[go: up one dir, main page]

CN101267689A - Microphone chip of capacitance type miniature microphone - Google Patents

Microphone chip of capacitance type miniature microphone Download PDF

Info

Publication number
CN101267689A
CN101267689A CNA2007100873474A CN200710087347A CN101267689A CN 101267689 A CN101267689 A CN 101267689A CN A2007100873474 A CNA2007100873474 A CN A2007100873474A CN 200710087347 A CN200710087347 A CN 200710087347A CN 101267689 A CN101267689 A CN 101267689A
Authority
CN
China
Prior art keywords
layer
microphone
diaphragm
microphone chip
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007100873474A
Other languages
Chinese (zh)
Inventor
洪瑞华
张昭智
蔡圳益
胡辜昱
蒋宇宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carol Electronics Co ltd
Original Assignee
Carol Electronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carol Electronics Co ltd filed Critical Carol Electronics Co ltd
Priority to CNA2007100873474A priority Critical patent/CN101267689A/en
Publication of CN101267689A publication Critical patent/CN101267689A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

The invention discloses a microphone chip of a capacitance type microphone, which is formed by sequentially defining a release layer, a first electrode layer, a vibration film layer and a sacrificial layer on a substrate by a semiconductor process and a micro electro mechanical technology, using the evaporation and electroplating method to continuously define the second electrode layer and the strengthening layer, using the sound hole image formed by the second electrode layer and the strengthening layer to etch and hollow the sacrificial layer to form an air gap, and then forming a microphone chip connected with the substrate, then, a separation technique is applied to etch and remove the separation layer to separate the microphone chip from the substrate to obtain the microphone chip, because the method adopts the semiconductor process, the micro-electro-mechanical technology and the microphone chip can be manufactured without the cutting process, therefore, the volume of the microphone chip can be accurately reduced, the yield of the whole manufacturing process is improved, and meanwhile, the substrate can be recycled, so that the material cost is reduced.

Description

电容式微型麦克风的麦克风芯片 Microphone chip for condenser miniature microphone

技术领域 technical field

本发明涉及一种芯片,特别是涉及一种用于封装成微型麦克风的麦克风芯片。The invention relates to a chip, in particular to a microphone chip packaged into a miniature microphone.

背景技术 Background technique

一般微型麦克风可分为压电式、压阻式以及电容式三类,而其中,由于电容式微型麦克风因具有较高的灵敏度、较低的噪声、低失真,与较低的功率消耗等优点,而成为目前微型麦克风发展的主流。Generally, miniature microphones can be divided into three types: piezoelectric, piezoresistive, and capacitive. Among them, the capacitive miniature microphone has the advantages of high sensitivity, low noise, low distortion, and low power consumption. , And become the mainstream of the current development of miniature microphones.

而,封装成电容式微型麦克风的麦克风芯片,可简单的区分成由单一基板经过多数道半导体制程过程,例如微影、蚀刻、蒸(溅)镀..,再切割(sawing)的单芯片式,以及由两块分别成型的芯片再接合(bonding)成一体的双芯片式二种。However, the microphone chip packaged into a capacitive miniature microphone can be simply divided into a single-chip type that consists of a single substrate through multiple semiconductor manufacturing processes, such as lithography, etching, evaporation (sputtering) plating..., and then cutting (sawing). , and the two-chip type that consists of two separately formed chips and then bonded into one.

无论是单芯片式或是双芯片式电容式微型麦克风中所封装的麦克风芯片,其共同的缺点都在于制程中必须进行体蚀刻(bulk etching),以形成电容式微型麦克风的所必备的「振膜(diaphragm)」与「气隙(air gap)」等构造;而需要进行体蚀刻过程时,蚀刻的部分越多,所需要进行蚀刻的时程也就越长,制程也就越不易掌控,所制得的成品品质变异也会较大,制程良率也因此无法提升;此外,在进行晶圆切割时,都会损及已成型的麦克风芯片的结构,而导致整体制程良率的降低。No matter the microphone chip packaged in a single-chip or a two-chip condenser microphone, the common disadvantage is that bulk etching must be carried out in the manufacturing process to form the necessary components of the condenser microphone. Diaphragm” and “air gap” and other structures; when the bulk etching process is required, the more parts to be etched, the longer the etching time required, and the less controllable the process , the quality of the finished product will vary greatly, and the process yield cannot be improved; in addition, when the wafer is cut, the structure of the formed microphone chip will be damaged, resulting in a decrease in the overall process yield.

因此,改善目前封装成电容式微型麦克风的麦克风芯片,是业界、学界一直努力的目标。Therefore, improving the current microphone chip packaged into a capacitive miniature microphone is a goal that the industry and the academic circles have been working hard for.

发明内容 Contents of the invention

本发明的目的是在提供一种利用半导体制程、微机电技术与脱离技术(TransferTechnique)制作新的麦克风芯片。The purpose of the present invention is to provide a new microphone chip made by using semiconductor manufacturing process, micro-electro-mechanical technology and transfer technique.

于是,本发明一种电容式微型麦克风的麦克风芯片,封装于一壳座中并与一可将电容变化转换成电压变化的场效晶体管相配合而成一电容式微型麦克风。Therefore, the present invention provides a microphone chip of a capacitive miniature microphone, which is packaged in a housing and cooperates with a field effect transistor capable of converting capacitance change into voltage change to form a capacitive miniature microphone.

该麦克风芯片是以半导体制程成型并包含一振膜与一气隙单元。The microphone chip is molded by semiconductor process and includes a diaphragm and an air gap unit.

该振膜与该壳座的内壁面相间隔而形成一供该振膜形变用的振动空间,且该振膜具有一以导体材料构成的第一电极层,及一以绝缘材料构成并形成在该第一电极层上的振膜层,该振膜层并包括一振膜区域,及一环围该振膜区域的种晶区域,该振膜区域可因外界的声能作用而产生对应形变。The vibrating membrane is spaced from the inner wall surface of the casing to form a vibration space for the vibrating membrane to deform, and the vibrating membrane has a first electrode layer made of conductive material, and a first electrode layer made of insulating material and formed on the The vibrating film layer on the first electrode layer includes a vibrating film area and a seed crystal area surrounding the vibrating film area, and the vibrating film area can produce corresponding deformation due to external acoustic energy.

该气隙单元具有一以导体材料构成的第二电极层,及一定义形成于该第二电极层上的强固层,该第二电极层与该强固层并共同形成一自该种晶区域向相反于该第一电极层方向延伸的气隙壁,及一具有一音孔图像的背板,该背板、气隙壁与该振膜层的振膜区域共同界定一以该音孔图像供气流流动的气隙。The air gap unit has a second electrode layer made of conductive material, and a strengthening layer defined and formed on the second electrode layer, and the second electrode layer and the strengthening layer together form a Contrary to the air gap wall extending in the direction of the first electrode layer, and a back plate with a sound hole image, the back plate, the air gap wall and the diaphragm area of the diaphragm layer jointly define a sound hole image for the Air gap for air flow.

本发明的有益效果在于以半导体制程、微机电技术与脱离技术,无须切割地直接成型出可直接封装于壳座中的麦克风芯片,而可精确缩小麦克风芯片的体积,并提高整体制程的良率,同时亦可将基板回收再利用,以降低耗材成本。The beneficial effect of the present invention is that the microphone chip that can be directly packaged in the shell can be directly formed without cutting by using semiconductor manufacturing process, micro-electromechanical technology and detachment technology, so that the volume of the microphone chip can be precisely reduced, and the yield rate of the overall process can be improved. , At the same time, the substrate can also be recycled to reduce the cost of consumables.

附图说明 Description of drawings

图1是一剖视示意图,说明一个以本发明电容式微型麦克风的麦克风芯片的一第一较佳实施例封装而成的电容式微形麦克风;Fig. 1 is a schematic sectional view illustrating a capacitive miniature microphone packaged with a first preferred embodiment of the microphone chip of the capacitive micromic of the present invention;

图2是一剖视示意图,说明本发明电容式微型麦克风的麦克风芯片的一第一较佳实施例;Fig. 2 is a schematic cross-sectional view illustrating a first preferred embodiment of the microphone chip of the capacitive miniature microphone of the present invention;

图3是一流程图,说明图2的麦克风芯片的制造方法;Fig. 3 is a flow chart, illustrates the manufacturing method of the microphone chip of Fig. 2;

图4是一剖视示意图,说明以图2所示的麦克风芯片翻转180°后封装成另一态样的电容式微型麦克风;Fig. 4 is a schematic sectional view illustrating a capacitive miniature microphone packaged in another form after the microphone chip shown in Fig. 2 is flipped 180°;

图5是一剖视示意图,说明本发明电容式微型麦克风的麦克风芯片的一第二较佳实施例;Fig. 5 is a schematic sectional view illustrating a second preferred embodiment of the microphone chip of the capacitive miniature microphone of the present invention;

图6是一流程图,说明图5的麦克风芯片的制造方法。FIG. 6 is a flowchart illustrating a manufacturing method of the microphone chip of FIG. 5 .

具体实施方式 Detailed ways

下面结合附图及实施例对本发明进行详细说明:The present invention is described in detail below in conjunction with accompanying drawing and embodiment:

参阅图1、图2,本发明电容式微型麦克风的麦克风芯片的一第一较佳实施例,是可配合一壳座11封装成如图1所示的电容式微型麦克风1,用以感应外界的声能变化。Referring to Fig. 1 and Fig. 2, a first preferred embodiment of the microphone chip of the capacitive micro-microphone of the present invention can cooperate with a shell seat 11 to be packaged into a capacitive micro-microphone 1 as shown in Fig. 1 for sensing the outside world change in sound energy.

该壳座1包括一底壁111、一由该底壁111周缘向上延伸的周壁112、一与该周壁112顶缘连结且可供声能穿透的顶壁113,及一设置在该底壁111上的封装块114,该底壁111、周壁112,与顶壁113共同界定出一个供该麦克风芯片2容置的封装空间115。The shell seat 1 includes a bottom wall 111, a peripheral wall 112 extending upward from the peripheral edge of the bottom wall 111, a top wall 113 connected to the top edge of the peripheral wall 112 and capable of penetrating sound energy, and a The packaging block 114 on the 111 , the bottom wall 111 , the peripheral wall 112 , and the top wall 113 jointly define a packaging space 115 for the microphone chip 2 to be accommodated.

该麦克风芯片2是应用半导体制程、微机电技术与脱离技术制成,包括一振膜21,及一与振膜21相连结的气隙单元22。The microphone chip 2 is manufactured using semiconductor manufacturing process, MEMS technology and detachment technology, and includes a vibrating membrane 21 and an air gap unit 22 connected with the vibrating membrane 21 .

该振膜21为业界所称的「平板式振膜」,连接在该封装块114上而与该壳座11的底壁111共同区隔出一振动空间116,该振膜21并具有一以导体材料构成并与该封装块114连接的第一电极层211,及一以绝缘材料形成于第一电极层211上的振膜层212,该振膜层212并包括一振膜区域213,及一环围振膜区域213的种晶区域214,该振膜区域213可因外界的声能作用而产生对应形变。该第一电极层211是以例如铬、金、钽、铂、铝、钯、钨、铜、镍等金属,或及此等金属的组合的合金/复合物为材料构成,在此以铬/金为例说明;而该振膜层212可选择例如聚亚酰胺(polyimide)、氮化硅、氧化硅、金属,及此等的组合为材料构成,在此则以聚亚酰胺为例说明。The diaphragm 21 is a so-called "flat diaphragm" in the industry, which is connected to the package block 114 and jointly partitions a vibration space 116 with the bottom wall 111 of the shell base 11. The diaphragm 21 also has a A first electrode layer 211 formed of conductive material and connected to the packaging block 114, and a diaphragm layer 212 formed on the first electrode layer 211 with an insulating material, the diaphragm layer 212 also includes a diaphragm region 213, and A seed crystal region 214 surrounds the vibrating membrane region 213 , and the vibrating membrane region 213 can generate corresponding deformation due to external acoustic energy. The first electrode layer 211 is made of metals such as chromium, gold, tantalum, platinum, aluminum, palladium, tungsten, copper, nickel, or an alloy/composite of a combination of these metals. Here, chromium/ Gold is used as an example; and the diaphragm layer 212 can be made of materials such as polyimide, silicon nitride, silicon oxide, metal, and combinations thereof, and polyimide is used as an example for illustration here.

该气隙单元22具有一第二电极层221,及一定义形成于第二电极层221上的强固层222,该第二电极层221与强固层222并共同形成一自种晶区域214向相反于第一电极层211方向延伸的气隙壁223,及一具有一音孔图像224的背板225,该背板225、气隙壁223与振膜层212的振膜区域213共同界定出一以音孔图像224供气流流动的气隙226。同样地,该第二电极层221是以例如铬、金、钽、铂、铝、钯、钨、铜、镍等金属,或及此等金属的组合为材料构成,在此以铬/金为例说明;而该强固层222则可选择例如镍、铜、钴、铁、压克力、聚亚酰胺,及此等的组合为材料构成,在此则以镍为例说明。The air gap unit 22 has a second electrode layer 221, and a strong layer 222 defined and formed on the second electrode layer 221, the second electrode layer 221 and the strong layer 222 together form an The air gap wall 223 extending in the direction of the first electrode layer 211, and a back plate 225 with a sound hole image 224, the back plate 225, the air gap wall 223 and the diaphragm area 213 of the diaphragm layer 212 jointly define a Air gap 226 for air flow with sound hole image 224 . Similarly, the second electrode layer 221 is made of metals such as chromium, gold, tantalum, platinum, aluminum, palladium, tungsten, copper, nickel, or a combination of these metals. Here, chromium/gold is used as the material. For example, the reinforcement layer 222 can be made of materials such as nickel, copper, cobalt, iron, acrylic, polyimide, and combinations thereof. Here, nickel is used as an example for illustration.

当在上述的麦克风芯片2的第一、二电极层211、221写入电荷而构成电容,并封装入该壳座11后,即成电容式微型麦克风1,当外界声能自该壳座11的顶壁113穿透进入时,该振膜21的振膜区域213受其作用而在振动空间116与气隙226中产生对应形变,并在形变的同时产生电容变化,之后,再配合一个可将电容变化转换成电压变化的场效晶体管(FET,图未示出)即可将此电容变化转换成电子讯号向外传递、运用。When the first and second electrode layers 211, 221 of the above-mentioned microphone chip 2 are written into electric charges to form a capacitor, and after being packaged into the housing 11, the capacitive miniature microphone 1 is formed. When the external sound energy comes from the housing 11 When the top wall 113 of the diaphragm penetrates in, the diaphragm area 213 of the diaphragm 21 is affected by it to generate corresponding deformation in the vibration space 116 and the air gap 226, and a capacitance change occurs while deforming. The field effect transistor (FET, not shown in the figure) that converts the capacitance change into a voltage change can convert the capacitance change into an electronic signal for external transmission and use.

在此要特别说明的是,上述只是以本发明麦克风芯片2配合最基本的壳座11结构作说明,事实上,熟知此项技艺人士皆知,壳座11的封装块114、周壁112、顶壁115、底壁111等都可以配合导电与否的设计,或是直接将电路设计在其中,或是以电路板(PCB)取代,而达到实际应用的需求,此外,场效晶体管也可以直接共同封装入壳座11中,或是组设在以电路板当作周壁112、顶壁115或是底壁111使用的电路设计上,由于此部分的设计方式众多,且并非本发明的创作重点所在,所以在此不再多做赘述。It should be noted here that the above is only an illustration based on the structure of the microphone chip 2 of the present invention and the most basic shell base 11. In fact, those who are familiar with this art know that the package block 114, the surrounding wall 112, the top of the shell base 11 The wall 115, the bottom wall 111, etc. can cooperate with the design of whether it is conductive or not, or directly design the circuit in it, or replace it with a circuit board (PCB), so as to meet the needs of practical applications. In addition, the field effect transistor can also be directly Jointly packaged into the shell base 11, or assembled on the circuit design using the circuit board as the peripheral wall 112, top wall 115 or bottom wall 111, because there are many design methods for this part, and it is not the focus of the present invention location, so I won’t repeat them here.

上述的麦克风芯片2在配合如图3所示的制造方法详细说明后,当可更加清楚的明白。The above-mentioned microphone chip 2 can be understood more clearly after being described in detail with the manufacturing method shown in FIG. 3 .

参阅图3制造麦克风芯片2时,是先实施步骤301,以<100>硅晶圆作为基板41,经过标准洁净步骤清洗后,在基板41上以电子束蒸镀厚度约3μm的铝作为脱离层42。Referring to FIG. 3, when manufacturing the microphone chip 2, step 301 is implemented first, using a <100> silicon wafer as the substrate 41, and after cleaning through standard cleaning steps, aluminum with a thickness of about 3 μm is deposited on the substrate 41 by electron beam evaporation as a release layer. 42.

由于此脱离层42的存在,是为了后续成型出与基板连结的麦克风芯片2之后,能以特定的蚀刻液溶蚀而可将麦克风芯片2与基板41相分离,以直接取得完整的麦克风芯片2之用,因此,脱离层42的构成材料,只需对应基板41与麦克风芯片2,而当以蚀刻液溶蚀时,只会溶蚀脱离层42而不会损及基板41与麦克风芯片2即可,因此,除了铝之外,其它如氧化物、高分子材料,或此等材料的组合均可以应用;在此,则以铝并对应后续选用盐酸为蚀刻液为例说明。Due to the existence of the release layer 42, after the microphone chip 2 connected to the substrate is subsequently molded, the microphone chip 2 can be separated from the substrate 41 by dissolution with a specific etching solution, so as to directly obtain the complete microphone chip 2. Therefore, the constituent material of the release layer 42 only needs to correspond to the substrate 41 and the microphone chip 2, and when it is eroded with an etching solution, only the release layer 42 will be eroded without damaging the substrate 41 and the microphone chip 2. Therefore, , in addition to aluminum, other materials such as oxides, polymer materials, or a combination of these materials can be used; here, aluminum and the subsequent choice of hydrochloric acid as an etching solution are used as an example for illustration.

接着进行步骤302,利用黄光微影在脱离层42上定义出预定图像后,以热阻式蒸镀机蒸镀厚度约为150nm的铬/金(Cr/Au),再移除(Lift-Off)非所需的部分后,定义形成具有预定图像的第一电极层211。Then proceed to step 302, after using yellow light lithography to define a predetermined image on the release layer 42, use a thermal resistance evaporation machine to evaporate chromium/gold (Cr/Au) with a thickness of about 150nm, and then remove (Lift-Off) After the undesired portion is defined, the first electrode layer 211 having a predetermined image is formed.

然后进行步骤303,再次利用黄光微影在第一电极层211上以感光材料,如聚亚酰胺(polyimide)定义出具有预定图像的振膜层212,完成振膜21的制作。Then proceed to step 303 , using photolithography again to define the diaphragm layer 212 with a predetermined image on the first electrode layer 211 with a photosensitive material, such as polyimide, to complete the manufacture of the diaphragm 21 .

接着进行步骤304,以电浆辅助化学气相沉积系统(PECVD)在振膜层212的振膜区域213上沉积厚度约为3μm的二氧化硅,作为后续进行蚀刻掏空的牺牲层43(sacrificial layer)。Then proceed to step 304, using a plasma-assisted chemical vapor deposition system (PECVD) to deposit silicon dioxide with a thickness of about 3 μm on the diaphragm region 213 of the diaphragm layer 212, as a sacrificial layer 43 (sacrificial layer) for subsequent etching and hollowing out. ).

由于此牺牲层43的存在,是为了形成后续完成气隙单元22的成型态样,因此,牺牲层43的构成材料的选用原则为当蚀刻移除牺牲层43时,蚀刻液不会伤害麦克风其它结构即可,因此,除了对应本例所选用的二氧化硅,其它如高分子材料、铝等均可以应用。Since the existence of the sacrificial layer 43 is to form the shape of the subsequent completion of the air gap unit 22, the principle of selecting the constituent material of the sacrificial layer 43 is that when the sacrificial layer 43 is removed by etching, the etching solution will not damage the microphone. Other structures can be used. Therefore, in addition to the silicon dioxide used in this example, other materials such as polymer materials and aluminum can be used.

接着再进行步骤305,利用黄光微影在牺牲层43相反于连结振膜21的上表面定义出预定的音孔图像224态样后,以热阻式蒸镀机在振膜层212的种晶区域214与牺牲层43上蒸镀厚度约为150nm的铬/金(Cr/Au),再移除(Lift-Off)非所需的部分,定义形成具有预定音孔图像224态样的第二电极层221。Then proceed to step 305. After using yellow light lithography to define a predetermined shape of the sound hole image 224 on the upper surface of the sacrificial layer 43 opposite to the connecting diaphragm 21, the seed crystal region of the diaphragm layer 212 is formed with a thermal resistance evaporation machine. 214 and the sacrificial layer 43 are vapor-deposited with a thickness of about 150nm of chromium/gold (Cr/Au), and then remove (Lift-Off) the undesired part to define and form the second electrode with the shape of the predetermined sound hole image 224 Layer 221.

继续进行步骤306,以第二电极层221作为种晶层(seed layer),电镀足够厚的镍(Ni)形成强固层222,此时,第二电极层221与强固层222对应振膜区域213所形成的音孔图像224态样使得牺牲层43对应此音孔图像224态样的区域,以对应音孔图像224的态样裸露。Proceed to step 306, using the second electrode layer 221 as a seed layer (seed layer), electroplating sufficiently thick nickel (Ni) to form a strong layer 222, at this time, the second electrode layer 221 and the strong layer 222 correspond to the diaphragm area 213 The shape of the formed sound hole image 224 makes the region of the sacrificial layer 43 corresponding to the shape of the sound hole image 224 exposed in the shape corresponding to the sound hole image 224 .

接着进行步骤307,利用氢氟酸缓冲液(BOE)自牺牲层43对应音孔图像224的裸露处向下蚀刻掏空牺牲层43,而在振膜21上完成气隙单元22的制作。Then proceed to step 307 , using buffered hydrofluoric acid (BOE) to etch and hollow out the sacrificial layer 43 from the exposed portion of the sacrificial layer 43 corresponding to the sound hole image 224 , and complete the fabrication of the air gap unit 22 on the diaphragm 21 .

最后进行步骤308,以盐酸(HCl)蚀刻掉脱离层42,而使得麦克风芯片2与基板41相分离,即可制得如图2所示的麦克风芯片2,同时,基板41也可再回收利用。Finally, step 308 is performed to etch the release layer 42 with hydrochloric acid (HCl), so that the microphone chip 2 is separated from the substrate 41, and the microphone chip 2 as shown in FIG. 2 can be produced, and the substrate 41 can also be recycled. .

参阅图4,另外,上述所完成的麦克风芯片1,也可以翻转180°而以气隙单元22叠置在封装块114上,而封装制得另一种态样的电容式微形麦克风1’。Referring to Fig. 4, in addition, the above-mentioned completed microphone chip 1 can also be turned over 180° and stacked on the packaging block 114 with the air gap unit 22, and packaged to produce another form of capacitive miniature microphone 1'.

参阅图5,本发明电容式微型麦克风的麦克风芯片的一第二较佳实施例,与上例的麦克风芯片2相似,其不同处本例的麦克风芯片5的振膜51是属「皱折式振膜」而已;由于麦克风芯片的其它构造均相类似,在此不再多加重复赘述。Referring to Fig. 5, a second preferred embodiment of the microphone chip of the capacitive miniature microphone of the present invention is similar to the microphone chip 2 of the last example, and the diaphragm 51 of the microphone chip 5 of its different place this example belongs to " wrinkle type Diaphragm” only; since the other structures of the microphone chip are similar, I won’t repeat them here.

参阅图6,上述振膜51属「皱折式振膜「」的麦克风芯片的制作,是先实施步骤601,以<100>硅晶圆作为基板41,经过标准洁净步骤清洗后,利用黄光微影在基板41上先定义出预定的皱折图像44。Referring to FIG. 6 , the above-mentioned diaphragm 51 is manufactured as a "corrugated diaphragm" microphone chip. Step 601 is first implemented, using a <100> silicon wafer as the substrate 41. A predetermined wrinkle image 44 is first defined on the substrate 41 .

接着进行步骤602,以电子束蒸镀厚度约3μm的铝作为脱离层42。Then proceed to step 602 , using electron beam evaporation to deposit aluminum with a thickness of about 3 μm as the release layer 42 .

接着进行步骤603,利用黄光微影在脱离层42上定义出预定图像后,以热阻式蒸镀机蒸镀厚度约为150nm的铬/金(Cr/Au),再移除(Lift-Off)非所需的部分后,配合皱折图像44而定义形成具有预定图像的第一电极层211。Then proceed to step 603, after using yellow light lithography to define a predetermined image on the release layer 42, use a thermal resistance evaporation machine to evaporate chromium/gold (Cr/Au) with a thickness of about 150 nm, and then remove (Lift-Off) After the undesired portion, the first electrode layer 211 with a predetermined image is defined and formed in accordance with the wrinkle image 44 .

然后进行步骤604,再次利用黄光微影在第一电极层211上以感光材料,如聚亚酰胺(polyimide)定义出具有预定图像的振膜层212,完成皱折式振膜51的制作。Then proceed to step 604 , using photolithography again to define the diaphragm layer 212 with a predetermined image on the first electrode layer 211 with a photosensitive material, such as polyimide, to complete the fabrication of the corrugated diaphragm 51 .

接着进行步骤605,以电浆辅助化学气相沉积系统(PECVD)在振膜层212的振膜区域213上沉积厚度约为3μm的二氧化硅,作为后续进行蚀刻掏空的牺牲层43。Then proceed to step 605 , using a plasma-assisted chemical vapor deposition (PECVD) system to deposit silicon dioxide with a thickness of about 3 μm on the diaphragm region 213 of the diaphragm layer 212 as the sacrificial layer 43 for subsequent etching and hollowing out.

接着再进行步骤606,利用黄光微影在牺牲层43相反于连结振膜51的上表面定义出预定的音孔图像224后,以热阻式蒸镀机在振膜层212的种晶区域214与牺牲层43上蒸镀厚度约为150nm的铬/金(Cr/Au),再移除(Lift-Off)非所需的部分后,定义形成具有预定音孔图像224态样的第二电极层221。Then proceed to step 606. After using yellow light lithography to define a predetermined sound hole image 224 on the upper surface of the sacrificial layer 43 opposite to the connecting diaphragm 51, the seed crystal region 214 of the diaphragm layer 212 and the diaphragm layer 212 are formed with a thermal resistance evaporation machine. Chromium/gold (Cr/Au) with a thickness of about 150nm is vapor-deposited on the sacrificial layer 43, and after removing (Lift-Off) the undesired part, a second electrode layer with a predetermined sound hole image 224 is defined and formed 221.

继续进行步骤607,以第二电极层221作为种晶层(seed layer),电镀足够厚的镍(Ni)形成强固层222,此时,第二电极层221与强固层222对应振膜区域213所形成的音孔图像224态样使得牺牲层43对应此音孔图像224态样的区域,以对应音孔图像224的态样裸露。Continue to step 607, use the second electrode layer 221 as a seed layer (seed layer), and electroplate sufficiently thick nickel (Ni) to form a strong layer 222. At this time, the second electrode layer 221 and the strong layer 222 correspond to the diaphragm area 213 The shape of the formed sound hole image 224 makes the region of the sacrificial layer 43 corresponding to the shape of the sound hole image 224 exposed in the shape corresponding to the sound hole image 224 .

接着进行步骤608,利用BOE自牺牲层43对应音孔图像224态样的裸露处向下蚀刻掏空牺牲层43,而在皱折式振膜51上完成气隙单元22的制作。Then proceed to step 608 , using BOE to etch down the sacrificial layer 43 from the exposed portion of the sacrificial layer 43 corresponding to the shape of the sound hole image 224 , and complete the fabrication of the air gap unit 22 on the corrugated diaphragm 51 .

最后进行步骤609,以盐酸(HCl)蚀刻移除脱离层42,而使得麦克风芯片5与基板41相分离,以取得麦克风芯片5,同时,基板41也可再回收利用。Finally, step 609 is performed to remove the release layer 42 by etching with hydrochloric acid (HCl), so that the microphone chip 5 is separated from the substrate 41 to obtain the microphone chip 5 , and the substrate 41 can also be recycled.

在此要另外说明的是,虽然本发明的麦克风芯片2、5都是以封装入壳座11中作说明,但是事实上,此等麦克风芯片2、5也可以直接应用于系统级封装-亦即无须壳座而直接封装于电路板(Board)上,以感应声能的作用,因为封装应用的形式种类众多,在此不再多加举例说明。It should be further explained here that although the microphone chips 2 and 5 of the present invention are described as being packaged into the housing 11, in fact, these microphone chips 2 and 5 can also be directly applied to the system-in-package-also That is, it is directly packaged on the circuit board (Board) without a shell to induce the effect of sound energy. Since there are many types of packaging applications, no more examples will be given here.

由上述说明可知,本发明电容式微型麦克风的麦克风芯片2、5,主要是利用半导体制程、蒸镀与电镀等微机电技术,依序在基板41上定义出牺牲层43与麦克风芯片2、5的结构,进而应用脱离技术蚀刻掉脱离层42以分离麦克风芯片2、5与基板41,从而取得麦克风芯片2、5并可将基板41再行回收利用,不但可以避免体蚀刻制成较不易精确掌控的缺点,同时又可免于因切割造成芯片微组件结构的损坏,而可确实提高整体麦克风芯片的品质与制程良率,确实达到本发明的创作目的。As can be seen from the above description, the microphone chips 2 and 5 of the capacitive micro microphone of the present invention mainly use micro-electromechanical technologies such as semiconductor manufacturing process, evaporation and electroplating to define the sacrificial layer 43 and the microphone chips 2 and 5 on the substrate 41 in sequence. structure, and then apply the detachment technology to etch the detachment layer 42 to separate the microphone chips 2, 5 and the substrate 41, so as to obtain the microphone chips 2, 5 and recycle the substrate 41, which can not only avoid bulk etching and make it difficult to be accurate The shortcomings of control can be avoided, and at the same time, the damage to the micro-component structure of the chip caused by cutting can be avoided, and the quality and process yield of the overall microphone chip can be improved, and the creative purpose of the present invention can indeed be achieved.

Claims (11)

1. 一种电容式微型麦克风的麦克风芯片,封装于一壳座中而成一电容式微型麦克风,并可与一可将电容变化转换成电压变化的场效晶体管相配合将作用的声能转换成电气信号,其特征在于:1. A microphone chip of a capacitive miniature microphone, which is packaged in a shell to form a capacitive miniature microphone, and can cooperate with a field effect transistor that can convert capacitance changes into voltage changes to convert the acting sound energy into Electrical signal characterized by: 该麦克风芯片是以半导体制程成型并包括:The microphone chip is formed in a semiconductor process and includes: 一振膜,与该壳座内壁面相间隔而区隔出一振动空间,具有一以导体材料构成的第一电极层,及一以绝缘材料构成并形成在该第一电极层上的振膜层,该振膜层并包括一振膜区域,及一环围该振膜区域的种晶区域,该振膜区域可因外界的声能作用而产生对应形变,及A vibrating film is spaced from the inner wall of the shell to form a vibrating space, has a first electrode layer made of conductive material, and a vibrating film layer made of insulating material and formed on the first electrode layer , the diaphragm layer also includes a diaphragm region, and a seed crystal region surrounding the diaphragm region, the diaphragm region can produce corresponding deformation due to external acoustic energy, and 一气隙单元,具有一以导体材料构成的第二电极层,及一定义形成于该第二电极层上的强固层,该第二电极层与该强固层并共同形成一自该种晶区域向相反于该第一电极层方向延伸的气隙壁,及一具有一音孔图像的背板,该背板、气隙壁与该振膜层的振膜区域共同界定一以该音孔图像供气流流动的气隙。An air gap unit has a second electrode layer made of conductive material, and a strengthening layer defined and formed on the second electrode layer, the second electrode layer and the strengthening layer together form a Contrary to the air gap wall extending in the direction of the first electrode layer, and a back plate with a sound hole image, the back plate, the air gap wall and the diaphragm area of the diaphragm layer jointly define a sound hole image for the Air gap for air flow. 2. 如权利要求1所述的电容式微型麦克风的麦克风芯片,其特征在于:该麦克风芯片是先在一基板上依序定义形成一脱离层及该第一电极层与振膜层,再于该振膜层上形成一遮覆该振膜层的振膜区域且使种晶区域裸露的牺牲层,接着在该牺牲层与该振膜层的种晶区域上对应该牺牲层与该种晶区域的态样依序定义出对应该振膜区域形成该音孔图像的第二电极层及强固层,最后自该牺牲层对应该音孔图像的区域的裸露处蚀刻移除该牺牲层,以及蚀刻移除该脱离层使该振膜与基板相分离后而制得。2. The microphone chip of the capacitive miniature microphone as claimed in claim 1, characterized in that: the microphone chip is defined to form a release layer and the first electrode layer and the diaphragm layer in sequence on a substrate, and then A sacrificial layer covering the diaphragm region of the diaphragm layer and exposing the seed crystal region is formed on the diaphragm layer, and then the sacrificial layer and the seed crystal are correspondingly formed on the sacrificial layer and the seed crystal region of the diaphragm layer The aspect of the area defines the second electrode layer and the strengthening layer corresponding to the diaphragm area to form the sound hole image in sequence, and finally the sacrificial layer is etched and removed from the exposed part of the sacrificial layer corresponding to the sound hole image, and It is manufactured after removing the release layer by etching to separate the diaphragm from the substrate. 3. 如权利要求2所述的电容式微型麦克风的麦克风芯片,其特征在于:该第一、二电极层分别是选自下列所构成的群组为材料定义形成:铬、金、钽、铂、铝、钯、钨、铜、镍,及此等的组合。3. The microphone chip of the capacitive miniature microphone as claimed in claim 2, characterized in that: the first and second electrode layers are respectively selected from the group formed by the following for material definition: chromium, gold, tantalum, platinum , aluminum, palladium, tungsten, copper, nickel, and combinations thereof. 4. 如权利要求2所述的电容式微型麦克风的麦克风芯片,其特征在于:该振膜层是选自下列所构成的群组为材料定义形成:聚亚酰胺、氮化硅、氧化硅、金属,及此等的组合。4. the microphone chip of capacitive miniature microphone as claimed in claim 2, it is characterized in that: this vibrating membrane layer is to be selected from the group that following constitutes is that material definition forms: polyimide, silicon nitride, silicon oxide, metals, and combinations thereof. 5. 如权利要求2所述的电容式微型麦克风的麦克风芯片,其特征在于:该强固层是以电镀方式形成于该第二电极层上,且选自由下列所构成的群组为材料定义形成:镍、铜、钴、铁,及此等的组合。5. The microphone chip of a capacitive miniature microphone as claimed in claim 2, characterized in that: the strengthening layer is formed on the second electrode layer by electroplating, and is selected from the group formed by the following as a material definition : Nickel, copper, cobalt, iron, and combinations thereof. 6. 如权利要求2所述的电容式微型麦克风的麦克风芯片,其特征在于:该强固层是选自由下列所构成的群组为材料定义形成:压克力、聚亚酰胺,及此等的组合。6. The microphone chip of a capacitive miniature microphone as claimed in claim 2, wherein the reinforcement layer is defined as a material selected from the group consisting of: acrylic, polyimide, and the like combination. 7. 如权利要求2所述的电容式微型麦克风的麦克风芯片,其特征在于:该脱离层是选自由下列所构成的群组为材料定义形成:铝、氧化物、高分子材料,及此等的组合。7. The microphone chip of the capacitive miniature microphone as claimed in claim 2, characterized in that: the release layer is selected from the group formed by the following for material definition: aluminum, oxides, polymer materials, and the like The combination. 8. 如权利要求2所述的电容式微型麦克风的麦克风芯片,其特征在于:该振膜层的振膜区域的截面成平板态样。8. The microphone chip of the capacitive miniature microphone as claimed in claim 2, characterized in that: the section of the diaphragm region of the diaphragm layer is in a flat plate state. 9. 如权利要求2所述的电容式微型麦克风的麦克风芯片,其特征在于:该振膜层的振膜区域的截面成凹凸皱折态样。9. The microphone chip of the capacitive miniature microphone as claimed in claim 2, characterized in that: the section of the diaphragm region of the diaphragm layer is in a concave-convex wrinkled state. 10. 如权利要求2所述的电容式微型麦克风的麦克风芯片,其特征在于:该牺牲层是选自由下列所构成的群组为材料定义形成:二氧化硅、铝、高分子材料,及此等的组合。10. The microphone chip of the capacitive miniature microphone as claimed in claim 2, characterized in that: the sacrificial layer is selected from the group formed by the following for material definition: silicon dioxide, aluminum, polymer materials, and the etc. combination. 11. 如权利要求2或10所述的电容式微型麦克风的麦克风芯片,其特征在于:该牺牲层是以电浆辅助化学气相沉积制得。11. The microphone chip of a capacitive miniature microphone as claimed in claim 2 or 10, wherein the sacrificial layer is made by plasma-assisted chemical vapor deposition.
CNA2007100873474A 2007-03-14 2007-03-14 Microphone chip of capacitance type miniature microphone Pending CN101267689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007100873474A CN101267689A (en) 2007-03-14 2007-03-14 Microphone chip of capacitance type miniature microphone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007100873474A CN101267689A (en) 2007-03-14 2007-03-14 Microphone chip of capacitance type miniature microphone

Publications (1)

Publication Number Publication Date
CN101267689A true CN101267689A (en) 2008-09-17

Family

ID=39989736

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100873474A Pending CN101267689A (en) 2007-03-14 2007-03-14 Microphone chip of capacitance type miniature microphone

Country Status (1)

Country Link
CN (1) CN101267689A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056062A (en) * 2009-10-29 2011-05-11 苏州敏芯微电子技术有限公司 Capacitor-type micro silicon microphone and manufacturing method thereof
CN102158775A (en) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 MEMS (Micro Electro Mechanical System) microphone packaging structure and forming method thereof
CN102295265A (en) * 2010-06-25 2011-12-28 国际商业机器公司 Planar cavity mems and related structures, methods of manufacture and design structures
CN102674237A (en) * 2011-02-22 2012-09-19 英飞凌科技股份有限公司 Monolithic integrated sensor device and method thereof and method for formign the cavity structure of the monolithic integrated sensor device
CN101665230B (en) * 2008-09-03 2013-08-21 鑫创科技股份有限公司 MEMS packaging and method of forming same
CN103561375A (en) * 2013-09-27 2014-02-05 宁波鑫丰泰电器有限公司 MEMS microphone
CN103763668A (en) * 2013-10-18 2014-04-30 张小友 MEMS microphone
CN104045053A (en) * 2013-03-11 2014-09-17 台湾积体电路制造股份有限公司 Mems device structure with a capping structure
US9136136B2 (en) 2013-09-19 2015-09-15 Infineon Technologies Dresden Gmbh Method and structure for creating cavities with extreme aspect ratios
US9139427B2 (en) 2012-04-17 2015-09-22 Infineon Technologies Ag Methods for producing a cavity within a semiconductor substrate
WO2016008106A1 (en) * 2014-07-15 2016-01-21 Goertek Inc. A silicon microphone with high-aspect-ratio corrugated diaphragm and a package with the same
CN105722002A (en) * 2014-09-23 2016-06-29 现代自动车株式会社 Microphone and method of manufacturing the same
CN106231519A (en) * 2011-03-04 2016-12-14 埃普科斯股份有限公司 The method of the barrier film between two backboards of mike and location
CN112822616A (en) * 2021-01-19 2021-05-18 潍坊歌尔微电子有限公司 Sensing chip and MEMS sensor

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665230B (en) * 2008-09-03 2013-08-21 鑫创科技股份有限公司 MEMS packaging and method of forming same
CN102056062A (en) * 2009-10-29 2011-05-11 苏州敏芯微电子技术有限公司 Capacitor-type micro silicon microphone and manufacturing method thereof
CN102906010B (en) * 2010-06-25 2015-12-02 国际商业机器公司 The method of plane cavity MEMS and dependency structure, manufacture and project organization
CN102295265A (en) * 2010-06-25 2011-12-28 国际商业机器公司 Planar cavity mems and related structures, methods of manufacture and design structures
CN102295265B (en) * 2010-06-25 2014-12-17 国际商业机器公司 Planar cavity mems and related structures, methods of manufacture and design structures
CN102906010A (en) * 2010-06-25 2013-01-30 国际商业机器公司 Planar cavity microelectromechanical systems and related structures, methods of fabricating and designing structures
CN102674237A (en) * 2011-02-22 2012-09-19 英飞凌科技股份有限公司 Monolithic integrated sensor device and method thereof and method for formign the cavity structure of the monolithic integrated sensor device
US9598277B2 (en) 2011-02-22 2017-03-21 Infineon Technologies Ag Cavity structures for MEMS devices
CN102674237B (en) * 2011-02-22 2015-12-02 英飞凌科技股份有限公司 The method of monolithic integrated sensor device and formation method and its cavity body structure of formation
US9145292B2 (en) 2011-02-22 2015-09-29 Infineon Technologies Ag Cavity structures for MEMS devices
CN106231519B (en) * 2011-03-04 2019-09-03 Tdk株式会社 Microphone
CN106231519A (en) * 2011-03-04 2016-12-14 埃普科斯股份有限公司 The method of the barrier film between two backboards of mike and location
CN102158775B (en) * 2011-03-15 2015-01-28 迈尔森电子(天津)有限公司 MEMS (Micro Electro Mechanical System) microphone packaging structure and forming method thereof
CN102158775A (en) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 MEMS (Micro Electro Mechanical System) microphone packaging structure and forming method thereof
US9139427B2 (en) 2012-04-17 2015-09-22 Infineon Technologies Ag Methods for producing a cavity within a semiconductor substrate
CN104045053A (en) * 2013-03-11 2014-09-17 台湾积体电路制造股份有限公司 Mems device structure with a capping structure
US9136136B2 (en) 2013-09-19 2015-09-15 Infineon Technologies Dresden Gmbh Method and structure for creating cavities with extreme aspect ratios
US9663355B2 (en) 2013-09-19 2017-05-30 Infineon Technologies Dresden Gmbh Method and structure for creating cavities with extreme aspect ratios
CN103561375B (en) * 2013-09-27 2017-01-04 宁波鑫丰泰电器有限公司 A kind of MEMS microphone
CN103561375A (en) * 2013-09-27 2014-02-05 宁波鑫丰泰电器有限公司 MEMS microphone
CN105933837A (en) * 2013-10-18 2016-09-07 张小友 MEMS microphone vibrating diaphragm
CN103763668B (en) * 2013-10-18 2016-08-17 张小友 A kind of MEMS microphone
CN103763668A (en) * 2013-10-18 2014-04-30 张小友 MEMS microphone
CN105933837B (en) * 2013-10-18 2019-02-15 张小友 A kind of MEMS microphone vibrating diaphragm
WO2016008106A1 (en) * 2014-07-15 2016-01-21 Goertek Inc. A silicon microphone with high-aspect-ratio corrugated diaphragm and a package with the same
US9930453B2 (en) 2014-07-15 2018-03-27 Goertek Inc. Silicon microphone with high-aspect-ratio corrugated diaphragm and a package with the same
CN105722002A (en) * 2014-09-23 2016-06-29 现代自动车株式会社 Microphone and method of manufacturing the same
CN105722002B (en) * 2014-09-23 2020-02-04 现代自动车株式会社 Microphone and method of manufacturing the same
CN112822616A (en) * 2021-01-19 2021-05-18 潍坊歌尔微电子有限公司 Sensing chip and MEMS sensor

Similar Documents

Publication Publication Date Title
CN101267689A (en) Microphone chip of capacitance type miniature microphone
JP5591632B2 (en) Piezoelectric microspeaker having a mass attached to a vibrating membrane
KR101379680B1 (en) Mems microphone with dual-backplate and method the same
JP5486913B2 (en) Piezoelectric acoustic transducer and manufacturing method thereof
JP5513287B2 (en) Piezoelectric microspeaker having piston diaphragm and manufacturing method thereof
KR100809674B1 (en) How to manufacture a thin film sensor
TWI260940B (en) Method for producing polymeric capacitive ultrasonic transducer
CN105282678A (en) System and method for a microphone
CN101346014A (en) Microelectromechanical system microphone and preparation method thereof
CN111770423A (en) Miniature microphone and manufacturing method thereof
CN108600928A (en) MEMS device and its manufacturing method
WO2016172866A1 (en) Piezoelectric speaker and method for forming the same
CN101472212B (en) Post-CMOS capacitance silicon-based micro-microphone and preparation method thereof
JP3829115B2 (en) Condenser microphone and manufacturing method thereof
CN101060726B (en) Method of making a diaphragm of a condenser microphone element
CN212435927U (en) Miniature microphone
TWI448165B (en) Microphone device and method for manufacturing the same
CN111405444B (en) Capacitor microphone with diaphragm with holes and manufacturing method thereof
CN100446628C (en) Capacitor microphone and micro-electro-mechanical processing manufacturing method thereof
CN113395053A (en) Quartz thin film resonator and method of manufacturing the same
CN212435926U (en) Cascade miniature microphone
JP2010081192A (en) Mems sensor
CN112399311B (en) Membrane support for dual backplate transducers
TWI305998B (en) Method of fabricating a diaphragm of a capacitive microphone device
TWI279154B (en) Microphone chip of capacitive micro microphone and its manufacturing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080917