CN101290506A - Control system and adjusting method thereof - Google Patents
Control system and adjusting method thereof Download PDFInfo
- Publication number
- CN101290506A CN101290506A CNA2007101013827A CN200710101382A CN101290506A CN 101290506 A CN101290506 A CN 101290506A CN A2007101013827 A CNA2007101013827 A CN A2007101013827A CN 200710101382 A CN200710101382 A CN 200710101382A CN 101290506 A CN101290506 A CN 101290506A
- Authority
- CN
- China
- Prior art keywords
- signal
- adjustment
- control system
- generate
- output signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Feedback Control In General (AREA)
Abstract
Description
技术领域 technical field
本发明是关于一种控制系统及其调整方法,特别是关于一种具有强健性(Robustness)的控制系统及其调整方法。The present invention relates to a control system and its adjustment method, in particular to a robustness (Robustness) control system and its adjustment method.
背景技术 Background technique
控制系统在促进现代文明及科技的发展中,扮演愈来愈重要的角色。举例来说,家用电气产品、汽车与浴室的马桶皆是控制系统,而控制系统在工业上的应用更是普遍。Control systems play an increasingly important role in promoting the development of modern civilization and technology. For example, household electrical products, automobiles, and bathroom toilets are all control systems, and control systems are more commonly used in industries.
在伺服机构应用中,通常会先根据系统的物理行为来建立数学模型,借由数学模型中的控制函数,可以方便地预测与控制系统的行为。In the application of the servo mechanism, a mathematical model is usually established based on the physical behavior of the system, and the behavior of the system can be easily predicted and controlled by the control function in the mathematical model.
传统的比例积分微分(PID)控制器包含比例(Proportional)项、积分(Integral)项与微分(Derivative)项,比例项依据误差大小来调整控制器的输出,积分项用以消除稳态误差,微分项则有预测误差走向的作用。由于它的架构简单,所以至今还广受使用。The traditional proportional-integral-derivative (PID) controller includes proportional (Proportional), integral (Integral) and differential (Derivative) items. The proportional item adjusts the output of the controller according to the error, and the integral item is used to eliminate the steady-state error. The differential term has the effect of predicting the direction of the error. Because of its simple structure, it is still widely used today.
以马达为例来做说明,请参阅图1,其为现有的马达控制系统的方块示意图。在图1中,受控体11为马达,根据马达运转的物理行为,以建立本控制系统10受控体11的数学模型,模型的传递函数为Kt/((Jm+Jd)s+B),其中Jm为一马达惯量,Jd为一负载惯量,B为一阻尼系数,Kt为一比例值。受控体11接收一驱动信号PV,据以产生一输出信号PY,本例的输出信号PY为一转速。而马达在运转过程中会遭受外来的干扰(Disturbance),干扰可能来自电磁或机械,在此以一第三加总器111将干扰列入控制系统10的考虑因素,亦即第三加总器111加总来自前端一主控制器12所产生的一第三操作信号PU3与一干扰信号PW,以产生用以驱动马达的驱动信号PV。在图1的现有马达实施例中,做了简化的图示,较完整地说,第三操作信号PU3经过一高频宽的电流回路,再与干扰信号PW结合,此时,第三操作信号PU3为一等效的电枢电流,干扰信号PW为一干扰转矩。Taking a motor as an example for illustration, please refer to FIG. 1 , which is a schematic block diagram of a conventional motor control system. In Fig. 1, the controlled
图1的主控制器12为一比例积分(PI)控制器,控制器12的传递函数为KP+KI*1/s;其中包括一比例函数KP与一积分函数KI*1/s;而比例函数KP亦为一比例系数,用以提高控制系统10的一开回路增益频宽,使控制系统10能够快速响应;KI为一积分系数,用以降低控制系统10的稳态追随误差。由于控制系统10的一目标频宽Bw愈宽,其响应速度愈快,因此,一般而言,设定比例系数KP为2πBw(Jm+Jd)/Kt,以保证开回路增益具有目标频宽Bw。主控制器12接收一误差信号PE,误差信号PE经比例函数KP处理,以产生一第一操作信号PU1;误差信号PE经积分函数KI*1/s处理,以产生一第二操作信号PU2;第一操作信号PU1与第二操作信号PU2经由一第二加总器121的加总,产生第三操作信号PU3。The
控制系统10为一闭回路控制系统,具有一第一加总器141,第一加总器141将包含有设定值命令的输入信号PR减去受控体11的输出信号PY,以产生误差信号PE给主控器12。整个闭回路控制系统10的目的在尽量使输出信号PY的大小维持与输入信号PR的设定值一致,以不受干扰信号PW的影响。The
请参阅图2,其为现有的控制系统的步阶响应图。图2中包括步阶函数命令输入信号曲线A1、图1的第三操作信号曲线A2与图1的输出信号曲线A3。如图2所示,输入信号PR设定为步阶函数命令,经主控制器12处理,将产生第三操作信号PU3,以提供给受控体11;当图1的控制系统10要求快速响应与微小误差时,会导致受控体10的输出信号PY具有较大的超越量。Please refer to FIG. 2 , which is a step response diagram of an existing control system. FIG. 2 includes a step function command input signal curve A1 , a third operation signal curve A2 in FIG. 1 , and an output signal curve A3 in FIG. 1 . As shown in Figure 2, the input signal PR is set as a step function command, and after being processed by the
另外,因为大部分的工业制程的响应很慢,当利用比例系数、积分系数与一微分函数中的一微分系数调整控制系统输出信号的响应时,会产生困难性。使用者可能必须等几分钟甚至是几小时,以观察由调整所产生的响应,使借由尝试错误来调整控制器,变为一个令人厌烦且耗时的工作;有时,甚至无法调整至满足系统的需求。In addition, since the response of most industrial processes is very slow, difficulties arise when adjusting the response of the output signal of the control system using a proportional coefficient, an integral coefficient, and a differential coefficient in a differential function. The user may have to wait minutes or even hours to observe the response produced by the adjustment, making the adjustment of the controller by trial and error a tiresome and time-consuming task; system requirements.
综上所论,可知:如何让控制系统在快速响应与微小误差时,减小受控体输出信号的超越量,减小调整的时间,且达成控制系统的强健性,为发展本发明的主要动机。In summary, it can be seen that how to make the control system reduce the overshoot of the output signal of the controlled object, reduce the adjustment time, and achieve the robustness of the control system when the control system responds quickly and has a small error. motivation.
发明内容 Contents of the invention
鉴于上述现有技术存在的问题,本发明提出一种控制系统及其调整方法。In view of the above-mentioned problems in the prior art, the present invention proposes a control system and an adjustment method thereof.
本发明提出一种控制系统,包括一主控单元、一第一调整单元及一第二调整单元;其中,根据受控体的物理行为及控制系统的频宽,设计主控单元;根据受控体的响应行为,设计第一调整单元,据以抵消受控体所遭受的一干扰信号;第二调整单元的设计,让控制系统的传递函数趋近第二调整单元的传递函数。如此,据以达成系统的强健性、快速响应,且使受控体输出信号的超越量消失或趋近零。The present invention proposes a control system, including a main control unit, a first adjustment unit and a second adjustment unit; wherein, the main control unit is designed according to the physical behavior of the controlled body and the bandwidth of the control system; according to the controlled Based on the response behavior of the object, the first adjustment unit is designed to cancel an interference signal suffered by the controlled object; the design of the second adjustment unit makes the transfer function of the control system approach the transfer function of the second adjustment unit. In this way, the robustness and quick response of the system can be achieved, and the excess of the output signal of the controlled object disappears or approaches zero.
根据本发明的上述控制系统,用以控制一受控体所产生的一输出信号,包括一主控单元、一第一调整单元及一第二调整单元;其中,主控单元是根据受控体的物理行为所设计,使控制系统的一开回路频宽接近一目标频宽,并产生一第一操作信号;第一调整单元是根据受控体的响应行为所设计,接收第一操作信号,据以产生一第一调整信号,其中第一调整信号、输出信号与第一操作信号经运算产生一第二操作信号,使输出信号接近第一调整信号,据以抵消受控体所遭受的一干扰信号;第二调整单元接收一输入信号,据以产生一第二调整信号,其中第二调整信号、输出信号与输入信号经运算产生一第三操作信号,以提供给主控单元,使控制系统的传递函数趋近第二调整单元的传递函数。According to the above-mentioned control system of the present invention, it is used to control an output signal generated by a controlled object, including a main control unit, a first adjustment unit and a second adjustment unit; wherein, the main control unit is based on the controlled object The physical behavior is designed to make an open-loop bandwidth of the control system close to a target bandwidth and generate a first operating signal; the first adjustment unit is designed according to the response behavior of the controlled object to receive the first operating signal, According to this, a first adjustment signal is generated, wherein the first adjustment signal, the output signal and the first operation signal are calculated to generate a second operation signal, so that the output signal is close to the first adjustment signal, so as to offset the one suffered by the controlled object Interference signal; the second adjustment unit receives an input signal to generate a second adjustment signal, wherein the second adjustment signal, the output signal and the input signal are calculated to generate a third operation signal, which is provided to the main control unit, so that the control The transfer function of the system approaches the transfer function of the second adjustment unit.
本发明提出另一种控制系统,包括一主控单元及一第一调整单元;其中,主控单元的设计,使其符合控制系统的目标频宽;第一调整单元的设计,使受控体的输出信号接近第一调整单元所产生的第一调整信号,据以抵消受控体所遭受的一干扰信号。如此,达成高效率与消除不确定因素的调整功效。The present invention proposes another control system, including a main control unit and a first adjustment unit; wherein, the design of the main control unit makes it meet the target bandwidth of the control system; the design of the first adjustment unit makes the controlled body The output signal of the first adjustment unit is close to the first adjustment signal generated by the first adjustment unit, so as to cancel an interference signal suffered by the controlled object. In this way, the adjustment effect of high efficiency and elimination of uncertain factors is achieved.
根据本发明的另一种控制系统,用以控制一受控体所产生的一输出信号,包括一主控单元及一第一调整单元;其中,主控单元使控制系统的一开回路频宽接近一目标频宽,并产生一第一操作信号;第一调整单元接收第一操作信号,据以产生一第一调整信号,其中第一调整信号、输出信号与第一操作信号经运算产生一第二操作信号,使输出信号接近第一调整信号,据以抵消受控体所遭受的一干扰信号。Another control system according to the present invention is used to control an output signal generated by a controlled object, including a main control unit and a first adjustment unit; wherein, the main control unit makes an open loop bandwidth of the control system close to a target bandwidth and generate a first operation signal; the first adjustment unit receives the first operation signal to generate a first adjustment signal, wherein the first adjustment signal, the output signal and the first operation signal are calculated to generate a The second operation signal makes the output signal close to the first adjustment signal, so as to cancel an interference signal suffered by the controlled object.
本发明又提出一种控制系统的调整方法,借由控制系统的目标频宽,设计一控制函数;接着,借由控制函数所产生的一第一操作信号,产生一第一调整信号,并经由运算与反馈,使受控体所产生的一输出信号接近第一调整信号。若需要更进一步的稳定效果,则借由一第二调整函数的作用,使控制系统的传递函数趋近第二调整函数。如此,达成直觉式、容易性与友善的调整功效。The present invention also proposes an adjustment method of the control system. A control function is designed by controlling the target bandwidth of the system; then, a first adjustment signal is generated by a first operation signal generated by the control function, and passed through Operation and feedback, so that an output signal generated by the controlled object is close to the first adjustment signal. If a further stabilizing effect is required, the transfer function of the control system is made to approach the second adjustment function by the action of a second adjustment function. In this way, an intuitive, easy and friendly adjustment effect is achieved.
根据本发明的上述控制系统的调整方法,用以调整一受控体所产生的一输出信号,包括下列步骤:首先,制定控制系统的一目标频宽;接着,根据目标频宽,设计一控制函数,使控制系统的一开回路频宽接近目标频宽,并产生一第一操作信号;接着,借由该第一操作信号,产生一第一调整信号;然后,运算该第一调整信号、该输出信号与该第一操作信号,产生一第二操作信号,使该输出信号接近该第一调整信号。According to the adjustment method of the above-mentioned control system of the present invention, it is used to adjust an output signal generated by a controlled object, comprising the following steps: first, formulate a target bandwidth of the control system; then, design a control system according to the target bandwidth The function makes an open-loop bandwidth of the control system close to the target bandwidth, and generates a first operation signal; then, generates a first adjustment signal by means of the first operation signal; then, calculates the first adjustment signal, The output signal and the first operation signal generate a second operation signal to make the output signal close to the first adjustment signal.
附图说明 Description of drawings
为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发明的具体实施方式作详细说明,其中:In order to make the above-mentioned purposes, features and advantages of the present invention more obvious and understandable, the specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings, wherein:
图1为现有的马达控制系统的方块示意图;FIG. 1 is a schematic block diagram of an existing motor control system;
图2为现有的控制系统的步阶响应图;Fig. 2 is the step response figure of existing control system;
图3为本发明所提出的控制系统的方块示意图;Fig. 3 is a schematic block diagram of the control system proposed by the present invention;
图4为本发明所提出的控制系统在受控体为马达时的方块示意图;Fig. 4 is a schematic block diagram of the control system proposed by the present invention when the controlled body is a motor;
图5为图4的控制系统的第一步阶响应图;Fig. 5 is the first step response figure of the control system of Fig. 4;
图6为图4的控制系统的第二步阶响应图;Fig. 6 is the second step response figure of the control system of Fig. 4;
图7为图4的控制系统的第三步阶响应图;Fig. 7 is the third step response figure of the control system of Fig. 4;
图8为图4的控制系统的第四步阶响应图;及Fig. 8 is the fourth step response diagram of the control system of Fig. 4; and
图9为图4的控制系统的第五步阶响应图。FIG. 9 is a fifth step response diagram of the control system in FIG. 4 .
具体实施方式 Detailed ways
为了叙述清楚本发明所提出的控制系统及其调整方法,下面列举多个较佳实施例加以说明:In order to clearly describe the control system and its adjustment method proposed by the present invention, a number of preferred embodiments are listed below for illustration:
请参阅图3,其为本发明所提出的控制系统的方块示意图。根据图3所实现的第一实施例中,控制系统30用以控制一受控体31所产生的一输出信号Y,包括一主控单元32、一第一调整单元33及一第二调整单元34。其中,主控单元32是控制系统30的核心部分,当第一调整单元33与第二调整单元34没有加入控制系统30的运作且控制系统30在开回路状态时,根据受控体31的物理行为设计主控单元32,使控制系统30的一开回路频宽接近一目标频宽Bw,并产生一第一操作信号U1。上述说明中,第一调整单元33没有加入控制系统30,是利用设定第一调整单元33所经回路中一第一放大器332的一第一倍率h为零来达成;第二调整单元34没有加入控制系统30,是利用设定第二调整单元34所经回路中一第二放大器344的一第二倍率m为零来达成。而所述的主控单元32通常包括一比例积分控制器。Please refer to FIG. 3 , which is a schematic block diagram of the control system proposed by the present invention. In the first embodiment realized according to FIG. 3, the
受控体31在操作的过程中,会遭受到不确定因素的干扰(Disturbance),其大小为一干扰信号W,在此,利用一第三加总器311将干扰信号W纳入控制系统30的控制范围。干扰信号W会影响控制系统30的强健性,使控制系统30无法稳定地操作。During the operation of the controlled
于是加入第一调整单元33,使控制系统30能够快速响应以抵消受控体31所遭受的干扰信号W,因此而增加控制系统30的强健性。第一调整单元33是根据受控体31的响应行为所设计,亦即第一调整单元33的传递函数是模拟受控体31的传递函数所设计;第一调整单元33接收第一操作信号U1,据以产生一第一调整信号Q1,其中第一调整信号Q1、输出信号Y与第一操作信号U1经运算,产生一第二操作信号U2;第三加总器311加总第二操作信号U2与干扰信号W,产生一驱动信号V,以驱动受控体31,而产生输出信号Y;经由反馈的作用,使输出信号Y接近第一调整信号Q1,据以抵消受控体31所遭受的干扰信号W。而第一调整单元33适用于抵抗低频干扰。Therefore, the
接着,说明运算第一调整信号Q1、输出信号Y与第一操作信号U1,以产生第二操作信号U2的情形。控制系统30还包括一第一加总器331、一第一放大器332及一第二加总器333;其中,第一加总器331将第一调整信号Q1减去输出信号Y,产生一第一结果信号T1;第一放大器332接收第一结果信号T1,并放大一第一倍率h,以产生一第二结果信号T2,经由调整第一倍率h,使输出信号Y接近第一调整信号Q1;第二加总器333加总第一操作信号U1与第二结果信号T2,以产生第二操作信号U2。Next, the operation of the first adjustment signal Q 1 , the output signal Y and the first operation signal U 1 to generate the second operation signal U 2 will be described. The
当控制系统30的目标频宽Bw增大时,控制系统30所要求的响应速度也要加快,且希望更进一步减小误差、减小受控体输出信号Y的超越量与加强控制系统30的稳定性,于是加入第二调整单元34。第二调整单元34,接收一输入信号R,据以产生一第二调整信号Q2,其中第二调整信号Q2、输出信号Y与输入信号R经运算,产生一第三操作信号U3,以提供给主控单元32;经由控制系统30的作用,使控制系统30的传递函数趋近第二调整单元34的传递函数。When the target bandwidth B w of the
接着,说明运算第二调整信号Q2、输出信号Y与输入信号R,以产生第三操作信号U3的情形。控制系统30还包括一第四加总器342、一回路稳定器343、一第二放大器344及一第五加总器341;其中,第四加总器342将第二调整信号Q2减去输出信号Y,以产生一第三结果信号T3;回路稳定器343接收第三结果信号T3,据以产生一第四结果信号T4,且回路稳定器343具有一含积分的函数F,经由含积分的函数F的作用,使控制系统30达成零稳态误差;第二放大器344接收第四结果信号T4,并放大一第二倍率m,以产生一第五结果信号T5,经由调整第二倍率m,使控制系统30的传递函数趋近第二调整单元34的传递函数;第五加总器341加总输入信号R与第五结果信号T5,并减去输出信号Y,以产生第三操作信号U3。Next, the operation of the second adjustment signal Q 2 , the output signal Y and the input signal R to generate the third operation signal U 3 will be described. The
接着,说明根据图3所实现的第二实施例。控制系统30用以控制一受控体31所产生的一输出信号Y,包括一主控单元32及一第一调整单元33。其中,主控单元32是控制系统30的核心部分,当第一调整单元33没有加入控制系统30的运作且控制系统30在开回路状态时,根据控制系统30的一目标频宽Bw设计主控单元31,使控制系统30的一开回路频宽接近一目标频宽Bw,并产生一第一操作信号U1。上述说明中,第一调整单元33没有加入控制系统30,是利用设定第一调整单元33所经回路中一第一放大器332的一第一倍率h为零来达成。所述的主控单元30通常包括一比例积分控制器,而借由受控体31的物理行为以设计主控单元32,可容易使控制系统30的一开回路频宽接近一目标频宽Bw。此时,控制系统30还可包含一第五加总器341,第五加总器341将输入信号R减去输出信号Y,以产生第三操作信号U3,并提供给主控单元32。Next, a second embodiment realized based on FIG. 3 will be described. The
而第一调整单元33接收第一操作信号U1,据以产生一第一调整信号Q1,其中第一调整信号Q1、输出信号Y与第一操作信号U1经运算,产生一第二操作信号U2;第三加总器311加总第二操作信号U2与一干扰信号W,产生一驱动信号V,以驱动受控体31,而产生输出信号Y;经由反馈的作用,使输出信号Y接近第一调整信号Q1,据以抵消受控体31所遭受的干扰信号W。所述的第一调整单元33通常是根据受控体31的响应行为所设计,亦即第一调整单元33的传递函数是模拟受控体31的传递函数所设计。且第一调整单元33适用于抵抗低频干扰。The
而运算第一调整信号Q1、输出信号Y与第一操作信号U1,以产生第二操作信号U2的情形,相同于第一实施例所述。The operation of the first adjustment signal Q 1 , the output signal Y and the first operation signal U 1 to generate the second operation signal U 2 is the same as that described in the first embodiment.
第二实施例的控制系统30还包括一第二调整单元34。第二调整单元34,接收一输入信号R,据以产生一第二调整信号Q2,其中第二调整信号Q2、输出信号Y与输入信号R经运算,产生一第三操作信号U3,以提供给主控单元32;经由控制系统30的作用,使控制系统30的传递函数趋近第二调整单元30的传递函数。The
而运算第二调整信号Q2、输出信号Y与输入信号R,以产生第三操作信号U3的情形,相同于第一实施例所述的。The operation of the second adjustment signal Q 2 , the output signal Y and the input signal R to generate the third operation signal U 3 is the same as that described in the first embodiment.
在伺服机构应用中,马达为一常用的受控体31。请参阅图4,其为本发明所提出的控制系统在受控体为马达时的方块示意图。图4控制系统40中的符号与图3控制系统30中的符号具有相同的名称与功能,在图4中,受控体31的物理行为的传递函数为Kt/((Jm+Jd)s+B),其中Jm为一马达惯量,Jd为一负载惯量,B为一阻尼系数,Kt为一比例值。为了根据受控体31的物理行为以设计主控单元32,且为了根据受控体31的响应行为以设计第一调整单元33,在此,引入马达与负载总惯量(Jm+Jd)的一惯量估计值J∑,且预先假设J∑=Jm+Jd。因此,将主控单元32的传递函数设计为2πBwJ∑/Kt,其中Bw为控制系统40的目标频宽Bw,J∑为(Jm+Jd)的惯量估计值,如此,使控制系统40的开回路频宽接近目标频宽Bw。而根据受控体31的响应行为,将第一调整单元33的传递函数设计为Kt/(J∑s),经过运算与反馈作用,使受控体31所产生的输出信号Y接近第一调整单元33所产生的第一调整信号Q1。再者,将第二调整单元34的传递函数设计为2πBw/(s+2πBw),经过运算与反馈作用,将使控制系统40的传递函数趋近第二调整单元34的传递函数。In servo mechanism applications, a motor is a commonly used controlled
接着,在图4中,设定目标频宽Bw=50Hz,第一倍率h=1,第二倍率m=1,以产生实际的数据,并比较图4与图1的两个控制系统,图1的控制系统10为现有的比例-积分-微分(P-I-D)控制架构(其中以比例积分(PI)控制器为例,设定目标频宽Bw=50Hz)。所得结果显示于图5,图5为图4的控制系统的第一步阶响应图。图5中包括步阶函数命令输入信号曲线A1、图1的第三操作信号曲线A2、图1的输出信号曲线A3、图4的第二操作信号曲线B1与图4的输出信号曲线B2。此时,第一调整单元33在一阶50Hz频宽的状态下,其所产生的第一调整信号Q1对应于一第一调整信号曲线(未显示于图中)。如图5所示,本发明的控制系统40所产生的输出信号曲线B2没有超越量,可以容易克服阻尼系数B的影响,并相当接近第一调整信号曲线。Next, in Fig. 4, set the target bandwidth B w = 50Hz, the first magnification h = 1, and the second magnification m = 1, to generate actual data, and compare the two control systems in Fig. 4 and Fig. 1, The
继续探讨第二倍率m对控制系统40的影响,在此,假设惯量估计值J∑=(Jm+Jd)/2,亦即惯量估计值J∑只有实际惯量(Jm+Jd)的一半。首先,设定目标频宽Bw=50Hz,第一倍率h=1,然后,依序增加第二倍率m。所得结果显示于图6,图6为图4的控制系统的第二步阶响应图。图6中包括步阶函数命令输入信号曲线A1、图1的输出信号曲线PID、图4的第二倍率为1输出信号曲线m=1、图4的第二倍率为2输出信号曲线m=2、图4的第二倍率为3输出信号曲线m=3与图4的第二倍率为4输出信号曲线m=4。如图6所示,现有如图1的比例积分微分(PID)控制系统10所运作出的输出信号曲线A3,具有很大的超越量;相对地,本发明控制系统40中的第二倍率m增大时,其所对应的超越量愈来愈小,且上升时间也愈来愈趋近20ms。Continue to discuss the influence of the second magnification m on the
同样,探讨第一倍率h对控制系统40的影响。首先,设定目标频宽Bw=50Hz,第二倍率m=1,然后,依序增加第一倍率h。所得结果显示于图7,图7为图4的控制系统的第三步阶响应图。图7中包括步阶函数命令输入信号曲线A1、第一倍率为1输出信号曲线h=1、第一倍率为2输出信号曲线h=2、第一倍率为4输出信号曲线h=4、第一倍率为6输出信号曲线h=6与第一倍率为8输出信号曲线h=8。如图7所示,当第一倍率h增大时,其所对应的超越量愈来愈小,且上升时间也愈来愈趋近20ms。Likewise, the influence of the first magnification h on the
当控制系统40要求的规格为,目标频宽Bw为50Hz、步阶响应的上升时间为20ms且不能有超越量时,经由上述的说明可知,满足规格的最佳设定为目标频宽Bw=50Hz、第一倍率h=1且第二倍率m=4。When the specification required by the
接着,说明惯量估计值J∑的改变对控制系统40的影响。当负载惯量Jd与马达惯量Jm的关系为Jd=10Jm时,分别设定惯量估计值J∑为J∑=6Jm、J∑=11Jm与J∑=16Jm,据以观察受控体31输出信号Y的变化。所得结果显示于图8,图8为图4的控制系统的第四步阶响应图。图8中包括步阶函数命令输入信号曲线A1、惯量估计值J∑=6Jm所致第三操作信号曲线C1、惯量估计值J∑=11Jm所致第三操作信号曲线C2、惯量估计值J∑=16Jm所致第三操作信号曲线C3、惯量估计值J∑=6Jm所致输出信号曲线D1、惯量估计值J∑=11Jm所致输出信号曲线D2与惯量估计值J∑=16Jm所致输出信号曲线D3。图8中的三条第三操作信号曲线C1、C2、C3是主控单元32、第一调整单元33与第二调整单元34,经第一倍率h与第二倍率m以不同权重加成作用所获得。如图8所示,本发明的控制系统40对惯量估计值J∑的改变具有良好的强健性。Next, the influence of a change in the estimated inertia value JΣ on the
同样,说明负载惯量Jd的改变对控制系统40的影响。当惯量估计值J∑与马达惯量Jm的关系为J∑=11Jm时,分别设定负载惯量Jd为Jd=5Jm、Jd=10Jm与Jd=15Jm,据以观察受控体31输出信号Y的变化。所得结果显示于图9,图9为图4的控制系统的第五步阶响应图。图9中包括步阶函数命令输入信号曲线A1、负载惯量Jd=5Jm所致第三操作信号曲线G1、负载惯量Jd=10Jm所致第三操作信号曲线G2、负载惯量Jd=15Jm所致第三操作信号曲线G3、负载惯量Jd=5Jm所致输出信号曲线H1、负载惯量Jd=10Jm所致输出信号曲线H2与负载惯量Jd=15Jm所致输出信号曲线H3。如图9所示,本发明的控制系统40对负载惯量Jd的改变具有良好的强健性。Also, the influence of a change in the load inertia Jd on the
接着,说明本发明所提出的控制系统30的调整方法,用以调整一受控体31所产生的一输出信号Y,包括下列步骤:Next, the adjustment method of the
(a)制定控制系统30的一目标频宽Bw;(a) formulate a target bandwidth B w of the
(b)根据目标频宽Bw,设计一控制函数,使控制系统30的一开回路频宽接近目标频宽Bw,并产生一第一操作信号U1,其中控制函数为主控单元32的传递函数;(b) According to the target bandwidth B w , design a control function to make an open-loop bandwidth of the
(c)借由第一操作信号U1,产生一第一调整信号Q1;及(c) generating a first adjustment signal Q 1 by means of the first operation signal U 1 ; and
(d)运算第一调整信号Q1、输出信号Y与第一操作信号U1,产生一第二操作信号U2,使输出信号Y接近第一调整信号Q1。(d) Computing the first adjustment signal Q 1 , the output signal Y and the first operation signal U 1 to generate a second operation signal U 2 so that the output signal Y is close to the first adjustment signal Q 1 .
上述方法的步骤(c)包括下列步骤:Step (c) of said method comprises the following steps:
(c1)根据受控体31的响应行为,设计一第一调整函数,其中第一调整函数为第一调整单元33的传递函数;及(c1) Design a first adjustment function according to the response behavior of the controlled
(c2)提供第一操作信号U1给第一调整函数,产生第一调整信号Q1。(c2) Provide the first operation signal U 1 to the first adjustment function to generate the first adjustment signal Q 1 .
上述方法的步骤(d)包括下列步骤:Step (d) of the above-mentioned method comprises the following steps:
(d1)从第一调整信号Q1减去输出信号Y,产生一第一结果信号T1;(d1) subtracting the output signal Y from the first adjustment signal Q 1 to generate a first result signal T 1 ;
(d2)放大第一结果信号T1一第一倍率h,产生一第二结果信号T2;(d2) amplifying the first result signal T 1 to a first magnification h to generate a second result signal T 2 ;
(d3)相加第二结果信号T2与第一操作信号U1,产生第二操作信号U2;及(d3) adding the second result signal T 2 and the first operation signal U 1 to generate the second operation signal U 2 ; and
(d4)调整第一倍率h的大小,使输出信号Y接近第一调整信号Q1。(d4) Adjusting the magnitude of the first magnification h so that the output signal Y is close to the first adjustment signal Q 1 .
上述方法在步骤(d)之后还包括下列步骤:Above-mentioned method also comprises the following steps after step (d):
(e)提供一输入信号R给一第二调整函数,产生一第二调整信号Q2,其中第二调整函数为第二调整单元34的传递函数;及(e) providing an input signal R to a second adjustment function to generate a second adjustment signal Q 2 , wherein the second adjustment function is the transfer function of the
(f)运算第二调整信号Q2、输出信号Y与输入信号R,产生一第三操作信号U3,使控制系统30的传递函数趋近第二调整函数。(f) Calculate the second adjustment signal Q 2 , the output signal Y and the input signal R to generate a third operation signal U 3 , so that the transfer function of the
上述方法的步骤(f)包括下列步骤:Step (f) of the above-mentioned method comprises the following steps:
(f1)从第二调整信号Q2减去输出信号Y,产生一第三结果信号T3;(f1) subtracting the output signal Y from the second adjustment signal Q2 to generate a third result signal T3 ;
(f2)接收第三结果信号T3,执行一积分运算,产生一第四结果信号T4,其中积分运算是由回路稳定器343中的积分函数F所处理;(f2) receiving the third result signal T 3 , performing an integral operation to generate a fourth result signal T 4 , wherein the integral operation is processed by the integral function F in the
(f3)放大第四结果信号T4一第二倍率m,产生一第五结果信号T5;(f3) amplifying the fourth result signal T 4 to a second magnification m to generate a fifth result signal T 5 ;
(f4)相加第五结果信号T5与输入信号R,并减去输出信号Y,产生第三操作信号U3;及(f4) adding the fifth result signal T 5 to the input signal R, and subtracting the output signal Y to generate a third operation signal U 3 ; and
(f5)调整第二倍率m的大小,使控制系统30的传递函数趋近第二调整函数。(f5) Adjust the size of the second magnification m so that the transfer function of the
本发明的特点为:一种控制系统用以控制一受控体所产生的一输出信号,包括一主控单元、一第一调整单元及一第二调整单元,通过第一倍率与第二倍率的两个权重参数的调整,达成控制系统的强健性、快速响应,且使受控体输出信号的超越量消失或趋近零。控制系统具备目标频宽、抵抗低频干扰与传递函数追随的技术特征,借由主控单元、第一调整单元与第二调整单元的设计,及第一倍率与第二倍率的两个权重参数的调整,以实时调控的方式达成上述的技术特征。The feature of the present invention is: a control system is used to control an output signal generated by a controlled body, including a main control unit, a first adjustment unit and a second adjustment unit, through the first magnification and the second magnification The adjustment of the two weight parameters can achieve the robustness and quick response of the control system, and make the overshoot of the output signal of the controlled object disappear or approach zero. The control system has the technical characteristics of target bandwidth, resistance to low-frequency interference, and transfer function tracking. Through the design of the main control unit, the first adjustment unit and the second adjustment unit, and the two weight parameters of the first multiplier and the second multiplier Adjustment, to achieve the above-mentioned technical features by means of real-time regulation.
综上所述,本发明的控制系统及其调整方法确实能达到发明构想所设定的功效。然而以上所述仅为本发明的较佳实施例,但凡本发明所属领域的技术人员,在依据本发明精神所作的等效修饰或变化,皆应涵盖于本发明的权利要求书内。To sum up, the control system and its adjustment method of the present invention can indeed achieve the effects set by the inventive idea. However, the above descriptions are only preferred embodiments of the present invention, and all equivalent modifications or changes made by those skilled in the art according to the spirit of the present invention shall be covered by the claims of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101013827A CN101290506A (en) | 2007-04-20 | 2007-04-20 | Control system and adjusting method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101013827A CN101290506A (en) | 2007-04-20 | 2007-04-20 | Control system and adjusting method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101290506A true CN101290506A (en) | 2008-10-22 |
Family
ID=40034800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007101013827A Pending CN101290506A (en) | 2007-04-20 | 2007-04-20 | Control system and adjusting method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101290506A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI514099B (en) * | 2013-03-14 | 2015-12-21 | Mitsubishi Electric Corp | Servo control device |
-
2007
- 2007-04-20 CN CNA2007101013827A patent/CN101290506A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI514099B (en) * | 2013-03-14 | 2015-12-21 | Mitsubishi Electric Corp | Servo control device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104252134B (en) | Method for controlling position of self-adaptive robust of motor servo system based on extended state observer | |
CN110673472B (en) | Adaptive Robust Control Method Based on Neural Network Compensation for Dead Zone Inversion Error | |
CN110703609B (en) | An intelligent motion control method for a motor servo system | |
CN110955143B (en) | A Compound Control Method for First-Order Inertia Pure Lag Processes | |
CN111736472B (en) | A RISE-based asymptotic control method for motor adaptive preset performance | |
CN113960923B (en) | Model-free self-adaptive sliding mode control method based on discrete extended state observer | |
CN104698847B (en) | Nonsingular terminal sliding mode (NTSM) designated performance control method of turntable servo system | |
CN106483844A (en) | The implementation method of the electrohydraulic servo system adaptive location controller based on non linear robust | |
KR20110128907A (en) | Control Concepts for Digitally Controlled Magnetic Supplies | |
CN113110048A (en) | Nonlinear system output feedback adaptive control system and method adopting HOSM observer | |
CN111679644A (en) | A Motion Control Method for Uncertain Industrial Robots Considering System Delay | |
JP2010033172A (en) | Digital servo control unit using feedforward signal | |
Yan et al. | Time-varying disturbance-observer-based tracking control of uncertain flexible-joint manipulator | |
CN108873698A (en) | A kind of disturbance rejection two stages fixed point method of servo-controlling | |
CN105278559A (en) | Variable speed hydraulic power supply compound compensation control system and method | |
CN113110519B (en) | Non-incremental model-free adaptive heading control method for ships | |
CN108803325B (en) | Robust finite time control method for permanent magnet synchronous motor servo system | |
CN113219841B (en) | Nonlinear control method for underwater multi-joint hydraulic mechanical arm based on adaptive robustness | |
CN101290506A (en) | Control system and adjusting method thereof | |
JP2013254448A (en) | Positioner | |
CN111240201B (en) | Disturbance suppression control method | |
Liu et al. | A review of decoupling control based on multiple models | |
US7783368B2 (en) | Control system and adjusting method thereof | |
Sha Sadeghi et al. | A new impedance and robust adaptive inverse control approach for a teleoperation system with varying time delay | |
CN110320804B (en) | Control method of non-affine dynamic system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20081022 |