CN101230296A - Reforming reactor and method for preparing synthesis gas from raw biomass gas - Google Patents
Reforming reactor and method for preparing synthesis gas from raw biomass gas Download PDFInfo
- Publication number
- CN101230296A CN101230296A CNA2007100328887A CN200710032888A CN101230296A CN 101230296 A CN101230296 A CN 101230296A CN A2007100328887 A CNA2007100328887 A CN A2007100328887A CN 200710032888 A CN200710032888 A CN 200710032888A CN 101230296 A CN101230296 A CN 101230296A
- Authority
- CN
- China
- Prior art keywords
- gas
- biomass
- reforming
- reactor
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002407 reforming Methods 0.000 title claims abstract description 46
- 239000002028 Biomass Substances 0.000 title claims abstract description 39
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 35
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000007789 gas Substances 0.000 claims abstract description 98
- 238000006243 chemical reaction Methods 0.000 claims abstract description 36
- 239000003054 catalyst Substances 0.000 claims abstract description 30
- 239000001301 oxygen Substances 0.000 claims abstract description 20
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000001833 catalytic reforming Methods 0.000 claims abstract description 9
- 239000000571 coke Substances 0.000 claims abstract description 9
- 230000009471 action Effects 0.000 claims abstract description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims abstract description 4
- 239000002737 fuel gas Substances 0.000 claims abstract description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 29
- 239000003546 flue gas Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 239000000243 solution Substances 0.000 claims description 15
- 238000005192 partition Methods 0.000 claims description 10
- 239000011777 magnesium Substances 0.000 claims description 6
- 238000004448 titration Methods 0.000 claims description 6
- ATTFYOXEMHAYAX-UHFFFAOYSA-N magnesium nickel Chemical compound [Mg].[Ni] ATTFYOXEMHAYAX-UHFFFAOYSA-N 0.000 claims description 5
- 239000006104 solid solution Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 3
- 239000012153 distilled water Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 7
- 230000008929 regeneration Effects 0.000 abstract description 3
- 238000011069 regeneration method Methods 0.000 abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000006057 reforming reaction Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentenylidene Natural products C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000002309 gasification Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- QMMOXUPEWRXHJS-HYXAFXHYSA-N (z)-pent-2-ene Chemical compound CC\C=C/C QMMOXUPEWRXHJS-HYXAFXHYSA-N 0.000 description 1
- ZYVYEJXMYBUCMN-UHFFFAOYSA-N 1-methoxy-2-methylpropane Chemical compound COCC(C)C ZYVYEJXMYBUCMN-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- IAQRGUVFOMOMEM-ARJAWSKDSA-N cis-but-2-ene Chemical compound C\C=C/C IAQRGUVFOMOMEM-ARJAWSKDSA-N 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Abstract
本发明公开了一种生物质粗燃气制备合成气的重整反应器和方法,该方法包括如下步骤:生物质进行气化得到的高温粗燃气经旋风分离除去大部分焦炭颗粒;送入重整反应器;同时向重整反应器中加入过热水蒸气和氧气,高温粗燃气在重整反应器中的催化剂作用下、在反应温度为640~850℃之间进行临氧催化重整,定向转化为主要含H2、CO、和CO2组分的合成气;重整后的合成气经冷却、除尘后然后进入合成系统。本发明将临氧反应技术应用于生物质粗燃气的催化重整过程制备高品位合成气,可显著节能降耗减排,延长催化剂的再生周期和使用寿命。实现了生物质资源-能源-环境的一体化可持续性利用。
The invention discloses a reforming reactor and a method for preparing synthesis gas from raw biomass gas. The method comprises the following steps: the high-temperature raw gas obtained by gasifying biomass is separated by a cyclone to remove most of the coke particles; Reactor; add superheated steam and oxygen into the reforming reactor at the same time, under the action of the catalyst in the reforming reactor, the high-temperature raw gas will carry out catalytic reforming in the presence of oxygen at a reaction temperature of 640-850°C, and the orientation It is converted into synthesis gas mainly containing H 2 , CO, and CO 2 components; the reformed synthesis gas enters the synthesis system after being cooled and dedusted. The present invention applies the oxygen-adjacent reaction technology to the catalytic reforming process of raw biomass fuel gas to prepare high-grade synthesis gas, which can significantly save energy, reduce consumption and reduce emissions, and prolong the regeneration period and service life of the catalyst. The integrated sustainable utilization of biomass resources-energy-environment has been realized.
Description
技术领域technical field
本发明提供一种高效洁净制取高品位生物合成气的工艺与方法,特别涉及一种生物质粗燃气制备合成气的重整反应器和方法。The invention provides a process and method for efficiently and cleanly producing high-grade biosynthesis gas, and in particular relates to a reforming reactor and method for preparing synthesis gas from raw biomass gas.
技术背景technical background
我国是油气资源相对贫乏的国家,近年来国际油价的不断上涨对我国经济产生了重要影响,对我国的能源安全与国家安全也带来了相当大的压力。生物质是可再生能源中唯一可以转化为液体燃料的碳资源,通过开发低成本的生物质合成气生产技术,以废弃的生物质资源为原料合成高品质的液体燃料,对于实现我国能源结构多元化、增强能源安全具有重要的意义。my country is a country with relatively poor oil and gas resources. In recent years, the continuous rise of international oil prices has had an important impact on my country's economy, and has also brought considerable pressure on my country's energy security and national security. Biomass is the only carbon resource that can be converted into liquid fuels in renewable energy. By developing low-cost biomass synthesis gas production technology and using waste biomass resources as raw materials to synthesize high-quality liquid fuels, it is important to realize the diversification of my country's energy structure. It is of great significance to modernize and enhance energy security.
以化石燃料为主的能源开发利用排放大量的温室气体、有毒有害气体和废渣、废水、废油等,是引起环境污染和气候变化的主要原因。随着中国正式履行加入《京都议定书》CO2减排义务,中国的CO2减排压力将越来越大。生物质合成液体燃料生产过程环境友好,因此,大规模发展生物质合成燃料产业,能大幅度减少CO2的排放,是从根本上解决矿物质能源消费导致大气污染及温室效应的最有效途径之一,有利于生态环境的保护,实现社会可持续发展。The development and utilization of energy based on fossil fuels emit a large amount of greenhouse gases, toxic and harmful gases, waste residues, waste water, waste oil, etc., which are the main causes of environmental pollution and climate change. As China formally fulfills its obligation to reduce CO 2 emissions under the Kyoto Protocol, the pressure on China to reduce CO 2 emissions will increase. The production process of biomass synthetic liquid fuel is friendly to the environment. Therefore, the large-scale development of biomass synthetic fuel industry can greatly reduce CO 2 emissions, which is one of the most effective ways to fundamentally solve the air pollution and greenhouse effect caused by mineral energy consumption. First, it is conducive to the protection of the ecological environment and the realization of sustainable social development.
目前,世界各国目前正借鉴天然气造气工业的成果和经验,在较成熟的生物质气化工程技术基础上,广泛开展生物质气重整调变生产合成气的研究开发,以满足下游液体燃料合成系统的要求。由于生物质焦油主要为组成十分复杂的稠环化合物,重整过程容易造成镍基催化剂积炭失活,使得生物质粗燃气净化与组分重整调变成本居高不下。At present, countries around the world are currently drawing on the achievements and experience of the natural gas industry, and on the basis of relatively mature biomass gasification engineering technology, extensively carry out the research and development of biomass gas reforming and modulation to produce synthetic gas, so as to meet the needs of downstream liquid fuels. Synthesis system requirements. Since biomass tar is mainly a condensed ring compound with a very complex composition, the reforming process is likely to cause carbon deposition and deactivation of the nickel-based catalyst, which makes the cost of biomass crude gas purification and component reformation adjustment high.
临氧反应技术已在许多易积炭的高温反应中,被证实是消除催化剂表面积炭十分有效的方法,近年来逐渐在工业生产技术中被广泛采用。The oxygen reaction technology has been proved to be a very effective method to eliminate the carbon deposition on the surface of the catalyst in many high-temperature reactions that are prone to carbon deposition, and has gradually been widely used in industrial production technology in recent years.
发明内容Contents of the invention
本发明的目的之一是提供一种粗燃气制取高质量合成气的方法,解决重整过程中催化剂表面积碳结焦而导致催化活性迅速下降等问题。One of the objectives of the present invention is to provide a method for producing high-quality synthesis gas from crude gas, which solves the problems of rapid decline in catalytic activity caused by carbon coking on the surface of the catalyst during the reforming process.
为实现上述目的,本发明采取了以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种生物质粗燃气制备合成气的方法,包括如下步骤:A method for preparing synthesis gas from raw biomass gas, comprising the steps of:
(1)生物质进行气化得到的高温粗燃气经旋风分离除去大部分焦炭颗粒;(1) The high-temperature crude gas obtained by gasifying biomass is subjected to cyclone separation to remove most of the coke particles;
(2)再送入重整反应器;同时向重整反应器中加入过热水蒸气和氧气,其中,加入的粗燃气与O2的摩尔比为100∶2~6,每立方米粗燃气中加入水蒸气的量为0.12~1.20kg/m3;高温粗燃气在重整反应器中的催化剂作用下临氧催化重整,定向转化为主要含H2、CO、和CO2组分的合成气;所述催化剂为高稳镍镁固溶体催化剂;临氧催化重整反应温度在640~850℃之间;(2) Send into the reforming reactor again; Add superheated steam and oxygen in the reforming reactor simultaneously, wherein, the crude gas added and O The molar ratio is 100: 2~6, in every cubic meter of crude gas The amount of added water vapor is 0.12-1.20kg/m 3 ; the high-temperature raw gas is catalytically reformed under the action of the catalyst in the reforming reactor, and is directional converted into a synthesis of components mainly containing H 2 , CO, and CO 2 gas; the catalyst is a high-stable nickel-magnesium solid solution catalyst; the reaction temperature of oxygen-catalyzed reforming is between 640 and 850°C;
(3)重整后制得的合成气经冷却、除尘后然后进入合成系统。(3) The synthetic gas produced after reforming is cooled and dust-removed, and then enters the synthesis system.
所述制备方法还包括如下步骤:The preparation method also includes the steps of:
在临氧催化重整之前,在温度700~850℃之间将重整催化剂还原活化1~3小时。Before catalytic reforming in the presence of oxygen, the reforming catalyst is reduced and activated at a temperature of 700-850° C. for 1-3 hours.
优选地,上述步骤(2)中的加入的粗燃气与O2的摩尔比为100∶3,水蒸气的量为0.8~1kg/m3;反应温度为700~800℃.Preferably, the molar ratio of raw gas and O2 added in the above step (2) is 100:3, the amount of water vapor is 0.8-1kg/ m3 ; the reaction temperature is 700-800°C.
优选地,所述高稳镍镁固溶体催化剂是由以下方法制备得到的:Preferably, the high-stable nickel-magnesium solid solution catalyst is prepared by the following method:
(1)将Ni(AC)2、Mg(NO3)2晶体溶于蒸馏水中,配成Ni、Mg原子摩尔比为2∶100~5∶100的溶液a.(1) Dissolve Ni(AC) 2 and Mg(NO3) 2 crystals in distilled water to prepare a solution with a Ni and Mg atomic molar ratio of 2:100 to 5:100 a.
(2)先将混合液a加热到57-62℃,再用等体积的2mol/L K2CO3溶液在搅拌下于烧杯中滴定,同时保持溶液恒温在57℃,滴定时的滴定速度为10-15ml/min,pH值始终保持在8-10之间;(2) First heat the mixed solution a to 57-62°C, then titrate with an equal volume of 2mol/L K 2 CO 3 solution in a beaker under stirring, while keeping the constant temperature of the solution at 57°C, and the titration speed during titration is 10 -15ml/min, the pH value is always kept between 8-10;
(3)静置1.5-2.5小时后,抽滤,并迅速用60℃热水冲洗,然后用大量的0.1mol/l的(NH4)HCO3溶液冲洗除去K+;(3) After standing still for 1.5-2.5 hours, suction filter, and quickly rinse with hot water at 60°C, and then rinse with a large amount of 0.1mol/l (NH 4 )HCO 3 solution to remove K + ;
(4)在120℃下进行干燥12小时,然后在950℃下煅烧共熔20小时,最后挤压成型。(4) Dry at 120°C for 12 hours, then calcinate and co-melt at 950°C for 20 hours, and finally extrude.
本发明的另一目的是提供用于上述生物质粗燃气制备合成气的方法的重整反应器。Another object of the present invention is to provide a reforming reactor used in the above method for producing synthesis gas from raw biomass gas.
实现该目的的技术方案如下:一种重整反应器,在反应器内设有上隔板、下隔板而将反应器内的空间由上至下分隔为排气室、烟气室、集灰室,在烟气室内设有至少两个反应管,该反应管的两端分别贯穿上隔板、下隔板;在反应管的下部端口位置设有滤网而将反应管的管内空间与集灰室相隔;在反应器的器壁上设有补气口、粗燃气入口、烟气入口、烟气出口、重整燃气出口;集灰室上部通过补气口、粗燃气入口分别与外界相通,烟气室下部、烟气室上部分别通过烟气入口、烟气出口分别与外界相通,排气室通过重整燃气出口与外界相通。The technical scheme to achieve this purpose is as follows: a reforming reactor, which is provided with an upper partition and a lower partition to divide the space in the reactor from top to bottom into an exhaust chamber, a flue gas chamber, a collector Gray room, at least two reaction tubes are arranged in the flue gas chamber, and the two ends of the reaction tubes respectively pass through the upper partition and the lower partition; a filter screen is provided at the lower port of the reaction tube to separate the space inside the reaction tube from the The ash collection chambers are separated; on the wall of the reactor, there are gas supply ports, crude gas inlets, flue gas inlets, flue gas outlets, and reformed gas outlets; the upper part of the ash collection chambers communicates with the outside world through the gas supply ports and crude gas inlets. The lower part of the flue gas chamber and the upper part of the flue gas chamber communicate with the outside world through the flue gas inlet and the flue gas outlet respectively, and the exhaust chamber communicates with the outside world through the reformed gas outlet.
优选地,所述补气口包括有氧气进口、水蒸气进口。所述重整反应器的底部设有出灰口,所述集灰室通过该出灰口与外界相通。Preferably, the air supply port includes an oxygen inlet and a water vapor inlet. The bottom of the reforming reactor is provided with an ash outlet through which the ash collection chamber communicates with the outside world.
本发明将临氧反应技术应用于生物质气的催化重整过程,生物质气中的CH4、C2、C3…及焦油选择性地转化为H2和CO,并可显著调变H2/CO比,大大延长催化剂的再生周期和使用寿命,进一步提高生物质合成气造气系统的长期运转稳定性,降低催化剂单耗和系统维护成本,将成为先进重整工艺研究开发的重要方向之一。The present invention applies the oxygen reaction technology to the catalytic reforming process of biomass gas, CH 4 , C 2 , C 3 ... and tar in the biomass gas are selectively converted into H 2 and CO, and the H 2 /CO ratio, greatly prolonging the regeneration period and service life of the catalyst, further improving the long-term operation stability of the biomass synthesis gas generation system, reducing the catalyst unit consumption and system maintenance costs, will become an important direction for the research and development of advanced reforming processes one.
本发明将临氧反应技术应用于生物质粗燃气的催化重整过程制备高品位合成气,可显著节能降耗减排,延长催化剂的再生周期和使用寿命。实现了生物质资源-能源-环境的一体化可持续性利用。The present invention applies the oxygen-adjacent reaction technology to the catalytic reforming process of raw biomass fuel gas to prepare high-grade synthesis gas, which can significantly save energy, reduce consumption and reduce emissions, and prolong the regeneration period and service life of the catalyst. The integrated sustainable utilization of biomass resources-energy-environment has been realized.
附图说明Description of drawings
图1为本发明的制备合成气的方法中所用的设备示意图;Fig. 1 is the equipment schematic diagram used in the method for preparing syngas of the present invention;
图2为图1中,重整反应器的结构示意图;Fig. 2 is in Fig. 1, the structural representation of reforming reactor;
图3是图2中,A-A剖面图;Fig. 3 is among Fig. 2, A-A sectional view;
附图标志说明Description of reference signs
1、生物质进料系统,2、流化床气化炉,3、旋风分离器,4、高温裂解器,5、焦炭进料器,6、燃烧器,7、重整反应器,8、重整反应器集灰室,9、烟气室10、反应管,11、出灰口,12、金属过滤网,13、烟气入口,14、粗燃气入口,15、烟气出口,16、重整燃气出口,17、热交换器,18、布袋除尘器,19、脉冲反吹器,20、排气室,21、上隔板,22、下隔板,G1、气化炉O2进口G2、气化炉水蒸气进口G3、O2进口G4、水蒸气进口。1. Biomass feed system, 2. Fluidized bed gasifier, 3. Cyclone separator, 4. High temperature cracker, 5. Coke feeder, 6. Burner, 7. Reforming reactor, 8. Ash collection chamber of reforming reactor, 9,
具体实施方式Detailed ways
在以下实施例中将进一步说明本发明,但对本发明不构成限制。The present invention will be further illustrated in the following examples, but the present invention is not limited.
一:催化剂的制备1: Catalyst preparation
按如下步骤制备高稳镍镁固溶体催化剂:Prepare high stable nickel-magnesium solid solution catalyst as follows:
(1)将Ni(AC)2、Mg(NO3)2晶体溶于蒸馏水中,配成Ni、Mg原子摩尔比为3.3∶100的溶液a.(1) Dissolve Ni(AC)2 and Mg(NO 3 ) 2 crystals in distilled water to prepare a solution with a molar ratio of Ni and Mg atoms of 3.3:100 a.
配2mol/L的K2CO3溶液,0.1mol/L的(NH4)HCO3溶液。With 2mol/L K 2 CO 3 solution, 0.1mol/L (NH 4 )HCO 3 solution.
(2)先将混合液a加热到57+5℃,再用等体积的K2CO3溶液在搅拌下于烧杯中滴定,同时保持溶液恒温在330K(57℃),滴定时控制好滴定速度,一般控制在10-15ml/min,pH值始终保持在8-10内。(2) First heat the mixed solution a to 57+5°C, then titrate with an equal volume of K 2 CO 3 solution in a beaker under stirring, while keeping the solution at a constant temperature of 330K (57°C), and control the titration speed during titration , generally controlled at 10-15ml/min, and the pH value is always kept within 8-10.
(3)静置两个小时后,抽滤,并迅速用60℃热水冲洗,然后用大量的0.1mol/l的(NH4)HCO3溶液冲洗除去K+。(3) After standing for two hours, suction filter, and quickly rinse with 60°C hot water, and then rinse with a large amount of 0.1mol/l (NH 4 )HCO 3 solution to remove K + .
(4)在120℃下进行干燥12小时,然后在1223K(950℃)下煅烧共熔20小时。最后挤压成型。并添装在重整反应器的反应管中。(4) Dry at 120°C for 12 hours, and then calcine and eutectic at 1223K (950°C) for 20 hours. Finally extruded. And add it in the reaction tube of the reforming reactor.
二.重整反应器2. Reforming reactor
如图1-图3所示,本实施例的生物质粗燃气制备合成气的设备主要由生物质进料系统1、流化床气化炉2、旋风分离器3、高温裂解器4、焦炭进料器5、燃烧器6、重整反应器7、热交换器17、布袋除尘器18、脉冲反吹器19、以及气化炉氧气与水蒸气进口G1和G2。其重整反应器7为列管式反应器,在反应器内设有上隔板21、下隔板22而将反应器内的空间由上至下分隔为排气室20、烟气室9、集灰室8,在烟气室9内设有十二个反应管10(如图3所示),该反应管10的两端分别贯穿上隔板21、下隔板22并与排气室20、集灰室8相通;在反应管10的下部端口位置设有金属过滤网12而将反应管10的管内空间与集灰室8相隔;在反应器的器壁上设有O2进口G3、水蒸气进口G4、粗燃气入口14、烟气入口13、烟气出口15、重整燃气出口16;集灰室8上部通过O2进口G3、水蒸气进口G4分别与O2进气管、水蒸气进气管相通,集灰室8上部通过粗燃气入口14与粗燃气进气管相通,烟气室9下部通过烟气入口13与烟气进气管相通、烟气室9上部通过烟气出口15与烟气出气管相通,排气室20通过重整燃气出口16与重整燃气出管相通。出灰口11设置在重整反应器7的底部,所述集灰室8通过该出灰口11与外界相通。As shown in Figures 1-3, the equipment for preparing synthesis gas from raw biomass gas in this embodiment mainly consists of a biomass feed system 1, a
三.生物质粗燃气制备合成气3. Preparation of synthesis gas from raw biomass gas
生物质原料经进料系统1进入气化炉2,点火开车产气,高温燃气经旋风分离除大部分焦炭颗粒后直接送入燃烧器6燃烧,产生的高温烟气对重整反应器7和高温裂解器4进行加热升温。待达到预定的重整反应温度780℃后,开启高温裂解器进料系统,生物质原料经高温裂解分解为焦炭和挥发份(燃气和油蒸汽),焦炭由焦炭进料器5送入气化炉2气化,挥发份送入燃烧器6燃烧,产生的热量供给重整反应器7;同时逐步将气化炉产生的高温燃气切换到重整反应器反应管10,对重整催化剂进行还原活化2小时,还原温度为780℃。The biomass raw material enters the
重整催化剂还原活化完成后,从氧气入口G3向生物质高温燃气流中加入与高温粗燃气的摩尔比为100∶3的氧气,从水蒸气入口G4加入过热水蒸气,每立方米粗燃气中水蒸气加入量为0.8kg。在催化剂的作用下,高温粗燃气在反应管10发生反应,反应温度780℃,粗燃气中的CH4、C2、C3…及焦油选择性地转化为H2和CO,从催化床排出的高温气流经余热锅炉17换热冷却后进入布袋除尘器18,然后经增压后送入后续的合成系统。合成系统的合成弛放气经脉冲反吹器19定时反吹反应管10与布袋除尘器18,以防止催化床层堵塞,重整反应器反吹下来的粉尘灰分收集于重整反应器集灰室8,定时从出灰口11处清除。After the reduction and activation of the reforming catalyst is completed, oxygen with a molar ratio of 100:3 to the high-temperature crude gas is added to the biomass high-temperature gas flow from the oxygen inlet G3, and superheated steam is added from the water vapor inlet G4. The amount of water vapor added is 0.8kg. Under the action of the catalyst, the high-temperature crude gas reacts in the
在上述条件下催化重整反应系统连续运行300小时,催化剂未检测到积碳失活,对重整反应后合成气成分的分析表明,H2/CO比为1.3,合成气中的CH4含量降低到0.2mol%以下,生物质粗燃气中的焦油转化率达到99%以上,焦油含量低于0.1mg/m3。传统重整后与整临氧重整后合成气中焦油组分如表1所示。Under the above conditions, the catalytic reforming reaction system has been continuously operated for 300 hours, and the catalyst has not been detected to be deactivated by carbon deposition. The analysis of the composition of the synthesis gas after the reforming reaction shows that the ratio of H 2 /CO is 1.3, and the content of CH 4 in the synthesis gas When it is reduced to below 0.2 mol%, the conversion rate of tar in the raw biomass gas reaches over 99%, and the tar content is lower than 0.1 mg/m 3 . The tar components in the syngas after traditional reforming and after oxygen reforming are shown in Table 1.
表1 非临氧重整后与整临氧重整后合成气中焦油组分Table 1 Tar components in syngas after non-oxygen reforming and full oxygen reforming
实施例2Example 2
所用催化剂和实施例1相同。Catalyst used is identical with embodiment 1.
所用催化重整器和制备方法基本相同,不同是的是加入的粗燃气与O2的摩尔比为100∶2,水蒸气的量为0.2kg/m3;高温粗燃气在重整反应器中的催化剂作用下、在反应温度为780℃。The catalytic reformer used and the preparation method are basically the same, the difference is that the molar ratio of the crude gas to O2 added is 100:2, and the amount of water vapor is 0.2kg/ m3 ; the high-temperature crude gas is in the reforming reactor Under the action of the catalyst, the reaction temperature is 780°C.
在上述条件下催化重整反应系统连续运行300小时,催化剂未检测到积碳失活,对重整反应后合成气成分的分析表明,H2/CO比为1.02,合成气中的CH4含量降低到0.3mol%以下,生物质粗燃气中的焦油转化率达到99%以上,焦油含量低于0.1mg/m3。Under the above conditions, the catalytic reforming reaction system has been continuously operated for 300 hours, and the catalyst has not detected carbon deposition and deactivation. The analysis of the composition of the synthesis gas after the reforming reaction shows that the H 2 /CO ratio is 1.02, and the CH4 content in the synthesis gas is reduced. When it is lower than 0.3 mol%, the conversion rate of tar in the raw biomass gas reaches more than 99%, and the tar content is lower than 0.1 mg/m 3 .
实施例3Example 3
所用催化剂和实施例1相同。Catalyst used is identical with embodiment 1.
所用催化重整器和制备方法基本相同,不同是的是加入的粗燃气与O2的摩尔比为100∶5,水蒸气的量为1.2kg/m3;高温粗燃气在重整反应器中的催化剂作用下、在反应温度为780℃。The catalytic reformer used and the preparation method are basically the same, the difference is that the molar ratio of the crude gas to O2 added is 100:5, and the amount of water vapor is 1.2kg/ m3 ; the high-temperature crude gas is in the reforming reactor Under the action of the catalyst, the reaction temperature is 780°C.
在上述条件下催化重整反应系统连续运行300小时,催化剂未检测到积碳失活,对重整反应后合成气成分的分析表明,H2/CO比为1.3,合成气中的CH4含量降低到0.1mol%以下,生物质粗燃气中的焦油转化率达到99%以上,焦油含量低于0.1mg/m3。Under the above conditions, the catalytic reforming reaction system has been continuously operated for 300 hours, and the catalyst has not been detected to be deactivated by carbon deposition. The analysis of the composition of the synthesis gas after the reforming reaction shows that the H 2 /CO ratio is 1.3, and the CH4 content in the synthesis gas is reduced. When it is lower than 0.1 mol%, the conversion rate of tar in the raw biomass gas reaches more than 99%, and the tar content is lower than 0.1 mg/m 3 .
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100328887A CN101230296A (en) | 2007-12-28 | 2007-12-28 | Reforming reactor and method for preparing synthesis gas from raw biomass gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100328887A CN101230296A (en) | 2007-12-28 | 2007-12-28 | Reforming reactor and method for preparing synthesis gas from raw biomass gas |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101230296A true CN101230296A (en) | 2008-07-30 |
Family
ID=39897118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100328887A Pending CN101230296A (en) | 2007-12-28 | 2007-12-28 | Reforming reactor and method for preparing synthesis gas from raw biomass gas |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101230296A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102124083A (en) * | 2008-08-15 | 2011-07-13 | 科诺科菲利浦公司 | Two stage entrained gasification system and process |
CN102816613A (en) * | 2012-07-25 | 2012-12-12 | 中国科学院广州能源研究所 | Homeothermal electrocatalysis assisted reforming purifying device for biomass fuel gas |
CN103756735A (en) * | 2014-01-27 | 2014-04-30 | 淄博太沣环保工程有限公司 | Biomass gas catalytic reformer |
CN105670710A (en) * | 2016-02-02 | 2016-06-15 | 河南农业大学 | Method for reforming biomass crude syngas by taking hydrogen peroxide as raw material |
CN106701202A (en) * | 2017-01-05 | 2017-05-24 | 东华工程科技股份有限公司 | Apparatus and method used for mixing reaction of synthetic gas and coal and gas-solid-liquid grading separation of product |
CN107557082A (en) * | 2017-10-24 | 2018-01-09 | 江门绿润环保科技有限公司 | A kind of synthesis gas reformer |
CN110475844A (en) * | 2017-03-31 | 2019-11-19 | 日立造船株式会社 | Gas is modified furnace |
CN110465281A (en) * | 2018-07-10 | 2019-11-19 | 吉林大学 | A kind of nickel magnesium sosoloid method for preparing catalyst |
CN115786706A (en) * | 2022-11-28 | 2023-03-14 | 郴州金铖环保科技有限公司 | Method for reducing and smelting lead, bismuth and the like by using biomass gas |
-
2007
- 2007-12-28 CN CNA2007100328887A patent/CN101230296A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102124083A (en) * | 2008-08-15 | 2011-07-13 | 科诺科菲利浦公司 | Two stage entrained gasification system and process |
CN102124083B (en) * | 2008-08-15 | 2014-02-26 | 拉默斯技术公司 | Two-stage carry-over gasification system and method |
CN102816613A (en) * | 2012-07-25 | 2012-12-12 | 中国科学院广州能源研究所 | Homeothermal electrocatalysis assisted reforming purifying device for biomass fuel gas |
CN102816613B (en) * | 2012-07-25 | 2014-03-05 | 中国科学院广州能源研究所 | A uniform temperature biomass crude gas electrocatalytic auxiliary reforming purification device |
CN103756735A (en) * | 2014-01-27 | 2014-04-30 | 淄博太沣环保工程有限公司 | Biomass gas catalytic reformer |
CN105670710A (en) * | 2016-02-02 | 2016-06-15 | 河南农业大学 | Method for reforming biomass crude syngas by taking hydrogen peroxide as raw material |
CN105670710B (en) * | 2016-02-02 | 2018-05-08 | 河南省科学院能源研究所有限公司 | A kind of method using hydrogen peroxide as raw material reforming biomass crude synthesis gas |
CN106701202A (en) * | 2017-01-05 | 2017-05-24 | 东华工程科技股份有限公司 | Apparatus and method used for mixing reaction of synthetic gas and coal and gas-solid-liquid grading separation of product |
CN110475844A (en) * | 2017-03-31 | 2019-11-19 | 日立造船株式会社 | Gas is modified furnace |
CN107557082A (en) * | 2017-10-24 | 2018-01-09 | 江门绿润环保科技有限公司 | A kind of synthesis gas reformer |
CN110465281A (en) * | 2018-07-10 | 2019-11-19 | 吉林大学 | A kind of nickel magnesium sosoloid method for preparing catalyst |
CN115786706A (en) * | 2022-11-28 | 2023-03-14 | 郴州金铖环保科技有限公司 | Method for reducing and smelting lead, bismuth and the like by using biomass gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101230296A (en) | Reforming reactor and method for preparing synthesis gas from raw biomass gas | |
CN102329651B (en) | Three-stage gasification device for producing synthesis gas through biomass pyrolysis and gasification | |
CN102424359B (en) | A three-stage biomass pyrolysis-gasification-catalytic reforming method for producing synthesis gas | |
CN202543155U (en) | Combined circulation system for gasified combustion and catalyst regeneration by adopting heat carrier as basis | |
CN103305285B (en) | Device and method for preparing low-tar high-heat-value combustible gas by three-section-type gasification of biomass | |
CN103614167B (en) | An integrated purification process of biomass crude gas with high temperature dedusting and decoking | |
CN102965131B (en) | Efficient and clean utilization technology for highly volatile young coal | |
CN101880552A (en) | A gasification device and method for preparing hydrogen-rich synthesis gas from biomass | |
CN102226091A (en) | A device for producing synthetic gas by pyrolysis and gasification of biomass | |
CN102191089A (en) | Two-stage high-temperature preheated steam biomass gasification furnace | |
CN102676236A (en) | Method and device for three-stage separating biomass gasification | |
CN102517089A (en) | Device and method for preparing high-calorific value combustible gas through biomass gasification and melting | |
CN101747943A (en) | Method by utilizing livestock manure to produce hydrogenous gas and other products in a step-by-step thermal decomposition way and device | |
CN101880550B (en) | High-temperature solid fuel gasification device | |
CN101560413A (en) | Method for automatic thermocatalytic reforming and purification of biomass fuel gas and device | |
CN104876184B (en) | A process for in-situ adsorption of in-situ adsorption of calcium-injected circulating fluidized bed combustion gasification of CO2 in a heavy oil residue furnace to enhance hydrogen production by water-vapor shift | |
CN203307297U (en) | Device for preparing low-tar and higher-calorific-value combustible gas by biomass three-phase type gasification | |
CN118255323A (en) | Method and device for preparing battery-grade hydrogen by organic solid waste plasma | |
CN104673414B (en) | Device and method for carrying out catalysis, gasification and methanation enrichment on coal | |
CN102433165A (en) | Old automobile breaking residue catalytic gasification device | |
CN109294625B (en) | Fluidized gasification pre-oxidation reactor | |
WO2011147180A1 (en) | Biomass combined gasification equipment | |
CN102585905B (en) | Bituminous coal fixed bed continuous gasification method | |
CN107142128B (en) | Biomass circulating fluidized bed gasification combined H2Hydrogen production by adsorption and water-steam conversion | |
CN101214919A (en) | A method and device for preparing synthesis gas from bio-oil gasification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080730 |