CN101281871A - Composite hard mask layer, metal oxide semiconductor transistor and manufacturing method thereof - Google Patents
Composite hard mask layer, metal oxide semiconductor transistor and manufacturing method thereof Download PDFInfo
- Publication number
- CN101281871A CN101281871A CNA2007100898560A CN200710089856A CN101281871A CN 101281871 A CN101281871 A CN 101281871A CN A2007100898560 A CNA2007100898560 A CN A2007100898560A CN 200710089856 A CN200710089856 A CN 200710089856A CN 101281871 A CN101281871 A CN 101281871A
- Authority
- CN
- China
- Prior art keywords
- hard mask
- layer
- sidewall
- silicon
- grid structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 54
- 239000004065 semiconductor Substances 0.000 title claims abstract description 31
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 28
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 119
- 230000008569 process Effects 0.000 claims abstract description 74
- 238000005530 etching Methods 0.000 claims abstract description 59
- 239000000758 substrate Substances 0.000 claims abstract description 41
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 38
- 229920005591 polysilicon Polymers 0.000 claims abstract description 38
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 40
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 38
- 229910052710 silicon Inorganic materials 0.000 claims description 33
- 239000010703 silicon Substances 0.000 claims description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 32
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 31
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 29
- 229920002120 photoresistant polymer Polymers 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 claims description 7
- 238000000059 patterning Methods 0.000 claims description 6
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims 18
- 239000004576 sand Substances 0.000 claims 11
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 claims 11
- VUGMARFZKDASCX-UHFFFAOYSA-N 2-methyl-N-silylpropan-2-amine Chemical compound CC(C)(C)N[SiH3] VUGMARFZKDASCX-UHFFFAOYSA-N 0.000 claims 7
- 238000007254 oxidation reaction Methods 0.000 claims 7
- 239000000377 silicon dioxide Substances 0.000 claims 7
- 238000001259 photo etching Methods 0.000 claims 5
- 238000007493 shaping process Methods 0.000 claims 4
- 238000001459 lithography Methods 0.000 claims 1
- 238000004140 cleaning Methods 0.000 description 24
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 20
- VYIRVGYSUZPNLF-UHFFFAOYSA-N n-(tert-butylamino)silyl-2-methylpropan-2-amine Chemical compound CC(C)(C)N[SiH2]NC(C)(C)C VYIRVGYSUZPNLF-UHFFFAOYSA-N 0.000 description 11
- 238000002955 isolation Methods 0.000 description 8
- -1 silicon carbide nitride Chemical class 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 238000005192 partition Methods 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 238000009966 trimming Methods 0.000 description 7
- 238000005468 ion implantation Methods 0.000 description 6
- 230000003667 anti-reflective effect Effects 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域 technical field
本发明有关于一种利用复合硬掩模层的制作金属氧化物半导体晶体管(metal-oxide semiconductor,MOS transistor)的方法,尤指一种利用选择性外延(selective epitaxial growth,以下简称为SEG)成长制作的MOS晶体管的方法。The present invention relates to a method for making a metal-oxide semiconductor transistor (MOS transistor) using a composite hard mask layer, especially a method for growing a metal-oxide semiconductor transistor (MOS transistor) using selective epitaxy (hereinafter referred to as SEG). Methods of fabricating MOS transistors.
背景技术 Background technique
选择性外延成长(SEG)技术主要是于单晶基板表面形成晶格排列与基板相同的外延层,其应用于许多半导体元件的制作中,例如具有增高式源极/漏极(raised source/drain)的晶体管具有良好短沟道特性与低寄生电阻的优点,同时通过增高的外延层的存在,可避免形成金属硅化物时过度消耗硅基底导致漏电流的困扰;而嵌入式源极/漏极(recessed source/drain)则具有可改善漏极引发能带降低效应(drain induced barrier lowering,DIBL)与击穿(punchthrough)效应、降低截止态漏电流、以及减少功率消耗的优点。Selective epitaxial growth (SEG) technology is mainly to form an epitaxial layer with the same lattice arrangement as the substrate on the surface of a single crystal substrate, which is used in the manufacture of many semiconductor devices, such as raised source/drain (raised source/drain ) transistors have the advantages of good short channel characteristics and low parasitic resistance, and at the same time, through the existence of an increased epitaxial layer, it can avoid the trouble of excessive consumption of silicon substrate when forming metal silicide; while the embedded source/drain (recessed source/drain) has the advantages of improving drain induced barrier lowering (DIBL) and punchthrough effects, reducing off-state leakage current, and reducing power consumption.
一般而言,SEG技术先利用表面清洗工艺完全地清除基板表面的原生氧化物(native oxide)或其它不纯物(impurity)后,在基板表面沉积外延层,并使外延层沿着基板表面的晶格结构向上生长。请参阅第1图至第4图,第1图至第4图为已知利用SEG技术制作应变硅MOS晶体管的方法的示意图。如第1图所示,首先提供基底100,如硅基底,基底100上已形成有多个浅沟槽隔离(shallow trench isolation,STI)102,并于基底上依序形成介电层112、多晶硅层114、与包含有氮化硅或氧化硅的硬掩模层,其中硬掩模层通过光刻工艺图案化,而所得的图案化硬掩模层120用以定义栅极的位置及线宽。Generally speaking, the SEG technology first uses the surface cleaning process to completely remove the native oxide (native oxide) or other impurities (impurity) on the substrate surface, and then deposits the epitaxial layer on the substrate surface, and makes the epitaxial layer along the surface of the substrate. The lattice structure grows upwards. Please refer to FIG. 1 to FIG. 4 . FIG. 1 to FIG. 4 are schematic diagrams of a known method for fabricating strained silicon MOS transistors using SEG technology. As shown in FIG. 1, first, a
请参阅第2图。接下来进行蚀刻工艺,移除部分多晶硅层114与介电层112,以形成栅极110。随后进行离子注入工艺,以于栅极110两侧的基底100中分别形成轻掺杂漏极(lightly doped drains,LDD)116,并于栅极110的侧壁形成间隔壁118。接下来请参阅第3图与第4图。随后利用图案化硬掩模层120与间隔壁118作为蚀刻掩模,在栅极110两侧的基底100内分别蚀刻凹槽130。如第4图所示,凹槽130内的基底100表面于后续SEG工艺时生成外延层132。另外,在蚀刻凹槽130之前或SEG工艺形成外延层132之后,可进行离子注入工艺,以形成嵌入式源极/漏极。See Figure 2. Next, an etching process is performed to remove part of the
值得注意的是,在形成栅极110后,及进行形成嵌入式源极/漏极的SEG工艺前,基底100尚会经过多次蚀刻与清洗步骤,例如多晶硅层114蚀刻后清洗、轻掺杂漏极116离子注入后的清洗、间隔壁118的蚀刻与蚀刻后清洗、凹槽130蚀刻及蚀刻后清洗、以及SEG工艺前的清洗,上述蚀刻及清洗工艺在在耗损原本覆盖于多晶硅层114上的硬掩模层120。因此在进行SEG工艺前,被耗损的图案化硬掩模层120致使其下方的多晶硅层114暴露出来,此种耗损的发生尤以图案化硬掩模层120的边缘居多。而在进行后续SEG工艺时,这些暴露出的多晶硅层114边角(corner)会形成不应出现的外延层。这些外延层的形成可能造成掺杂于多晶硅层114内的离子扩散至这些外延层内,因而降低栅极110的活化程度(activation)或增加栅极110的反转(inversion),影响元件表现。这些外延层132甚至可能在后续工艺中造成栅极110与源极/漏极间的短路,造成成品率的下降。It is worth noting that after forming the
此外,由于氮化硅构成的硬掩模层120不易移除,因此亦常于后续移除硬掩模层120的移除步骤中,例如移除硬掩模层120以于多晶硅层114表面形成金属硅化物,会影响栅极110的表面轮廓,甚至于移除步骤中将间隔壁118一同移除,而一对栅极110的侧壁或一对多晶硅层114底部的介电层112造成伤害。In addition, since the
因此,如何提供可有效抵抗蚀刻与清洗步骤所造成的耗损,亦可于移除时不致对其他元件造成损害的硬掩模层,实为半导体技术领域中的重要课题。Therefore, how to provide a hard mask layer that can effectively resist the wear caused by the etching and cleaning steps and not cause damage to other components during removal is an important issue in the field of semiconductor technology.
发明内容 Contents of the invention
因此,本发明于此提供一种利用复合硬掩模的制作MOS晶体管的方法,以改善已知技术中硬掩模层因消耗而损及其他元件,以及移除硬掩模层时损害其他元件的缺失。Therefore, the present invention hereby provides a method for manufacturing MOS transistors using a composite hard mask, so as to improve the damage to other components due to consumption of the hard mask layer in the prior art, and damage to other components when the hard mask layer is removed. missing.
根据本发明的申请专利范围,提供一种利用复合硬掩模层的金属氧化物半导体晶体管的制作方法。该方法包含有提供表面包含有介电层与多晶硅层的基底,随后形成至少一复合硬掩模于该多晶硅层上,该复合硬掩模包含有中间硬掩模与覆盖该中间硬掩模侧壁的侧壁硬掩模。接下来进行第一蚀刻工艺,利用该复合硬掩模为蚀刻掩模蚀刻该多晶硅层与该介电层,以形成栅极结构;进行第二蚀刻工艺,以于该栅极结构两侧的基底中分别形成凹槽(recesses)。之后进行选择性外延成长(SEG)工艺,以于这些凹槽内分别形成一外延层。According to the patent scope of the present invention, a method for manufacturing a metal oxide semiconductor transistor using a composite hard mask layer is provided. The method includes providing a substrate having a surface comprising a dielectric layer and a polysilicon layer, and then forming at least one composite hardmask on the polysilicon layer, the composite hardmask comprising a middle hardmask and sides covering the middle hardmask wall sidewall hard mask. Next, a first etching process is performed, using the composite hard mask as an etching mask to etch the polysilicon layer and the dielectric layer to form a gate structure; a second etching process is performed to form the substrate on both sides of the gate structure Form grooves (recesses) respectively. Afterwards, a selective epitaxial growth (SEG) process is performed to form an epitaxial layer in each of the grooves.
根据本发明的申请专利范围,提供一种具有复合硬掩模层的金属氧化物半导体晶体管制作方法。该方法包含有提供表面包含有介电层与多晶硅层的基底,依序形成第一硬掩模层与第二硬掩模层于该膜层上,并进行光刻及蚀刻工艺,以移除部分该第一硬掩模层与部分该第二硬掩模层而形成至少一中间硬掩模。接下来形成覆盖该多晶硅层与该中间硬掩模的第三硬掩模层,并进行回蚀刻工艺,以移除部分该第三硬掩模层而形成至少一侧壁硬掩模,且该侧壁硬掩模覆盖该中间硬掩模的侧壁以构成复合硬掩模。进行第一蚀刻工艺,利用该复合硬掩模为蚀刻掩模蚀刻该多晶硅层与该介电层以形成栅极结构;与进行第二蚀刻工艺,以于该栅极结构两侧的基底中分别形成凹槽。之后进行SEG工艺,以于这些凹槽内分别形成外延层。According to the patent scope of the present invention, a method for manufacturing a metal oxide semiconductor transistor with a composite hard mask layer is provided. The method includes providing a substrate with a dielectric layer and a polysilicon layer on the surface, sequentially forming a first hard mask layer and a second hard mask layer on the film layer, and performing photolithography and etching processes to remove A portion of the first hard mask layer and a portion of the second hard mask layer form at least an intermediate hard mask. Next, a third hard mask layer covering the polysilicon layer and the intermediate hard mask is formed, and an etch-back process is performed to remove part of the third hard mask layer to form at least one sidewall hard mask, and the A sidewall hardmask covers sidewalls of the intermediate hardmask to form a composite hardmask. performing a first etching process, using the composite hard mask as an etching mask to etch the polysilicon layer and the dielectric layer to form a gate structure; Form grooves. Then perform SEG process to form epitaxial layers in these grooves respectively.
根据本发明的申请专利范围,更提供一种用以制作MOS晶体管的复合硬掩模,包含有中间硬掩模(middle hard mask)以及侧壁硬掩模(spacer hardmask),且该侧壁硬掩模设置于该中间硬掩模层的侧壁。According to the patent application scope of the present invention, a composite hard mask for making MOS transistors is further provided, including a middle hard mask (middle hard mask) and a sidewall hard mask (spacer hardmask), and the sidewall hard mask A mask is disposed on sidewalls of the middle hard mask layer.
根据本发明的申请专利范围,更提供一种MOS晶体管,包含有设置于基底上的栅极结构、复合硬掩模层,设置于该栅极结构上,该复合硬掩模层包含有中间硬掩模以及侧壁硬掩模设置于该中间硬掩模的侧壁。该MOS晶体管尚包含有一对分别设置于该栅极结构两侧的该基底内的轻掺杂漏极;以及一对分别设置于该栅极结构两侧的该基底内,用以作为该MOS晶体管的源极/漏极的外延层。According to the patent scope of the present invention, a MOS transistor is further provided, comprising a gate structure disposed on a substrate, a composite hard mask layer disposed on the gate structure, the composite hard mask layer comprising an intermediate hard mask layer A mask and a sidewall hard mask are disposed on sidewalls of the middle hard mask. The MOS transistor also includes a pair of lightly doped drains respectively disposed in the substrate on both sides of the gate structure; and a pair of lightly doped drains respectively disposed in the substrate on both sides of the gate structure for use as the MOS transistor The epitaxial layer of the source/drain.
本发明所提供的利用复合硬掩模的制作MOS晶体管的方法,利用该复合硬掩模的侧壁硬掩模有效抵抗蚀刻与清洗步骤所造成的耗损,有效保护其遮蔽的元件;同时作为主体的该中间硬掩模可于移除时不至造成其他元件的损伤,而可提升成品率。In the method for making MOS transistors using a composite hard mask provided by the present invention, the sidewall hard mask of the composite hard mask is used to effectively resist the wear and tear caused by the etching and cleaning steps, and effectively protect the components it covers; at the same time, it is used as the main body The intermediate hard mask can be removed without causing damage to other components, so that the yield can be improved.
附图说明 Description of drawings
第1图至第4图为一已知利用SEG技术制作应变硅MOS晶体管的方法的示意图。1 to 4 are schematic diagrams of a known method for fabricating strained silicon MOS transistors using SEG technology.
第5图至第11图为本发明所提供的复合硬掩模层的制作方法的第一优选实施例。FIG. 5 to FIG. 11 are the first preferred embodiment of the fabrication method of the composite hard mask layer provided by the present invention.
第12图至第16图为本发明所提供的复合硬掩模层的制作方法的第二优选实施例。FIG. 12 to FIG. 16 are the second preferred embodiment of the fabrication method of the composite hard mask layer provided by the present invention.
【主要元件符号说明】[Description of main component symbols]
100基底 102浅沟槽隔离100
110栅极 112介电层110
114多晶硅层 116轻掺杂漏极114
118间隔壁 120图案化硬掩模层118
130凹槽 132外延层130
200基底 202浅沟槽隔离200
210栅极 212介电层210
214膜层 216轻掺杂漏极214
218间隔壁 220第一硬掩模层218
222光致抗蚀剂层 224中间硬掩模222
230第二硬掩模层 234侧壁硬掩模230 second
240复合硬掩模 250凹槽240 composite
252外延层252 epitaxial layers
300基底 302浅沟槽隔离300
312介电层 314膜层312
320第一硬掩模层 322第二硬掩模层320 first
324光致抗蚀剂层 326中间硬掩模324
330第三硬掩模层 336侧壁硬掩模330 third
340复合硬掩模340 composite hard mask
具体实施方式 Detailed ways
请参阅第5图至第11图,第5图至第11图为本发明所提供的复合硬掩模层的制作方法的第一优选实施例。如第5图所示,首先提供基底200,如硅基底,基底200上已形成有多个浅沟槽隔离(shallow trench isolation,STI)202。随后于基底200上依序形成介电层212、多晶硅层214、与第一硬掩模层220。第一硬掩模层220包含有氧化硅(SiO)、氮化硅(SiN)、氮氧化硅(SiON)、氮碳化硅(SiCN)、碳化硅(SiC)、含氧碳化硅(SiOC)、多硅氮化硅(Silicon-rich-nitride,SRN)、高温氧化硅(high temperature oxide,HTO)、抗反射底层、或二(特丁基氨基)硅烷(Bis(tert-butylamino)silane,BTBAS)。在第一硬掩模层220上形成光致抗蚀剂层222,并通过光刻工艺图案化光致抗蚀剂层222。Please refer to FIG. 5 to FIG. 11 . FIG. 5 to FIG. 11 are the first preferred embodiment of the manufacturing method of the composite hard mask layer provided by the present invention. As shown in FIG. 5 , firstly, a
请参阅第6图。接下来进行蚀刻工艺,利用图案化的光致抗蚀剂层222为掩模移除部分第一硬掩模层220,以形成中间硬掩模224。See Figure 6. Next, an etching process is performed to remove part of the first
请参阅第7图。随后,在多晶硅层214与中间硬掩模224上形成第二硬掩模层230。第二硬掩模层230包含有氮化硅、氮氧化硅、氮碳化硅、碳化硅、含氧碳化硅、或多硅氮化硅(SRN)。而第二硬掩模层230与第一硬掩模层220具有不同的蚀刻选择比。See Figure 7. Subsequently, a second
请参阅第8图。接下来,进行回蚀刻(etching back)工艺移除部分第二硬掩模层230,以于中间硬掩模224的侧壁形成侧壁硬掩模234。而中间硬掩模224与侧壁硬掩模234构成复合硬掩模240。如前所述,中间硬掩模224与侧壁硬掩模234具有不同的蚀刻选择比。且如第8图所示,中间硬掩模224具有的宽度X与侧壁硬掩模234具有的款度Y的比值约为1∶10。此外,侧壁硬掩模层234的宽度不大于10纳米(nanometer)。See Figure 8. Next, an etching back process is performed to remove part of the second
本第一优选实施例所提供的复合硬掩模240用以于SEG工艺中定义栅极结构210的位置。请参阅第9图,接下来进行第一蚀刻工艺,经由复合硬掩模240向下蚀刻膜层214与介电层212,形成栅极结构210。由于复合硬掩模240用以定义栅极结构210的位置及线宽,因此在进行图案化第一光致抗蚀剂层222的光刻工艺后,可再进行修整(trimming)步骤,用以修整该图案化的第一光致抗蚀剂层222;或者在形成中间硬掩模224的蚀刻工艺后,再进行修整步骤,用以修整中间硬掩模224。简单地说,通过修整步骤,本第一优选实施例可调整中间硬掩模224的宽度,并辅以侧壁硬掩模234的宽度以定义栅极结构210的线宽。The composite
请参阅第10图,随后进行离子注入工艺,以于栅极结构210两侧的基底200中分别形成轻掺杂漏极(lightly doped drains,LDD)216,并于栅极结构210的侧壁形成间隔壁218。间隔壁218与复合硬掩模240于第二蚀刻工艺中作为蚀刻掩模,以于栅极结构210两侧的基底200内分别形成凹槽250。Please refer to FIG. 10, an ion implantation process is then performed to respectively form lightly doped drains (LDD) 216 in the
请参阅第11图。凹槽250内的基底200表面于SEG工艺时生成外延层252,以作为嵌入式源极/漏极。当然,在蚀刻凹槽250之前或SEG工艺形成外延层之后,可进行离子注入工艺,以形成前述的嵌入式源极/漏极。若MOS晶体管PMOS晶体管,则嵌入式源极/漏极包含有锗化硅(SiGe)等;若MOS晶体管NMOS晶体管,则嵌入式源极/漏极包含有碳化硅(SiC)等。此外,本第一优选实施例所提供的方法不限定于制作前述的嵌入式源极/漏极,其亦可用于制作增高式(raised)源极/漏极或平面式(planer)源极/漏极。See Figure 11. The
由于在进行形成嵌入式源极/漏极的SEG工艺前,基底200尚会经过多次蚀刻与清洗步骤,例如多晶硅层214蚀刻后清洗、轻掺杂漏极216离子注入后的清洗、间隔壁218的蚀刻与蚀刻后清洗、凹槽250蚀刻及蚀刻后清洗、以及SEG工艺前的清洗,上述蚀刻及清洗工艺接会耗损复合硬掩模240。然而由于复合硬掩模240的侧壁硬掩模234的蚀刻选择比不同于中间硬掩模224的蚀刻比,或者说,侧壁硬掩模234的蚀刻率远低于中间硬掩模224的蚀刻率,因此上述的蚀刻及清洗工艺对于复合硬掩模240边缘的耗损将会大幅降低,使得复合硬掩模240所覆蔽的栅极结构210不至于在上述蚀刻及清洗工艺后暴露出来,也因此栅极结构210边角于SEG工艺时形成不致出现外延层,降低栅极结构210的活化程度或增加栅极结构210的反转,影响栅极表现。Before performing the SEG process for forming the embedded source/drain, the
另外,由于复合硬掩模240的主体仍为中间硬掩模224,在后续去除复合硬掩模234的步骤,较不易损及其他元件,例如影响栅极210的表面轮廓,甚至于移除步骤中将间隔壁218一同移除。In addition, since the main body of the composite
请参阅第12图至第16图,第12图至第16图为本发明所提供的复合硬掩模层的制作方法的第二优选实施例。如第12图所示,首先提供基底300,如硅基底,基底300上已形成有多个浅沟槽隔离(STI)302。随后于基底300上依序形成介电层312、多晶硅层314、第一硬掩模层320与第二硬掩模层322。第一硬掩模层320包含有氧化硅(SiO)、氮化硅(SiN)、氮氧化硅(SiON)、氮碳化硅(SiCN)、碳化硅(SiC)、含氧碳化硅(SiOC)、多硅氮化硅(SRN)、高温氧化硅(HTO)、抗反射底层、或二(特丁基氨基)硅烷(BTBAS)。而第二硬掩模层322则包含有氧化硅、氮化硅、氮氧化硅、氮碳化硅、碳化硅、含氧碳化硅、多硅氮化硅(SRN)、高温氧化硅(HTO)、抗反射底层、或二(特丁基氨基)硅烷(BTBAS)等材料。而第一硬掩模层320与第二硬掩模层322具有不同的蚀刻比。Please refer to FIG. 12 to FIG. 16 . FIG. 12 to FIG. 16 are the second preferred embodiment of the manufacturing method of the composite hard mask layer provided by the present invention. As shown in FIG. 12 , firstly, a
请参阅第13图与第14图。进行光刻及蚀刻工艺,首先形成光致抗蚀剂层324于第二硬掩模层322上,利用光刻工艺图案化光致抗蚀剂层324,并利用图案化的光致抗蚀剂层324进行蚀刻工艺移除部分第一硬掩模层320与部分第二硬掩模层322,待移除光致抗蚀剂层324后,即形成如第14图所示的中间硬掩模326。Please refer to Figures 13 and 14. Perform photolithography and etching processes, first form a
请参阅第15图。接下来于多晶硅层314以及中间硬掩模326上形成第三硬掩模层330。第三硬掩模层330包含有氮化硅、氮氧化硅、氮碳化硅、碳化硅、含氧碳化硅、或多硅氮化硅(SRN)等材料。See Figure 15. Next, a third
请参阅第15图与第16图。随后进行回蚀刻工艺,移除部分第三硬掩模层330,以于中间硬掩模326的侧壁形成侧壁硬掩模336。而中间硬掩模326与侧壁硬掩模336构成复合硬掩模340。值得注意的是,中间硬掩模326与侧壁硬掩模336具有不同的蚀刻比。且如第15图所示,中间硬掩模326具有的宽度X与侧壁硬掩模336具有的宽度Y的比值约为1∶10。此外,侧壁硬掩模层336的宽度不大于10纳米(nanometer)。Please refer to Figure 15 and Figure 16. An etch-back process is then performed to remove part of the third
本第二优选实施例所提供的复合硬掩模340同于前述的第一优选实施例,可用于SEG工艺中,定义栅极的位置及线宽。由于复合硬掩模340用以定义栅极的线宽,因此在图案化光致抗蚀剂层324的光刻工艺后,可进行修整步骤,用以修整该图案化的光致抗蚀剂层324;或者在形成中间硬掩模326的蚀刻工艺后,进行修整步骤,用以修整中间硬掩模326。简单地说,通过修整步骤,本第二优选实施例可调整中间硬掩模326的宽度,而辅以侧壁硬掩模336的宽度以定义栅极的线宽。由于后续的制作MOS晶体管的工艺同于第一优选实施例所述,故于此不再赘述。The composite
由于复合硬掩模340中的侧壁硬掩模336的蚀刻率不同于中间硬掩模326的蚀刻率,或者说,侧壁硬掩模336的蚀刻率远低于中间硬掩模326,因此半导体工艺所需的蚀刻及清洗工艺对于复合硬掩模340边缘的耗损将会大幅降低,也使得复合硬掩模340所覆蔽的元件,如本第二实施例中所述的栅极,将不至于在上述蚀刻及清洗工艺后暴露出来,导致栅极边角于SEG工艺时形成不应出现的外延层,降低栅极的活化程度或增加栅极的反转,影响栅极表现。Since the etch rate of the sidewall
另外,由于复合硬掩模340的主体仍为中间硬掩模326,在后续去除复合硬掩模336的步骤,较不易损及其他元件,例如影响栅极的表面轮廓,甚至于移除步骤中将间隔壁一同移除。In addition, since the main body of the composite
请再参阅第9图以及第16图。综上所述,本发明提供一种用以制作MOS晶体管的复合硬掩模层(hybrid hard mask)240/340,其包含有一中间硬掩模(middle hard mask)224/326以及设置于中间硬掩模224/326的侧壁的侧壁硬掩模(spacer hard mask)234/336。而中间硬掩模224/326更可包含如第16图所示的底部掩模层(bottom hard mask)320与顶部硬掩模(top hard mask)322。底部硬掩模320包含有氧化硅(SiO)、氮化硅(SiN)、氮氧化硅(SiON)、氮碳化硅(SiCN)、碳化硅(SiC)、含氧碳化硅(SiOC)、多硅氮化硅(SRN)、高温氧化硅(HTO)、抗反射底层、或二(特丁基氨基)硅烷(BTBAS)。顶部硬掩模322包含有氧化硅、氮化硅、氮氧化硅、氮碳化硅、碳化硅、含氧碳化硅、多硅氮化硅(SRN)、高温氧化硅(HTO)、抗反射底层、或二(特丁基氨基)硅烷(BTBAS)等材料。而底部硬掩模层320与顶部硬掩模层322具有相同或不同的蚀刻比。Please refer to Figure 9 and Figure 16 again. In summary, the present invention provides a hybrid hard mask layer (hybrid hard mask) 240/340 for making MOS transistors, which includes a middle hard mask (middle hard mask) 224/326 and a middle hard mask layer A spacer
侧壁硬掩模234/336包含有氮化硅、氮氧化硅、氮碳化硅、碳化硅、含氧碳化硅、或多硅氮化硅(SRN)等材料,且侧壁硬掩模234/336与中间硬掩模224/326具有不同的蚀刻比。中间硬掩模224/326的宽度与侧壁硬掩模234/336的宽度具有一比值,且该比值约为1∶10。此外,侧壁硬掩模层234/336的宽度不大于10纳米(nanometer)。The sidewall
由于在SEG工艺中,负载各种元件的基底会经过多次蚀刻以及清洗过程,而用以定义元件位置及大小的复合硬掩模由于侧壁硬掩模的蚀刻比不同于中间硬掩模的蚀刻比,即侧壁硬掩模的蚀刻比远低于中间硬掩模,因此上述的蚀刻及清洗工艺对于复合硬掩模边缘的耗损将会大幅降低,也使得复合硬掩模所覆蔽的栅极结构不至于在上述蚀刻及清洗工艺后暴露出来,而后续工艺中耗损或者形成不应出现的外延层而影响了栅极结构的性能表现。例如于本第一优选实施例与第二优选实施例所述,SEG工艺中的外延层将不会生成于栅极边角,影响栅极活化程度或增加栅极的反转。此外,由于复合硬掩模的主体仍为中间硬掩模,在后续去除复合硬掩模的步骤中,亦较不易损及其他元件。In the SEG process, the substrate carrying various components will undergo multiple etching and cleaning processes, and the composite hard mask used to define the position and size of the components is different from that of the middle hard mask due to the etching ratio of the sidewall hard mask. The etch ratio, that is, the etch ratio of the sidewall hard mask is much lower than that of the middle hard mask, so the above-mentioned etching and cleaning process will greatly reduce the consumption of the edge of the composite hard mask, and also make the composite hard mask cover The gate structure will not be exposed after the above etching and cleaning process, but the performance of the gate structure will be affected by the consumption or formation of an epitaxial layer that should not appear in the subsequent process. For example, as described in the first preferred embodiment and the second preferred embodiment, the epitaxial layer in the SEG process will not be formed at the corner of the gate, which will affect the activation degree of the gate or increase the inversion of the gate. In addition, since the main body of the composite hard mask is still an intermediate hard mask, it is less likely to be damaged and other components in subsequent steps of removing the composite hard mask.
简单地说,本发明所提供的利用复合硬掩模的MOS晶体管的制作方法,利用侧壁硬掩模有效抵抗蚀刻与清洗步骤所造成的耗损,并保护其遮蔽的元件;同时作为主体的中间硬掩模可于移除时不至造成其他元件的损伤,故可提升成品率。To put it simply, the fabrication method of the MOS transistor using the composite hard mask provided by the present invention uses the sidewall hard mask to effectively resist the wear and tear caused by the etching and cleaning steps, and protect the elements it covers; The hard mask can be removed without causing damage to other components, so the yield can be improved.
以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的等同变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (53)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100898560A CN101281871B (en) | 2007-04-05 | 2007-04-05 | Composite hard mask layer, metal oxide semiconductor transistor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100898560A CN101281871B (en) | 2007-04-05 | 2007-04-05 | Composite hard mask layer, metal oxide semiconductor transistor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101281871A true CN101281871A (en) | 2008-10-08 |
CN101281871B CN101281871B (en) | 2011-11-09 |
Family
ID=40014261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007100898560A Active CN101281871B (en) | 2007-04-05 | 2007-04-05 | Composite hard mask layer, metal oxide semiconductor transistor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101281871B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102456628A (en) * | 2010-10-27 | 2012-05-16 | 台湾积体电路制造股份有限公司 | Method for fabricating strained source/drain structure |
CN102800594A (en) * | 2011-05-26 | 2012-11-28 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method of PMOS (p-channel metal oxide semiconductor) tube |
CN108511347A (en) * | 2018-03-21 | 2018-09-07 | 上海华力集成电路制造有限公司 | The manufacturing method of MOS transistor with the leakage of germanium silicon source |
CN110473886A (en) * | 2018-05-11 | 2019-11-19 | 联华电子股份有限公司 | The manufacturing method of semiconductor element |
CN113764516A (en) * | 2020-09-29 | 2021-12-07 | 台湾积体电路制造股份有限公司 | Semiconductor device and method of forming the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100428791B1 (en) * | 2002-04-17 | 2004-04-28 | 삼성전자주식회사 | Method of forming dual damascene interconnection using low dielectric material |
US6921913B2 (en) * | 2003-03-04 | 2005-07-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Strained-channel transistor structure with lattice-mismatched zone |
-
2007
- 2007-04-05 CN CN2007100898560A patent/CN101281871B/en active Active
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102456628A (en) * | 2010-10-27 | 2012-05-16 | 台湾积体电路制造股份有限公司 | Method for fabricating strained source/drain structure |
CN102456628B (en) * | 2010-10-27 | 2014-04-30 | 台湾积体电路制造股份有限公司 | Method for fabricating strained source/drain structure |
CN102800594A (en) * | 2011-05-26 | 2012-11-28 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method of PMOS (p-channel metal oxide semiconductor) tube |
CN102800594B (en) * | 2011-05-26 | 2015-01-28 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method of PMOS (p-channel metal oxide semiconductor) tube |
CN108511347A (en) * | 2018-03-21 | 2018-09-07 | 上海华力集成电路制造有限公司 | The manufacturing method of MOS transistor with the leakage of germanium silicon source |
CN110473886A (en) * | 2018-05-11 | 2019-11-19 | 联华电子股份有限公司 | The manufacturing method of semiconductor element |
CN113764516A (en) * | 2020-09-29 | 2021-12-07 | 台湾积体电路制造股份有限公司 | Semiconductor device and method of forming the same |
US12191365B2 (en) | 2020-09-29 | 2025-01-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Thicker corner of a gate dielectric structure around a recessed gate electrode for an MV device |
Also Published As
Publication number | Publication date |
---|---|
CN101281871B (en) | 2011-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7592262B2 (en) | Method for manufacturing MOS transistors utilizing a hybrid hard mask | |
US9257344B2 (en) | FinFETs with different fin height and EPI height setting | |
US9425102B2 (en) | FinFETs with different fin heights | |
US9276089B2 (en) | FinFETs and methods for forming the same | |
US9159630B1 (en) | Fin field-effect transistor (FinFET) device formed using a single spacer, double hardmask scheme | |
US8513078B2 (en) | Structure and method for fabricating fin devices | |
TWI333676B (en) | Method for manufacturing mos transistor utilizing hybrid a hard mask | |
US8823109B2 (en) | Transistor structure | |
US8836041B2 (en) | Dual EPI CMOS integration for planar substrates | |
CN104517901B (en) | The forming method of CMOS transistor | |
CN108538724A (en) | Semiconductor structure and forming method thereof | |
CN105489494B (en) | Semiconductor element and manufacturing method thereof | |
US20160086952A1 (en) | Preventing epi damage for cap nitride strip scheme in a fin-shaped field effect transistor (finfet) device | |
CN101281871A (en) | Composite hard mask layer, metal oxide semiconductor transistor and manufacturing method thereof | |
CN109003899B (en) | Semiconductor structure and method for forming the same, and method for forming a fin field effect transistor | |
CN103779229B (en) | Semiconductor structure and manufacturing method thereof | |
US9093473B2 (en) | Method for fabricating metal-oxide semiconductor transistor | |
US10748817B2 (en) | Semiconductor device and fabrication method thereof | |
CN108573873A (en) | Manufacturing method of semiconductor device | |
CN103165455B (en) | Make the method for fin-shaped field effect transistor | |
TW201304055A (en) | Semiconductor device and method of making the same | |
TW201430910A (en) | Epitaxial process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |