墨铅笔笔芯煅烧后,在多孔陶瓷表面涂划以减少多孔陶瓷表面的粗糙度并填补多孔陶瓷的表面缺陷;或者是用石墨铅笔芯直接在多孔陶瓷表面涂划,再将多孔陶瓷基体进行煅烧;得到修饰后的多孔陶瓷基体;
B.对上述修饰后的多孔陶瓷基体进行活化,再采用化学镀法制备钯或钯合金膜。
石墨铅笔的笔芯是极佳的修饰材料。普通铅笔的笔芯材料由石墨和粘土组成。粘土是天然的硅铝酸盐,粒度细、分散性好,粘土与石墨一样也有良好的可塑性。铅笔芯中粘土的掺入量越大,则笔芯越硬。人们用“H”表示铅笔的硬度,用“B”表示铅笔的软度,从软到硬有12B、11B、10B、9B、8B、7B、6B、5B、4B、3B、2B、B、F、HB、H、2H、3H、4H、5H、6H、7H、8H、9H、10H、11H、12H共26个等级。其中6B~4H型铅笔芯的修饰效果最佳。我们发现市售铅笔芯不仅能够满足多孔陶瓷表面修饰的性能要求,而且修饰成本低廉,非常便于操作。铅笔的笔芯形状不限,铅笔涂敷量一般在2-50g/m2,取决于多孔陶瓷的孔径和表面粗糙度。适用的多孔陶瓷平均孔径在0.5~10μm,优选为2~5μm。
如前所述,铅笔的笔芯是石墨和粘土的混合物,二者化学性质极其稳定,既不会妨碍钯膜的制备,也完全能够满足钯膜的工作条件。钯膜的主要用途是用于氢分离,其工作温度一般不超过500℃。虽然用纯的石墨在多孔陶瓷表面磨擦时也可以形成修饰层,但是粘土的作用十分重要,除增加硬度之外,还有利于修饰层的透气性。
为防止铅笔笔芯杂质可能带来的污染,可在修饰完成后将多孔陶瓷煅烧,或事先将笔芯煅烧;煅烧的温度为300~800℃,煅烧时间为0.5~10h。石墨的一个重要性质是导电性,因此石墨修饰可以使多孔陶瓷表面由绝缘变为导电。尽管可以直接通过电镀来制备金属膜,本专利采用化学镀法,因为化学镀被公认为是制备负载型钯膜的最好方法。化学镀的原理就是通过还原剂来还原金属离子以形成金属的沉积和生长。为了在基体表面均匀、快速地引发化学镀,基体表面必须具有催化活性,一般而言,任何能导电的物质均可催化化学镀,而石墨就是其中一种,这也已在我们的试验中得到了验证。但是,石墨表面对化学镀的引发速度较慢、产生的膜缺陷也较多,这是由于石墨催化活性不高造成的。因此,本专利仍建议对石墨修饰层进行活化。
本专利对基体的活化与化学镀方法没有特殊要求。实践中,基体活化时使用最多的是金属钯催化剂,即在化学镀之前,在基体表面沉积一层纳米级的金属钯微粒。钯微粒的沉积方法有许多,其中最常用的是浸钯法,而浸钯法也有许多种,其中最常用的是胶体钯法,如SnCl2/PdCl2法。优选本研究组也发明了一种Pd(OH)2活化法;例如黄彦,范菁菁,舒世立,胡小娟.非金属基体化学镀的一种活化工艺.中国专利申请号200710022996.6,(2007);黄彦,范菁菁,俞健,胡小娟.一种用于吸水性基体表面化学镀的喷雾活化法.中国专利申请号200710134022.7,(2007)。钯金属的沉积方法为化学镀法,化学镀金属钯时,典型的镀液组成为PdCl2 2~6g/L、Na2EDTA 40~80g/L、浓氨水100~400ml/L,还原剂为联氨,又称为肼。钯合金膜的制备方法一般是先化学镀钯然后再通过化学镀、电镀或其他方法沉积其它金属,最后经热处理形成合金。钯合金膜中最常用的是钯银或钯铜膜,其中银和铜的沉积方法也主要是化学镀法。一般铜镀液的组成为CuSO4·5H2O 5~15g/L、NaOH 5~20g/L、KNaC4H4O6·4H2O 40~50g/L,还原剂为HCHO;银镀液的组成为AgNO3 2~10g/L、Na2EDTA 30~50g/L、浓氨水300~600ml/L,还原剂为联氨。
有益效果:
本专利提供了一种更简便易行的表面修饰法,尤其是对孔径较大的普通多孔陶瓷基体尤其有效。它属于环境友好工艺,彻底杜绝了溶胶-凝胶工艺中的三废问题,且成本大大降低。所制备的钯膜均匀性、光亮度、附着力均较好。
附图说明
图1.多孔陶瓷基体外观图,其中(A)未经修饰的多孔陶瓷基体、(B)修饰后的多孔陶瓷基体、(C)实施例1所制备的负载型钯膜。
图2.多孔陶瓷表面SEM形貌图。
图3.铅笔修饰后的多孔陶瓷表面SEM形貌图。
图4.所制备的钯膜表面SEM形貌图。
具体实施方式
实施例1
(1).所用Al2O3多孔陶瓷管如图1(A)所示,表面SEM形貌见图2,其内径为8mm,外径12mm,长85mm。采用泡压法测得的平均孔径和最大孔径分别为3μm和9μm。
(2).从市售的普通2B铅笔中取出铅笔芯,在600℃焙烧4小时。用铅笔芯在多孔陶瓷表面涂划,形成一层连续、均匀、平滑的石墨涂层,铅笔芯涂敷量为5g/m2,如图1(B)所示,其表面SEM形貌见图3。
(3).将修饰后的多孔陶瓷用水冲洗,然后用热的市售洗洁精溶液清洗,再用自来水和蒸馏水漂洗。
(4).采用SnCl2/PdCl2法对基体进行活化,其中敏化液含SnCl2 5g/L、浓盐酸1ml/L,活化液含PdCl2 0.2g/L、浓盐酸1ml/L。敏化-活化处理4次。
(5).化学镀制备钯膜。镀液的组成为:PdCl2 5g/L,浓氨水250ml/L,Na2EDTA 70g/L。还原剂为0.2mol/L的N2H4溶液。镀膜完成后,先用自来水冲洗,再用蒸馏水反复漂洗,最后用无水乙醇浸泡0.5h,在120℃干燥过夜。
(6).根据增重法算得钯膜厚度约为5.0μm。所制得的钯膜如图1(C)所示,表面均匀、光亮,气密性好,其微观SEM形貌如图4所示。采用H2/N2单气体测试法发现,该钯膜在400℃和压力为1bar时的透氢渗透率为22.5m3/m2h、H2/N2选择性大于200。而同样条件下未进行石墨修饰所制得的钯膜,H2/N2选择性则小于5。
实施例2
(1)同实施例1的步骤(1),但多孔陶瓷的平均孔径为1μm。
(2)用市售的普通2H铅笔在多孔陶瓷表面反复涂划以形成石墨涂层,铅笔芯涂敷量为10g/m2,然后将多孔陶瓷在500℃焙烧5小时。
(3)同实施例1的步骤(4)、(5)。
(4)同实施例1的步骤(6),但钯膜厚度为5.5μm,在室温1bar条件下测得氮气泄漏量为400ml/min。
实施例3
(1)同实施例1的步骤(1)、(2)、(3)、(4)、(5),但选用的陶瓷基体平均孔径为0.5m。所制备的钯膜厚度为4.5μm,在室温1bar条件下测得氮气泄漏量为1ml/min。
实施例4
(1)同实施例1的步骤(1)、(2)、(3)、(4)、(5),制得的钯膜厚度为2.2μm。
(2)在钯膜上镀铜。镀液的组成为:CuSO4·5H2O 10g/L、NaOH 10g/L、KNaC4H4O6·4H2O 45g/L,还原剂为0.2mol/L的甲醛溶液。
(3)增重法测得镀铜的厚度为2.0μm。
实施例5
(1)同实施例1的步骤(1)、(2)、(3)、(4)、(5),制得的钯膜厚度为3.0μm。
(2)在钯膜上镀银。镀液的组成为:5g/L的AgNO3,35g/L的Na2EDTA,500ml/L的浓氨水。还原剂为0.2mol/L的联氨溶液。
(3)镀膜完成后,清洗方法同实施例1的步骤(5)。增重法测得镀银的厚度为3.5μm。
以上实施例仅是用来说明本发明,在没有脱离本发明精神的情况下所做的任何等效的变化,都属于本发明权利要求的范围。
Claims (6)
1.一种制备负载型钯或钯合金膜的方法,其具体步骤如下:
A.将石墨铅笔笔芯煅烧后,在多孔陶瓷表面涂划以减少多孔陶瓷表面的粗糙度并填补多孔陶瓷的表面缺陷;或者是用石墨铅笔笔芯直接在多孔陶瓷表面涂划,再将多孔陶瓷基体进行煅烧;得到修饰后的多孔陶瓷基体;其中所述的煅烧的温度为300~800℃,煅烧时间为0.5~10h;所述多孔陶瓷的平均孔径为0.5~10μm;所述铅笔芯涂敷量为2~50g/m2;
B.对上述修饰后的多孔陶瓷基体进行活化,再采用化学镀法制备钯膜,钯合金膜是在镀钯后再沉积其它相应金属,最后经合金化处理而成。
2.如权利要求1所述的方法,其特征在于所述多孔陶瓷的平均孔径为2~5μm。
3.如权利要求1所述的方法,其特征在于所述石墨铅笔为市售铅笔,笔芯形状不限,从软到硬为12B~12H。
4.如权利要求1所述的方法,其特征在于所述石墨铅笔为市售铅笔,笔芯形状不限,从软到硬为6B~4H。
5.如权利要求1所述的方法,其特征在于钯金属的沉积方法为化学镀法,镀液组成为PdCl22~6g/L、Na2EDTA 40~80g/L、浓氨水100~400mL/L,还原剂为联氨溶液。
6.如权利要求1所述的方法,其特征在于所述钯合金为钯银或钯铜合金。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910025153.0A CN101481263B (zh) | 2009-02-26 | 2009-02-26 | 一种制备负载型钯或钯合金膜的方法 |
PCT/CN2009/075184 WO2010096988A1 (zh) | 2009-02-26 | 2009-11-27 | 一种制备负载型钯或钯合金膜的方法 |
US13/119,720 US8445055B2 (en) | 2009-02-26 | 2009-11-27 | Method for the fabrication of composite palladium and palladium-alloy membranes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910025153.0A CN101481263B (zh) | 2009-02-26 | 2009-02-26 | 一种制备负载型钯或钯合金膜的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101481263A CN101481263A (zh) | 2009-07-15 |
CN101481263B true CN101481263B (zh) | 2012-02-15 |
Family
ID=40878578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910025153.0A Active CN101481263B (zh) | 2009-02-26 | 2009-02-26 | 一种制备负载型钯或钯合金膜的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8445055B2 (zh) |
CN (1) | CN101481263B (zh) |
WO (1) | WO2010096988A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101481263B (zh) * | 2009-02-26 | 2012-02-15 | 南京工业大学 | 一种制备负载型钯或钯合金膜的方法 |
DE102010011269B4 (de) * | 2009-11-10 | 2014-02-13 | Ami Doduco Gmbh | Verfahren zum Abscheiden einer für das Drahtbonden geeigneten Palladiumschicht auf Leiterbahnen einer Schaltungsträgerplatte und Verwendung eines Palladiumbades in dem Verfahren |
CN102120150B (zh) * | 2010-12-08 | 2013-07-03 | 南京工业大学 | 一种齿轮型透氢钯或钯合金膜及氢气分离器 |
CN102154635A (zh) * | 2011-02-24 | 2011-08-17 | 南京工业大学 | 一种多孔不锈钢负载型钯或钯合金膜的制备工艺 |
CN102247764A (zh) * | 2011-07-26 | 2011-11-23 | 南京工业大学 | 一种碳/石墨/多孔基体复合膜及其制备方法和应用 |
CN102527259A (zh) * | 2012-02-10 | 2012-07-04 | 南京工业大学 | 一种复合碳分子筛膜及其制备方法和应用 |
CN107376661B (zh) * | 2017-08-31 | 2020-08-18 | 廊坊师范学院 | 一种钯基复合膜的制备方法 |
CN109954500B (zh) * | 2017-12-25 | 2023-05-05 | 沈阳三聚凯特催化剂有限公司 | 一种铜基骨架复合膜型加氢催化剂和其制备方法以及应用 |
CN112569803B (zh) * | 2019-09-30 | 2022-08-05 | 成都易态科技有限公司 | 复合多孔薄膜的制备方法 |
CN111893526B (zh) * | 2020-08-06 | 2022-05-13 | 中国科学技术大学 | 一种纳米银合金修饰基底及其制备方法和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5277987A (en) * | 1991-02-01 | 1994-01-11 | Air Products And Chemicals, Inc. | High hardness fine grained beta tungsten carbide |
JP3233484B2 (ja) * | 1993-03-19 | 2001-11-26 | 田中貴金属工業株式会社 | 廃液酸化分解触媒およびその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63211795A (ja) * | 1987-02-27 | 1988-09-02 | 株式会社東芝 | 導体路の形成方法 |
DE10039596C2 (de) * | 2000-08-12 | 2003-03-27 | Omg Ag & Co Kg | Geträgerte Metallmembran, Verfahren zu ihrer Herstellung und Verwendung |
JP2003071258A (ja) * | 2001-09-05 | 2003-03-11 | Toshiba Ceramics Co Ltd | 多孔質基板 |
JP2003135943A (ja) * | 2001-11-06 | 2003-05-13 | Japan Pionics Co Ltd | 水素分離膜及び水素分離膜の製造方法 |
WO2003084628A2 (en) * | 2002-04-03 | 2003-10-16 | Colorado School Of Mines | Process for preparing palladium alloy composite membranes for use in hydrogen separation, palladium alloy composite membranes and products incorporating or made from the membranes |
CN1327942C (zh) * | 2004-01-09 | 2007-07-25 | 中国科学院大连化学物理研究所 | 一种复合金属钯膜或合金钯膜及其制备方法 |
CN100563801C (zh) * | 2007-08-23 | 2009-12-02 | 南京工业大学 | 一种多通道型透氢钯复合膜的制备方法 |
CN101274223B (zh) * | 2007-12-18 | 2011-11-16 | 大连理工大学 | 一种利用沸石层调控大孔载体制备钯-沸石复合膜的方法 |
CN101481263B (zh) * | 2009-02-26 | 2012-02-15 | 南京工业大学 | 一种制备负载型钯或钯合金膜的方法 |
-
2009
- 2009-02-26 CN CN200910025153.0A patent/CN101481263B/zh active Active
- 2009-11-27 WO PCT/CN2009/075184 patent/WO2010096988A1/zh active Application Filing
- 2009-11-27 US US13/119,720 patent/US8445055B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5277987A (en) * | 1991-02-01 | 1994-01-11 | Air Products And Chemicals, Inc. | High hardness fine grained beta tungsten carbide |
JP3233484B2 (ja) * | 1993-03-19 | 2001-11-26 | 田中貴金属工業株式会社 | 廃液酸化分解触媒およびその製造方法 |
Non-Patent Citations (2)
Title |
---|
JP特开平10-1375A 1998.01.06 |
JP特许第3233484号B2 2001.11.26 |
Also Published As
Publication number | Publication date |
---|---|
WO2010096988A1 (zh) | 2010-09-02 |
US8445055B2 (en) | 2013-05-21 |
US20110177232A1 (en) | 2011-07-21 |
CN101481263A (zh) | 2009-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101481263B (zh) | 一种制备负载型钯或钯合金膜的方法 | |
CN1327942C (zh) | 一种复合金属钯膜或合金钯膜及其制备方法 | |
CN101439267B (zh) | 一种透氢钯复合膜的制备方法 | |
Li et al. | Preparation of Pd/ceramic composite membrane 1. Improvement of the conventional preparation technique | |
CN101234296A (zh) | 一种多孔不锈钢-陶瓷复合膜的制备工艺 | |
CN105774171A (zh) | 一种多孔载体表面钯或钯合金复合膜及其制备方法 | |
Wei et al. | Fabrication of H2-permeable palladium membranes based on pencil-coated porous stainless steel substrate | |
CN113186510B (zh) | 一种金属强化多孔金刚石膜及其制备方法 | |
CN100529177C (zh) | 一种管式多孔材料负载金属膜的化学镀方法 | |
CN100563801C (zh) | 一种多通道型透氢钯复合膜的制备方法 | |
CN101054663A (zh) | 非金属基体化学镀的一种活化工艺 | |
CN107376661B (zh) | 一种钯基复合膜的制备方法 | |
CN104069741B (zh) | 透氢钯复合膜制备中缺陷的修补方法 | |
Changrong et al. | Preparation of asymmetric Ni/ceramic composite membrane by electroless plating | |
CN103252170B (zh) | 一种基体材料及其制备工艺 | |
Kitiwan et al. | Effects of porous alumina support and plating time on electroless plating of palladium membrane | |
CN102154635A (zh) | 一种多孔不锈钢负载型钯或钯合金膜的制备工艺 | |
CN101717925B (zh) | 一种化学镀制备金属箔的方法 | |
Zeng et al. | Defect sealing in Pd membranes via point plating | |
CN105233701A (zh) | 一种大孔载体表面制备钯膜的方法 | |
CN102011108A (zh) | 一种制备高比表面积超薄钯膜的化学镀方法 | |
CN102441330A (zh) | 一种钯基双功能膜及其制备方法 | |
CN101781760B (zh) | 钯或钯合金复合膜的化学镀修补法 | |
CN217939770U (zh) | 一种中间扩散层为非晶镍钨合金的复合滤氢膜 | |
CN111893464A (zh) | 一种在铝合金基体表面镀厚Ni-P膜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180416 Address after: 322099 the 5 floor of standard building A, No. 288, Yang Cun road, Yiwu, Zhejiang. Patentee after: RISON HI-TECH MATERIALS CO.,LTD. Address before: 210009 Zhongshan North Road, Jiangsu, No. 200, Patentee before: Nanjing Tech University |