[go: up one dir, main page]

CN101325259B - A kind of preparation method of gas diffusion layer of proton exchange membrane fuel cell - Google Patents

A kind of preparation method of gas diffusion layer of proton exchange membrane fuel cell Download PDF

Info

Publication number
CN101325259B
CN101325259B CN2007101188747A CN200710118874A CN101325259B CN 101325259 B CN101325259 B CN 101325259B CN 2007101188747 A CN2007101188747 A CN 2007101188747A CN 200710118874 A CN200710118874 A CN 200710118874A CN 101325259 B CN101325259 B CN 101325259B
Authority
CN
China
Prior art keywords
diffusion layer
fluorosurfactant
ptfe
layer
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007101188747A
Other languages
Chinese (zh)
Other versions
CN101325259A (en
Inventor
孙公权
毛庆
王素力
孙海
吴智谋
高妍
辛勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amperex Technology Ltd Of Central China (zhangjiagang)
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN2007101188747A priority Critical patent/CN101325259B/en
Publication of CN101325259A publication Critical patent/CN101325259A/en
Application granted granted Critical
Publication of CN101325259B publication Critical patent/CN101325259B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明涉及一种用于质子交换膜燃料电池气体扩散层的制备方法,气体扩散层中的聚四氟乙烯(PTFE)分散均匀,扩散层具有相对较低的电子电阻和气体传质阻力。制备方法如下:微孔层浆液采用易于碳粉润湿的低沸点有机溶剂与碳粉混合,并在加入PTFE水分散液前,在PTFE水分散液中加入氟表面活性剂;然后将微孔层浆液均匀的分散在扩散层的支撑层上,经热处理形成气体扩散层。由此方法制备的气体扩散层,可应用于具有气体扩散电极结构的电池、电解池以及传感器中。The invention relates to a preparation method for a gas diffusion layer of a proton exchange membrane fuel cell. Polytetrafluoroethylene (PTFE) in the gas diffusion layer is evenly dispersed, and the diffusion layer has relatively low electronic resistance and gas mass transfer resistance. The preparation method is as follows: the microporous layer slurry is mixed with the carbon powder with a low-boiling organic solvent that is easy to wet by the carbon powder, and before adding the PTFE aqueous dispersion, a fluorosurfactant is added to the PTFE aqueous dispersion; then the microporous layer The slurry is uniformly dispersed on the support layer of the diffusion layer, and the gas diffusion layer is formed after heat treatment. The gas diffusion layer prepared by the method can be applied to batteries, electrolytic cells and sensors with gas diffusion electrode structures.

Description

一种质子交换膜燃料电池气体扩散层的制备方法 A kind of preparation method of gas diffusion layer of proton exchange membrane fuel cell

技术领域technical field

本发明涉及一种质子交换膜燃料电池气体扩散层的制备方法。The invention relates to a method for preparing a gas diffusion layer of a proton exchange membrane fuel cell.

背景技术Background technique

质子交换膜燃料电池是一类以全氟磺酸型固体聚合物为电解质的燃料电池。当以氢气为燃料时,被称为氢氧质子交换膜燃料电池(PEMFC);当以甲醇、乙醇等醇类为燃料时,被称为直接醇类燃料电池(DAFC)。在质子交换膜燃料电池中,扩散层位于催化层和流场之间,它不但防止了催化层和流场板的直接接触,使反应物在催化层表面均匀分布,而且又有调节膜电极内水平衡的作用,因此近年来受到广泛的关注。如图1所示,典型的扩散层由支撑层和微孔层构成,支撑层一般是由碳纤维构成的碳布或者碳纸,而微孔层一般是由碳粉和憎水性的聚四氟乙烯(PTFE)构成。US3912538公开了PEMFC中阴极扩散层的结构特征,比较了仅有支撑层的扩散层和如图1所示结构扩散层的空气性能,结果表明具有微孔层的PEMFC具有相对较高的电池性能。Proton exchange membrane fuel cells are a type of fuel cells that use perfluorosulfonic acid solid polymers as electrolytes. When hydrogen is used as fuel, it is called hydrogen-oxygen proton exchange membrane fuel cell (PEMFC); when methanol, ethanol and other alcohols are used as fuel, it is called direct alcohol fuel cell (DAFC). In the proton exchange membrane fuel cell, the diffusion layer is located between the catalytic layer and the flow field. It not only prevents the direct contact between the catalytic layer and the flow field plate, makes the reactants evenly distributed on the surface of the catalytic layer, but also regulates the membrane electrode. The role of water balance has therefore received extensive attention in recent years. As shown in Figure 1, a typical diffusion layer is composed of a support layer and a microporous layer. The support layer is generally carbon cloth or carbon paper made of carbon fibers, and the microporous layer is generally composed of carbon powder and hydrophobic polytetrafluoroethylene. (PTFE) composition. US3912538 discloses the structural characteristics of the cathode diffusion layer in PEMFC, and compares the air performance of the diffusion layer with only the support layer and the diffusion layer with the structure shown in Figure 1. The results show that the PEMFC with the microporous layer has relatively high battery performance.

微孔层的结构对电池性能的影响,在目前公开的专利中已有了许多相关报道。US006103077介绍了一种具有较高透气性的憎水性微孔层的制备方法,通过采用具有不同憎水性的碳粉制备多层微孔层来实现微孔层憎水性的梯度分布。而US20050106450-A1则进一步通过改变微孔层中憎水性物质PTFE的含量和调节碳粉类型及其比例,来实现微孔层中憎水性与孔径的梯度分布,提高扩散层的排水能力并降低氧气的物质传递阻力。The impact of the structure of the microporous layer on battery performance has been reported in many published patents. US006103077 introduces a method for preparing a hydrophobic microporous layer with high air permeability. The gradient distribution of the hydrophobicity of the microporous layer is realized by using carbon powders with different hydrophobicities to prepare multi-layer microporous layers. US20050106450-A1 further changes the content of hydrophobic substance PTFE in the microporous layer and adjusts the type and proportion of carbon powder to realize the gradient distribution of hydrophobicity and pore size in the microporous layer, improve the drainage capacity of the diffusion layer and reduce oxygen resistance to material transport.

在微孔层的制备过程中,浆液在基底表面的润湿程度及浆液中物质的分散程度同样会影响微孔层的结构。CN1741309A应用水溶性聚合物作为微孔层浆液的分散剂,其目的是提高碳粉在醇为溶剂的浆液中的分散性并抑制浆液的层分离。微孔层中采用的憎水性物质PTFE一般为水分散液,是通过非离子表面稳定剂(如X100),使其分散在水中(US4425448)。因此,文献报道的用于微孔层制备的浆液一般为水分散液(US006103077,US4116143,US006024848),浆液的分散需要高强度的超声或剪切力使碳粉润湿。而PTFE在碳颗粒上的沉降则通过加入不被PTFE吸附的高价聚阳离子来实现(US4166143)。然而,微孔层通常要制备在具有憎水性质的基底上(如憎水化处理的碳布或碳纸),水溶性浆液在憎水性基底表面较难分散均匀,在目前报道的文献和专利中,对此过程都没有提及。乙醇,异丙醇等低沸点有机溶剂有利于碳粉的润湿及在憎水性基底上的铺展,且浆液分散后溶剂易于挥发,是微孔层浆液制备良好的备选溶剂。PTFE是具有低表面能的有机粒子,在非水介质中采用经典的表面活性剂作分散剂,其分散稳定作用远不及在水性介质中。因此,当PTFE的水分散液加入到过量的乙醇、异丙醇等非水介质中时,PTFE会团聚成较大的颗粒,导致制备的微孔层内局部电绝缘和气体传质阻力增加。During the preparation of the microporous layer, the degree of wetting of the slurry on the surface of the substrate and the degree of dispersion of substances in the slurry will also affect the structure of the microporous layer. CN1741309A uses a water-soluble polymer as the dispersant of the microporous layer slurry, and its purpose is to improve the dispersibility of carbon powder in the slurry of alcohol as the solvent and suppress the layer separation of the slurry. The hydrophobic substance PTFE used in the microporous layer is generally a water dispersion, which is obtained through a non-ionic surface stabilizer (such as X100), make it dispersed in water (US4425448). Therefore, the slurry used for the preparation of the microporous layer reported in the literature is generally an aqueous dispersion (US006103077, US4116143, US006024848), and the dispersion of the slurry requires high-intensity ultrasound or shear force to wet the carbon powder. The precipitation of PTFE on carbon particles is realized by adding high-valent polycations that are not adsorbed by PTFE (US4166143). However, the microporous layer is usually prepared on a hydrophobic substrate (such as hydrophobized carbon cloth or carbon paper), and it is difficult for the water-soluble slurry to disperse evenly on the surface of the hydrophobic substrate. , there is no mention of this process. Low-boiling organic solvents such as ethanol and isopropanol are good for the wetting of the carbon powder and spreading on the hydrophobic substrate, and the solvent is easy to volatilize after the slurry is dispersed, so it is a good candidate solvent for the preparation of the microporous layer slurry. PTFE is an organic particle with low surface energy. When a classic surfactant is used as a dispersant in a non-aqueous medium, its dispersion and stabilization effect is far inferior to that in an aqueous medium. Therefore, when the aqueous dispersion of PTFE is added to non-aqueous media such as excess ethanol and isopropanol, PTFE will agglomerate into larger particles, resulting in increased local electrical insulation and gas mass transfer resistance in the prepared microporous layer.

发明内容Contents of the invention

本发明的目的在于提供一种质子交换膜燃料电池气体扩散层的制备方法,通过采用易于碳粉润湿的低沸点有机溶剂,实现了微孔层浆液在憎水性基底上的均匀分散;并在微孔层浆液中加入氟表面活性剂,以降低PTFE在微孔层浆液中的颗粒粒径并提高其分散程度。由此方法制备的扩散层其特征在于气体扩散层的微孔层中PTFE分散均匀,扩散层具有相对较低的电子电阻和气体传质阻力。The object of the present invention is to provide a kind of preparation method of the gas diffusion layer of proton exchange membrane fuel cell, by adopting the low-boiling point organic solvent that is easy to wet by carbon powder, realized the uniform dispersion of microporous layer slurry on the hydrophobic substrate; and in A fluorine surfactant is added to the microporous layer slurry to reduce the particle size of PTFE in the microporous layer slurry and improve its dispersion degree. The diffusion layer prepared by the method is characterized in that PTFE is uniformly dispersed in the microporous layer of the gas diffusion layer, and the diffusion layer has relatively low electronic resistance and gas mass transfer resistance.

为实现上述目的,本发明针对PTFE在低沸点有机溶剂中的团聚问题,提出在微孔层浆液的制备过程中加入氟表面活性剂,以降低PTFE在微孔层浆液中的颗粒大小并提高其分散程度,由此来降低微孔层的电子电阻及气体传递阻力。In order to achieve the above object, the present invention aims at the problem of agglomeration of PTFE in low-boiling organic solvents, and proposes to add a fluorosurfactant in the preparation process of the microporous layer slurry to reduce the particle size of PTFE in the microporous layer slurry and improve its The degree of dispersion, thereby reducing the electronic resistance and gas transfer resistance of the microporous layer.

具体地说,本发明提供的制备方法其步骤如下:Specifically, the steps of the preparation method provided by the invention are as follows:

a)将碳粉加入到易于碳粉润湿的沸点低于200℃的有机溶剂中,混合均匀;a) adding the carbon powder to an organic solvent with a boiling point lower than 200°C that is easy to wet the carbon powder, and mix well;

b)将氟表面活性剂加入到聚四氟乙烯(PTFE)水分散液中,混合均匀;所述氟表面活性剂为具有氟碳链憎水基的表面活性剂,该氟表面活性剂的加入量占氟表面活性剂和聚四氟乙烯(PTFE)总重量的0.01-20%;b) adding the fluorosurfactant to polytetrafluoroethylene (PTFE) aqueous dispersion, and mixing uniformly; The amount accounts for 0.01-20% of the total weight of fluorosurfactant and polytetrafluoroethylene (PTFE);

c)将步骤b制备的聚四氟乙烯(PTFE)水分散液加入到步骤a制备的混合物中,混合均匀,形成微孔层浆液;c) adding the polytetrafluoroethylene (PTFE) aqueous dispersion prepared in step b to the mixture prepared in step a, and mixing uniformly to form a microporous layer slurry;

d)将步骤c微孔层浆液分散到扩散层的支撑层上,并经热处理形成扩散层。d) Dispersing the slurry of the microporous layer in step c on the support layer of the diffusion layer, and heat-treating to form a diffusion layer.

所述的制备方法,其中有机溶剂为甲醇、乙醇、异丙醇、邻二甲苯、三氟乙醇、三氟乙酸、三乙胺、三氯乙烯、甲苯、四氢呋喃、叔丁醇、吡啶、硝基甲烷、2-甲基-2-丙醇、异丙醚、乙酸乙酯、1,4-二氧六环、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、1,2-二甲氧基乙烷、乙醚、二乙胺、二氯乙烷、1,2-二氯乙烷、丁醚、环己烷、氯仿、氯苯、四氯化碳、二硫化碳、溴苯、苯、苯甲醚、乙腈、丙酮、乙酸、乙二醇、乙酸、丁醇、正己烷、庚烷其中一种或几种的混合物。。The preparation method, wherein the organic solvent is methanol, ethanol, isopropanol, o-xylene, trifluoroethanol, trifluoroacetic acid, triethylamine, trichloroethylene, toluene, tetrahydrofuran, tert-butanol, pyridine, nitro Methane, 2-methyl-2-propanol, isopropyl ether, ethyl acetate, 1,4-dioxane, dimethyl sulfoxide, N,N-dimethylformamide, N,N-di Methylacetamide, 1,2-dimethoxyethane, ether, diethylamine, dichloroethane, 1,2-dichloroethane, butyl ether, cyclohexane, chloroform, chlorobenzene, tetrachloro Carbon dioxide, carbon disulfide, bromobenzene, benzene, anisole, acetonitrile, acetone, acetic acid, ethylene glycol, acetic acid, butanol, n-hexane, heptane or a mixture of one or more of them. .

所述的制备方法,其中氟表面活性剂为磺酸型或磺酸盐型阴离子氟表面活性剂,或全氟烷基乙氧基醚醇非离子氟表面活性剂,或二醇型氟表面活性剂。The preparation method, wherein the fluorosurfactant is a sulfonic acid type or sulfonate type anionic fluorosurfactant, or a perfluoroalkyl ethoxy ether alcohol nonionic fluorosurfactant, or a diol type fluorosurfactant agent.

所述的制备方法,其中氟表面活性剂为氟表面活性剂为RfOC6H4SO3H、RfOC6H4SO3Li、RfOC6H4SO3Na、RfOC6H4SO3K、RfO(CF2CFCF3O)nCF2CF2SO3H(Nafion)、RfO(CF2CFCF3O)nCF2CF2SO3Li、RfO(CF2CFCF3O)nCF2CF2SO3Na、RfO(CF2CFCF3O)nCF2CF2SO3K、Rf(CH2CH2O)nH、或CnF2n+1CH2O(CH2CH2O)mH。。The preparation method, wherein the fluorosurfactant is RfOC 6 H 4 SO 3 H, RfOC 6 H 4 SO 3 Li, RfOC 6 H 4 SO 3 Na, RfOC 6 H 4 SO 3 K, RfO (CF 2 CFCF 3 O) n CF 2 CF 2 SO 3 H(Nafion), RfO(CF 2 CFCF 3 O) n CF 2 CF 2 SO 3 Li, RfO(CF 2 CFCF 3 O) n CF 2 CF 2 SO 3 Na, RfO(CF 2 CFCF 3 O) n CF 2 CF 2 SO 3 K, Rf(CH 2 CH 2 O) n H, or C n F 2n+1 CH 2 O(CH 2 CH 2 O) m H . .

所述的制备方法,其中碳粉为乙炔黑、

Figure S071B8874720070706D000041
Figure S071B8874720070706D00004095306QIETU
Black
Figure S071B8874720070706D000044
Ketjen
Figure S071B8874720070706D000045
其中一种或几种的混合物。Described preparation method, wherein carbon powder is acetylene black,
Figure S071B8874720070706D000041
Figure S071B8874720070706D00004095306QIETU
Black
Figure S071B8874720070706D000044
Ketjen
Figure S071B8874720070706D000045
One or a mixture of several of them.

所述的制备方法,其中步骤a和步骤b的操作顺序为任意。In the preparation method, the operation sequence of step a and step b is arbitrary.

与现有技术相比,本发明制备的微孔层具有以下优点:Compared with the prior art, the microporous layer prepared by the present invention has the following advantages:

1、本发明扩散层的制备方法有利于降低碳粉分散的机械功耗,且微孔层浆液易于分散在憎水性基底上。现有的微孔层浆液一般为水分散液,制备过程如下:将碳粉加入到含有非离子表面活性剂(如

Figure S071B8874720070706D000046
X100)的PTFE的水分散液中,通过高强度的超声和剪切力使碳粉润湿分散,并通过加入高价聚阳离子使PTFE沉降,制备的水溶性浆液很难在憎水性基底上分散。而本发明采用乙醇、异丙醇等易于碳粉润湿的低沸点有机溶剂作为微孔层浆液的溶剂,通过低强度的超声或搅拌就可将碳粉润湿分散。并且,制备的微孔层浆液易于在憎水性基底的表面铺展。1. The preparation method of the diffusion layer of the present invention is beneficial to reduce the mechanical power consumption of carbon powder dispersion, and the microporous layer slurry is easy to disperse on the hydrophobic substrate. The existing microporous layer slurry is generally an aqueous dispersion, and the preparation process is as follows: carbon powder is added to a mixture containing a nonionic surfactant (such as
Figure S071B8874720070706D000046
X100) in the water dispersion of PTFE, the carbon powder is wetted and dispersed by high-intensity ultrasound and shear force, and the PTFE is settled by adding high-valent polycations. The prepared water-soluble slurry is difficult to disperse on the hydrophobic substrate. However, the present invention uses ethanol, isopropanol and other low-boiling organic solvents that are easy to wet the carbon powder as the solvent of the microporous layer slurry, and the carbon powder can be wetted and dispersed by low-intensity ultrasound or stirring. Moreover, the prepared microporous layer slurry is easy to spread on the surface of the hydrophobic substrate.

2、本发明扩散层的制备方法有利于降低PTFE在微孔层浆液中颗粒的粒径,降低了扩散层的电子电阻及气体传质阻力。如果采用低沸点的乙醇、异丙醇作为溶剂,直接将PTFE水分散液加入到微孔层浆液的溶剂中,PTFE会形成较大颗粒的团聚。在微孔层的热处理过程中,大颗粒的PTFE形成较大面积包裹的绝缘区域,降低了扩散层局部的电子电导性质与透气性。而本发明中,氟表面活性剂的加入有效地降低了浆液中PTFE的破乳团聚。由此制备的扩散层中PTFE分散均匀,碳粉颗粒易于形成连续的电子传递网络,扩散层的电子电阻降低,同时有助于提高扩散层的透气性。2. The preparation method of the diffusion layer of the present invention is beneficial to reduce the particle size of PTFE particles in the microporous layer slurry, and reduces the electronic resistance and gas mass transfer resistance of the diffusion layer. If ethanol and isopropanol with low boiling point are used as solvents, and the PTFE water dispersion is directly added to the solvent of the microporous layer slurry, PTFE will form agglomeration of larger particles. During the heat treatment process of the microporous layer, the large-particle PTFE forms a large-area wrapped insulating area, which reduces the local electronic conductivity and gas permeability of the diffusion layer. However, in the present invention, the addition of fluorosurfactant effectively reduces the demulsification and agglomeration of PTFE in the slurry. The PTFE in the thus prepared diffusion layer is evenly dispersed, the carbon powder particles are easy to form a continuous electron transfer network, the electronic resistance of the diffusion layer is reduced, and at the same time, it helps to improve the gas permeability of the diffusion layer.

附图说明Description of drawings

图1为质子交换膜燃料电池扩散层结构示意图。Figure 1 is a schematic diagram of the diffusion layer structure of a proton exchange membrane fuel cell.

图2为微孔层浆液在憎水化处理的碳纸表面分散情况比较;其中:Figure 2 is a comparison of the dispersion of the microporous layer slurry on the surface of the hydrophobically treated carbon paper; wherein:

图2a为采用US4116143方法制备的微孔层浆液;Fig. 2a is the microporous layer slurry prepared by US4116143 method;

图2b为采用本发明方法制备的微孔层浆液。Fig. 2b is a microporous layer slurry prepared by the method of the present invention.

图3为PTFE水分散液在水中及不同浓度的PTFE水分散液在乙醇溶剂中的颗粒分布。Fig. 3 is the particle distribution of the PTFE aqueous dispersion in water and the PTFE aqueous dispersion of different concentrations in ethanol solvent.

图4为由PTFE水分散液与具有不同氟碳表面活性剂的PTFE水分散液与碳粉混合形成的微孔层的表面形貌;其中:Fig. 4 is the surface morphology of the microporous layer formed by mixing PTFE aqueous dispersion with different PTFE aqueous dispersions of fluorocarbon surfactants and carbon powder; wherein:

图4a为C+PTFE;Figure 4a is C+PTFE;

图4b为C+PTFE+Actyflon-S100;Figure 4b is C+PTFE+Actyflon-S100;

图4c为C+PTFE+Actyflon-S400。Figure 4c is C+PTFE+Actyflon-S400.

图5为含有不同含量氟表面活性剂的微孔层的表面形貌;其中:Fig. 5 is the surface appearance of the microporous layer containing different contents of fluorosurfactant; Wherein:

图5a为C+PTFE+Nafion1%;Figure 5a is C+PTFE+Nafion1%;

图5b为C+PTFE+Nafion2%;Figure 5b is C+PTFE+Nafion2%;

图5c为C+PTFE+Nafion5%。Figure 5c is C+PTFE+Nafion5%.

图6为扩散层的透气性。Figure 6 shows the air permeability of the diffusion layer.

具体实施方式Detailed ways

下面的实施例较为详尽地描述了本发明所提供的质子交换膜燃料电池气体扩散层的制备过程及表征实验,但并不限制发明的技术保护范围。The following examples describe in detail the preparation process and characterization experiments of the gas diffusion layer of the proton exchange membrane fuel cell provided by the present invention, but do not limit the technical protection scope of the invention.

实施例1Example 1

水与异丙醇作为溶剂的微孔层浆液在憎水性基底表面的分散效果比较Comparison of dispersion effect of water and isopropanol as solvent of microporous layer slurry on the surface of hydrophobic substrate

同时采用US4116143的方法与本发明的方法制备气体扩散层的微孔层浆液,并应用刮涂方法分别在憎水化处理的碳纸TGP-H-030(Toray公司)表面分散。如图2所示,应用US4116143的方法制备的以水为溶剂的微孔层浆液与碳纸表面的接触角大于90°,浆液在碳纸表面呈球状无法铺展。而本发明制备的以异丙醇为溶剂的微孔层浆液与碳纸表面的接触角小于90°,由于浆液能够浸湿碳纸,刮涂方法使浆液在碳纸表面均匀铺展。At the same time, the method of US4116143 and the method of the present invention were used to prepare the microporous layer slurry of the gas diffusion layer, and the slurry was dispersed on the surface of the hydrophobically treated carbon paper TGP-H-030 (Toray Company) by the scraping method. As shown in Figure 2, the contact angle of the microporous layer slurry prepared by the method of US4116143 with water as the solvent and the surface of the carbon paper is greater than 90°, and the slurry is spherical and unable to spread on the surface of the carbon paper. However, the microporous layer slurry prepared with isopropanol as a solvent has a contact angle with the carbon paper surface of less than 90°, and since the slurry can soak the carbon paper, the scraping method makes the slurry evenly spread on the surface of the carbon paper.

实施例2Example 2

PTFE水分散液在水中与在乙醇溶剂中的分散效果比较。The dispersion effect of PTFE water dispersion in water and in ethanol solvent is compared.

取PTFE水分散液(FR301B,上海3F新材料公司)分散在水中,PTFE占PTFE与水总质量的0.50%。采用激光粒度仪(BT9300,百特仪器有限公司)记录PTFE在水中的粒径分布。Take PTFE aqueous dispersion (FR301B, Shanghai 3F New Material Co., Ltd.) and disperse it in water, and PTFE accounts for 0.50% of the total mass of PTFE and water. The particle size distribution of PTFE in water was recorded by a laser particle size analyzer (BT9300, Baxter Instrument Co., Ltd.).

取PTFE水分散液分散在乙醇中,PTFE占PTFE与乙醇总质量的0.27%,采用激光粒度仪记录PTFE颗粒在乙醇中的粒径分布。同样方法测量在PTFE占PTFE与乙醇总质量的0.35%和0.42%时,PTFE的粒度分布。The PTFE water dispersion is dispersed in ethanol, PTFE accounts for 0.27% of the total mass of PTFE and ethanol, and the particle size distribution of PTFE particles in ethanol is recorded by a laser particle size analyzer. The same method is used to measure the particle size distribution of PTFE when PTFE accounts for 0.35% and 0.42% of the total mass of PTFE and ethanol.

图1示出了PTFE水分散液在水中及不同含量的PTFE在乙醇溶剂中分散的粒径分布。结果表明,在水中PTFE颗粒的中位径为0.26μm,而在乙醇溶剂中在PTFE含量为0.27%时,颗粒的中位径为31.23μm,并且随着含量增加为0.35%和0.42%,PTFE颗粒的中位径分别增加为40.52μm和47.30μm。因此,在水中在非离子表面活性剂(如:

Figure S071B8874720070706D000071
X100)的作用下,颗粒的粒径较小;在乙醇溶剂中PTFE破乳团聚,随PTFE浓度的增加颗粒的粒径逐步增加。Figure 1 shows the particle size distribution of PTFE aqueous dispersion in water and different content of PTFE dispersed in ethanol solvent. The results show that the median diameter of PTFE particles in water is 0.26 μm, while in ethanol solvent when the PTFE content is 0.27%, the median diameter of the particles is 31.23 μm, and as the content increases to 0.35% and 0.42%, PTFE The median diameter of the particles increased to 40.52 μm and 47.30 μm, respectively. Therefore, in water in non-ionic surfactants (such as:
Figure S071B8874720070706D000071
Under the effect of X100), the particle diameter of particle is less; In ethanol solvent, PTFE demulsification and agglomeration, with the increase of PTFE concentration, the particle diameter of particle increases gradually.

实施例3Example 3

由PTFE水分散液与含有不同氟表面活性剂的PTFE水分散液制备的微孔层形貌比较。Morphology comparison of microporous layers prepared from PTFE aqueous dispersions and PTFE aqueous dispersions containing different fluorosurfactants.

方法1:由不含氟表面活性剂的PTFE水分散液制备微孔层浆液。Method 1: Prepare microporous layer slurry from PTFE aqueous dispersion without fluorine surfactant.

(1)称取XC-72碳粉200毫克加入到10克的乙醇中,超声分散20分钟。(1) Weighing Add 200mg of XC-72 carbon powder into 10g of ethanol, and ultrasonically disperse for 20 minutes.

(2)将334毫克PTFE水分散液加入到由第一步制备的混合物中,搅拌30分钟混合均匀,形成浆液。(2) Add 334 mg of PTFE aqueous dispersion into the mixture prepared in the first step, stir for 30 minutes and mix well to form a slurry.

方法2:由含有氟表面活性剂的PTFE水分散液制备微孔层浆液。Method 2: Prepare microporous layer slurry from PTFE aqueous dispersion containing fluorosurfactant.

(1)称取

Figure S071B8874720070706D000081
XC-72碳粉200毫克加入到10克的乙醇中,超声分散20分钟。(1) Weighing
Figure S071B8874720070706D000081
Add 200mg of XC-72 carbon powder into 10g of ethanol, and ultrasonically disperse for 20 minutes.

(2)将氟表面活性剂加入到334毫克的PTFE水分散液中,搅拌混合均匀。其中氟表面活性剂占氟表面活性剂和PTFE总质量的5%。(2) Add the fluorosurfactant to 334 mg of PTFE aqueous dispersion, stir and mix evenly. Wherein the fluorosurfactant accounts for 5% of the total mass of the fluorosurfactant and PTFE.

(3)将由第二步制备的PTFE水分散液加入到由第一步制备的混合物中搅拌30分钟混合均匀,形成浆液。(3) Add the PTFE aqueous dispersion prepared in the second step to the mixture prepared in the first step and stir for 30 minutes to mix evenly to form a slurry.

分别取由方法1制备的浆液,方法2制备的含有磺酸盐型阴离子氟表面活性剂Actyflon-S100(雪佳氟硅化学有限公司)和方法2制备的含有二醇型氟表面活性剂Actyflon-S400(雪佳氟硅化学有限公司)的微孔层浆液滴到载波片上,常温干燥后通过金相显微镜(XJZ-6,江南光电股份有限公司)观察微孔层的表面形貌。Take the slurry prepared by method 1, the sulfonate-type anionic fluorosurfactant Actyflon-S100 prepared by method 2 (Xuejia Fluoro Silicon Chemical Co., Ltd.) and the diol-type fluorosurfactant Actyflon-S100 prepared by method 2. The microporous layer slurry of S400 (Xuejia Fluorosilicon Chemical Co., Ltd.) was dropped on the carrier slide, and after drying at room temperature, the surface morphology of the microporous layer was observed through a metallographic microscope (XJZ-6, Jiangnan Optoelectronics Co., Ltd.).

图3示出了方法1与方法2制备的微孔层的表面形貌比较。结果表明,不含氟表面活性剂的PTFE水分散液制备微孔层中,PTFE颗粒较大且分布不均匀。而两种氟表面活性剂的加入,都在不同程度上降低了PTFE在微孔层中的粒径,提高了PTFE与碳粉在浆液中的分散程度。Figure 3 shows the comparison of the surface morphology of the microporous layer prepared by method 1 and method 2. The results show that the PTFE particles are large and unevenly distributed in the microporous layer prepared from the PTFE aqueous dispersion without fluorine surfactant. The addition of the two fluorosurfactants all reduced the particle size of PTFE in the microporous layer to varying degrees, and improved the degree of dispersion of PTFE and carbon powder in the slurry.

实施例4Example 4

不同含量的氟表面活性剂对微孔层表面形貌的影响。Effect of different contents of fluorosurfactant on surface morphology of microporous layer.

采用乙炔黑碳粉,应用实施例3方法2制备PTFE水分散液中磺酸型氟表面活性剂(Nafion)含量分别为1%,2%和5%的微孔层浆液,滴于载玻片上,干燥后通过金相显微镜观察。图4示出了制备的微孔层的表面形貌,与图3(a)示出的不含氟表面活性剂的微孔层相比,可以看出随着Nafion含量的增加,PTFE颗粒在碳粉中团聚的颗粒减小且分散均匀。Adopt acetylene black carbon powder, application embodiment 3 method 2 prepares the microporous layer slurry that sulfonic acid type fluorosurfactant (Nafion) content is respectively 1%, 2% and 5% in the PTFE aqueous dispersion liquid, drops on the glass slide , observed by a metallographic microscope after drying. Figure 4 shows the surface morphology of the prepared microporous layer, compared with the microporous layer without fluorosurfactant shown in Figure 3 (a), it can be seen that with the increase of Nafion content, the PTFE particles in The agglomerated particles in the toner are reduced and dispersed evenly.

实施例5Example 5

扩散层性能比较。Diffusion layer performance comparison.

1.具有微孔层的扩散层制备:1. Preparation of diffusion layer with microporous layer:

(1)碳纸的憎水化处理。将碳纸TGP-H-030浸渍在PTFE水分散液中,取出后干燥,反复操作至PTFE的含量为PTFE与碳纸总质量20%.(1) Hydrophobic treatment of carbon paper. Soak the carbon paper TGP-H-030 in the PTFE water dispersion, take it out and dry it, and repeat the operation until the content of PTFE is 20% of the total mass of PTFE and carbon paper.

(2)将实施例3方法1或方法2制备的微孔层浆液刮涂在碳纸基底上,待浆液中的溶剂完全挥发后进行第二层涂布。碳粉的担载量为4mg·cm-2(2) Scrape-coat the microporous layer slurry prepared by method 1 or method 2 in Example 3 on the carbon paper substrate, and perform the second layer coating after the solvent in the slurry is completely volatilized. The supported amount of carbon powder was 4 mg·cm -2 .

(3)将制备的载有微孔层的扩散层,在N2保护的条件下340℃热处理30分钟,得到如图1所示结构的扩散层。(3) The prepared diffusion layer loaded with the microporous layer was heat-treated at 340° C. for 30 minutes under the protection of N 2 to obtain the diffusion layer with the structure shown in FIG. 1 .

2.扩散层电子导电性测试2. Electronic conductivity test of diffusion layer

采用直流方法测试了扩散层的电子电阻,有效的测试面积为6.3cm2。微孔层浆液为采用乙炔黑碳粉,并应用实施例3方法1制备的微孔层浆液和实施例3方法2制备的Nafion含量分别为1%,2%和5%的微孔层浆液。The electronic resistance of the diffusion layer was tested by a direct current method, and the effective test area was 6.3cm 2 . The microporous layer slurry is acetylene black carbon powder, and the microporous layer slurry prepared by the method 1 of Example 3 and the Nafion content of the microporous layer prepared by the method 2 of Example 3 are 1%, 2% and 5% respectively.

表1示出了不同含量的氟表面活性剂Nafion的加入对扩散层的电子电阻的影响。结果表明,由实施例3方法1制备的不含氟表面活性剂的扩散层具有最高的电子电阻,而氟表面活性剂Nafion的加入降低了扩散层的电子电阻,并随着Nafion含量的增加,扩散层的电子电阻逐渐降低。在微孔层中,由于PTFE是电子的不良导体,因此PTFE颗粒的分散程度是影响扩散层电阻的关键因素。由实施例4可知,PTFE颗粒随着Nafion含量的增加而降低。颗粒较大的PTFE在热处理易成大面积的交联体,从而形成局部的电子绝缘体,所形成的扩散层电阻较高。随着PTFE分散程度的提高,微孔层中的电子导体容易形成更广泛的电子传递网络,降低了扩散层的电子电阻。Table 1 shows the effect of adding different contents of fluorosurfactant Nafion on the electronic resistance of the diffusion layer. The result shows, the diffusion layer that does not contain fluorosurfactant prepared by embodiment 3 method 1 has the highest electronic resistance, and the addition of fluorosurfactant Nafion reduces the electronic resistance of diffusion layer, and along with the increase of Nafion content, The electronic resistance of the diffusion layer gradually decreases. In the microporous layer, since PTFE is a poor conductor of electrons, the degree of dispersion of PTFE particles is a key factor affecting the resistance of the diffusion layer. As can be seen from Example 4, PTFE particles decrease with the increase of Nafion content. PTFE with larger particles tends to form a large-area cross-linked body during heat treatment, thereby forming a local electronic insulator, and the formed diffusion layer has a higher resistance. As the degree of dispersion of PTFE increases, the electronic conductors in the microporous layer tend to form a wider electron transfer network, which reduces the electronic resistance of the diffusion layer.

表1:扩散层的电子导电性Table 1: Electronic conductivity of the diffusion layer

  Nafion含量 0% 1% 2% 5% 扩散层电阻(mΩ·cm<sup>2</sup>) 28.2 24.6 21.2 11.9 Nafion content 0% 1% 2% 5% Diffusion layer resistance (mΩ cm<sup>2</sup>) 28.2 24.6 21.2 11.9

3.扩散层透气性测试3. Air permeability test of diffusion layer

采用文献(J.Electrochem.Soc.,151,(8)A1173-A1180,2004)的装置,用氧气测试扩散层的透气性,有效的面积为9.0cm2。微孔层浆液为:采用乙炔黑碳粉并应用实施例3方法1制备的微孔层浆液和实施例3方法2制备的含有Nafion的微孔层浆液。The gas permeability of the diffusion layer was tested with oxygen by using the device in the literature (J. Electrochem. Soc., 151, (8) A1173-A1180, 2004), and the effective area was 9.0 cm 2 . The microporous layer slurry is: using acetylene black carbon powder and applying the microporous layer slurry prepared by method 1 of Example 3 and the microporous layer slurry prepared by method 2 of Example 3 containing Nafion.

图5示出了扩散层的两侧气体压差与流速的关系。在相同的压差下,气体流速越高表明扩散层气体的传质阻力越低,透气性越高。实验结果表明,相比于未加氟表面活性剂制备的扩散层,加入氟表面活性剂Nafion的扩散层具有相对较高的透气性。Figure 5 shows the relationship between the gas pressure difference on both sides of the diffusion layer and the flow velocity. Under the same pressure difference, the higher the gas flow rate, the lower the mass transfer resistance and the higher the gas permeability of the diffusion layer gas. The experimental results show that, compared with the diffusion layer prepared without fluorinated surfactant, the diffusion layer added with fluorosurfactant Nafion has relatively higher air permeability.

Claims (4)

1.一种质子交换膜燃料电池气体扩散层的制备方法,其步骤如下:1. A preparation method for a proton exchange membrane fuel cell gas diffusion layer, the steps are as follows: a)将碳粉加入到易于碳粉润湿的沸点低于200℃的有机溶剂中,混合均匀;a) adding the carbon powder to an organic solvent with a boiling point lower than 200°C that is easy to wet the carbon powder, and mix well; b)将氟表面活性剂加入到聚四氟乙烯水分散液中,混合均匀;b) adding the fluorosurfactant to the polytetrafluoroethylene aqueous dispersion and mixing evenly; 所述氟表面活性剂为具有氟碳链憎水基的表面活性剂;The fluorosurfactant is a surfactant with a fluorocarbon chain hydrophobic group; 所述氟表面活性剂的加入量占氟表面活性剂和聚四氟乙烯总重量的0.01-20%;The added amount of the fluorosurfactant accounts for 0.01-20% of the total weight of the fluorosurfactant and polytetrafluoroethylene; c)将步骤b制备的聚四氟乙烯水分散液加入到步骤a制备的混合物中,混合均匀,形成微孔层浆液;c) adding the polytetrafluoroethylene aqueous dispersion prepared in step b to the mixture prepared in step a, and mixing uniformly to form a microporous layer slurry; d)将步骤c微孔层浆液分散到扩散层的支撑层上,并经热处理形成扩散层。d) Dispersing the slurry of the microporous layer in step c on the support layer of the diffusion layer, and heat-treating to form a diffusion layer. 2.按照权利要求1所述的制备方法,其中,有机溶剂为甲醇、乙醇、异丙醇、邻二甲苯、三氟乙醇、三氟乙酸、三乙胺、三氯乙烯、甲苯、四氢呋喃、叔丁醇、吡啶、硝基甲烷、2-甲基-2-丙醇、异丙醚、乙酸乙酯、1,4-二氧六环、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、1,2-二甲氧基乙烷、乙醚、二乙胺、二氯乙烷、1,2-二氯乙烷、丁醚、环己烷、氯仿、氯苯、四氯化碳、二硫化碳、溴苯、苯、苯甲醚、乙腈、丙酮、乙酸、乙二醇、丁醇、正己烷、庚烷其中一种或几种的混合物。2. according to the preparation method described in claim 1, wherein, organic solvent is methanol, ethanol, isopropanol, o-xylene, trifluoroethanol, trifluoroacetic acid, triethylamine, trichloroethylene, toluene, tetrahydrofuran, tert Butanol, pyridine, nitromethane, 2-methyl-2-propanol, isopropyl ether, ethyl acetate, 1,4-dioxane, dimethyl sulfoxide, N,N-dimethylformaldehyde Amide, N,N-dimethylacetamide, 1,2-dimethoxyethane, ether, diethylamine, dichloroethane, 1,2-dichloroethane, butyl ether, cyclohexane, Chloroform, chlorobenzene, carbon tetrachloride, carbon disulfide, bromobenzene, benzene, anisole, acetonitrile, acetone, acetic acid, ethylene glycol, butanol, n-hexane, heptane or a mixture of one or more of them. 3.按照权利要求1所述的制备方法,其中,氟表面活性剂为磺酸型或磺酸盐型阴离子氟表面活性剂,或全氟烷基乙氧基醚醇非离子氟表面活性剂,或二醇型氟表面活性剂。3. according to the preparation method described in claim 1, wherein, fluorosurfactant is sulfonic acid type or sulfonate type anionic fluorosurfactant, or perfluoroalkyl ethoxylate alcohol nonionic fluorosurfactant, Or diol type fluorosurfactant. 4.按照权利要求1所述的制备方法,其中碳粉为乙炔黑。4. according to the preparation method described in claim 1, wherein carbon powder is acetylene black.
CN2007101188747A 2007-06-13 2007-06-13 A kind of preparation method of gas diffusion layer of proton exchange membrane fuel cell Active CN101325259B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101188747A CN101325259B (en) 2007-06-13 2007-06-13 A kind of preparation method of gas diffusion layer of proton exchange membrane fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101188747A CN101325259B (en) 2007-06-13 2007-06-13 A kind of preparation method of gas diffusion layer of proton exchange membrane fuel cell

Publications (2)

Publication Number Publication Date
CN101325259A CN101325259A (en) 2008-12-17
CN101325259B true CN101325259B (en) 2010-07-28

Family

ID=40188678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101188747A Active CN101325259B (en) 2007-06-13 2007-06-13 A kind of preparation method of gas diffusion layer of proton exchange membrane fuel cell

Country Status (1)

Country Link
CN (1) CN101325259B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814616A (en) * 2010-04-15 2010-08-25 武汉理工新能源有限公司 Gas diffusion layer for fuel cell and preparation method thereof
CN102593470A (en) * 2012-03-01 2012-07-18 华东理工大学 Device and method for preparing diffusion layer slurry of proton exchange membrane fuel cell
WO2017123205A1 (en) 2016-01-12 2017-07-20 Honeywell International Inc. Electrochemical sensor
CN111162285B (en) * 2018-11-08 2021-06-04 中国科学院大连化学物理研究所 Conductive gas diffusion layer of fuel cell and preparation method thereof
CN111628183B (en) * 2020-05-27 2022-12-13 先进储能材料国家工程研究中心有限责任公司 Preparation method of fuel cell catalyst slurry
CN114614024B (en) * 2020-12-04 2023-09-15 中国科学院大连化学物理研究所 A kind of preparation method of PTFE membrane air electrode
CN113871673B (en) * 2021-09-07 2023-05-05 国家电投集团氢能科技发展有限公司 Composite proton exchange membrane and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425448A (en) * 1982-05-20 1984-01-10 E. I. Du Pont De Nemours & Co. Polytetrafluoroethylene resin with degradation retarder
US6103077A (en) * 1998-01-02 2000-08-15 De Nora S.P.A. Structures and methods of manufacture for gas diffusion electrodes and electrode components
CN1741309A (en) * 2004-08-25 2006-03-01 三星Sdi株式会社 Electrode of fuel cell and fuel cell including it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425448A (en) * 1982-05-20 1984-01-10 E. I. Du Pont De Nemours & Co. Polytetrafluoroethylene resin with degradation retarder
US6103077A (en) * 1998-01-02 2000-08-15 De Nora S.P.A. Structures and methods of manufacture for gas diffusion electrodes and electrode components
CN1741309A (en) * 2004-08-25 2006-03-01 三星Sdi株式会社 Electrode of fuel cell and fuel cell including it

Also Published As

Publication number Publication date
CN101325259A (en) 2008-12-17

Similar Documents

Publication Publication Date Title
Ngo et al. Nafion-based membrane electrode assemblies prepared from catalyst inks containing alcohol/water solvent mixtures
Woo et al. Current understanding of catalyst/ionomer interfacial structure and phenomena affecting the oxygen reduction reaction in cathode catalyst layers of proton exchange membrane fuel cells
Ren et al. Ionomer network of catalyst layers for proton exchange membrane fuel cell
CN104716337B (en) Production method of gas diffusion layer for proton exchange membrane fuel cell
CN101325259B (en) A kind of preparation method of gas diffusion layer of proton exchange membrane fuel cell
JP2012216552A (en) Solution based on improvement of fuel cell components and other electrochemical systems and devices
Athanasaki et al. Design and development of gas diffusion layers with pore forming agent for proton exchange membrane fuel cells at various relative humidity conditions
Shen et al. PVDF-g-PSSA and Al2O3 composite proton exchange membranes
JP5298566B2 (en) Membrane electrode assembly
Su et al. The effect of gas diffusion layer PTFE content on the performance of high temperature proton exchange membrane fuel cell
Park et al. Effect of dispersing solvents for ionomers on the performance and durability of catalyst layers in proton exchange membrane fuel cells
JP5223127B2 (en) Manufacturing method of gas diffusion electrode
JPWO2006067872A1 (en) High durability electrode catalyst layer
CN100428544C (en) Proton exchange membrane fuel cell electrode and method for making membrane electrode
Wang et al. Effect of Nafion® ionomer aggregation on the structure of the cathode catalyst layer of a DMFC
Wu et al. Effect of alcohol content on the ionomer adsorption of polymer electrolyte membrane fuel cell catalysts
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
Oh et al. A hydrophobic blend binder for anti-water flooding of cathode catalyst layers in polymer electrolyte membrane fuel cells
CN100527494C (en) PTFE/C Composite Powder for Low Temperature Fuel Cell Electrode and Its Application
JP2002184414A (en) Method of manufacturing gas diffusion electrode and method of manufacturing solid polymer fuel cell
JP2018152333A (en) Ionomer-coated catalyst and method for manufacturing the same, and catalyst ink
Lin et al. Revelation of ink solvents influence mechanism in catalyst layer of proton exchange membrane fuel cells
Hou et al. Enhanced low-humidity performance of proton-exchange membrane fuel cell by introducing hydrophilic CNTs in membrane electrode assembly
EP3955350A1 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP2021002519A (en) Method for forming a hydrophobic electroconductive microporous layer useful as gasdiffusion layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: JIANGSU ZHONGKE TIANBA NEW ENERGY TECHNOLOGY CO.,

Free format text: FORMER OWNER: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES

Effective date: 20130428

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 116023 DALIAN, LIAONING PROVINCE TO: 215625 SUZHOU, JIANGSU PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20130428

Address after: 215625 building A, building 410B, emerging industry incubation center, Zhangjiagang Free Trade Zone, Suzhou, Jiangsu

Patentee after: JIANGSU ZHONGKE TIANBA NEW ENERGY TECHNOLOGY CO., LTD.

Address before: 116023 Zhongshan Road, Liaoning, No. 457,

Patentee before: Dalian Institute of Chemical Physics, Chinese Academy of Sciences

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 215631 Tianba Road, Jiangsu Yangtze River International Chemical Industrial Park, Jingang Town, Zhangjiagang City, Suzhou City, Jiangsu Province

Patentee after: Amperex Technology Limited of central China (Zhangjiagang)

Address before: Room 410B, Building A, Emerging Industry Development Center, Zhangjiagang Free Trade Zone, Suzhou City, Jiangsu Province

Patentee before: JIANGSU ZHONGKE TIANBA NEW ENERGY TECHNOLOGY CO., LTD.