CN101271969B - 碳纳米管复合电极材料、其制备方法及电极 - Google Patents
碳纳米管复合电极材料、其制备方法及电极 Download PDFInfo
- Publication number
- CN101271969B CN101271969B CN2007100736462A CN200710073646A CN101271969B CN 101271969 B CN101271969 B CN 101271969B CN 2007100736462 A CN2007100736462 A CN 2007100736462A CN 200710073646 A CN200710073646 A CN 200710073646A CN 101271969 B CN101271969 B CN 101271969B
- Authority
- CN
- China
- Prior art keywords
- carbon
- electrode material
- carbon nanotube
- nanotube composite
- composite electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 110
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 106
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 106
- 239000007772 electrode material Substances 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title 1
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 47
- 239000004917 carbon fiber Substances 0.000 claims abstract description 47
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000002360 preparation method Methods 0.000 claims abstract description 10
- 239000002131 composite material Substances 0.000 claims description 48
- 239000000243 solution Substances 0.000 claims description 22
- 239000002270 dispersing agent Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 11
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 9
- 239000011259 mixed solution Substances 0.000 claims description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 238000010907 mechanical stirring Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000000967 suction filtration Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 abstract description 4
- 239000003153 chemical reaction reagent Substances 0.000 abstract 1
- 239000011148 porous material Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0419—Methods of deposition of the material involving spraying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/663—Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/526—Fibers characterised by the length of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5264—Fibers characterised by the diameter of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5284—Hollow fibers, e.g. nanotubes
- C04B2235/5288—Carbon nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Inert Electrodes (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
本发明涉及一种碳纳米管复合电极材料,该碳纳米管复合电极材料的制备方法及包括该碳纳米管复合电极材料的电极。所述碳纳米管复合电极材料包括大量碳纤维及碳纳米管,大量碳纤维搭接形成网络状结构,所述碳纳米管缠绕或附着在碳纤维上。由于碳纤维的直径远大于碳纳米管的直径,因此所述碳纳米管复合电极材料中的孔隙大于单纯由碳纳米管形成的电极材料中的孔隙,电解液或者反应物很容易进入碳纳米管复合电极材料的孔隙中而与碳纳米管表面充分接触,从而可以提高电池的容量。
Description
技术领域
本发明涉及一种碳纳米管复合电极材料,该碳纳米管复合电极材料的制备方法及包括该碳纳米管复合电极材料的电极。
背景技术
近年来,笔记型电脑、移动电话、个人数码助理等便携式电子产品飞速发展,其中所用的中央处理器的频率越来越高,其运算能力越来越强,但与此同时其消耗的功率也越来越高,因此对给其提供电力的二次电池提出了更高的需求。
二次电池中以锂离子二次电池与锂离子聚合物二次电池最具有代表性,其负极通常由石墨等碳材料制成,但目前石墨已逐渐不能满足需求,碳纳米管由于具有大的比表面积,因此被用来取代石墨用于锂离子电池负极中。然而由于单纯的碳纳米管其直径大小在分子尺度上,碳纳米管间的孔隙也较小,因此电解液或者反应物很难进入孔隙而与碳纳米管表面充分接触,也就很难发挥出碳纳米管大比表面积的特性。
发明内容
有鉴于此,有必要提供一种可充分发挥碳纳米管大比表面积的碳纳米管复合电极材料、其制备方法及包括该碳纳米管复合电极材料的电极。
一种碳纳米管复合电极材料,其包括大量碳纤维及碳纳米管,所述碳纤维的直径为2微米到50微米,所述碳纳米管直径为20纳米到100纳米,且所述大量碳纤维搭接形成网络状结构,所述碳纳米管缠绕或附着在碳纤维上。
一种电极,其包括金属基体及设置于所述金属基体表面的碳纳米管复合电极材料,所述碳纳米管复合电极材料包括大量碳纤维及碳纳米管,所述碳纤维的直径为2微米到50微米,所述碳纳米管直径为20纳米到100纳米,且所述大量碳纤维搭接形成网络状结构,所述碳纳米管缠绕或附着在所述碳纤维上。
一种所述碳纳米管复合电极材料的制备方法,其包括以下步骤:使用高速机械搅拌法将碳纤维分散于分散剂中得到溶液A;将碳纳米管置入相同的分散剂中进行超声波分散处理得到溶液B;将溶液A和B混合得到混合溶液后继续进行超声波分散处理;将处理后的混合溶液中的分散剂去除得到最终的碳纳米管复合电极材料。
所述的电极中,由于碳纤维的直径远大于碳纳米管,因此与单纯由碳纳米管形成的碳纳米管复合电极材料相比,所述碳纳米管复合电极材料中,碳纤维之间的孔隙大幅增加,因此电解液或者反应物很容易进入碳纳米管复合电极材料的孔隙中而与碳纳米管表面充分接触,充分发挥出碳纳米管比表面积大的优良特性,从而可以提高电池的容量。
附图说明
图1是本技术方案的碳纳米管复合电极材料的结构示意图。
图2是本技术方案的碳纳米管复合电极材料的制备方法流程图。
图3是本技术方案包括碳纳米管复合电极材料的电极的结构示意图。
具体实施方式
参阅图1,本技术方案提供一种碳纳米管复合电极材料10,其包括大量碳纤维12及碳纳米管14,碳纤维12搭接形成网络状结构,碳纳米管14缠绕或附着在碳纤维12上。
碳纳米管复合电极材料10可为厚度在0.1毫米到10毫米之间的薄膜。碳纤维12的直径可为2微米到50微米,碳纤维12的长度可为0.5至5毫米。碳纳米管14可为单壁碳纳米管或者多壁碳纳米管,其直径可为20纳米到100纳米,长度为10微米以上。
由于碳纤维12的直径为碳纳米管14直径的100倍左右,因此碳纤维12之间的孔隙也远大于单纯由碳纳米管形成的电极材料中碳纳米管之间的孔隙,因此电解液或者反应物很容易进入碳纳米管复合电极材料10的孔隙中而与碳纳米管14表面充分接触,因此碳纳米管14的利用率得以提高,充分发挥出碳纳米管14比表面积大的优良特性,从而可以提高电池的容量。
参阅图2,本技术方案的碳纳米管复合电极材料10可由以下方法制备:
步骤21:将碳纤维12分散于分散剂中得到溶液A。
碳纤维12的直径可为2微米到100微米,长度可为0.5至5毫米,其可以通过剪裁得到长度符合的产品。分散剂可为水、酒精、丙酮、二甲基甲酰胺等。分散剂的用量无特殊限制,碳纤维12能均匀分散在其中即可。分散的方法可以采用高速机械搅拌法。搅拌的时间一般为5-10分钟,直到碳纤维12之间的连接被打破,碳纤维分散于溶液A中,部分碳纤维12之间相互搭接。
步骤22:将碳纳米管14置入相同的分散剂中进行超声波分散处理得到溶液B。
分散剂的用量同样不受特殊限制,碳纳米管14可均匀的分散在其中即可。所用的超声波分散装置的功率可为800W到1200W之间,本实施例当中,采用的功率为1000W,超声波分散的时间可为10到60分钟,当然随超声波分散装置功率的增高,分散时间可减短,直到碳纳米管14分散在分散剂中形成一絮状溶液即可。
步骤23:将溶液A和B混合后继续进行超声波分散处理,以使碳纤维12和碳纳米管14在溶液中混合均匀。
优选的,控制溶液A与溶液B的混合比例,使碳纤维12与碳纳米管14的重量比为1∶1到10∶1之间。
由于碳纤维的直径为碳纳米管的100倍左右,经过一段时间以后,碳纳纳米管会大量的缠绕或附着在碳纤维上,形成了如图1所示的结构。根据采用的超声波分散装置的功率不同,分散时间亦不同,功率越高,分散时间越短。本实施中的超声波分散装置功率为1000W,分散时间为10到30分钟。
步骤24:将混合溶液中的分散剂去除得到最终的碳纳米管复合电极材料10。
去除混合液中分散剂的方法可用烘干或者抽滤。可将混合溶液置于容器中,形成一定厚度的液层,烘干后即可得到一定厚度的电极材料薄膜。优选的,碳纳米管复合电极材料10的厚度可为0.1毫米到10毫米。
当然,上述步骤21与步骤22的顺序可以调换或者同时进行。
参阅图3,本技术方案提供一种电极30,电极30包括基体32及设置于基体32上的碳纳米管复合电极材料34。本实施例中,碳纳米管复合电极材料34包覆于基体32的一端,但是碳纳米管复合电极材料34同样可以包覆整个基体32。基体32可由金属材料铜、铝、镍等制成,或者由导电的非金属材料如石墨制成。
本技术方案电极30可通过将碳纳米管复合电极材料34用导电胶粘附在金属材料基体32上制得。或者,参见前述第一实施例的碳纳米管复合电极材料的制备方法,在步骤23后,将混合液采用喷涂或者涂布的方式施加到基体32的表面,然后烘干即可得到完整的电极30。一次喷涂或涂布如果不能得到足够厚度的电极材料34,则可进行多次喷涂。
本技术方案的电极30中包括基体32,但是因为碳纳米管复合电极材料34具有一定导电性,基体32并不是必须的,可以直接将碳纳米管复合电极材料34制作预定形状的电极。
另外,本领域技术人员还可在本发明精神内做其它变化。当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。
Claims (17)
1.一种碳纳米管复合电极材料,其包括大量碳纤维及碳纳米管,其特征在于,所述碳纤维的直径为2微米到50微米,所述碳纳米管直径为20纳米到100纳米,且所述大量碳纤维搭接形成网络状结构,所述碳纳米管缠绕或附着在碳纤维上。
2.如权利要求1所述的碳纳米管复合电极材料,其特征在于,所述碳纤维的长度为0.5到5毫米。
3.如权利要求1所述的碳纳米管复合电极材料,其特征在于,所述碳纳米管复合电极材料的厚度为0.1毫米到10毫米。
4.如权利要求2所述的碳纳米管复合电极材料,其特征在于,所述碳纳米管长度为10微米以上。
5.如权利要求1所述的碳纳米管复合电极材料,其特征在于,所述碳纳米管复合电极材料中碳纤维与碳纳米管的重量比在1∶1到10∶1之间。
6.一种电极,其包括基体及设置于所述基体表面的碳纳米管复合电极材料,其特征在于,所述碳纳米管复合电极材料包括大量碳纤维及碳纳米管,所述碳纤维的直径为2微米到50微米,所述碳纳米管直径为20纳米到100纳米,且所述大量碳纤维搭接形成网络状结构,所述碳纳米管缠绕或附着在所述碳纤维上。
7.如权利要求6所述的电极,其特征在于,碳纤维的长度为0.5到5毫米。
8.如权利要求6所述的电极,其特征在于,所述碳纳米管复合电极材料的厚度为0.1毫米到10毫米。
9.如权利要求6所述的电极,其特征在于,所述碳纳米管长度为10微米以上。
10.如权利要求6所述的电极,其特征在于,所述碳纳米管复合电极材料中碳纤维与碳纳米管的重量比在1∶1到10∶1之间。
11.一种如权利要求1所述的碳纳米管复合电极材料的制备方法,其包括以下步骤:
使用高速机械搅拌法将碳纤维分散于分散剂中得到溶液A;
将碳纳米管置入相同的分散剂中进行超声波分散处理得到溶液B;
将溶液A和B混合得到混合溶液后继续进行超声波分散处理;
将处理后的混合溶液中的分散剂去除得到最终的碳纳米管复合电极材料。
12.如权利要求11所述的碳纳米管复合电极材料的制备方法,其特征在于,分散碳纤维的时间为5到10分钟。
13.如权利要求11所述的碳纳米管复合电极材料的制备方法,其特征在于,所述分散剂为水、酒精、丙酮或二甲基甲酰胺。
14.如权利要求11所述的碳纳米管复合电极材料的制备方法,其特征在于,超声波分散处理碳纳米管的时间为10到60分钟。
15.如权利要求11所述的碳纳米管复合电极材料的制备方法,其特征在于,超声波分散处理混合溶液的时间为10到30分钟。
16.如权利要求11所述的碳纳米管复合电极材料的制备方法,其特征在于,去除分散剂的方法为烘干或抽滤。
17.如权利要求11所述的碳纳米管复合电极材料的制备方法,其特征在于,所述混合溶液中碳纤维与碳纳米管的重量比为1∶1到10∶1之间。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100736462A CN101271969B (zh) | 2007-03-23 | 2007-03-23 | 碳纳米管复合电极材料、其制备方法及电极 |
US11/951,167 US20080241695A1 (en) | 2007-03-23 | 2007-12-05 | Carbon nanotube composite electrode material, method for manufacturing the same and electrode adopting the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100736462A CN101271969B (zh) | 2007-03-23 | 2007-03-23 | 碳纳米管复合电极材料、其制备方法及电极 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101271969A CN101271969A (zh) | 2008-09-24 |
CN101271969B true CN101271969B (zh) | 2010-08-25 |
Family
ID=39795005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007100736462A Active CN101271969B (zh) | 2007-03-23 | 2007-03-23 | 碳纳米管复合电极材料、其制备方法及电极 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20080241695A1 (zh) |
CN (1) | CN101271969B (zh) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2359427B1 (en) * | 2008-11-18 | 2016-02-17 | Johnson Controls Technology Company | Electrical power storage devices |
KR101094453B1 (ko) * | 2009-06-11 | 2011-12-15 | 고려대학교 산학협력단 | 전자 방출원의 제조방법 및 이를 적용한 전자소자의 제조방법 |
EP2270909A1 (en) * | 2009-06-15 | 2011-01-05 | BAE Systems PLC | Electrical Engergy Storage Device and Methods of Manufacturing Same |
CN101837949A (zh) * | 2010-05-07 | 2010-09-22 | 南昌大学 | 原位碳纳米管/纳米石墨片复合粉体及制备方法 |
CN101880035A (zh) | 2010-06-29 | 2010-11-10 | 清华大学 | 碳纳米管结构 |
GB201013939D0 (en) | 2010-08-20 | 2010-10-06 | Airbus Operations Ltd | Bonding lead |
CN102354612B (zh) * | 2011-09-06 | 2013-03-20 | 天津大学 | 阵列碳纳米管/碳纤维基柔性复合电极材料及其制备方法 |
CN103094525B (zh) * | 2011-10-28 | 2016-08-03 | 清华大学 | 锂离子电池负极及其制备方法 |
CN103094526B (zh) * | 2011-10-28 | 2015-07-29 | 清华大学 | 锂离子电池正极的制备方法 |
JP5908291B2 (ja) * | 2012-01-27 | 2016-04-26 | 国立大学法人横浜国立大学 | カーボンナノチューブ含有体 |
US20130233595A1 (en) * | 2012-02-22 | 2013-09-12 | Seldon Technologies, Inc. | Electrodes and applications |
CN103310869B (zh) * | 2012-03-08 | 2016-06-08 | 清华大学 | 碳纳米管浆料,其制备方法以及采用该碳纳米管浆料制备阴极发射体的方法 |
JP5497109B2 (ja) * | 2012-07-03 | 2014-05-21 | 昭和電工株式会社 | 複合炭素繊維 |
US10700341B2 (en) * | 2012-12-19 | 2020-06-30 | Samsung Sdi Co., Ltd. | Negative electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same |
JP6063562B2 (ja) | 2013-04-24 | 2017-01-18 | ニッタ株式会社 | 複合素材、成形品および複合素材の製造方法 |
CN104810524B (zh) * | 2014-01-23 | 2018-04-03 | 清华大学 | 锂离子电池 |
CN105140461A (zh) * | 2014-06-04 | 2015-12-09 | 清华大学 | 锂硫电池正极材料及其制备方法 |
JP6489519B2 (ja) * | 2014-10-23 | 2019-03-27 | ニッタ株式会社 | 強化繊維の製造方法 |
CN107004867A (zh) * | 2014-12-26 | 2017-08-01 | 昭和电工株式会社 | 氧化还原液流电池用电极和氧化还原液流电池 |
CN108735344A (zh) * | 2018-05-23 | 2018-11-02 | 江苏时瑞电子科技有限公司 | 一种碳纤维/碳纳米管复合导电浆料及其制备方法 |
CN111477854B (zh) * | 2020-04-20 | 2020-12-15 | 杭州鼎友五金机械制造有限公司 | 一种复合纳米材料及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1704447A (zh) * | 2004-05-26 | 2005-12-07 | 中国科学院金属研究所 | 一种具有正温度系数效应的导电复合材料及其制备方法 |
CN1854241A (zh) * | 2005-04-28 | 2006-11-01 | 鸿富锦精密工业(深圳)有限公司 | 热介面材料及其制备方法 |
CN1857915A (zh) * | 2005-04-30 | 2006-11-08 | 北京大学 | 碳纤维复合单根碳纳米管及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002266170A (ja) * | 2000-12-20 | 2002-09-18 | Showa Denko Kk | 分岐状気相法炭素繊維、透明導電性組成物及びその用途 |
JP4252847B2 (ja) * | 2003-06-09 | 2009-04-08 | パナソニック株式会社 | リチウムイオン二次電池 |
JP4845609B2 (ja) * | 2005-06-28 | 2011-12-28 | 三星エスディアイ株式会社 | 燃料電池用高分子電解質膜、これを含む燃料電池用膜−電極組立体、及びこれを含む燃料電池システム |
KR100717790B1 (ko) * | 2005-07-29 | 2007-05-11 | 삼성에스디아이 주식회사 | 연료 전지용 막-전극 어셈블리 및 이를 포함하는 연료 전지시스템. |
-
2007
- 2007-03-23 CN CN2007100736462A patent/CN101271969B/zh active Active
- 2007-12-05 US US11/951,167 patent/US20080241695A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1704447A (zh) * | 2004-05-26 | 2005-12-07 | 中国科学院金属研究所 | 一种具有正温度系数效应的导电复合材料及其制备方法 |
CN1854241A (zh) * | 2005-04-28 | 2006-11-01 | 鸿富锦精密工业(深圳)有限公司 | 热介面材料及其制备方法 |
CN1857915A (zh) * | 2005-04-30 | 2006-11-08 | 北京大学 | 碳纤维复合单根碳纳米管及其制备方法 |
Non-Patent Citations (1)
Title |
---|
JP特开2005-285519A 2005.10.13 |
Also Published As
Publication number | Publication date |
---|---|
CN101271969A (zh) | 2008-09-24 |
US20080241695A1 (en) | 2008-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101271969B (zh) | 碳纳米管复合电极材料、其制备方法及电极 | |
Hong et al. | Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices | |
Zhao et al. | Pressure-induced self-interlocked structures for expanded graphite composite papers achieving prominent EMI shielding effectiveness and outstanding thermal conductivities | |
Xiong et al. | Hierarchical Ni–Co hydroxide petals on mechanically robust graphene petal foam for high‐energy asymmetric supercapacitors | |
Fu et al. | Flexible high‐energy polymer‐electrolyte‐based rechargeable zinc–air batteries | |
Li et al. | High performance solid-state flexible supercapacitor based on Fe 3 O 4/carbon nanotube/polyaniline ternary films | |
Cui et al. | Growth of NiCo2O4@ MnMoO4 nanocolumn arrays with superior pseudocapacitor properties | |
Guan et al. | High‐performance flexible solid‐state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes | |
Zhu et al. | Porous and low-crystalline manganese silicate hollow spheres wired by graphene oxide for high-performance lithium and sodium storage | |
Yang et al. | A facile electrophoretic deposition route to the Fe3O4/CNTs/rGO composite electrode as a binder-free anode for lithium ion battery | |
Wan et al. | in situ investigations of Li‐MoS2 with planar batteries | |
Li et al. | Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability | |
Cho et al. | Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands | |
Ma et al. | One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials | |
Xiang et al. | Electrochemical impedance analysis of a hierarchical CuO electrode composed of self-assembled nanoplates | |
Wang et al. | Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application | |
Wang et al. | A universal aqueous conductive binder for flexible electrodes | |
Wang et al. | Ni foam-supported carbon-sheathed NiMoO4 nanowires as integrated electrode for high-performance hybrid supercapacitors | |
Ling et al. | Densifiable Ink Extrusion for Roll‐To‐Roll Fiber Lithium‐Ion Batteries with Ultra‐High Linear and Volumetric Energy Densities | |
Kawamori et al. | Three-dimensional nanoelectrode by metal nanowire nonwoven clothes | |
Qiu et al. | Novel polyaniline/titanium nitride nanocomposite: controllable structures and electrical/electrochemical properties | |
Liu et al. | Silver nanowires as the current collector for a flexible in-plane micro-supercapacitor via a one-step, mask-free patterning strategy | |
Kim et al. | Hierarchically structured conductive polymer binders with silver nanowires for high-performance silicon anodes in lithium-ion batteries | |
Song et al. | Abnormal cyclibility in Ni@ graphene core–shell and yolk–shell nanostructures for lithium ion battery anodes | |
Liu et al. | Synchronous dual roles of copper sulfide on the insulating PET fabric for high-performance portable flexible supercapacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |