CN101319977A - True stress-true strain calculation model and test system - Google Patents
True stress-true strain calculation model and test system Download PDFInfo
- Publication number
- CN101319977A CN101319977A CNA2008100649558A CN200810064955A CN101319977A CN 101319977 A CN101319977 A CN 101319977A CN A2008100649558 A CNA2008100649558 A CN A2008100649558A CN 200810064955 A CN200810064955 A CN 200810064955A CN 101319977 A CN101319977 A CN 101319977A
- Authority
- CN
- China
- Prior art keywords
- image
- true
- channel
- stress
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 20
- 238000004364 calculation method Methods 0.000 title claims abstract description 16
- 238000005259 measurement Methods 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 29
- 238000004458 analytical method Methods 0.000 claims abstract description 20
- 238000005516 engineering process Methods 0.000 claims abstract description 12
- 238000009864 tensile test Methods 0.000 claims abstract description 12
- 238000004154 testing of material Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 40
- 230000008569 process Effects 0.000 claims description 37
- 230000006870 function Effects 0.000 claims description 26
- 230000008859 change Effects 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 14
- 238000005070 sampling Methods 0.000 claims description 14
- 230000018109 developmental process Effects 0.000 claims description 8
- 238000011161 development Methods 0.000 claims description 7
- 238000000691 measurement method Methods 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 230000000007 visual effect Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- 238000010191 image analysis Methods 0.000 claims description 4
- 230000011218 segmentation Effects 0.000 claims description 4
- 238000010998 test method Methods 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 claims description 2
- 239000003550 marker Substances 0.000 claims 2
- 238000003672 processing method Methods 0.000 abstract description 2
- 238000013480 data collection Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 101100386518 Caenorhabditis elegans dbl-1 gene Proteins 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明针对真应力-真应变测量的实际问题,研究了材料变形的本质特征,公开一种真应力-真应变计算模型及实用测试系统:1.在对拉伸试件变形分析的基础上,将特殊部位具有特征的单元体作为应力应变分析的对象,创建了独特的全变形单元模型,首先解决了真应力真应变理论分析问题,确立了理论基础,建立了新的真应力-真应变计算公式:
,。2.采用机器视觉技术与图像处理方法开发了与之相适应的实用软、硬件系统,实现了真正意义上的非接触真应力-真应变直接测量。3.测试系统硬件包括光源(1)、CCD摄像机(2)、图像采集卡(3)、数据采集卡(4)、材料试验机(5)。4.软件包括图像捕捉、载荷数据采集及综合计算分析程序。Aiming at the actual problem of true stress-true strain measurement, the present invention studies the essential characteristics of material deformation, and discloses a true stress-true strain calculation model and a practical test system: 1. On the basis of the deformation analysis of the tensile test piece, Taking the unit body with special features as the object of stress-strain analysis, a unique full-deformation unit model was created, firstly solving the theoretical analysis problem of true stress and true strain, establishing a theoretical basis, and establishing a new true stress-true strain calculation formula:
, . 2. Adopting machine vision technology and image processing method to develop a practical software and hardware system suitable for it, and realizing the non-contact true stress-true strain direct measurement in the true sense. 3. The hardware of the test system includes a light source (1), a CCD camera (2), an image acquisition card (3), a data acquisition card (4), and a material testing machine (5). 4. The software includes image capture, load data collection and comprehensive calculation and analysis programs.Description
(一)技术领域 (1) Technical field
本发明属于实验力学,具体地说是根据力学原理创建理论模型,并利用视觉技术和图像分析技术构成非接触测量方法应用于材料力学性能测试。The invention belongs to experimental mechanics, and specifically creates a theoretical model based on mechanics principles, and utilizes vision technology and image analysis technology to form a non-contact measurement method and applies it to material mechanical performance testing.
(二)背景技术 (2) Background technology
材料在各种不同条件下的应力-应变响应特性是反映材料性能的主要力学性能指标,对这些特性的研究以及各种力学性能指标的确认都是建立在实验基础上的,因此在材料力学性能的研究中,测试实验至关重要。The stress-strain response characteristics of materials under various conditions are the main mechanical performance indicators reflecting the performance of materials. The research on these characteristics and the confirmation of various mechanical performance indicators are based on experiments. Therefore, in the mechanical properties of materials In research, testing experiments are very important.
材料应力-应变关系的测试,通常是利用材料试验机进行拉伸实验实现的,最终结果是基于试样的原始尺寸(截面面积A0,标距L0),通过计算导出得到的。称这种应力-应变为工程应力-应变。The test of material stress-strain relationship is usually realized by using a material testing machine to carry out tensile experiments, and the final result is derived by calculation based on the original size of the sample (cross-sectional area A 0 , gauge length L 0 ). This stress-strain is called engineering stress-strain.
工程应力-应变曲线并不能表示出材料本质的行为特性。因为在拉伸任意时刻,试样的横截面积A和标距长度l是不断变化的,因此任一瞬时的真实应力σi和真实应变εi与相应的工程应力σ和工程应变ε之间是有差异的,当材料进入塑性变形阶段后这种差异尤为明显。特别是当试样出现局部变形(颈缩)后,在其工程应力-应变曲线(σ-ε曲线)上出现了随着应变的增加而应力却随之大幅度下降的趋势。这是由于颈缩出现时试样颈缩处的横截面迅速缩小,因而,使试样继续变形所需的载荷下降,而相应的工程应力却仍以原始面积A0进行计算,导致应力-应变的运算偏差加剧。实际上,颈缩后外加载荷F虽然下降了,但材料在整个颈缩过程中却还在不断的硬化,因此进一步产生变形所需的应力仍然在不断增加。这种测试参数与真实参量间的误差需要用更精准可靠的理论模型和适用测试方法来解决。Engineering stress-strain curves do not represent the intrinsic behavior of a material. Because the cross-sectional area A and the gauge length l of the sample are constantly changing at any moment of stretching, the relationship between the true stress σ i and true strain ε i at any instant and the corresponding engineering stress σ and engineering strain ε There is a difference, especially when the material enters the plastic deformation stage. Especially when the sample has local deformation (necking), the engineering stress-strain curve (σ-ε curve) shows a trend that the stress decreases significantly with the increase of strain. This is because the cross-section at the neck of the sample shrinks rapidly when the necking occurs, so the load required to continue the deformation of the sample decreases, but the corresponding engineering stress is still calculated with the original area A 0 , resulting in the stress-strain The operational deviation is exacerbated. In fact, although the applied load F decreases after necking, the material is still hardening during the whole necking process, so the stress required for further deformation is still increasing. The error between the test parameters and the real parameters needs to be resolved with more accurate and reliable theoretical models and applicable test methods.
至今没有根本解决真应力、真应变测试问题的根本在于没有在相关的测量理论分析模型上有所突破。其次,传统测量方式主要是采用接触式传感器进行直径与标距的动态测量,或直接将活动夹头的位移当作试件标距的变形,这种方法不能准确的测出材料的真应力-真应变的主要原因是:颈缩点位置的不确定,断裂面位置的随机性,断裂时刻的不可预见性及断裂瞬间的崩断现象给接触式测量带来许多难于克服的困难。因此,探索全新的理论模型,并寻求一种非接触式的测量方法是解决问题的根本出路。So far, the fundamental reason why the true stress and true strain test problems have not been fundamentally solved is that there has been no breakthrough in the relevant measurement theory analysis models. Secondly, the traditional measurement methods mainly use contact sensors for dynamic measurement of diameter and gauge length, or directly use the displacement of the movable chuck as the deformation of the gauge length of the specimen. This method cannot accurately measure the true stress of the material- The main reasons for the true strain are: the uncertainty of the position of the necking point, the randomness of the position of the fracture surface, the unpredictability of the fracture moment and the breakage phenomenon at the moment of fracture bring many insurmountable difficulties to the contact measurement. Therefore, exploring a new theoretical model and seeking a non-contact measurement method is the fundamental way to solve the problem.
(三)发明内容 (3) Contents of the invention
本发明针对真应力-真应变测量的实际问题,研究了材料变形的本质特征,公开一种真应力-真应变计算模型及测试系统。本发明在对拉伸试件变形分析的基础上,将特殊部位具有特征的单元体作为应力应变分析的对象,创建了独特的全变形单元模型,首先确立了真应力、真应变的理论基础。建立了相应的变形评价与计算理论,首先解决了真应力真应变理论分析问题,然后采用机器视觉技术与图像处理方法创建了与非接触测量相适应的适用软、硬件系统,实现了真正意义上的真应力-真应变测量。Aiming at the practical problem of true stress-true strain measurement, the invention studies the essential characteristics of material deformation, and discloses a true stress-true strain calculation model and a test system. Based on the analysis of the deformation of the tensile test piece, the present invention takes the unit body with special features as the object of stress-strain analysis, creates a unique full-deformation unit model, and first establishes the theoretical basis of true stress and true strain. Established the corresponding deformation evaluation and calculation theory, first solved the analysis problem of true stress and true strain theory, and then used machine vision technology and image processing method to create an applicable software and hardware system suitable for non-contact measurement, realizing the true sense of The true stress-true strain measurement of .
真应力-真应变测量方法和计算模型,在对拉伸试件变形分析的基础上,将特殊部位具有特征的单元体作为应力应变分析的对象,创建全变形单元模型;当对试样进行拉伸时,最终断裂的最小直径处的微小单元经历整个变形过程的各个阶段直至断裂,微小单元的力学行为真正完整地反映材料真实的本构关系;微小单元上测得的应力和应变是真应力、真应变;这个单元变形几何特征是,在拉伸试验过程中,无论是均匀的弹性、塑性变形,还是局部变形(颈缩)阶段,试件的变形是轴对称的,颈缩图形平面投影的特征是,颈缩部位的外轮廓线始终是对称与轴线向内凹曲的曲线,如果在试件平面投影图形外廓曲线的内侧设置两条分别与两外廓曲线相切的直线,在整个试验过程中,随着颈缩的发展,都使得这种相切关系得到保持,同时动态实时测量两直线距离,测得任意时刻试件标距范围内的最小直径。The true stress-true strain measurement method and calculation model, on the basis of the deformation analysis of the tensile test piece, take the unit body with special characteristics as the object of stress-strain analysis, and create a full deformation unit model; when the test piece is stretched When stretching, the tiny unit at the minimum diameter of the final fracture goes through all stages of the entire deformation process until it breaks, and the mechanical behavior of the tiny unit truly and completely reflects the real constitutive relationship of the material; the stress and strain measured on the tiny unit are the true stress , true strain; the deformation geometry of this unit is that during the tensile test, whether it is uniform elastic, plastic deformation, or local deformation (necking) stage, the deformation of the specimen is axisymmetric, and the plane projection of the necking figure The characteristic is that the outer contour line of the necking part is always a curve symmetrical and concave inward with the axis. If two straight lines are respectively tangent to the two outer contour curves on the inner side of the planar projection figure of the specimen, the During the whole test process, with the development of necking, the tangential relationship is maintained, and at the same time, the distance between the two straight lines is dynamically measured in real time, and the minimum diameter within the gauge range of the specimen at any time is measured.
当材料发生颈缩后,处于最小直径附近的材料基本为几何对称体,在该处取长度为l0的微小长度作为分析单元,在长度趋于零的极限情况下,可忽略母线曲率变化,视为一个饼状单元体,任意时刻的真应力、真应变可分别表示为:When the material is necked, the material near the minimum diameter is basically a geometrically symmetrical body, where a tiny length of l 0 is taken as the analysis unit, and in the extreme case where the length tends to zero, the curvature change of the busbar can be ignored. As a pie-shaped unit body, the true stress and true strain at any time can be expressed as:
其中:Fi-任意时刻拉伸载荷,di-任意时刻最小直径,d0-原始直径,σi-任意时刻真应力,εi-任意时刻真应变;Where: F i - tensile load at any time, d i - minimum diameter at any time, d 0 - original diameter, σ i - true stress at any time, ε i - true strain at any time;
只要测出任意瞬时的Fi,di,就可以得到任意时刻准确的真应力、真应变。如同时测得li则可同时得到延伸率,弹性模量等基本力学参数。As long as F i and d i are measured at any instant, accurate true stress and true strain at any time can be obtained. If li is measured at the same time, basic mechanical parameters such as elongation and elastic modulus can be obtained at the same time.
2.真应力、真应变测量系统,包括有试件(1)、光源(2)、CCD摄像机(3)、材料试验机(4)、和图像和载荷捕捉单元(5)、图像和载荷分析处理单元;2. True stress and true strain measurement system, including specimen (1), light source (2), CCD camera (3), material testing machine (4), image and load capture unit (5), image and load analysis processing unit;
一方面,用摄像方法适时采集试样变形过程的图象,利用视觉技术的丰富功能随时跟踪截面尺寸的变化,寻找最小截面位置,计算最小直径,同时同步记录载荷变化过程,利用最小截面和载荷数据计算每一瞬时的真应力、真应变;另一方面,在确定的位置设置标记点,实时摄制标记点位移图像,用于延伸率计算,也可同时计算工程应力-应变,最后编制处理软件输出各项检测数据并绘出真应力-真应变关系曲线和工程应力-应变曲线;信息捕捉包括图像的获得和载荷的获得两部分。一部分是通过视觉系统实时监测拉伸试样的整个拉伸过程采集到图像,为最小直径的测量做准备。图像测量的硬件主要包括:摄像头、CCD、图像采集卡、照明系统。而载荷信号通过数据采集卡直接由材料拉伸试验机的载荷输出端获取;图像和载荷的获得是两个并行的主线,进入计算机进行处理;完成对模型对象的图像捕捉和图像分析处理,得到真实的材料力学参数及真应力-真应变曲线。On the one hand, the image of the deformation process of the sample is collected in a timely manner by the camera method, and the rich functions of the visual technology are used to track the change of the cross-section size at any time, find the minimum cross-section position, calculate the minimum diameter, and simultaneously record the load change process, and use the minimum cross-section and load The data calculates the true stress and true strain of each moment; on the other hand, set the mark point at the determined position, and take the displacement image of the mark point in real time, which is used for the calculation of elongation, and can also calculate the engineering stress-strain at the same time, and finally compile the processing software Output various detection data and draw true stress-true strain relationship curve and engineering stress-strain curve; information capture includes two parts: image acquisition and load acquisition. Part of it is to monitor the entire stretching process of the tensile sample through the visual system to collect images in preparation for the measurement of the smallest diameter. The hardware for image measurement mainly includes: camera, CCD, image acquisition card, and lighting system. The load signal is directly obtained from the load output end of the material tensile testing machine through the data acquisition card; the acquisition of the image and the load are two parallel main lines, which enter the computer for processing; complete the image capture and image analysis processing of the model object, and obtain Real material mechanical parameters and true stress-true strain curve.
真应力、真应变测量系统的软件流程为:用CCD传感器采集试样变形过程中的图像,通过图像采集卡把原始图像转化为数字图像信息并传入计算机,用图像处理软件对数字图像进行处理并得到颈缩处的横截面积及试样轴向位移;通过设备上的压力传感器将拉伸过程中的载荷变化信号转化为电压变化信号,由一张数据采集卡采集此电压信号并传入计算机。为了确保图像采集卡和数据采集卡同时采集,采用总线触发模式两路信号同步运行。整个过程只由LabVIEW编制的软件系统进行控制和操作。The software process of the true stress and true strain measurement system is as follows: use the CCD sensor to collect images during the deformation process of the sample, convert the original images into digital image information through the image acquisition card and send them to the computer, and use image processing software to process the digital images And get the cross-sectional area of the neck and the axial displacement of the sample; the load change signal during the stretching process is converted into a voltage change signal through the pressure sensor on the equipment, and the voltage signal is collected by a data acquisition card and transmitted to the computer. In order to ensure that the image acquisition card and the data acquisition card acquire at the same time, the bus trigger mode is used to run the two signals synchronously. The whole process is controlled and operated only by the software system compiled by LabVIEW.
真应力、真应变测量系统图像采集部分包括设备有初始化、采集通道的设置、图像采集及图像读取四部分;图像采集的整个过程首先是由初始化开始的,采用IMAQInit.vi模块,模块的功能是配置IMAQ文件,并对图像采集外部设备进行初始化;接下来对通道的设置,采集通道的设置通过一个性质节点来实现,通道是图像采集卡安装时已经预先设置,二者的通道名称是对应一致,采集图像利用IMAQ Grab Setup.vi模块来实现,这个函数的功能是连续获取从图像采集卡采集到的图像;与IMAQ Init.vi模块配合使用的;对要选择应用的图像进行读取,由IMAQ Acquire.vi模块实现;全变形单元最小直径捕捉及标距测量程序包括下列功能子模块:图象采集,中值滤波,阈值分割,二值图像的闭运算,边界提取和尺寸测量;图中二值化子VI前部分为图象采集模块,图像获取后,由二值化子VI进行中值滤波和阈值分割,使图像更加清晰便于边界检测;边界提取之前,根据要检测的边缘形状,分别用区域划定子VI先在图像中设定出测直径和测长度的搜索区域;在设定的搜索区域内执行Clamp Horizontal Min命令,测量水平方向边界上的最小距离,即实时跟踪颈缩处横截面积的变化,同时在垂直方向的搜索区域内执行Clamp Vertical Min命令,实时扫描标距的变化,得出最小直径和实时标距。The image acquisition part of the true stress and true strain measurement system includes four parts: equipment initialization, acquisition channel setting, image acquisition and image reading; the whole process of image acquisition is first started by initialization, using IMAQInit.vi module, the function of the module It is to configure the IMAQ file and initialize the external equipment for image acquisition; next, set the channel. The setting of the acquisition channel is realized through a property node. The channel is pre-set when the image acquisition card is installed, and the channel names of the two are corresponding Consistent, the image acquisition is realized by the IMAQ Grab Setup.vi module. The function of this function is to continuously acquire the images collected from the image acquisition card; it is used in conjunction with the IMAQ Init.vi module; to read the image to be selected for application, Realized by the IMAQ Acquire.vi module; the minimum diameter capture and gauge distance measurement program of the full deformation unit includes the following functional sub-modules: image acquisition, median filter, threshold segmentation, closed operation of binary image, boundary extraction and dimension measurement; The front part of the binarization subVI is an image acquisition module. After the image is acquired, the binarization subVI performs median filtering and threshold segmentation to make the image clearer and easier for boundary detection; before boundary extraction, according to the edge shape to be detected , first set the search area for diameter measurement and length measurement in the image by using the area delineation subVI; execute the Clamp Horizontal Min command in the set search area to measure the minimum distance on the boundary in the horizontal direction, that is, to track the neck in real time At the same time, execute the Clamp Vertical Min command in the search area in the vertical direction to scan the change of the gauge length in real time to obtain the minimum diameter and real-time gauge length.
真应力、真应变测量系统的载荷数据处理程序为:The load data processing program of the true stress and true strain measurement system is:
拉伸过程中载荷信号取自拉伸试验机端口的直流电压输出,向内存中写入载荷的频率与图像采集频率相同。数据采集的程序使用DAQmx函数编写;将函数DAQmx CreatChannel设置为创建电压模拟输入通道;在函数DAQmx Read中则选择Anolog DBL 1 Chan1Samp,即1个通道进行1个采样的读取,读取到的电压值与电压当量相乘就得到载荷值。电压当量指每伏电压所代表的载荷值。各函数的功能及设置为:During the stretching process, the load signal is obtained from the DC voltage output of the tensile testing machine port, and the frequency of writing the load to the memory is the same as the frequency of image acquisition. The data acquisition program is written using the DAQmx function; set the function DAQmx CreateChannel to create a voltage analog input channel; in the function DAQmx Read, select
(1)DAQmx Creat Channel:这个函数用来创建一个DAQmx数据采集通道,这里选择电压模拟输入通道,它的主要参数有:Physical channels-设定物理通道;Miniumvalue-最小输入电压值,这里设为-10V;Maximum value-最大电压输入值,这里设为+10V;(1) DAQmx Create Channel: This function is used to create a DAQmx data acquisition channel. Here, select the voltage analog input channel. Its main parameters are: Physical channels - set the physical channel; Minimum value - the minimum input voltage value, here is set to - 10V; Maximum value- the maximum voltage input value, here is set to +10V;
(2)DAQmx Timming DAQmx:这里选择sample clock子VI。它可以设置采样数、采样率,并在必要时设置缓冲区。它的主要参数有:Rate-设置每通道采样率;Source-设置采样时时钟信号源,可选择默认设置;Active edge-在时钟的上升缘下降缘采样;Sample mode-采样模式,选择连续采样;Samples per channel-有限采样时每通道的采样数量;(2) DAQmx Timming DAQmx: Select the sample clock subVI here. It can set the number of samples, the sample rate, and set the buffer if necessary. Its main parameters are: Rate-set the sampling rate of each channel; Source-set the clock signal source when sampling, you can choose the default setting; Active edge-sample at the rising edge and falling edge of the clock; Sample mode-sampling mode, select continuous sampling; Samples per channel-the number of samples per channel when limited sampling;
(3)DAQmx Start Task:启动DAQmx任务函数;(3) DAQmx Start Task: start the DAQmx task function;
(4)DAQmx Trigger:通过配置这个函数,定义接受到触发信号时的动作。在这里选择start digital edge,即接收到数字触发信号时,开始采集数据;(4) DAQmx Trigger: By configuring this function, define the action when the trigger signal is received. Select start digital edge here, that is, start collecting data when a digital trigger signal is received;
(5)DAQmx Read:DAQmx读数据函数,这里选择Anolog Wfm 1Chan Nsamp,它返回模拟输入的一维波形数据,包括1个通道,每个通道N个采样。它的主要参数有:Task/Channel in-输入任务名或虚拟通道名,这里我们设定输入通道为Channel8;Number of samples per channel-执行一次从每个通道采回的数据量;Timeout-超时,设置等待采样的时间,如果到时没采够数据就有多少返回多少并报告出错,如果设置为-1,就无限等待,根据采样频率和采样数设置等待时间为10秒。(5) DAQmx Read: DAQmx read data function, choose Anolog Wfm 1Chan Nsamp here, it returns the one-dimensional waveform data of analog input, including 1 channel, each channel has N samples. Its main parameters are: Task/Channel in - input task name or virtual channel name, here we set the input channel as Channel8; Number of samples per channel - execute the amount of data retrieved from each channel once; Timeout - timeout, Set the waiting time for sampling. If you do not collect enough data, you will return as much as you want and report an error. If you set it to -1, you will wait indefinitely. Set the waiting time to 10 seconds according to the sampling frequency and number of samples.
本发明在采用图像处理技术进行测量的系统中,计算的中间结果是用像素数表示的,只有求出物面上单位长度(mm)与像面上像素数的对应关系才能将测量结果的单位转化为毫米长度。In the system that adopts the image processing technology to measure in the present invention, the intermediate result of the calculation is represented by the number of pixels, and the unit of the measurement result can only be calculated by finding the corresponding relationship between the unit length (mm) on the object surface and the number of pixels on the image surface. Convert to mm length.
标定的过程与全变形单元测试程序基本一致,也是对试样图像进行采集,选择一个标定目标范围,通过对范围内原始直径图象进行滤波、二值化等处理,最后用垂直和水平距离测量子VI测得试样直径所占有的像素个数,用测量结果除试样的直径值(mm),得到每个像素所代表的实际长度,即为像素当量。在标定的过程中需要这个直径位置共有多少个像素,原始直径值与对应的像素数之比即为像素当量。一旦得到像素当量就将其作为规范值,在后续的计算程序中既为计算基准量靠它准确计算出任一时刻的直径和标距长度。The calibration process is basically the same as the full deformation unit test procedure. It also collects the sample image, selects a calibration target range, filters and binarizes the original diameter image in the range, and finally measures the vertical and horizontal distances. The sub-VI measures the number of pixels occupied by the diameter of the sample, divides the diameter value (mm) of the sample by the measurement result, and obtains the actual length represented by each pixel, which is the pixel equivalent. In the process of calibration, how many pixels are required at this diameter position, and the ratio of the original diameter value to the corresponding number of pixels is the pixel equivalent. Once the pixel equivalent is obtained, it will be used as a standard value. In the subsequent calculation program, it will be used as the calculation reference quantity to accurately calculate the diameter and gauge length at any time.
(四)附图说明 (4) Description of drawings
图1全变形单元模型及变形特征图;Fig. 1 Full deformation unit model and deformation characteristic diagram;
图2最小直径捕捉测量原理图;Fig. 2 Schematic diagram of minimum diameter capture measurement;
图3系统结构原理简图;Fig. 3 schematic diagram of system structure principle;
图4为:系统软件框图;Figure 4 is: system software block diagram;
图5图像采集及全变形单元最小直径捕捉程序;Figure 5 image acquisition and minimum diameter capture program of full deformation unit;
图6真应力-真应变计算程序;Fig. 6 true stress-true strain calculation program;
图7载荷数据处理程序;Figure 7 load data processing program;
图8标定程序流图。Figure 8 Calibration program flow diagram.
(五)具体实施方式 (5) Specific implementation methods
本发明全变性单元分析法的基本思路认为,当对试样进行拉伸时,实际只有最终断裂的最小直径处的微小单元经历了整个变形过程的各个阶段直至断裂,所以只有这个微小单元的力学行为才能够真正完整地反映材料真实的本构关系。因而,也只有这个单元上测得的的应力和应变才是真正的应力、应变。从变形几何特征上看,当材料发生颈缩后,处于最小直径附近的材料基本为几何对称体,在该处取长度为l0的微小长度作为分析单元,在长度趋于零的极限情况下,可忽略母线曲率变化,视为一个饼状单元体,则其模型和变形特征如图1所示。The basic idea of the total denaturation unit analysis method of the present invention is that when the sample is stretched, only the micro unit at the minimum diameter of the final fracture has experienced each stage of the whole deformation process until fracture, so only the mechanical properties of this micro unit The behavior can truly and completely reflect the real constitutive relationship of the material. Therefore, only the stress and strain measured on this unit are the real stress and strain. From the point of view of deformation geometric characteristics, when the material is necked, the material near the minimum diameter is basically a geometrically symmetrical body, where a tiny length with a length of l 0 is taken as the analysis unit. In the limit case where the length tends to zero , the curvature change of the generatrix can be ignored, and it can be regarded as a pie-shaped unit body, and its model and deformation characteristics are shown in Figure 1.
在整个拉伸试验过程中,无论是均匀的弹性、塑性变形,还是局部变形(颈缩)阶段,试件的变形始终是轴对称的,而从颈缩图形平面投影的特征上看,颈缩部位的外轮廓线是对称与轴线向内凹曲的曲线,只要在试件平面投影图形外廓曲线的内侧设置两条分别与两外廓曲线相切的直线,在整个试验过程中,都使得这种相切关系得到保持,同时动态实时测量两直线距离,就可有效的保证测得任意时刻试件标距范围内的最小直径,图2为最小直径捕捉的基本原理图。During the whole tensile test process, whether it is uniform elastic, plastic deformation, or local deformation (necking) stage, the deformation of the specimen is always axisymmetric, and from the characteristics of the plane projection of the necking figure, the necking The outer contour line of the part is a curve that is symmetrical and concave inward with the axis. As long as two straight lines are respectively tangent to the two outer contour curves on the inner side of the planar projection figure of the specimen, the This tangent relationship is maintained, and the distance between the two straight lines is dynamically measured in real time, which can effectively ensure the minimum diameter within the gauge length range of the specimen at any time. Figure 2 is the basic principle diagram of the minimum diameter capture.
现代视觉和图像处理技术的结合为实现这种测量方法提供了有效的保证,本项目采用视觉技术和图像分析方法建立了适用于全变形单元分析法的测试系统,完成对模型对象的图像捕捉和图像分析处理,得到真实的材料力学参数及真应力-真应变曲线。The combination of modern vision and image processing technology provides an effective guarantee for the realization of this measurement method. This project uses vision technology and image analysis methods to establish a test system suitable for full deformation unit analysis, and completes image capture and measurement of model objects. Image analysis and processing to obtain real material mechanical parameters and true stress-true strain curves.
测试系统的硬件设计主要包括图像的获得和载荷的获得两部分,一部分是通过视觉系统实时监测拉伸试样的整个拉伸过程采集到图像,为最小直径的测量做准备。图像测量的硬件主要包括:摄像头、CCD、图像采集卡、照明系统。而载荷信号通过数据采集卡直接由材料拉伸试验机的载荷输出端获取。图像和载荷的获得是两个并行的主线,最后都要进入计算机进行处理,图3为系统结构简图。The hardware design of the test system mainly includes two parts: image acquisition and load acquisition. One part is to collect images through the visual system to monitor the entire stretching process of the tensile sample in real time and prepare for the measurement of the smallest diameter. The hardware for image measurement mainly includes: camera, CCD, image acquisition card, and lighting system. The load signal is directly obtained from the load output end of the material tensile testing machine through the data acquisition card. The acquisition of images and payloads are two parallel main lines, and finally they all enter the computer for processing. Figure 3 is a simplified diagram of the system structure.
本系统软件开发采用了美国NI公司的LabVIEW作为开发平台,系统硬件中的图像采集卡和数据采集卡,以及IMAQ Vision软件包均为NI的产品,硬件间有较好的兼容性。另外,因LabVIEW开发平台没有现成的亚像素处理模块,而MATLAB又具有强大的数据处理能力,因此在进行亚像素处理的过程用,将图像转化为数组,利用MATLAB进行处理实现,最后通过两个软件很好的结合,使经过MATLAB处理后的数据反馈到LabVIEW开发平台,图4为系统软件流程关系图。The software development of this system adopts the LabVIEW of NI Company of the United States as the development platform. The image acquisition card and data acquisition card in the system hardware, as well as the IMAQ Vision software package are all NI products, and the hardware has good compatibility. In addition, because the LabVIEW development platform does not have a ready-made sub-pixel processing module, and MATLAB has powerful data processing capabilities, so in the process of sub-pixel processing, the image is converted into an array and processed by MATLAB. Finally, two The software is well combined, so that the data processed by MATLAB is fed back to the LabVIEW development platform. Figure 4 is a flow diagram of the system software.
本发明优点Advantages of the invention
(1)本项目中提到的求真应力-真应变的全变形单元分析法,能够真实的描述材料的变形过程,利用该模型可有效的测取真应力和真应变,比传统的真应力-真应变和工程应力-应变能更准确的表现出材料的力学行为特征。(1) The true stress-true strain full-deformation element analysis method mentioned in this project can truly describe the deformation process of the material. Using this model, the true stress and true strain can be effectively measured, which is better than the traditional true stress -True strain and engineering stress-strain can more accurately represent the mechanical behavior characteristics of materials.
(2)基于机器视觉技术的非接触式的测试方法,可以实现对拉伸全过程的实时监测。彻底解决了无法对变形进行全程准确检测的难题,从而获得正确的、精度较高的真应力-真应变曲线。(2) The non-contact testing method based on machine vision technology can realize the real-time monitoring of the whole stretching process. It completely solves the problem that the deformation cannot be accurately detected in the whole process, so as to obtain a correct and high-precision true stress-true strain curve.
(3)本系统以LabVIEW为开发平台、采用模块化的设计思想进行软件设计,二者的结合使系统具有开发周期短、精度高、应用灵活、结构清晰及易于维护和扩展等特点,弥补了传统测试方法的不足。(3) This system uses LabVIEW as the development platform and uses modular design ideas for software design. The combination of the two makes the system have the characteristics of short development cycle, high precision, flexible application, clear structure, easy maintenance and expansion, etc. Insufficiency of traditional testing methods.
(4)由于测试过程完全是非接触的,本系统可用于材料的高、低温性能测试。(4) Since the testing process is completely non-contact, this system can be used for high and low temperature performance testing of materials.
(5)可以通过镜头拼接等技术,建立适当的硬件系统满足特殊的材料性能测试的需求,如超塑性材料的真应力-真应变测试等。(5) Appropriate hardware systems can be established to meet the needs of special material performance testing, such as true stress-true strain testing of superplastic materials, through techniques such as lens stitching.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100649558A CN101319977A (en) | 2008-07-18 | 2008-07-18 | True stress-true strain calculation model and test system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100649558A CN101319977A (en) | 2008-07-18 | 2008-07-18 | True stress-true strain calculation model and test system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101319977A true CN101319977A (en) | 2008-12-10 |
Family
ID=40180149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100649558A Pending CN101319977A (en) | 2008-07-18 | 2008-07-18 | True stress-true strain calculation model and test system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101319977A (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101832895A (en) * | 2010-03-26 | 2010-09-15 | 北京纳克分析仪器有限公司 | Visual tensile testing system |
CN101929897A (en) * | 2009-06-18 | 2010-12-29 | 宝理塑料株式会社 | The method of the stress-strain curve of local stress measuring method, derivation resin material and the life-span prediction method of resin forming product |
CN102193687A (en) * | 2011-04-25 | 2011-09-21 | 东南大学 | Multipoint touch screen interactive system based on LABVIEW |
CN102221503A (en) * | 2011-06-08 | 2011-10-19 | 西南交通大学 | Single-shaft tensile overall true stress-true strain curve testing technique |
CN102519801A (en) * | 2011-12-16 | 2012-06-27 | 南京航空航天大学 | Method for establishing aluminium alloy dynamic recrystallization model by using true stress-true strain curve |
CN102789726A (en) * | 2012-08-02 | 2012-11-21 | 首都医科大学 | Teaching experiment device and method for biology strip-shaped material mechanical property test |
CN103018160A (en) * | 2012-12-10 | 2013-04-03 | 湘潭大学 | Flexure testing method and flexure testing device for quantitatively characterizing interface binding property of thin-film material |
CN103090815A (en) * | 2013-02-07 | 2013-05-08 | 湘潭大学 | Long time mark strain measurement method based on digital image |
CN103105139A (en) * | 2013-01-24 | 2013-05-15 | 中国工程物理研究院化工材料研究所 | Radial and circumferential deformation measuring method and system for high-temperature and high pressure working cylinder |
CN103175735A (en) * | 2012-12-06 | 2013-06-26 | 西南交通大学 | Material tensile real constitutive curve testing technology |
CN103488903A (en) * | 2013-09-27 | 2014-01-01 | 国家电网公司 | A method for measuring the effect of bolt slippage on the bearing capacity of steel structures |
CN103542894A (en) * | 2013-11-12 | 2014-01-29 | 哈尔滨工业大学 | Method for measuring stress and strain of steel bar under high temperature and variable loading rates |
CN103674737A (en) * | 2012-08-31 | 2014-03-26 | 曼胡默尔滤清器(上海)有限公司 | Non-contact type measuring method for elongation of material |
CN104596846A (en) * | 2014-12-25 | 2015-05-06 | 中国科学院力学研究所 | Method for correcting elasticity modulus and stress-strain curve in metal material compression test |
CN105547834A (en) * | 2016-01-13 | 2016-05-04 | 南京航空航天大学 | Fast stress-strain curve measuring system and method based on binocular vision |
CN107271279A (en) * | 2017-06-16 | 2017-10-20 | 西南石油大学 | A kind of metal material true stress-true stain method of testing |
CN108458929A (en) * | 2018-03-22 | 2018-08-28 | 安徽工业大学 | A method of measuring material true stress |
CN108489820A (en) * | 2018-02-13 | 2018-09-04 | 鞍钢股份有限公司 | Method for acquiring true stress of high-temperature tensile test |
CN109307620A (en) * | 2018-11-29 | 2019-02-05 | 中国地质大学(武汉) | An automatic strain measurement device and method for uniaxial test based on computer vision |
US10281378B2 (en) | 2016-05-05 | 2019-05-07 | Honeywell Federal Manufacturing & Technologies, Llc | System and method for testing true stress and true strain |
CN109858551A (en) * | 2019-01-31 | 2019-06-07 | 湖南大学 | Method, apparatus, equipment and medium based on image recognition detection structure stress |
CN110108550A (en) * | 2018-02-01 | 2019-08-09 | 株式会社岛津制作所 | Material Testing Machine |
CN110987617A (en) * | 2019-12-11 | 2020-04-10 | 上海交通大学 | DIC (digital computer) measurement method for frequency conversion of tensile stress strain curve in necking stage by system |
CN111166490A (en) * | 2020-02-25 | 2020-05-19 | 姜通渊 | Medical robot pressure detection method and medical robot |
WO2021037036A1 (en) * | 2019-08-28 | 2021-03-04 | 肖锋 | Test and calculation method for measuring real stress-strain curve of material |
CN112927185A (en) * | 2021-01-19 | 2021-06-08 | 中国石油天然气集团有限公司 | True stress-true strain curve test calculation method based on digital image correlation method |
CN114923774A (en) * | 2022-03-22 | 2022-08-19 | 同济大学 | Method and system for measuring necking shape and size of round bar based on image processing |
CN116202675A (en) * | 2021-11-30 | 2023-06-02 | 上海飞机制造有限公司 | A method for measuring bolt preload |
CN117454722A (en) * | 2023-12-22 | 2024-01-26 | 西南石油大学 | Screw drilling tool bushing design method based on rubber swelling |
CN118378504A (en) * | 2024-06-26 | 2024-07-23 | 南通泰胜蓝岛海洋工程有限公司 | Multiaxial fatigue life prediction method for large offshore bearing notch based on weight function |
-
2008
- 2008-07-18 CN CNA2008100649558A patent/CN101319977A/en active Pending
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101929897A (en) * | 2009-06-18 | 2010-12-29 | 宝理塑料株式会社 | The method of the stress-strain curve of local stress measuring method, derivation resin material and the life-span prediction method of resin forming product |
CN101832895A (en) * | 2010-03-26 | 2010-09-15 | 北京纳克分析仪器有限公司 | Visual tensile testing system |
CN102193687A (en) * | 2011-04-25 | 2011-09-21 | 东南大学 | Multipoint touch screen interactive system based on LABVIEW |
CN102221503B (en) * | 2011-06-08 | 2012-08-29 | 西南交通大学 | Single-shaft tensile overall true stress-true strain curve testing technique |
CN102221503A (en) * | 2011-06-08 | 2011-10-19 | 西南交通大学 | Single-shaft tensile overall true stress-true strain curve testing technique |
CN102519801B (en) * | 2011-12-16 | 2015-07-29 | 南京航空航天大学 | The method of aluminium alloy Dynamic Recrystallization Model is set up with true stress-true strain curve |
CN102519801A (en) * | 2011-12-16 | 2012-06-27 | 南京航空航天大学 | Method for establishing aluminium alloy dynamic recrystallization model by using true stress-true strain curve |
CN102789726A (en) * | 2012-08-02 | 2012-11-21 | 首都医科大学 | Teaching experiment device and method for biology strip-shaped material mechanical property test |
CN103674737A (en) * | 2012-08-31 | 2014-03-26 | 曼胡默尔滤清器(上海)有限公司 | Non-contact type measuring method for elongation of material |
CN103175735A (en) * | 2012-12-06 | 2013-06-26 | 西南交通大学 | Material tensile real constitutive curve testing technology |
CN103175735B (en) * | 2012-12-06 | 2015-07-08 | 西南交通大学 | Material tensile real constitutive curve testing technology |
CN103018160A (en) * | 2012-12-10 | 2013-04-03 | 湘潭大学 | Flexure testing method and flexure testing device for quantitatively characterizing interface binding property of thin-film material |
CN103018160B (en) * | 2012-12-10 | 2014-10-01 | 湘潭大学 | Buckling test method and device for quantitatively characterizing interfacial bonding properties of thin film materials |
CN103105139B (en) * | 2013-01-24 | 2016-03-16 | 中国工程物理研究院化工材料研究所 | The radial direction of High Temperature High Pressure working cylinder, circumferential distortion measurement method and system |
CN103105139A (en) * | 2013-01-24 | 2013-05-15 | 中国工程物理研究院化工材料研究所 | Radial and circumferential deformation measuring method and system for high-temperature and high pressure working cylinder |
CN103090815B (en) * | 2013-02-07 | 2015-04-22 | 湘潭大学 | Long time mark strain measurement method based on digital image |
CN103090815A (en) * | 2013-02-07 | 2013-05-08 | 湘潭大学 | Long time mark strain measurement method based on digital image |
CN103488903A (en) * | 2013-09-27 | 2014-01-01 | 国家电网公司 | A method for measuring the effect of bolt slippage on the bearing capacity of steel structures |
CN103542894B (en) * | 2013-11-12 | 2016-01-20 | 哈尔滨工业大学 | Reinforcement stresses, strain measurement method under high temperature change loading speed |
CN103542894A (en) * | 2013-11-12 | 2014-01-29 | 哈尔滨工业大学 | Method for measuring stress and strain of steel bar under high temperature and variable loading rates |
CN104596846A (en) * | 2014-12-25 | 2015-05-06 | 中国科学院力学研究所 | Method for correcting elasticity modulus and stress-strain curve in metal material compression test |
CN104596846B (en) * | 2014-12-25 | 2017-02-15 | 中国科学院力学研究所 | Method for correcting elasticity modulus and stress-strain curve in metal material compression test |
CN105547834A (en) * | 2016-01-13 | 2016-05-04 | 南京航空航天大学 | Fast stress-strain curve measuring system and method based on binocular vision |
US10281378B2 (en) | 2016-05-05 | 2019-05-07 | Honeywell Federal Manufacturing & Technologies, Llc | System and method for testing true stress and true strain |
CN107271279A (en) * | 2017-06-16 | 2017-10-20 | 西南石油大学 | A kind of metal material true stress-true stain method of testing |
CN110108550A (en) * | 2018-02-01 | 2019-08-09 | 株式会社岛津制作所 | Material Testing Machine |
CN108489820B (en) * | 2018-02-13 | 2019-06-28 | 鞍钢股份有限公司 | A method for obtaining true stress of high temperature tensile test |
CN108489820A (en) * | 2018-02-13 | 2018-09-04 | 鞍钢股份有限公司 | Method for acquiring true stress of high-temperature tensile test |
CN108458929B (en) * | 2018-03-22 | 2020-05-12 | 安徽工业大学 | A method for measuring the true stress of materials |
CN108458929A (en) * | 2018-03-22 | 2018-08-28 | 安徽工业大学 | A method of measuring material true stress |
CN109307620A (en) * | 2018-11-29 | 2019-02-05 | 中国地质大学(武汉) | An automatic strain measurement device and method for uniaxial test based on computer vision |
CN109858551A (en) * | 2019-01-31 | 2019-06-07 | 湖南大学 | Method, apparatus, equipment and medium based on image recognition detection structure stress |
WO2021037036A1 (en) * | 2019-08-28 | 2021-03-04 | 肖锋 | Test and calculation method for measuring real stress-strain curve of material |
CN110987617A (en) * | 2019-12-11 | 2020-04-10 | 上海交通大学 | DIC (digital computer) measurement method for frequency conversion of tensile stress strain curve in necking stage by system |
CN111166490A (en) * | 2020-02-25 | 2020-05-19 | 姜通渊 | Medical robot pressure detection method and medical robot |
CN112927185A (en) * | 2021-01-19 | 2021-06-08 | 中国石油天然气集团有限公司 | True stress-true strain curve test calculation method based on digital image correlation method |
CN116202675A (en) * | 2021-11-30 | 2023-06-02 | 上海飞机制造有限公司 | A method for measuring bolt preload |
CN114923774A (en) * | 2022-03-22 | 2022-08-19 | 同济大学 | Method and system for measuring necking shape and size of round bar based on image processing |
CN117454722A (en) * | 2023-12-22 | 2024-01-26 | 西南石油大学 | Screw drilling tool bushing design method based on rubber swelling |
CN117454722B (en) * | 2023-12-22 | 2024-03-01 | 西南石油大学 | Design method of screw drilling tool bushing based on rubber swelling |
CN118378504A (en) * | 2024-06-26 | 2024-07-23 | 南通泰胜蓝岛海洋工程有限公司 | Multiaxial fatigue life prediction method for large offshore bearing notch based on weight function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101319977A (en) | True stress-true strain calculation model and test system | |
CN107576432B (en) | A kind of Dynamic Crack tip stress fields method for measurement and device | |
CN101196390A (en) | Non-contact strain measurement method based on visual discrimination | |
CN103438824B (en) | A kind of large-scale wallboard class Components Digital quality determining method | |
CN204255763U (en) | Based on the high speed strain proving installation of line-scan digital camera | |
CN110530432A (en) | A kind of grid equipment electrification detection system, thermal infrared imager and method | |
CN102359966A (en) | Positioning system for micro-cracks on concrete surfaces | |
CN101832895A (en) | Visual tensile testing system | |
CN109931876A (en) | A method of passing through photogrammetric geotechnical sample deformation | |
CN112927185B (en) | A true stress-true strain curve test calculation method based on digital image correlation method | |
CN101178396B (en) | Cashmere fibre, fleece fibre blended spinning quantitative determination instrument and method | |
CN106504246A (en) | The image processing method of tunnel slot detection | |
CN109990705B (en) | Vision-based calibration method and system for coordinate system of robot end thermometer gun | |
CN103424082B (en) | A kind of contactless reinforcing bar deformation measuring device and measuring method | |
CN207585727U (en) | A kind of adjustable pipette capacity Full-automatic calibration device | |
CN105548202A (en) | Automatic concrete shrinkage crack monitoring system | |
CN201368726Y (en) | Leather thickness measuring meter | |
CN202630915U (en) | FPGA+DSP-based embedded system for rapidly measuring pulp fiber morphological parameters | |
CN104458562B (en) | Measuring method for opening stress of crack | |
CN205861144U (en) | The gas meter counter direct readout of digital image understanding technology | |
CN106596338B (en) | A kind of device and its evaluation method for being used to evaluate gelling performance | |
CN104330044B (en) | High temperature dislocation related system | |
CN105300826B (en) | The calibration method and device of bitumen ductility instrument | |
CN109307620A (en) | An automatic strain measurement device and method for uniaxial test based on computer vision | |
CN108106989A (en) | A kind of three-dimensional position thermal expansion curve measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20081210 |