CN101383659B - Device and method for automatically debugging parameters of communication system - Google Patents
Device and method for automatically debugging parameters of communication system Download PDFInfo
- Publication number
- CN101383659B CN101383659B CN2008102237891A CN200810223789A CN101383659B CN 101383659 B CN101383659 B CN 101383659B CN 2008102237891 A CN2008102237891 A CN 2008102237891A CN 200810223789 A CN200810223789 A CN 200810223789A CN 101383659 B CN101383659 B CN 101383659B
- Authority
- CN
- China
- Prior art keywords
- adjustment
- error signal
- transmitter
- unit
- receiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000004891 communication Methods 0.000 title claims abstract description 31
- 238000004458 analytical method Methods 0.000 claims abstract description 28
- 230000005540 biological transmission Effects 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 7
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- 238000012937 correction Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 19
- 230000003287 optical effect Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Landscapes
- Monitoring And Testing Of Transmission In General (AREA)
Abstract
Description
技术领域 technical field
本发明涉及数字通信技术领域,尤其涉及一种光通信系统发射、接收机的自动调试装置和方法。The invention relates to the technical field of digital communication, in particular to an automatic debugging device and method for an optical communication system transmitter and receiver.
背景技术 Background technique
在数字通信系统中,发射机和接收机的参数是影响系统性能的重要因素,这些参数包括发射机眼图交叉点、驱动幅度、EA(electro-absorption,电吸收)调制激光器的Von电平、接收机判决电平,APD(Avalanche Photodiode,雪崩光电二极管)接收机偏压等。其中发射机的参数和接收机参数是相互影响的,当发射机参数发生变化时,接收机的参数也需要相应的进行调整,才能保证系统的最佳传输性能。同时,对于不同的应用环境,由于传输系统中光放大器产生的噪声、光纤色散以及光纤非线性效应等因素的影响,发射机和接收机参数的设定也需要进行相应调整,加上发射机和接收机参数间的相互影响和制约,在进行发射机或接收机的调试时,要将发射机和接收机的参数准确调整到最佳值是非常困难和复杂的。而选择一种高效准确的调试定标又非常重要。In a digital communication system, the parameters of the transmitter and receiver are important factors that affect system performance. These parameters include the cross point of the transmitter's eye diagram, the driving amplitude, the Von level of the EA (electro-absorption, electrical absorption) modulated laser, Receiver decision level, APD (Avalanche Photodiode, avalanche photodiode) receiver bias, etc. The parameters of the transmitter and the parameters of the receiver influence each other. When the parameters of the transmitter change, the parameters of the receiver also need to be adjusted accordingly to ensure the best transmission performance of the system. At the same time, for different application environments, due to the influence of factors such as noise generated by the optical amplifier in the transmission system, fiber dispersion, and fiber nonlinear effects, the settings of the transmitter and receiver parameters also need to be adjusted accordingly. The mutual influence and restriction among receiver parameters, when debugging the transmitter or receiver, it is very difficult and complicated to accurately adjust the parameters of the transmitter and receiver to the optimal value. And it is very important to choose an efficient and accurate debugging calibration.
通常的调试过程是将发射机和接收机的参数设定为一个固定的经验值,由于器件的离散性以及应用环境的差别等因素的影响,这样的调试方法无法保证设定的参数为最优。为此,本发明提出了一种发射机和接收机参数自动调试定标的装置和方法。The usual debugging process is to set the parameters of the transmitter and receiver to a fixed empirical value. Due to the discreteness of the device and the difference in the application environment and other factors, such a debugging method cannot guarantee that the set parameters are optimal. . Therefore, the present invention proposes a device and method for automatically adjusting and calibrating transmitter and receiver parameters.
发明内容 Contents of the invention
本发明要解决的问题是提供一种对通信系统的参数进行自动调试的装置和方法,能够提高数字通信系统的发射机和接收机参数的调试效率和调试精度,实现自动化调试和准确定标,解决现有技术难以将发射机和接收机的参数准确调整到最佳值的技术问题。The problem to be solved by the present invention is to provide a device and method for automatically debugging the parameters of the communication system, which can improve the debugging efficiency and debugging accuracy of the transmitter and receiver parameters of the digital communication system, and realize automatic debugging and accurate calibration. Solve the technical problem that it is difficult to accurately adjust the parameters of the transmitter and receiver to the optimal value in the prior art.
为了实现上述目的,一方面,提供了一种对通信系统的参数进行自动调试的装置,所述通信系统的接收机和发射机之间建立有传输环境,所述装置包括:In order to achieve the above object, on the one hand, a device for automatically adjusting parameters of a communication system is provided, a transmission environment is established between a receiver and a transmitter of the communication system, and the device includes:
调试对象选择单元,用于:选择所述通信系统的接收机和/或发射机作为待调试对象,并选择所述待调试对象的当前调试参数;The debugging object selection unit is used to: select the receiver and/or transmitter of the communication system as the object to be debugged, and select the current debugging parameters of the object to be debugged;
误差信号获取单元,用于:获取能够表征所述通信系统的传输性能的信息作为误差信号,并将所述误差信号传输至误差信号分析单元;An error signal acquisition unit, configured to: acquire information capable of characterizing the transmission performance of the communication system as an error signal, and transmit the error signal to an error signal analysis unit;
误差信号分析单元,用于:分析所述误差信号,根据分析结果判断是否需要对所述当前调试参数进行调整,如果需要调整则将记载有调整方向的调整信息传输至调整单元;An error signal analysis unit, configured to: analyze the error signal, judge whether the current debugging parameters need to be adjusted according to the analysis result, and transmit the adjustment information recording the adjustment direction to the adjustment unit if adjustment is required;
调整单元,用于:根据所述调整信息调整所述当前调试参数。An adjustment unit, configured to: adjust the current debugging parameter according to the adjustment information.
优选地,上述的装置中,所述调整单元进一步包括:Preferably, in the above device, the adjustment unit further includes:
步长调整单元,用于:确定所述当前调试参数的调整步长,所述调整步长为存储的调整所述当前调试参数的预定步长,或者所述调整步长为根据所述误差信号分析单元的所述分析结果计算出的步长;A step adjustment unit, configured to: determine the adjustment step of the current debugging parameter, the adjustment step is a stored predetermined step for adjusting the current debugging parameter, or the adjustment step is based on the error signal a step size calculated from said analysis result of the analysis unit;
参数调整单元,用于:根据所述调整方向和所述调整步长对所述当前调试参数进行调整。A parameter adjustment unit, configured to: adjust the current debugging parameter according to the adjustment direction and the adjustment step.
优选地,上述的装置中,还包括:传输环境单元,用于:根据所述接收机和所述发射机的应用环境,建立所述传输环境。Preferably, the above device further includes: a transmission environment unit, configured to: establish the transmission environment according to the application environments of the receiver and the transmitter.
优选地,上述的装置中,所述调试对象选择单元还用于,循环选择所述发射机和所述接收机的各种参数作为所述当前调试参数,并实现对所述循环的循环顺序、循环方式和循环次数的控制。Preferably, in the above-mentioned device, the debugging object selection unit is further configured to cyclically select various parameters of the transmitter and the receiver as the current debugging parameters, and realize the cyclic order of the cyclic, Control of cycle mode and cycle times.
优选地,上述的装置中,所述各种参数包括:发射机的驱动幅度、发射机的眼图交叉点和接收机的判决电平。Preferably, in the above device, the various parameters include: the driving amplitude of the transmitter, the cross point of the eye diagram of the transmitter, and the decision level of the receiver.
本发明的一个方面,提供一种对通信系统的参数进行自动调试的方法,所述通信系统的接收机和发射机之间建立有传输环境,所述方法包括:One aspect of the present invention provides a method for automatically debugging parameters of a communication system, where a transmission environment is established between a receiver and a transmitter of the communication system, and the method includes:
步骤一,参数调整单元设置发射机参数和接收机参数的初始值;Step 1, the parameter adjustment unit sets the initial values of the transmitter parameters and the receiver parameters;
步骤二,误差信号分析单元判断是否符合调试完成的条件,若符合,结束调试流程,若不符合,继续进行步骤三;Step 2, the error signal analysis unit judges whether the conditions for completion of debugging are met, if yes, end the debugging process, if not, continue to step 3;
步骤三,调试对象选择单元选择一个当前调试参数;Step 3, the debugging object selection unit selects a current debugging parameter;
步骤四,误差信号获取单元获取能够表征所述通信系统的传输性能的信息作为误差信号;Step 4, the error signal acquisition unit acquires information capable of characterizing the transmission performance of the communication system as an error signal;
步骤五,所述误差信号分析单元对所述误差信号进行分析,根据误差信号分析结果判断是否需要调整所述当前调试参数,是则执行步骤六,否则返回步骤二;Step 5, the error signal analysis unit analyzes the error signal, and judges whether the current debugging parameters need to be adjusted according to the error signal analysis result, if yes, execute step 6, otherwise return to step 2;
步骤六,调整单元根据所述误差信号分析结果对所述当前调试参数进行调整。Step 6, the adjustment unit adjusts the current debugging parameters according to the analysis result of the error signal.
优选地,上述的方法中,所述步骤六进一步包括:Preferably, in the above method, said step six further includes:
步骤a,所述误差信号分析单元对所述误差信号进行分析,得出所述当前调试参数需要调整的调整方向;In step a, the error signal analysis unit analyzes the error signal to obtain an adjustment direction in which the current debugging parameters need to be adjusted;
步骤b,所述调整单元中的步长调整单元确定所述当前调试参数的调整步长,所述调整步长为存储的调整所述当前调试参数的预定步长,或者所述调整步长为根据所述误差信号分析结果计算出的步长;Step b, the step adjustment unit in the adjustment unit determines the adjustment step of the current debugging parameter, the adjustment step is a stored predetermined step for adjusting the current debugging parameter, or the adjustment step is The step size calculated according to the analysis result of the error signal;
步骤c,所述调整单元中的参数调整单元根据所述调整方向和所述调整步长对所述当前调试参数进行调整;Step c, the parameter adjustment unit in the adjustment unit adjusts the current debugging parameters according to the adjustment direction and the adjustment step;
步骤d,调整所述当前调试参数后返回步骤四。Step d, return to step 4 after adjusting the current debugging parameters.
优选地,上述的方法中,所述初始值是一组经验值。Preferably, in the above method, the initial value is a set of empirical values.
优选地,上述的方法中,所述步骤三具体包括:所述调试对象选择单元循环选择所述发射机和所述接收机的各种参数作为所述当前调试参数,并实现对所述循环的循环顺序、循环方式和循环次数的控制。Preferably, in the above method, the step three specifically includes: the debugging object selection unit cyclically selects various parameters of the transmitter and the receiver as the current debugging parameters, and implements the cycle Control of cycle sequence, cycle mode and cycle times.
优选地,上述的方法中,所述各种参数包括:发射机的驱动幅度、发射机的眼图交叉点和接收机的判决电平。Preferably, in the above method, the various parameters include: the driving amplitude of the transmitter, the cross point of the eye diagram of the transmitter and the decision level of the receiver.
本发明实施例至少存在以下技术效果:Embodiments of the present invention at least have the following technical effects:
采用本发明所述方法和装置,与现有技术相比,由于采取了对数字通信系统发射机和接收机参数自动调试定标的技术,保证了发射机和接收机参数设定的精度,提高了调试效率,保证了调试性能,改善了系统信噪比及接收灵敏度等性能指标。Using the method and device of the present invention, compared with the prior art, due to the adoption of the technology of automatically debugging and calibrating the parameters of the digital communication system transmitter and receiver, the accuracy of the transmitter and receiver parameter settings is guaranteed, and the Improve debugging efficiency, ensure debugging performance, and improve performance indicators such as system signal-to-noise ratio and receiving sensitivity.
附图说明 Description of drawings
图1为本发明提供的装置的结构图;Fig. 1 is the structural diagram of the device provided by the present invention;
图2为本发明提供的方法的流程图;Fig. 2 is the flowchart of the method provided by the present invention;
图3为本发明另一实施例提供的装置的结构图。Fig. 3 is a structural diagram of a device provided by another embodiment of the present invention.
具体实施方式 Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对具体实施例进行详细描述。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, specific embodiments will be described in detail below with reference to the accompanying drawings.
本发明实施例提出了一种能够自动进行发射机参数和接收机参数的调试定标的装置和方法,其能够提高数字通信系统的发射机和接收机参数的调试效率和调试精度,实现自动化调试和准确定标。The embodiment of the present invention proposes a device and method capable of automatically debugging and calibrating transmitter parameters and receiver parameters, which can improve the debugging efficiency and debugging accuracy of transmitter and receiver parameters in a digital communication system, and realize automatic debugging and accurate calibration.
图1为本发明提供的装置的结构图,如图1所示,本发明装置100的调试对象200包括:发射机和接收机,可以对发射机和接收机参数同时进行调试定标,也可采用以调试定标好的发射机或接收机做基准,而只对另一个进行调试定标。Fig. 1 is a structural diagram of the device provided by the present invention. As shown in Fig. 1, the debugging object 200 of the device 100 of the present invention includes: a transmitter and a receiver, and the parameters of the transmitter and the receiver can be debugged and calibrated simultaneously, or Use a debug-calibrated transmitter or receiver as a reference, and only the other is debug-calibrated.
发射机和接收机之间建立有传输环境300,传输环境300可由传输环境单元根据待调试对象的应用环境建立,以便传输环境与应用环境相近,提高调试准确性。A transmission environment 300 is established between the transmitter and the receiver, and the transmission environment 300 can be established by the transmission environment unit according to the application environment of the object to be debugged, so that the transmission environment is similar to the application environment and the debugging accuracy is improved.
如图1所示,本发明的对通信系统的参数进行自动调试的装置包括:As shown in Figure 1, the device for automatically debugging the parameters of the communication system of the present invention includes:
误差信号获取单元101:获取能够表征系统传输性能的信息作为误差信号,并将获取的误差信号传输至误差分析单元102;Error signal acquisition unit 101: acquire information capable of characterizing the transmission performance of the system as an error signal, and transmit the acquired error signal to the error analysis unit 102;
误差信号分析单元102:分析误差获取单元获取的信息,判断是否需要对当前调整参数进行调整,如果需要,分析判断需要调整的方向,将相关信息传输至步长调整单元104;Error signal analysis unit 102: analyze the information obtained by the error acquisition unit, determine whether the current adjustment parameter needs to be adjusted, if necessary, analyze and determine the direction to be adjusted, and transmit the relevant information to the step adjustment unit 104;
调试对象选择单元103:由于发射机和接收机参数的相互影响,因此需要对各种参数进行循环调整,调试对象选择单元可以实现对循环顺序、方式、次数等的控制;Debugging object selection unit 103: Due to the mutual influence of transmitter and receiver parameters, various parameters need to be cyclically adjusted, and the debugging object selection unit can realize the control of the cycle sequence, mode, number of times, etc.;
步长调整单元104:存储发射机和接收机参数的预定调整步长或根据误差信号分析单元的分析结果计算发射机和接收机参数的调整步长,并根据误差信号分析单元确定的调整方向的信息一并传输至调试参数设定单元;Step size adjustment unit 104: store the predetermined adjustment step size of the transmitter and receiver parameters or calculate the adjustment step size of the transmitter and receiver parameters according to the analysis results of the error signal analysis unit, and determine the adjustment direction according to the error signal analysis unit The information is transmitted to the debugging parameter setting unit together;
参数调整单元105:根据步长调整单元传输来的调整方向和调整步长对调试对象选择单元选定的参数进行调整。The parameter adjustment unit 105: adjusts the parameter selected by the debugging object selection unit according to the adjustment direction and the adjustment step transmitted by the step adjustment unit.
其中,通信系统可以是数字通信系统、光通信系统等等。Wherein, the communication system may be a digital communication system, an optical communication system, and the like.
本发明实施例还提供了一种数字通信系统中发射机和接收机参数自动调试定标方法,图2为该方法的流程图,包括:The embodiment of the present invention also provides a method for automatically debugging and calibrating transmitter and receiver parameters in a digital communication system. FIG. 2 is a flowchart of the method, including:
第一步51,设置发射机和接收机参数的初始值,初值设定可以是一组经验值。The
第二步52,判断是否符合调试完成的条件,若符合,结束调试流程,若不符合,继续进行第三步53;In the
第三步53,选择一个当前调试参数;In the
第四步54,获取能够表征系统传输性能的信息作为误差信号;The
第五步55,对误差信号进行分析;The
第六步56,判断是否需要调整待调试参数,如果不需要调整,则返回第二步52;The
第七步57,如果需要,根据误差信号分析结果对当前待调试参数进行调整。In the
其中第七步又包括:The seventh step includes:
步骤571、对误差信号进行分析,得出当前待调试参数需要进行调整的方向;
步骤572、对误差信号进行分析,对当前待调试参数的调整步长进行计算,也可使用储存的预定调整步长;
步骤573、根据步骤571和步骤572的分析结果,对当前待调试参数进行调整;当前待调试参数调整后返回第四步54,重新获取误差信号。
下面结合具体的发射装置(发射机)和接收装置(接收机)进行描述。本实施例中以发射机和接收机均作为调试对象,需要调试的参数以发射机的驱动幅度、眼图交叉点和接收机的判决电平为例,其他增加或删减参数,或者只对发射机或接收机之一进行调试的方法类似,只需要在调试对象选择单元中对调试顺序和次数等控制方式上进行调整即可。实施例中的传输环境以8×80公里传输,色散完全补偿为例,针对其他应用环境可以进行不同传输环境的配置。本实施例中采用前向纠错单元给出的纠错信息作为进行参数调试的误差信息。The following description will be made in conjunction with specific transmitting devices (transmitters) and receiving devices (receivers). In this embodiment, both the transmitter and the receiver are used as debugging objects. The parameters that need to be debugged are the driving amplitude of the transmitter, the eye cross point, and the decision level of the receiver as examples. Other parameters are added or deleted, or only for The method of debugging one of the transmitter or the receiver is similar, only need to adjust the control methods such as the debugging sequence and times in the debugging object selection unit. The transmission environment in the embodiment takes 8×80 km transmission and full dispersion compensation as an example, and different transmission environments can be configured for other application environments. In this embodiment, the error correction information provided by the forward error correction unit is used as the error information for parameter debugging.
以下对具体实施方式进行详细描述:The specific implementation is described in detail below:
图3为本实施例的结构框图,包括以下几个部分:Fig. 3 is a structural block diagram of the present embodiment, including the following parts:
发射装置610,接收装置620,传输环境630,前向纠错640和微处理器650。Transmitting
发射装置中包括驱动器、集成了EA调制器的激光器、驱动幅度调整单元和眼图交叉点调整单元。其中:The transmitting device includes a driver, a laser integrated with an EA modulator, a drive amplitude adjustment unit and an eye diagram intersection adjustment unit. in:
驱动器:将电信号放大整形到合适的幅度后输出给调制器;Driver: amplifies and shapes the electrical signal to a suitable amplitude and outputs it to the modulator;
集成EA调制器的激光器:接收驱动器给出的电信号,完成电信号到光信号的转换;Laser with integrated EA modulator: Receive the electrical signal given by the driver and complete the conversion from electrical signal to optical signal;
驱动幅度调整单元:设定驱动器的输出信号幅度,接收微处理器给出的调整信号,进行数模转换后控制调整驱动器的驱动幅度;Driving amplitude adjustment unit: set the output signal amplitude of the driver, receive the adjustment signal given by the microprocessor, and control and adjust the driving amplitude of the driver after digital-to-analog conversion;
眼图交叉点调整单元:设定发射机眼图交叉点位置,接收微处理器给出的调整信号,进行数模转换后控制调整发射装置的眼图交叉点。Eye diagram cross point adjustment unit: set the position of the transmitter eye diagram cross point, receive the adjustment signal given by the microprocessor, and control and adjust the eye diagram cross point of the transmitting device after digital-to-analog conversion.
接收装置中包括光电探测器,跨阻放大器,限幅放大器,判决/数据时钟恢复,判决电平调整,其中:The receiving device includes a photodetector, a transimpedance amplifier, a limiting amplifier, a judgment/data clock recovery, and judgment level adjustment, among which:
光电探测器:完成光信号和电信号的转换。通常为光电二极管或雪崩光二极管。输出的光生电流的大小和平均光功率成正比;Photodetector: Complete the conversion of optical signal and electrical signal. Typically a photodiode or an avalanche photodiode. The size of the output photogenerated current is proportional to the average light power;
跨阻放大器:将光电探测器输出的微弱电信号进行线性放大,包括传统的跨阻放大器和电压放大器;Transimpedance amplifier: linearly amplify the weak electrical signal output by the photodetector, including traditional transimpedance amplifiers and voltage amplifiers;
限幅放大器:对跨阻放大器输出的信号进行限幅放大,是否带有自动增益控制均可;Limiting amplifier: limit and amplify the signal output by the transimpedance amplifier, with or without automatic gain control;
判决/时钟数据恢复单元:包括滤波器、数据和时钟恢复、判决、解复用器等功能模块;Judgment/clock data recovery unit: including filter, data and clock recovery, judgment, demultiplexer and other functional modules;
判决电平调整单元:接收微处理器给出的调整信号,进行数模转换后控制调整接收装置的判决电平。Judgment level adjustment unit: receives the adjustment signal given by the microprocessor, controls and adjusts the judgment level of the receiving device after digital-to-analog conversion.
传输环境:为8段80km传输,其中每一段都进行了色散补偿和EDFA功率放大。Transmission environment: 8 sections of 80km transmission, each of which has undergone dispersion compensation and EDFA power amplification.
前向纠错单元:完成前向纠错功能,并将纠错信息上报给微处理器。Forward error correction unit: completes the forward error correction function and reports the error correction information to the microprocessor.
微处理器:查询前向纠错单元的纠错信息,进行分析计算,控制调整各待调整参数。Microprocessor: query the error correction information of the forward error correction unit, perform analysis and calculation, and control and adjust each parameter to be adjusted.
其工作过程如下:Its working process is as follows:
由发射装置输出的光信号经传输后进入接收装置,输入光信号经光电探测器转换为微弱的电信号,然后经过跨阻放大器完成前置放大,经过线性通道和数据恢复单元完成放大、滤波和数据恢复,最后进入前向纠错单元,完成传输误码的检测和纠正。同时,前向纠错单元输出的纠错信息通过微处理器控制发射装置的眼图交叉点调整。本实施例中采用前向纠错单元给出的纠错信息作为进行眼图交叉点优化调整的误差信息,因此前向纠错单元即相当于装置框图中的误差信号获取单元;微处理器用来对前向纠错单元给出的纠错信息进行分析和计算,并输出参数调整信息给发送装置中的驱动幅度调整单元、眼图交叉点调整单元或接收装置中的判决电平调整单元,相当于装置框图中的误差信号分析单元和步长调整单元。The optical signal output by the transmitting device enters the receiving device after transmission, the input optical signal is converted into a weak electrical signal by the photodetector, and then the pre-amplification is completed through the transimpedance amplifier, and the amplification, filtering and processing are completed through the linear channel and the data recovery unit. The data is recovered, and finally enters the forward error correction unit to complete the detection and correction of transmission errors. At the same time, the error correction information output by the forward error correction unit is controlled by the microprocessor to adjust the cross point of the eye diagram of the transmitting device. In this embodiment, the error correction information provided by the forward error correction unit is used as the error information for optimal adjustment of the eye diagram intersection, so the forward error correction unit is equivalent to the error signal acquisition unit in the block diagram of the device; the microprocessor is used to Analyze and calculate the error correction information given by the forward error correction unit, and output the parameter adjustment information to the drive amplitude adjustment unit in the sending device, the eye cross point adjustment unit or the decision level adjustment unit in the receiving device, which is equivalent to An error signal analysis unit and a step size adjustment unit in the block diagram of the device.
以眼图交叉点的调整为例:在前向纠错系统中,当纠错信息中纠正1的个数与纠正0的个数的和E最小时,系统误码率最小,传输性能最优,因此可利用这一信息E作为眼图交叉点调整的判决依据。取固定最小步长h,初始眼图交叉点值设置为X=a,对比X=a和X=a+h时前向纠错系统给出的纠错信息,若EX=a>EX=a+h,则X=a+h,否则X=a-h。之后在新的X位置上再次进行判断,直至E=0,或者当前眼图交叉点位置上的E值为最小,或调整次数大于N时停止,认为本次对眼图交叉点的调整已完成。通过微处理器选择其他待调整参数,按照同样的过程进行调整。由于发射机和接收机的参数会相互影响,因此参数的调整需要进行几次循环。考虑到判决电平对驱动幅度和眼图交叉点的变化都比较敏感,在我们的实施例中采用的循环顺序是驱动幅度——>判决电平——>眼图交叉点——>判决电平——>驱动幅度...,在其他环境下或其他待调整参数下可根据实际情况设定不同的循环顺序。待各项参数均调到最优值,或传输性能已符合要求,或循环次数达到上限M后,认为调试过程结束。Take the adjustment of the intersection of the eye diagram as an example: in the forward error correction system, when the sum E of the number of corrected 1s and the number of corrected 0s in the error correction information is the smallest, the system bit error rate is the smallest and the transmission performance is optimal , so this information E can be used as the judgment basis for adjusting the eye cross point. Take a fixed minimum step size h, set the initial eye diagram intersection value to X=a, compare the error correction information given by the forward error correction system when X=a and X=a+h, if EX=a>EX=a +h, then X=a+h, otherwise X=a-h. Then judge again at the new X position until E=0, or the E value at the current eye cross point position is the smallest, or stop when the number of adjustments is greater than N, it is considered that the adjustment of the eye cross point has been completed this time . Select other parameters to be adjusted through the microprocessor, and adjust according to the same process. Since the parameters of the transmitter and receiver affect each other, the adjustment of the parameters requires several cycles. Considering that the decision level is sensitive to changes in both the driving amplitude and the eye diagram crossing point, the cycle sequence adopted in our embodiment is driving amplitude --> judgment level --> eye diagram crossing point --> decision voltage Ping --> Drive amplitude..., in other environments or other parameters to be adjusted, different cycle sequences can be set according to actual conditions. After all the parameters are adjusted to the optimal value, or the transmission performance meets the requirements, or the number of cycles reaches the upper limit M, the debugging process is considered to be over.
由上可知,采用本发明所述方法和装置,与现有技术相比,由于采取了对数字通信系统发射机和接收机参数自动调试定标的技术,保证了发射机和接收机参数设定的精度,提高了调试效率,保证了调试性能,改善了系统信噪比及接收灵敏度等性能指标。As can be seen from the above, using the method and device of the present invention, compared with the prior art, due to the adoption of the technology of automatically debugging and calibrating the digital communication system transmitter and receiver parameters, the transmitter and receiver parameter settings are guaranteed. The accuracy improves the debugging efficiency, ensures the debugging performance, and improves the system signal-to-noise ratio and receiving sensitivity and other performance indicators.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102237891A CN101383659B (en) | 2008-10-13 | 2008-10-13 | Device and method for automatically debugging parameters of communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102237891A CN101383659B (en) | 2008-10-13 | 2008-10-13 | Device and method for automatically debugging parameters of communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101383659A CN101383659A (en) | 2009-03-11 |
CN101383659B true CN101383659B (en) | 2012-05-09 |
Family
ID=40463308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102237891A Active CN101383659B (en) | 2008-10-13 | 2008-10-13 | Device and method for automatically debugging parameters of communication system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101383659B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101355404B (en) | 2008-09-04 | 2011-04-06 | 中兴通讯股份有限公司 | Apparatus and method for regulating transmitter parameter with optimization |
CN102215063B (en) * | 2011-05-31 | 2014-03-12 | 索尔思光电(成都)有限公司 | Core parameter debugging method of long distance XFP module based on electro-absorption modulated laser (EML) |
CN102223175B (en) * | 2011-06-13 | 2013-11-20 | 烽火通信科技股份有限公司 | Method for optimizing receiving parts of high-speed optical module |
CN102710322B (en) * | 2012-04-13 | 2015-02-04 | 烽火通信科技股份有限公司 | Debugging method of EA (electroabsorption) type laser in single-channel long-span optical transmission |
CN102684781B (en) * | 2012-04-17 | 2015-07-08 | 华为技术有限公司 | Method and device for optimizing performance of optical module |
CN102882115B (en) * | 2012-10-09 | 2014-10-22 | 索尔思光电(成都)有限公司 | Evolutionary operation algorithm for electric absorption reverse bias voltage of EML (electo-absorption modulated laser) |
CN103401605B (en) * | 2013-07-12 | 2016-06-29 | 青岛海信宽带多媒体技术有限公司 | Room temperature based on hot-pluggable optical module debugs system and room temperature adjustment method |
CN106330295B (en) * | 2015-07-08 | 2019-10-22 | 南京中兴软件有限责任公司 | A kind of electric eye adjustment method and device |
CN108933600B (en) * | 2017-05-26 | 2020-11-06 | 深圳市中兴微电子技术有限公司 | A SerDes link parameter automatic debugging method |
CN107361760B (en) * | 2017-07-12 | 2020-06-12 | 中国科学院上海微系统与信息技术研究所 | Magnetocardiogram instrument diagnosis system and magnetocardiogram instrument using the same |
CN107515806A (en) * | 2017-08-29 | 2017-12-26 | 郑州云海信息技术有限公司 | A method and device for online debugging of SAS signal parameters |
CN108494480B (en) * | 2018-03-31 | 2019-10-25 | 杨爱英 | A kind of device and method of detection high speed optical communication transmitting equipment |
CN109787691B (en) * | 2018-11-28 | 2021-01-08 | 武汉光迅科技股份有限公司 | Parameter determination method, equipment and computer storage medium |
CN109696618A (en) * | 2019-02-21 | 2019-04-30 | 徐晨阳 | A kind of adjustment method of radio-frequency devices, device, equipment, storage medium and system |
CN109862206B (en) * | 2019-02-28 | 2020-08-04 | 深圳市华星光电半导体显示技术有限公司 | Signal transmission method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1162374A (en) * | 1994-11-03 | 1997-10-15 | 摩托罗拉公司 | Method and apparatus for linear transmitter |
JPH11122196A (en) | 1997-10-17 | 1999-04-30 | Hitachi Ltd | Optical receiving circuit |
CN1514560A (en) * | 2002-12-31 | 2004-07-21 | 深圳市中兴通讯股份有限公司上海第二 | Power Control Method for Wideband Code Division Multiple Access Mobile Communication System |
-
2008
- 2008-10-13 CN CN2008102237891A patent/CN101383659B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1162374A (en) * | 1994-11-03 | 1997-10-15 | 摩托罗拉公司 | Method and apparatus for linear transmitter |
JPH11122196A (en) | 1997-10-17 | 1999-04-30 | Hitachi Ltd | Optical receiving circuit |
CN1514560A (en) * | 2002-12-31 | 2004-07-21 | 深圳市中兴通讯股份有限公司上海第二 | Power Control Method for Wideband Code Division Multiple Access Mobile Communication System |
Also Published As
Publication number | Publication date |
---|---|
CN101383659A (en) | 2009-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101383659B (en) | Device and method for automatically debugging parameters of communication system | |
KR101228915B1 (en) | Device and method for optimally adjusting transmitter parameters | |
CN104699155B (en) | A kind of electro-optical type photomodulator numeral automatic bias voltage control method and device | |
US20110164874A1 (en) | Method for optimally adjusting a decision level of a receiver and device thereof | |
CN102610996B (en) | Method and device for rapidly calibrating luminous power | |
CN106403994B (en) | A kind of automatic debugging device and method of closed-loop fiber optic gyroscope parameter | |
CN108801957B (en) | Biochemical substance detection instrument based on optical method and calibration method thereof | |
CN103776529A (en) | Desktop laser power meter capable of real-time compensation and compensation method thereof | |
JP2007259255A (en) | Dispersion compensated optical signal reception apparatus, reception circuit, reception method, and reception program | |
CN1391739A (en) | WDM optical communication system | |
CN201690436U (en) | Working point control device applied in phase modulator | |
RU2463708C1 (en) | Method and apparatus for optimising decision threshold level of optical receiver | |
CN107919908A (en) | A kind of optical module receiving terminal sensitivity test system and its test method | |
CN112088473B (en) | Bias current control method and device of laser | |
CN107479138B (en) | A kind of device and method improving the sensitivity of the receiving end TWDM | |
CN103823175B (en) | A kind of photodetection circuit frequency response function test method based on OTDR | |
CN108880694B (en) | A method of quickly calibrating the reverse bias of avalanche photodiode APD | |
US20070146795A1 (en) | Signal light processing apparatus | |
CN110987014B (en) | Signal interference detection method for fiber-optic gyroscope signal processing circuit, storage medium and computer equipment | |
CN102589578B (en) | Distributed optical fiber sensing device and method based on phase demodulation | |
CN101960941A (en) | Laser control land leveling receiver circuit | |
CN110987010B (en) | Signal interference detection method, computer storage medium and computer equipment | |
CN111698029A (en) | Detection method, setting method and detection device of visible light communication system | |
CN206740644U (en) | Laser methane detection means based on FPGA monochromatic lights road signal compensation | |
CN207427326U (en) | High signal-to-noise ratio detection device for high-power laser near-field measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |