CN104698847B - Nonsingular terminal sliding mode (NTSM) designated performance control method of turntable servo system - Google Patents
Nonsingular terminal sliding mode (NTSM) designated performance control method of turntable servo system Download PDFInfo
- Publication number
- CN104698847B CN104698847B CN201510070265.3A CN201510070265A CN104698847B CN 104698847 B CN104698847 B CN 104698847B CN 201510070265 A CN201510070265 A CN 201510070265A CN 104698847 B CN104698847 B CN 104698847B
- Authority
- CN
- China
- Prior art keywords
- formula
- function
- sliding mode
- control
- turntable servo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Feedback Control In General (AREA)
Abstract
一种转台伺服系统的非奇异终端滑模指定性能控制方法,包括:建立转台伺服系统的动态模型,初始化系统状态、采样时间以及相关控制参数;将系统中的输入饱和函数用一个光滑仿射函数逼近,推导出带有饱和的转台伺服系统模型;计算控制系统跟踪误差,FC(funnel control)误差变量,其一阶导数和二阶导数;基于带有输入饱和函数的转台伺服模型,根据非奇异终端滑模理论,选择神经网络逼近未知动态,设计非奇异终端滑模指定性能控制器,更新神经网络权值矩阵。该方法能有效避免饱和函数输入对系统的影响,实现指定性能控制效果。
A non-singular terminal sliding mode specified performance control method for a turntable servo system, comprising: establishing a dynamic model of the turntable servo system, initializing the system state, sampling time and related control parameters; using a smooth affine function for the input saturation function in the system Approximation, deduce the model of the turntable servo system with saturation; calculate the tracking error of the control system, FC (funnel control) error variable, its first derivative and second order derivative; based on the turntable servo model with input saturation function, according to the non-singularity Terminal sliding mode theory, choose the neural network to approach the unknown dynamics, design a non-singular terminal sliding mode specified performance controller, and update the weight matrix of the neural network. This method can effectively avoid the influence of saturation function input on the system, and realize the specified performance control effect.
Description
技术领域technical field
本发明涉及一种转台伺服系统的非奇异终端滑模指定性能控制方法,特别是带有输入和输出约束的转台伺服系统的拥有指定性能控制方法。The invention relates to a non-singular terminal sliding mode designated performance control method of a turntable servo system, in particular to a designated performance control method of a turntable servo system with input and output constraints.
背景技术Background technique
转台伺服系统广泛应用于飞行控制、火力控制等各种领域。针对转台伺服系统的输出约束控制问题,存在很多控制方法,例如自适应控制,滑模控制,终端滑模控制等。传统的线性滑模控制方法能够保证被控系统跟踪误差的渐近收敛,即:理论上跟踪误差能够在无穷大的时间内收敛到平衡点。为了提高系统跟踪误差的收敛速度,一般在线性滑模的基础上增加非线性项,通过设计动态非线性滑模面实现系统的快速跟踪控制,称为终端滑模控制方法。该方法能够保证系统状态在指定时间内达到对期望状态的完全跟踪。然而,由于滑模面的设计中引入了分数指数项,终端滑模方法可能存在奇异值的问题以及当初始状态远离平衡点时收敛速度较慢的问题。利用非奇异终端滑模设计控制器可以避免奇异值问题。Turntable servo system is widely used in various fields such as flight control and fire control. For the output-constrained control problem of the turntable servo system, there are many control methods, such as adaptive control, sliding mode control, terminal sliding mode control and so on. The traditional linear sliding mode control method can guarantee the asymptotic convergence of the tracking error of the controlled system, that is: theoretically, the tracking error can converge to the equilibrium point in infinite time. In order to improve the convergence speed of the system tracking error, a nonlinear term is generally added on the basis of the linear sliding mode, and the fast tracking control of the system is realized by designing a dynamic nonlinear sliding mode surface, which is called the terminal sliding mode control method. This method can ensure that the system state can fully track the desired state within a specified time. However, due to the introduction of fractional exponential terms in the design of the sliding surface, the terminal sliding mode method may have problems with singular values and slow convergence when the initial state is far from the equilibrium point. The singular value problem can be avoided by designing the controller with non-singular terminal sliding mode.
实现指定性能控制的方法有很多,例如BLF(barrier Lyapunov function)控制,PPC(prescribed performance control)控制,和FC(funnel control)方法。BLF方法可以约束系统状态变量间接限制系统跟踪误差,但是方法中李雅普诺夫函数表达形式比较复杂,并需要保证函数可微。PPC使用新的误差变量保证系统指定的稳态误差,但是存在奇异值问题。FC提出一个与跟踪误差相关的虚拟控制变量,并将变量运用到非奇异终端滑模滑模控制中。There are many methods to realize specified performance control, such as BLF (barrier Lyapunov function) control, PPC (prescribed performance control) control, and FC (funnel control) method. The BLF method can constrain the system state variables to indirectly limit the system tracking error, but the expression of the Lyapunov function in the method is relatively complicated, and it is necessary to ensure that the function is differentiable. PPC uses a new error variable to guarantee the steady-state error specified by the system, but there is a singular value problem. FC proposes a virtual control variable related to the tracking error, and applies the variable to the non-singular terminal sliding mode control.
饱和非线性环节广泛存在于转台伺服系统、伺服电机系统以及其他工业工程领域。饱和的存在往往会导致降低系统性能,甚至会造成系统的不稳定。因此,为提高控制性能,针对饱和的补偿和控制方法必不可少。传统的饱和补偿方法一般是建立饱和的逆模型或近似逆模型,并通过估计饱和函数的上下界参数设计自适应控制器以补偿饱和的影响。然而,在转台伺服系统等非线性系统中,饱和的逆模型往往不易精确获得。对于系统中存在饱和输入,首先使用一个光滑函数进行逼近,然后基于微分中值定理经行优化,使其成为一个简单仿射形式,避免了附加补偿,从而可以用一个简单神经网络逼近未知函数和未知参数。Saturated nonlinear links widely exist in turntable servo systems, servo motor systems and other industrial engineering fields. The existence of saturation will often lead to reduced system performance, and even cause system instability. Therefore, to improve the control performance, compensation and control methods against saturation are essential. The traditional saturation compensation method is generally to establish an inverse model or an approximate inverse model of saturation, and design an adaptive controller to compensate the influence of saturation by estimating the upper and lower bound parameters of the saturation function. However, in nonlinear systems such as turntable servo systems, the inverse model of saturation is often not easy to obtain accurately. For the saturated input in the system, first use a smooth function to approximate, and then optimize it based on the differential median value theorem to make it a simple affine form, avoiding additional compensation, so that a simple neural network can be used to approximate the unknown function and Unknown parameter.
发明内容Contents of the invention
为了克服现有转台伺服系统的无法避免死区附加补偿、不允许系统存在未知参数的不足,本发明提供一种转台伺服系统的非奇异终端滑模指定性能控制方法,结合输出限制,非奇异终端滑模和神经网络思想,设计控制器,实现系统指定性能跟踪。In order to overcome the deficiencies of the existing turntable servo system that cannot avoid additional dead zone compensation and does not allow the system to have unknown parameters, the present invention provides a non-singular terminal sliding mode specified performance control method for the turntable servo system, combined with output restrictions, non-singular terminal Sliding mode and neural network ideas, design controllers, and realize system specified performance tracking.
为了解决上述技术问题提出的技术方案如下:The technical scheme proposed in order to solve the above technical problems is as follows:
一种转台伺服系统的非奇异终端滑模指定性能控制方法,所述控制方法包括以下步骤:A non-singular terminal sliding mode specified performance control method for a turntable servo system, the control method comprising the following steps:
步骤1,建立转台伺服系统的动态模型,初始化系统状态、采样时间以及控制参数;Step 1, establish the dynamic model of the turntable servo system, initialize the system state, sampling time and control parameters;
1.1转台伺服系统的机械动态模型可以描述为1.1 The mechanical dynamic model of the turntable servo system can be described as
其中,y=x(t)∈R,u(t)∈R分别表示系统状态,控制输入电压和电机输出;x表示位置,m表示负载质量,k0表示控制增益,f(x,t)是摩擦力,d(x,t)是包括测量噪声、电磁干扰和其他未知项在内的有界扰动,v(u)∈R表示输入饱和函数,表示为in, y=x(t)∈R, u(t)∈R represent system state, control input voltage and motor output respectively; x represents position, m represents load mass, k 0 represents control gain, f(x,t) is friction force, d(x,t) is a bounded disturbance including measurement noise, electromagnetic interference, and other unknowns, and v(u)∈R represents the input saturation function, expressed as
1.2定义x1=x,则式(1)改写为1.2 Define x 1 =x, Then formula (1) can be rewritten as
步骤2,将系统中的输入饱和函数用一个光滑仿射函数逼近,推导出带有饱和的转台伺服系统模型;Step 2, the input saturation function in the system is approximated by a smooth affine function, and the model of the turntable servo system with saturation is derived;
2.1设计一个光滑函数如下2.1 Design a smooth function as follows
于是,将式(2)近似的表示为Therefore, the expression (2) is approximated as
v(u)=sat(u)=g(u)+d1(u) (5)v(u)=sat(u)=g(u)+d 1 (u) (5)
其中,d1(u)=sat(u)-g(u)为有界函数;Among them, d 1 (u)=sat(u)-g(u) is a bounded function;
|d1(u)|=|sat(u)-g(u)|≤vmax(1-tanh(1)) (6)|d 1 (u)|=|sat(u)-g(u)|≤v max (1-tanh(1)) (6)
2.2根据微分中值定理,存在常数0<ξ<1,将式(4)转化为一个光滑仿射函数2.2 According to the differential median value theorem, there is a constant 0<ξ<1, and the formula (4) is transformed into a smooth affine function
其中uξ=ξu;in u ξ = ξu;
2.3由式(5)和式(7),将式(3)改写为以下等效形式:2.3 From formula (5) and formula (7), formula (3) is rewritten into the following equivalent form:
步骤3,计算控制系统跟踪误差,FC误差变量,其一阶导数和二阶导数;Step 3, calculate the control system tracking error, FC error variable, its first order derivative and second order derivative;
3.1定义控制系统的跟踪误差为3.1 Define the tracking error of the control system as
e(t)=xd-x (9)e(t)=x d -x (9)
其中,xd为二阶可导期望轨迹;Among them, x d is the second-order derivable expected trajectory;
3.2定义FC误差变量为:3.2 Define the FC error variable as:
其中,in,
Fφ(t)=δ0exp(a0t)+δ∞ (11)F φ (t)=δ 0 exp(a 0 t)+δ ∞ (11)
其中,δ0≥δ∞>0,|e(0)|<Fφ(0);Among them, δ 0 ≥ δ ∞ > 0, |e(0)|<F φ (0);
3.3对式(10)求导,得3.3 Deriving formula (10), we get
其中, in,
3.4对式(12)求导,得3.4 Deriving formula (12), we get
其中, in,
步骤4,基于带有输入饱和函数的转台伺服模型,根据非奇异终端滑模理论,选择神经网络逼近未知动态,设计非奇异终端滑模指定性能控制器,更新神经网络权值矩阵;Step 4, based on the turntable servo model with input saturation function, according to the non-singular terminal sliding mode theory, select the neural network to approximate the unknown dynamics, design the non-singular terminal sliding mode specified performance controller, and update the neural network weight matrix;
4.1选择滑模流型为4.1 Select the sliding mode flow pattern as
其中,α>0;Among them, α>0;
4.2对式(14)微分,得到4.2 Differentiate the formula (14) to get
4.3将式(8),式(13)代入式(15)得4.3 Substitute formula (8) and formula (13) into formula (15) to get
其中,非线性函数κ为Among them, the nonlinear function κ is
4.4为了逼近不能直接得到的非线性函数κ,定义以下神经网络4.4 In order to approximate the non-linear function κ which cannot be obtained directly, the following neural network is defined
κ=W*Tφ(X)+ε (18)κ=W *T φ(X)+ε (18)
其中,W*为理想权重,φ(X)通常被取为以下高斯函数Among them, W * is the ideal weight, φ(X) is usually taken as the following Gaussian function
其中,c=[c1,c2,...,cn]T是高斯函数的核参数,b是高斯函数的宽度,0<φ(X)≤1;Among them, c=[c 1 ,c 2 ,...,c n ] T is the kernel parameter of the Gaussian function, b is the width of the Gaussian function, 0<φ(X)≤1;
4.5根据非奇异终端滑模理论,设计第二个滑模流型为4.5 According to the non-singular terminal sliding mode theory, the second sliding mode flow pattern is designed as
4.6将式(16)和式(18)代入式(20)得4.6 Substitute formula (16) and formula (18) into formula (20) to get
其中,p,q为正奇数并且p<q,是W*的估计值,μ是ε和的估计值,是权重估计误差;Among them, p, q are positive odd numbers and p<q, is an estimate of W * , μ is ε and the estimated value of is the weight estimation error;
4.7设计神经网络权重的调节规律4.7 Designing Neural Network Weights regulation of
步骤5,设计李雅普诺夫函数Step 5, design Lyapunov function
V=V0+V1+V2 (23)V=V 0 +V 1 +V 2 (23)
其中,和 in, with
对式(23)进行求导得:Deriving formula (23) gives:
将式(21)和式(22)代入式(24),如果则判定系统是稳定的。Substitute formula (21) and formula (22) into formula (24), if Then the system is judged to be stable.
本发明结合输出限制,非奇异终端滑模和神经网络思想,设计控制器,实现系统指定性能跟踪。The invention combines output limitation, non-singular terminal sliding mode and neural network ideas, designs a controller, and realizes specified performance tracking of the system.
本发明的技术构思为:针对状态不可测,并且带有饱和函数输入的转台伺服系统,利用一个光滑仿射函数逼近饱和函数,再结合FC方法。非奇异终端滑模和神经网络,设计一种转台伺服系统的非奇异终端滑模指定性能控制方法。对于系统中存在饱和输入,首先使用一个光滑函数进行逼近,然后基于微分中值定理经行优化,使其成为一个简单仿射形式,避免了附加补偿。对于输出限制,使用FC方法设计一个新的误差变量,从而利用非奇异终端滑模理论,设计指定性能跟踪控制,保证系统在有限时间收敛。本发明提供一种能够实现指定性能控制,有效避免饱和函数输入对系统的影响的指定性能控制方法。The technical idea of the present invention is: aiming at the turntable servo system with unmeasurable state and with saturation function input, a smooth affine function is used to approximate the saturation function, combined with FC method. Nonsingular terminal sliding mode and neural network, design a nonsingular terminal sliding mode specified performance control method for turntable servo system. For the saturated input in the system, a smooth function is firstly used for approximation, and then optimized based on the differential median value theorem to make it a simple affine form, avoiding additional compensation. For the output limit, a new error variable is designed using the FC method, so that the non-singular terminal sliding mode theory is used to design a specified performance tracking control to ensure that the system converges in a finite time. The invention provides a specified performance control method capable of realizing specified performance control and effectively avoiding the influence of saturation function input on the system.
本发明的优点为:避免死区附加补偿,允许系统存在未知参数,实现指定性能控制。The invention has the advantages of avoiding additional compensation in the dead zone, allowing the system to have unknown parameters, and realizing specified performance control.
附图说明Description of drawings
图1为本发明的饱和函数模型的示意图。Fig. 1 is a schematic diagram of the saturation function model of the present invention.
图2为本发明的跟踪效果的示意图。Fig. 2 is a schematic diagram of the tracking effect of the present invention.
图3为本发明的跟踪误差的示意图。FIG. 3 is a schematic diagram of the tracking error of the present invention.
图4为本发明的控制流程图。Fig. 4 is a control flow chart of the present invention.
具体实施方式detailed description
下面结合附图对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
参照图1-图4,一种转台伺服系统的非奇异终端滑模指定性能控制方法,包括以下步骤:Referring to Fig. 1-Fig. 4, a non-singular terminal sliding mode specified performance control method of a turntable servo system comprises the following steps:
步骤1,建立转台伺服系统的动态模型,初始化系统状态、采样时间以及控制参数;Step 1, establish the dynamic model of the turntable servo system, initialize the system state, sampling time and control parameters;
1.1转台伺服系统的机械动态模型可以描述为1.1 The mechanical dynamic model of the turntable servo system can be described as
其中,y=x(t)∈R,u(t)∈R分别表示系统状态,控制输入电压和电机输出;x表示位置,m表示负载质量,k0表示控制增益,f(x,t)是摩擦力,d(x,t)是包括测量噪声、电磁干扰和其他未知项在内的有界扰动,v(u)∈R表示输入饱和函数,表示为in, y=x(t)∈R, u(t)∈R represent system state, control input voltage and motor output respectively; x represents position, m represents load mass, k 0 represents control gain, f(x,t) is friction force, d(x,t) is a bounded disturbance including measurement noise, electromagnetic interference, and other unknowns, and v(u)∈R represents the input saturation function, expressed as
1.2为了便于设计控制器,定义x1=x,则式(1)改写为1.2 In order to facilitate the design of the controller, define x 1 = x, Then formula (1) can be rewritten as
步骤2,将系统中的输入饱和函数用一个光滑仿射函数逼近,推导出带有饱和的转台伺服系统模型;Step 2, the input saturation function in the system is approximated by a smooth affine function, and the model of the turntable servo system with saturation is derived;
2.1设计一个光滑函数如下2.1 Design a smooth function as follows
于是,将式(2)近似的表示为Therefore, the expression (2) is approximated as
v=sat(u)=g(u)+d1(u) (5)v=sat(u)=g(u)+d 1 (u) (5)
其中,d1(u)=sat(u)-g(u)为有界函数Among them, d 1 (u)=sat(u)-g(u) is a bounded function
|d1(u)|=|sat(u)-g(u)|≤vmax(1-tanh(1)) (6)|d 1 (u)|=|sat(u)-g(u)|≤v max (1-tanh(1)) (6)
2.2根据微分中值定理,存在常数0<ξ<1,将式(4)转化为一个光滑仿射函数2.2 According to the differential median value theorem, there is a constant 0<ξ<1, and the formula (4) is transformed into a smooth affine function
其中uξ=ξu;in u ξ = ξu;
2.3由式(3)、式(5)和式(7),将式(2)改写为以下等效形式:2.3 From formula (3), formula (5) and formula (7), formula (2) is rewritten into the following equivalent form:
步骤3,计算控制系统跟踪误差,FC误差变量,其一阶导数和二阶导数;Step 3, calculate the control system tracking error, FC error variable, its first order derivative and second order derivative;
3.1定义控制系统的跟踪误差为3.1 Define the tracking error of the control system as
e(t)=xd-x (9)e(t)=x d -x (9)
其中,xd为二阶可导期望轨迹;Among them, x d is the second-order derivable expected trajectory;
3.2定义FC误差变量为:3.2 Define the FC error variable as:
其中,in,
Fφ(t)=δ0exp(a0t)+δ∞ (11)F φ (t)=δ 0 exp(a 0 t)+δ ∞ (11)
其中,δ0≥δ∞>0,|e(0)|<Fφ(0);Among them, δ 0 ≥ δ ∞ > 0, |e(0)|<F φ (0);
3.3对式(10)求导,得3.3 Deriving formula (10), we get
其中, in,
3.4对式(12)求导,得3.4 Deriving formula (12), we get
其中, in,
步骤4,基于带有输入饱和函数的转台伺服模型,根据非奇异终端滑模理论,选择神经网络逼近未知动态,设计非奇异终端滑模指定性能控制器,更新神经网络权值矩阵;Step 4, based on the turntable servo model with input saturation function, according to the non-singular terminal sliding mode theory, select the neural network to approximate the unknown dynamics, design the non-singular terminal sliding mode specified performance controller, and update the neural network weight matrix;
4.1选择滑模流型为4.1 Select the sliding mode flow pattern as
其中,α>0;Among them, α>0;
4.2对式(14)微分,得到4.2 Differentiate the formula (14) to get
4.3将式(8),式(13)代入式(15)得4.3 Substitute formula (8) and formula (13) into formula (15) to get
其中,非线性函数κ为Among them, the nonlinear function κ is
4.4为了逼近不能直接得到的非线性函数κ,定义以下神经网络4.4 In order to approximate the non-linear function κ which cannot be obtained directly, the following neural network is defined
κ=W*Tφ(X)+ε (18)κ=W *T φ(X)+ε (18)
其中,W*为理想权重,φ(X)通常被取为以下高斯函数Among them, W * is the ideal weight, φ(X) is usually taken as the following Gaussian function
其中,c=[c1,c2,...,cn]T是高斯函数的核参数,b是高斯函数的宽度,0<φ(X)≤1;Among them, c=[c 1 ,c 2 ,...,c n ] T is the kernel parameter of the Gaussian function, b is the width of the Gaussian function, 0<φ(X)≤1;
4.5根据非奇异终端滑模理论,设计第二个滑模流型为4.5 According to the non-singular terminal sliding mode theory, the second sliding mode flow pattern is designed as
4.6将式(16)和式(18)代入式(20)得4.6 Substitute formula (16) and formula (18) into formula (20) to get
其中,p,q为正奇数并且p<q,是W*的估计值,μ是ε和的估计值,是权重估计误差;Among them, p, q are positive odd numbers and p<q, is an estimate of W * , μ is ε and the estimated value of is the weight estimation error;
4.7设计神经网络权重的调节规律4.7 Designing Neural Network Weights regulation of
步骤5,设计李雅普诺夫函数Step 5, design Lyapunov function
V=V0+V1+V2 (23)V=V 0 +V 1 +V 2 (23)
其中,和 in, with
对式(23)进行求导得:Deriving formula (23) gives:
将式(21)和式(22)代入式(24),如果则判定系统是稳定的。Substitute formula (21) and formula (22) into formula (24), if Then the system is judged to be stable.
为验证所提方法的有效性,进行了如下实验:In order to verify the effectiveness of the proposed method, the following experiments were carried out:
本发明给出了PID法,普通滑模法(sliding mode control,SMC),非奇异终端滑模法(nonsingular terminal sliding mode control,NTSMC),非奇异终端滑模指定性能法(nonsingular terminal sliding mode funnel control,NTSMFC)的对比:The present invention provides PID method, ordinary sliding mode control (sliding mode control, SMC), nonsingular terminal sliding mode control (NTSMC), nonsingular terminal sliding mode specified performance method (nonsingular terminal sliding mode funnel control, NTSMFC) comparison:
为了更有效的进行对比,所有控制信号参数都是一致的,x1(0)=0,x2(0)=0,K=0.1,a=2,b=10,c=1,d=-10,δ0=100,δ∞=3,a0=0.3,α=2,β=0.2,p=5,q=7,b0=6,μ=0.1。系统模型选择为h=.2x2sin(x2),b=6。饱和函数的界限选为vmax=1。For more effective comparison, all control signal parameters are consistent, x 1 (0)=0, x 2 (0)=0, K=0.1, a=2, b=10, c=1, d= -10, δ 0 =100, δ ∞ =3, a 0 =0.3, α=2, β=0.2, p=5, q=7, b 0 =6, μ=0.1. The system model is chosen as h=.2x 2 sin(x 2 ), b=6. The limit of the saturation function is chosen as v max =1.
跟踪yd=0.5(sin(t)+sin(0.5t))的信号,由图2可以看出,NTSMFC跟踪效果比其他方法更好;从图3可以看出,NTSMFC的跟踪稳态误差最小,同时超调也是最小,能在1秒内达到稳定。因此,本发明提供本发明提供一种能够实现指定性能控制,有效避免饱和函数输入对系统的影响的指定性能控制方法。Tracking the signal of y d =0.5(sin(t)+sin(0.5t)), it can be seen from Figure 2 that the tracking effect of NTSMFC is better than other methods; it can be seen from Figure 3 that the tracking steady-state error of NTSMFC is the smallest , and the overshoot is also the smallest, and can reach stability within 1 second. Therefore, the present invention provides a specified performance control method capable of realizing specified performance control and effectively avoiding the influence of saturation function input on the system.
以上阐述的是本发明给出的一个实施例表现出的优良优化效果,显然本发明不只是限于上述实施例,在不偏离本发明基本精神及不超出本发明实质内容所涉及范围的前提下对其可作种种变形加以实施。The above set forth is the excellent optimization effect shown by an embodiment of the present invention. Obviously, the present invention is not limited to the above-mentioned embodiment. It can be implemented in various modifications.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510070265.3A CN104698847B (en) | 2015-02-10 | 2015-02-10 | Nonsingular terminal sliding mode (NTSM) designated performance control method of turntable servo system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510070265.3A CN104698847B (en) | 2015-02-10 | 2015-02-10 | Nonsingular terminal sliding mode (NTSM) designated performance control method of turntable servo system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104698847A CN104698847A (en) | 2015-06-10 |
CN104698847B true CN104698847B (en) | 2017-04-12 |
Family
ID=53346091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510070265.3A Active CN104698847B (en) | 2015-02-10 | 2015-02-10 | Nonsingular terminal sliding mode (NTSM) designated performance control method of turntable servo system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104698847B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105116725B (en) * | 2015-07-17 | 2018-06-29 | 浙江工业大学 | Servo system self-adaptive sliding-mode control based on extended state observer |
CN105186959A (en) * | 2015-08-25 | 2015-12-23 | 哈尔滨工业大学 | Parameter setting method of sliding mode controller of servo system |
CN105573119A (en) * | 2016-01-13 | 2016-05-11 | 浙江工业大学 | Mechanical arm servo system neural network full-order sliding-mode control method for guaranteeing transient performance |
CN107045557B (en) * | 2016-11-01 | 2020-05-12 | 长春工业大学 | Constraint-oriented non-singular terminal sliding mode force position control method for reconfigurable manipulators |
CN109031950B (en) * | 2018-07-12 | 2021-06-29 | 中国人民解放军军事科学院国防科技创新研究院 | Tracking rotary table program guiding over-top method based on pitch angle reversal and angle smoothing |
CN109143846A (en) * | 2018-09-25 | 2019-01-04 | 浙江工业大学 | A kind of rigid aircraft adaptive neural network tracking and controlling method considering actuator constraints problem |
CN108958042B (en) * | 2018-09-28 | 2021-06-01 | 东北大学 | Sliding mode control method based on two approaching laws |
CN110045604B (en) * | 2019-02-27 | 2022-03-01 | 沈阳工业大学 | Voice coil motor driven Lorentz force FTS repetitive sliding mode compound control method |
CN114384800B (en) * | 2021-12-09 | 2023-09-12 | 上海工程技术大学 | A backstepping control method for unknown nonlinear systems with input signal delay |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103077729A (en) * | 2013-02-05 | 2013-05-01 | 西安电子科技大学 | High-order nonsingular terminal slip mode control method for two-stage magnetic head positioning system |
CN103197562A (en) * | 2013-04-11 | 2013-07-10 | 浙江工业大学 | Rotary-table servo system neural network control method |
CN104201945A (en) * | 2014-08-14 | 2014-12-10 | 浙江工业大学 | Finite time synchronous control method of double permanent magnet synchronous motor chaotic systems |
CN104267596A (en) * | 2014-08-15 | 2015-01-07 | 浙江工业大学 | Finite-time decoupling control method of cart inverted pendulum system |
-
2015
- 2015-02-10 CN CN201510070265.3A patent/CN104698847B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103077729A (en) * | 2013-02-05 | 2013-05-01 | 西安电子科技大学 | High-order nonsingular terminal slip mode control method for two-stage magnetic head positioning system |
CN103197562A (en) * | 2013-04-11 | 2013-07-10 | 浙江工业大学 | Rotary-table servo system neural network control method |
CN104201945A (en) * | 2014-08-14 | 2014-12-10 | 浙江工业大学 | Finite time synchronous control method of double permanent magnet synchronous motor chaotic systems |
CN104267596A (en) * | 2014-08-15 | 2015-01-07 | 浙江工业大学 | Finite-time decoupling control method of cart inverted pendulum system |
Non-Patent Citations (3)
Title |
---|
Application of Adaptive Backstepping Sliding Mode Control in Alternative Current Servo System of Rocket Launcher;GUO Ya-jun,et al.;《Journal of China Ordnance》;20111231;第7卷(第3期);全文 * |
Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control;ZHANG You-wang,et al.;《Journal of Central South University of Technology》;20081231(第2期);全文 * |
永磁同步电动机混合非奇异终端滑模变结构控制;张晓光 等;《中国电机工程学报》;20110925;第31卷(第27期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN104698847A (en) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104698847B (en) | Nonsingular terminal sliding mode (NTSM) designated performance control method of turntable servo system | |
CN105116725B (en) | Servo system self-adaptive sliding-mode control based on extended state observer | |
Wang et al. | Parameter estimation and adaptive control for servo mechanisms with friction compensation | |
CN104698846B (en) | A kind of specified performance back stepping control method of mechanical arm servo-drive system | |
CN103197562B (en) | Rotary-table servo system neural network control method | |
Zhao et al. | Finite‐time tracking control for pneumatic servo system via extended state observer | |
Huang et al. | Intelligent friction modeling and compensation using neural network approximations | |
CN104252134B (en) | Method for controlling position of self-adaptive robust of motor servo system based on extended state observer | |
CN104796111B (en) | It is a kind of to be used for Dynamic Hysteresis system modelling and the nonlinear adaptable filter of compensation | |
CN107168071B (en) | A kind of nonlinear system Auto-disturbance-rejection Control based on interference observer | |
CN109581877B (en) | Magnetic levitation ball sliding mode variable structure control method based on ESO | |
CN107102634B (en) | A Parameter Estimation and Tracking Control Method Based on Turntable Servo System | |
CN108983610B (en) | A Robust Adaptive Disturbance Rejection Control Method | |
CN105549395B (en) | Ensure the mechanical arm servo-drive system dead time compensation control method of mapping | |
CN110716506A (en) | Servo system position tracking control method based on mixed sliding mode control | |
CN108228975A (en) | Motor servo system parameter identification method and anti-backlash control method | |
CN110673472A (en) | Adaptive Robust Control Method Based on Neural Network Compensation for Dead Zone Inversion Error | |
CN111546346B (en) | A flexible joint disturbance observation method, torque control method and device | |
CN110572093A (en) | An ARC Control Method Based on Expected Trajectory and Disturbance Compensation of Motor Position Servo System | |
CN110661464A (en) | Disturbance suppression method for alternating current servo system and position loop | |
CN105867118B (en) | An Adaptive Robust Control Method for an Improved Motor Position Servo System | |
Liu et al. | Observer-based composite adaptive dynamic terminal sliding-mode controller for nonlinear uncertain SISO systems | |
Zou | Extended state observer‐based finite time control of electro‐hydraulic system via sliding mode technique | |
CN105759616A (en) | Servo system finite time control method considering dead zone characteristic | |
Rsetam et al. | Robust adaptive active disturbance rejection control of an electric furnace using additional continuous sliding mode component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201217 Address after: Room 1007, building 17, No. 57, kekeyuan Road, Baiyang street, Qiantang New District, Hangzhou City, Zhejiang Province Patentee after: Zhejiang Qibo Intellectual Property Operation Co.,Ltd. Address before: 310014 Zhejiang University of Technology, 18 Zhaowang Road, Zhaohui six District, Hangzhou, Zhejiang Patentee before: ZHEJIANG University OF TECHNOLOGY Effective date of registration: 20201217 Address after: 21 / F, building B, Xingzhi science and Technology Park, Nanjing Economic and Technological Development Zone, Nanjing, Jiangsu Province 210000 Patentee after: Nanjing Shenwei Photoelectric Technology Research Institute Co.,Ltd. Address before: Room 1007, building 17, No. 57, kekeyuan Road, Baiyang street, Qiantang New District, Hangzhou City, Zhejiang Province Patentee before: Zhejiang Qibo Intellectual Property Operation Co.,Ltd. |