CN101353735A - A method for preparing composite nanoparticle strengthened and toughened sintered molybdenum material - Google Patents
A method for preparing composite nanoparticle strengthened and toughened sintered molybdenum material Download PDFInfo
- Publication number
- CN101353735A CN101353735A CNA2008101431396A CN200810143139A CN101353735A CN 101353735 A CN101353735 A CN 101353735A CN A2008101431396 A CNA2008101431396 A CN A2008101431396A CN 200810143139 A CN200810143139 A CN 200810143139A CN 101353735 A CN101353735 A CN 101353735A
- Authority
- CN
- China
- Prior art keywords
- powder
- toughened
- molybdenum
- sintered
- mosi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 239000000463 material Substances 0.000 title claims abstract description 54
- 239000002131 composite material Substances 0.000 title claims abstract description 47
- 229910052750 molybdenum Inorganic materials 0.000 title claims abstract description 42
- 239000011733 molybdenum Substances 0.000 title claims abstract description 42
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 23
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims abstract description 32
- 229910016006 MoSi Inorganic materials 0.000 claims abstract description 24
- 238000002360 preparation method Methods 0.000 claims abstract description 17
- 238000005728 strengthening Methods 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims description 27
- 238000000498 ball milling Methods 0.000 claims description 18
- 239000010935 stainless steel Substances 0.000 claims description 18
- 229910001220 stainless steel Inorganic materials 0.000 claims description 18
- 229910020968 MoSi2 Inorganic materials 0.000 claims description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 239000011812 mixed powder Substances 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 239000011858 nanopowder Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000011863 silicon-based powder Substances 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 5
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- 239000011246 composite particle Substances 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 230000003068 static effect Effects 0.000 claims 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 abstract description 3
- JUYZUJLVHMHVIY-UHFFFAOYSA-N dioxido(oxo)silane;molybdenum(4+) Chemical compound [Mo+4].[O-][Si]([O-])=O.[O-][Si]([O-])=O JUYZUJLVHMHVIY-UHFFFAOYSA-N 0.000 abstract description 2
- 230000009977 dual effect Effects 0.000 abstract description 2
- 238000011065 in-situ storage Methods 0.000 abstract 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 9
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 9
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 9
- 238000001125 extrusion Methods 0.000 description 6
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- -1 Sm 2 O 3 Inorganic materials 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910000858 La alloy Inorganic materials 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- CBPOHXPWQZEPHI-UHFFFAOYSA-N [Mo].[La] Chemical compound [Mo].[La] CBPOHXPWQZEPHI-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- LGLOITKZTDVGOE-UHFFFAOYSA-N boranylidynemolybdenum Chemical compound [Mo]#B LGLOITKZTDVGOE-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- GALOTNBSUVEISR-UHFFFAOYSA-N molybdenum;silicon Chemical compound [Mo]#[Si] GALOTNBSUVEISR-UHFFFAOYSA-N 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种制备复合纳米微粒强韧化烧结钼材料的方法。其特征在于该钼材料的强化和韧化相为La2O3/Mo5Si3复合纳米微粒,其中Mo5Si3以纳米MoSi2的形式加入,利用高温下MoSi2与Mo的原位反应生成Mo5Si3,而La2O3以La2O3纳米微粒的形式加入。本发明涉及的制备方法,是将稀土氧化物的低温韧化和三硅化五钼的高温强化有机结合,起到增韧补强的双重作用,可以有效地提高钼材料的耐高温性能和低温韧性。The invention discloses a method for preparing a composite nano particle strengthened and toughened sintered molybdenum material. It is characterized in that the strengthening and toughening phase of the molybdenum material is La 2 O 3 /Mo 5 Si 3 composite nanoparticles, in which Mo 5 Si 3 is added in the form of nano-MoSi 2 , and the in-situ reaction of MoSi 2 and Mo at high temperature is used Mo 5 Si 3 is generated, and La 2 O 3 is added in the form of La 2 O 3 nanoparticles. The preparation method involved in the present invention is to organically combine the low-temperature toughening of rare earth oxides and the high-temperature strengthening of pentamolybdenum trisilicide to play a dual role of toughening and strengthening, and can effectively improve the high-temperature resistance and low-temperature toughness of molybdenum materials .
Description
技术领域 technical field
本发明属于冶金技术领域,涉及一种制备复合纳米微粒强韧化烧结钼材料的方法,具体涉及一种用于制备高导热、低膨胀的铜合金挤压模用复合纳米微粒强韧化烧结钼材料的制备方法。The invention belongs to the technical field of metallurgy, and relates to a method for preparing a composite nanoparticle toughened sintered molybdenum material, in particular to a composite nanoparticle toughened sintered molybdenum material for preparing a copper alloy extrusion die with high thermal conductivity and low expansion The method of preparation of the material.
背景技术 Background technique
烧结钼作为高温工程领域中应用的一种粉末冶金材料,具有熔点高、密度适中、导热性好、热膨胀系数低、抗腐蚀性优越等特性,除了用作可控硅基片、二氧化铀粉末、陶瓷、稀土类磁体的舟皿和垫板外,还可用作玻璃熔化的坩埚、流口和电极、高温炉的隔热屏、穿孔不锈钢管的顶头、火箭发射器的喷嘴、钢铁压铸模具及铜合金挤压工模具等。随着现代工业和科学技术的不断发展,烧结钼的应用领域也不断扩大,人们对其性能提出的要求在许多方面已经超出了已有的或传统用途中所需的性能要求,如挤压温度在1200℃左右的白铜管挤压时,普通的挤压工模具钢在此温度下很快就会软化变形,在模具钢中镶嵌陶瓷材料作为模芯,又存在着急冷急热条件下陶瓷材料易开裂、定径带塌陷的问题,采用烧结钼作为工模具,要求钼不仅具有良好的高温强度和低温韧性,而且还具有高的导热性、热稳定性和低的热膨胀系数,真正实现烧结钼材料的结构功能一体化。但目前烧结钼普遍存在着耐高温性能差且发脆、数量少质量低、品种也不齐全、加工成品率低、许多异型特殊产品奇缺以及成本很高等缺点。As a powder metallurgy material used in the field of high temperature engineering, sintered molybdenum has the characteristics of high melting point, moderate density, good thermal conductivity, low thermal expansion coefficient, and excellent corrosion resistance. In addition to boats and backing plates for ceramics and rare earth magnets, they can also be used as crucibles, orifices and electrodes for glass melting, heat shields for high-temperature furnaces, plugs for perforated stainless steel pipes, nozzles for rocket launchers, and steel die-casting molds And copper alloy extrusion dies, etc. With the continuous development of modern industry and science and technology, the application field of sintered molybdenum is also expanding, and people's performance requirements have exceeded the performance requirements of existing or traditional uses in many aspects, such as extrusion temperature When the white copper tube is extruded at about 1200°C, the ordinary extruded die steel will soften and deform quickly at this temperature, and the ceramic material is embedded in the die steel as the mold core, and there are conditions of rapid cooling and rapid heating. The material is easy to crack and the sizing belt collapses. Sintered molybdenum is used as the tool and mold. It is required that the molybdenum not only has good high-temperature strength and low-temperature toughness, but also has high thermal conductivity, thermal stability and low thermal expansion coefficient to truly realize sintering. Structure and function integration of molybdenum materials. However, at present, sintered molybdenum generally has disadvantages such as poor high temperature resistance and brittleness, low quantity and low quality, incomplete varieties, low processing yield, shortage of many special-shaped special products, and high cost.
对于高性能钼材料,国内外先后研发出碳化物强化型钼合金(如TZM、Mo-0.5Ti、MHC和ZHC)、固溶强化-碳化物强化型钼合金(如M25WH1、M25WH2和M25WZH3)、稀土氧化物强化型钼合金(掺入La2O3、Sm2O3、Nd2O3、Tb2O3等)、稀土氧化物-碳化物综合强化型钼合金和高温钼(掺入Si、Al、K等元素),并且已成功地将TZM、ZHC、MHC等钼合金应用于挤压工模具行业,此类材料在1000℃以上的高温下仍具有较高的热强性。For high-performance molybdenum materials, carbide-strengthened molybdenum alloys (such as TZM, Mo-0.5Ti, MHC and ZHC), solid-solution-carbide-strengthened molybdenum alloys (such as M 25 WH 1 , M 25 WH 2 and M 25 WZH 3 ), rare earth oxide reinforced molybdenum alloy (doped with La 2 O 3 , Sm 2 O 3 , Nd 2 O 3 , Tb 2 O 3 , etc.), rare earth oxide-carbide comprehensive strengthening type Molybdenum alloys and high-temperature molybdenum (doped with Si, Al, K and other elements), and have successfully applied TZM, ZHC, MHC and other molybdenum alloys to the extrusion tool and die industry. Higher heat strength.
公开专利200610162008.3提供了一种强化钼合金的制备方法,涉及以TiC为强化相,用于铜及其合金、黑色金属压铸模具、镶块和挤压模具的钼合金,公开专利200610165737.4提供了一种制备钼镧合金的方法,涉及稀土改性的钼合金,欧洲专利EP080618A1提供了一种含有金属间化合物的钼合金的半成品和成品的制备方法,金属间化合物最好为硅化钼和硅硼化钼,也可以是硼化钼。Publication patent 200610162008.3 provides a preparation method of strengthened molybdenum alloy, which involves using TiC as a strengthening phase for molybdenum alloys of copper and its alloys, ferrous metal die-casting molds, inserts and extrusion dies. Publication patent 200610165737.4 provides a The method for preparing molybdenum-lanthanum alloys involves rare earth modified molybdenum alloys. European patent EP080618A1 provides a method for preparing semi-finished and finished products of molybdenum alloys containing intermetallic compounds. The intermetallic compounds are preferably molybdenum silicide and molybdenum silicon boride , can also be molybdenum boride.
上述专利均未涉及用于制备高导热、低膨胀的铜合金挤压模用复合纳米微粒强韧化烧结钼材料的制备方法。None of the above-mentioned patents relates to a preparation method for preparing a composite nanoparticle toughened sintered molybdenum material for a copper alloy extrusion die with high thermal conductivity and low expansion.
发明内容 Contents of the invention
本发明的所要解决的技术问题是:提供一种制备复合纳米微粒强韧化烧结钼材料的方法,所制备的材料与以往的烧结钼材料相比,在保持高导热性和低膨胀性的同时,其耐高温性能和低温韧性得到有效提高。The technical problem to be solved by the present invention is to provide a method for preparing composite nanoparticle toughened sintered molybdenum material. Compared with the previous sintered molybdenum material, the prepared material maintains high thermal conductivity and low expansion. , its high temperature resistance and low temperature toughness are effectively improved.
一种制备复合纳米微粒强韧化烧结钼材料的方法,其特征在于:包括以下步骤:A method for preparing composite nanoparticles toughened sintered molybdenum material, characterized in that: comprising the following steps:
1)钼粉的制备1) Preparation of molybdenum powder
将纯度为99.8~99.9%的MoO2粉末在保护气氛条件下,于950~1100℃进行还原得到钼粉; MoO2 powder with a purity of 99.8-99.9% is reduced under a protective atmosphere at 950-1100°C to obtain molybdenum powder;
2)MoSi2粉末的制备2) Preparation of MoSi2 powder
将步骤1)制备好的钼粉和硅粉按原子比例Mo∶Si=1∶(2~2.1)进行充分混合,球磨,制备出MoSi2粉末;The molybdenum powder and silicon powder prepared in step 1) are fully mixed according to the atomic ratio Mo:Si=1:(2~2.1), and ball milled to prepare MoSi 2 powder;
3)La2O3/MoSi2复合纳米粉末的制备3) Preparation of La 2 O 3 /MoSi 2 composite nanopowder
将质量比为1~1∶1.5的MoSi2和La2O3粉末充分混合,球磨,制备出粒度为60~80nm的La2O3/MoSi2复合微粒;Fully mix MoSi 2 and La 2 O 3 powders with a mass ratio of 1-1:1.5, and ball mill to prepare La 2 O 3 /MoSi 2 composite particles with a particle size of 60-80nm;
4)La2O3/Mo5Si3复合纳米微粒强韧化烧结钼材料的制备4) Preparation of La 2 O 3 /Mo 5 Si 3 Composite Nanoparticles Strengthened and Toughened Sintered Molybdenum Materials
将La2O3/MoSi2复合纳米粉末加入到Mo粉中充分混合,La2O3/MoSi2复合纳米微粒为Mo的质量的0.2%~2.0%;将所得混合粉末压制,得到Φ15~55mm的棒料;将棒料在1800~1900℃温度下烧结,制备出La2O3/Mo5Si3复合纳米微粒强韧化烧结钼材料。Add the La 2 O 3 /MoSi 2 composite nano-powder to the Mo powder and mix thoroughly, the La 2 O 3 /MoSi 2 composite nano-particle is 0.2% to 2.0% of the mass of Mo; press the resulting mixed powder to obtain a Φ15-55mm The bar material is sintered at a temperature of 1800-1900° C. to prepare a La 2 O 3 /Mo 5 Si 3 composite nanoparticle strengthened and toughened sintered molybdenum material.
所述的步骤1)中的保护气为氢气,流量为25~35dm3·min-1。The protective gas in the step 1) is hydrogen, and the flow rate is 25-35 dm 3 ·min -1 .
所述步骤2)中的硅粉纯度为99.8~99.9%,粒度0~48μm。The silicon powder in the step 2) has a purity of 99.8-99.9% and a particle size of 0-48 μm.
所述步骤2)中的磨球过程为:将混合粉末放入球磨罐中,球磨介质为不锈钢球,不锈钢球规格为Φ20mm和Φ10mm,其比例为1∶(2~2.5),不锈钢球与粉末的重量比为(20~30)∶1;球磨前先将球磨罐抽真空,然后通入氩气,以保证球磨过程始终在氩气保护下进行,球磨罐用O型环密封;球磨在行星式球磨机中进行,转速为250~400r/min,球磨时间为20~30小时。The ball grinding process in the step 2) is: put the mixed powder into the ball mill tank, the ball mill medium is stainless steel balls, the specifications of the stainless steel balls are Φ20mm and Φ10mm, and the ratio is 1: (2~2.5), the stainless steel balls and the powder The weight ratio of the ball mill is (20-30): 1; before the ball milling, the ball mill tank is evacuated first, and then argon gas is introduced to ensure that the ball mill process is always carried out under the protection of argon gas, and the ball mill tank is sealed with an O-ring; It is carried out in a type ball mill, the speed is 250-400r/min, and the ball milling time is 20-30 hours.
所述步骤3)中的磨球过程为:将混合粉末放入球磨罐中,球磨介质为不锈钢球,不锈钢球规格为Φ20mm和Φ10mm,其比例为1∶(2~2.5),不锈钢球与粉末的重量比为(20~30)∶1,球磨在行星式球磨机中进行,球磨时间25~35小时,转速为350~400r/min。The ball grinding process in the step 3) is: put the mixed powder in the ball mill tank, the ball mill medium is stainless steel balls, the specifications of the stainless steel balls are Φ20mm and Φ10mm, and the ratio is 1: (2~2.5), the stainless steel balls and the powder The weight ratio is (20-30): 1, the ball milling is carried out in a planetary ball mill, the ball milling time is 25-35 hours, and the rotating speed is 350-400r/min.
所述步骤4)中的压制过程为:将混合粉末均匀装入橡皮模内,在冷等静压机上进行压制,压制压力为180~300MPa,升压时间为22~24min,保压时间为7~9min,降压时间为2~4min,得到Φ15~55mm的棒料。The pressing process in the step 4) is as follows: the mixed powder is evenly loaded into a rubber mold, and pressed on a cold isostatic press, the pressing pressure is 180-300 MPa, the boosting time is 22-24 minutes, and the holding time is 7 ~9min, the depressurization time is 2~4min, and the bar material of Φ15~55mm is obtained.
所述步骤4)中,整个烧结期间通以氢气进行保护,防止坯料被氧化。In the step 4), the whole sintering period is protected by hydrogen to prevent the blank from being oxidized.
本发明所具有的有益效果有:The beneficial effects that the present invention has have:
本发明所涉及的La2O3/Mo5Si3复合纳米微粒强韧化烧结钼材料,是将稀土氧化物的低温韧化和三硅化五钼的高温强化有机结合,起到增韧补强的双重作用,可以有效地提高钼材料的耐高温性能和低温韧性。本发明所制备的材料与以往的烧结钼材料相比,在保持高导热性和低膨胀性的同时,其耐高温性能和低温韧性得到有效提高,其材料的综合性能数据见实施例2~6。克服了现有的烧结钼材料所具有的耐高温性能差且发脆、数量少质量低、加工成品率低、许多异型特殊产品奇缺、成本很高等缺点。The La 2 O 3 /Mo 5 Si 3 composite nanoparticle strengthened and toughened sintered molybdenum material involved in the present invention is an organic combination of low-temperature toughening of rare earth oxides and high-temperature strengthening of pentamolybdenum trisilicide to play a toughening and reinforcing role. The dual function of molybdenum can effectively improve the high temperature resistance and low temperature toughness of molybdenum materials. Compared with the previous sintered molybdenum material, the material prepared by the present invention can effectively improve its high temperature resistance and low temperature toughness while maintaining high thermal conductivity and low expansion. The comprehensive performance data of the material can be seen in Examples 2-6 . It overcomes the shortcomings of existing sintered molybdenum materials, such as poor high temperature resistance and brittleness, small quantity and low quality, low processing yield, shortage of many special-shaped special products, and high cost.
具体实施方式 Detailed ways
以下结合实施例对本发明作进一步说明。The present invention will be further described below in conjunction with embodiment.
实施例1:复合纳米微粒强韧化烧结钼材料的制备方法,主要包括:Embodiment 1: The preparation method of composite nanoparticle toughened sintered molybdenum material mainly includes:
1)钼粉的制备1) Preparation of molybdenum powder
将纯度为99.9%的MoO2粉末在氢气保护下,于950~1100℃进行还原,还原时间为90~120min,氢气流量为30dm3·min-1。The MoO 2 powder with a purity of 99.9% is reduced under the protection of hydrogen at 950-1100°C, the reduction time is 90-120min, and the hydrogen flow rate is 30dm 3 ·min -1 .
2)MoSi2粉末的制备2) Preparation of MoSi2 powder
将步骤1)制备好的钼粉和纯度为99.9%、粒度小于48μm的硅粉按原子比例Mo∶Si=1∶2进行充分混合,然后将混合好的粉末放入不锈钢罐中进行球磨,球磨介质为不锈钢球,不锈钢球规格为Φ20mm和Φ10mm,其比例为1∶2,不锈钢球与粉末的重量比为20∶1。球磨前先将球磨罐抽真空,然后通入一定压力的氩气,以保证球磨过程始终在氩气保护下进行,球磨罐用O型环密封。球磨在行星式球磨机中进行,转速为390r/min,球磨24小时后,制备出MoSi2粉末。The molybdenum powder prepared in step 1) and the silicon powder with a purity of 99.9% and a particle size of less than 48 μm are fully mixed according to the atomic ratio Mo:Si=1:2, and then the mixed powder is put into a stainless steel tank for ball milling. The medium is stainless steel balls, the specifications of stainless steel balls are Φ20mm and Φ10mm, the ratio is 1:2, and the weight ratio of stainless steel balls to powder is 20:1. Before ball milling, vacuumize the ball mill tank first, and then pass in a certain pressure of argon gas to ensure that the ball mill process is always carried out under the protection of argon gas. The ball mill tank is sealed with an O-ring. Ball milling was carried out in a planetary ball mill at a speed of 390 r/min, and MoSi 2 powder was prepared after ball milling for 24 hours.
3)La2O3/MoSi2复合纳米粉末的制备3) Preparation of La 2 O 3 /MoSi 2 composite nanopowder
将质量比为1∶1的MoSi2和La2O3(分析纯)粉末充分混合,然后将混合好的粉末按步骤2)的条件放入行星式球磨机内球磨30小时,不锈钢球与粉末的重量比为20∶1,转速为390r/min,制备出粒度为60~80nm的La2O3/MoSi2复合微粒。Fully mix the MoSi 2 and La 2 O 3 (analytical pure) powders with a mass ratio of 1:1, then put the mixed powder into the planetary ball mill for 30 hours according to the conditions of step 2), and the stainless steel ball and the powder The weight ratio is 20:1, the rotation speed is 390r/min, and La 2 O 3 /MoSi 2 composite particles with a particle size of 60-80nm are prepared.
4)La2O3/Mo5Si3复合纳米微粒强韧化烧结钼材料的制备4) Preparation of La 2 O 3 /Mo 5 Si 3 Composite Nanoparticles Strengthened and Toughened Sintered Molybdenum Materials
将步骤3)制得的La2O3/MoSi2复合纳米粉末加入到Mo粉中,La2O3/MoSi2复合纳米微粒为Mo的质量的0.2%~2.0%。用锥形混料机在常压下将混合粉末充分混合10小时。混合均匀后的粉末均匀装入橡皮模内,在冷等静压机上进行压制,压制压力为200MPa,升压时间为22~24min,保压时间为7~9min,降压时间为2~4min,得到Φ17mm的棒料。将压制好的棒料在中频炉中进行烧结,烧结温度为1840℃,保温5~8小时,制备出La2O3/Mo5Si3复合纳米微粒强韧化烧结钼材料,整个烧结期间通以氢气进行保护,防止坯料被氧化。The La 2 O 3 /MoSi 2 composite nano-powder prepared in step 3) is added to the Mo powder, and the La 2 O 3 /MoSi 2 composite nano-particle is 0.2%-2.0% of the mass of Mo. The mixed powders were thoroughly mixed for 10 hours under normal pressure with a cone mixer. The mixed powder is evenly put into the rubber mold, and pressed on a cold isostatic press with a pressing pressure of 200MPa, a pressurization time of 22-24min, a holding time of 7-9min, and a depressurization time of 2-4min. Obtain a Φ17mm bar. The pressed bar is sintered in an intermediate frequency furnace, the sintering temperature is 1840 ° C, and the temperature is kept for 5 to 8 hours to prepare the La 2 O 3 /Mo 5 Si 3 composite nanoparticle toughened sintered molybdenum material. During the whole sintering period, pass Protected with hydrogen to prevent the blank from being oxidized.
实施例2Example 2
按“实施例2”中所描述的步骤1)制备出钼粉,将步骤2)中的球料比定为20∶1,转速定为390r/min,制备出MoSi2粉末,按步骤3)制备出La2O3/MoSi2复合纳米微粒,将步骤4)中的La2O3/MoSi2复合纳米微粒定为Mo的质量的0.5%,保温7小时,制备出La2O3/Mo5Si3复合纳米微粒强韧化烧结钼材料,其综合性能数据如表1所示。According to the step 1 described in "Example 2", molybdenum powder is prepared, and the ball-to-material ratio in step 2) is determined as 20: 1, and the rotating speed is determined as 390r/min, and MoSi2 powder is prepared, according to step 3) To prepare La2O3 / MoSi2 composite nanoparticles, set the La2O3 / MoSi2 composite nanoparticles in step 4) to be 0.5% of the mass of Mo, and keep it warm for 7 hours to prepare La2O3 /MoSi2 The comprehensive performance data of 5 Si 3 composite nanoparticles strengthened and toughened sintered molybdenum materials are shown in Table 1.
表1本实施例材料性能数据Table 1 present embodiment material performance data
实施例3Example 3
按“实施例2”中所描述的步骤1)制备出钼粉,将步骤2)中的球料比定为20∶1,转速定为390r/min,制备出MoSi2粉末,按步骤3)制备出La2O3/MoSi2复合纳米微粒,将步骤4)中的La2O3/MoSi2复合纳米微粒定为Mo的质量的0.5%,保温5小时,制备出La2O3/Mo5Si3复合纳米微粒强韧化烧结钼材料,其综合性能数据如表2所示。According to the step 1 described in "Example 2", molybdenum powder is prepared, and the ball-to-material ratio in step 2) is determined as 20: 1, and the rotating speed is determined as 390r/min, and MoSi2 powder is prepared, according to step 3) To prepare La2O3 / MoSi2 composite nanoparticles, set the La2O3 / MoSi2 composite nanoparticles in step 4) to 0.5 % of the mass of Mo, and keep it warm for 5 hours to prepare La2O3 /MoSi2 The comprehensive performance data of 5 Si 3 composite nanoparticles strengthened and toughened sintered molybdenum materials are shown in Table 2.
表2本实施例材料性能数据Table 2 present embodiment material performance data
实施例4Example 4
按“实施例2”中所描述的步骤1)制备出钼粉,将步骤2)中的球料比定为20∶1,转速定为390r/min,制备出MoSi2粉末,按步骤3)制备出La2O3/MoSi2复合纳米微粒,将步骤4)中的La2O3/MoSi2复合纳米微粒定为Mo的质量的1.0%,保温7小时,制备出La2O3/Mo5Si3复合纳米微粒强韧化烧结钼材料,其综合性能数据如表3所示。According to the step 1 described in "Example 2", molybdenum powder is prepared, and the ball-to-material ratio in step 2) is determined as 20: 1, and the rotating speed is determined as 390r/min, and MoSi2 powder is prepared, according to step 3) To prepare La2O3 / MoSi2 composite nanoparticles, set the La2O3 / MoSi2 composite nanoparticles in step 4) to be 1.0% of the mass of Mo, and keep it warm for 7 hours to prepare La2O3 /MoSi2 The comprehensive performance data of the sintered molybdenum materials strengthened and toughened by 5 Si 3 composite nanoparticles are shown in Table 3.
表3本实施例材料性能数据Table 3 present embodiment material performance data
实施例5Example 5
按“实施例2”中所描述的步骤1)制备出钼粉,将步骤2)中的球料比定为30∶1,转速定为390r/min,制备出MoSi2粉末,按步骤3)制备出La2O3/MoSi2复合纳米微粒,将步骤4)中的La2O3/MoSi2复合纳米微粒为Mo的质量的0.5%,保温7小时,制备出La2O3/Mo5Si3复合纳米微粒强韧化烧结钼材料,其综合性能数据如表4所示。According to the step 1 described in "Example 2", molybdenum powder is prepared, and the ball-to-material ratio in step 2) is determined as 30: 1, and the rotating speed is determined as 390r/min, and MoSi2 powder is prepared, according to step 3) La 2 O 3 /MoSi 2 composite nanoparticles were prepared, and the La 2 O 3 /MoSi 2 composite nanoparticles in step 4) were 0.5% of the mass of Mo, and kept for 7 hours to prepare La 2 O 3 /Mo 5 The comprehensive performance data of Si 3 composite nanoparticle strengthened and toughened sintered molybdenum materials are shown in Table 4.
表4本实施例材料性能数据Table 4 present embodiment material performance data
实施例6Example 6
按“发明内容”中所描述的步骤1)制备出钼粉,将步骤2)中的球料比定为20∶1,转速定为270r/min,制备出MoSi2粉末,按步骤3)制备出La2O3/MoSi2复合纳米微粒,将步骤4)中的La2O3/MoSi2复合纳米微粒定为Mo的质量的0.5%,保温7小时,制备出La2O3/Mo5Si3复合纳米微粒强韧化烧结钼材料,其综合性能数据如表5所示。Prepare molybdenum powder according to step 1) described in "Summary of the Invention", set the ball-to-material ratio in step 2) as 20:1, and the rotating speed as 270r/min, prepare MoSi2 powder, and prepare according to step 3) La 2 O 3 /MoSi 2 composite nanoparticles were obtained, and the La 2 O 3 /MoSi 2 composite nanoparticles in step 4) were set at 0.5% of the mass of Mo, and kept for 7 hours to prepare La 2 O 3 /Mo 5 The comprehensive performance data of Si 3 composite nanoparticles strengthened and toughened sintered molybdenum materials are shown in Table 5.
表5本实施例材料性能数据Table 5 present embodiment material performance data
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101431396A CN101353735B (en) | 2008-09-04 | 2008-09-04 | A method for preparing composite nanoparticle strengthened and toughened sintered molybdenum material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101431396A CN101353735B (en) | 2008-09-04 | 2008-09-04 | A method for preparing composite nanoparticle strengthened and toughened sintered molybdenum material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101353735A true CN101353735A (en) | 2009-01-28 |
CN101353735B CN101353735B (en) | 2011-08-03 |
Family
ID=40306747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101431396A Expired - Fee Related CN101353735B (en) | 2008-09-04 | 2008-09-04 | A method for preparing composite nanoparticle strengthened and toughened sintered molybdenum material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101353735B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101935793A (en) * | 2010-10-13 | 2011-01-05 | 中南大学 | A high-strength molybdenum-doped plate and its preparation method |
CN102274969A (en) * | 2011-07-07 | 2011-12-14 | 西安交通大学 | Preparation method of molybdenum alloy electrode material doped with nano rare earth oxides |
CN105887029A (en) * | 2016-06-26 | 2016-08-24 | 苏州思创源博电子科技有限公司 | Preparation method of molybdenum alloy plate with hard nitrogen-yttrium-zirconium coating |
CN108975918A (en) * | 2018-08-13 | 2018-12-11 | 四川大学 | A kind of high tenacity high-temperature structural material MoSi2-Mo5Si3The preparation of composite ceramics |
-
2008
- 2008-09-04 CN CN2008101431396A patent/CN101353735B/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101935793A (en) * | 2010-10-13 | 2011-01-05 | 中南大学 | A high-strength molybdenum-doped plate and its preparation method |
CN102274969A (en) * | 2011-07-07 | 2011-12-14 | 西安交通大学 | Preparation method of molybdenum alloy electrode material doped with nano rare earth oxides |
CN102274969B (en) * | 2011-07-07 | 2013-03-13 | 西安交通大学 | Preparation method of molybdenum alloy electrode material doped with nano rare earth oxides |
CN105887029A (en) * | 2016-06-26 | 2016-08-24 | 苏州思创源博电子科技有限公司 | Preparation method of molybdenum alloy plate with hard nitrogen-yttrium-zirconium coating |
CN108975918A (en) * | 2018-08-13 | 2018-12-11 | 四川大学 | A kind of high tenacity high-temperature structural material MoSi2-Mo5Si3The preparation of composite ceramics |
Also Published As
Publication number | Publication date |
---|---|
CN101353735B (en) | 2011-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109136615B (en) | Preparation method of high-strength high-plasticity dispersion-strengthened copper-based composite material | |
CN107829007B (en) | A method for preparing high-entropy alloy bulk by high-entropy alloy and powder metallurgy | |
CN109487141B (en) | Preparation method of platy carbide solid solution toughened mixed crystal Ti (C, N) -based metal ceramic | |
CN110373561B (en) | A method for preparing high-density fine-grained titanium alloy by powder forging | |
CN110273092B (en) | CoCrNi particle reinforced magnesium-based composite material and preparation method thereof | |
CN105648297A (en) | Preparation method for high-entropy alloy composite material with externally-added nanometer ceramic phase reinforced and toughened | |
CN103173670A (en) | Preparation method for in-situ synthesis of carbide enhanced tungsten-based composite material | |
CN112063869B (en) | Preparation method of hydrogen-assisted powder metallurgy titanium-based composite material | |
CN109338193B (en) | Coreless-ring structure metal ceramic alloy and preparation method thereof | |
CN109576545B (en) | A Ti(C,N)-based cermet with mixed crystal structure and preparation method thereof | |
CN101186981A (en) | Preparation method of high-strength and high-toughness ultrafine-grained WC-10Co cemented carbide | |
CN107142388A (en) | A kind of preparation method of Ti 13Nb 13Zr alloys | |
CN115305401B (en) | High-entropy alloy-high-entropy ceramic combined tungsten carbide hard alloy and preparation method thereof | |
CN1958817A (en) | Method for preparing alloy material of high niobium-titanium-aluminum by discharging plasma agglomeration | |
CN108866416B (en) | A kind of high-strength, toughness and oxygen-resistant molybdenum alloy and preparation method thereof | |
CN108034875B (en) | Rare earth oxide doped Mo-Si-B alloy and preparation method thereof | |
CN110983152B (en) | A Fe-Mn-Si-Cr-Ni-based shape memory alloy and preparation method thereof | |
CN101353735A (en) | A method for preparing composite nanoparticle strengthened and toughened sintered molybdenum material | |
CN106756168B (en) | The method that one kind prepares Ti (C, N) based ceramic metal based on carbon thermal reduction molybdenum trioxide | |
CN108866413B (en) | A kind of composite high-strength and tough molybdenum alloy and preparation method thereof | |
CN108411154B (en) | Flame-retardant graphene titanium-aluminum-based composite material and preparation method thereof | |
WO2025007471A1 (en) | High-performance nano cemented carbide product and preparation method therefor | |
CN112941391B (en) | NbC-containing high-density composite metal ceramic material and preparation method thereof | |
CN108866415A (en) | A kind of high tough low-oxygen molybdenum alloy and preparation method | |
CN108866414B (en) | A kind of high strength and toughness molybdenum alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20090128 Assignee: Jiangsu Star Limited company of tungsten and molybdenum Assignor: Central South University Contract record no.: 2013320000434 Denomination of invention: Method for preparing composite nanoparticle strongly toughened sintering molybdenum material Granted publication date: 20110803 License type: Exclusive License Record date: 20130520 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110803 Termination date: 20210904 |
|
CF01 | Termination of patent right due to non-payment of annual fee |