CN101195743A - Structure and preparation method of MnInAs/GaAs quantum dot sample with photomagnetic properties - Google Patents
Structure and preparation method of MnInAs/GaAs quantum dot sample with photomagnetic properties Download PDFInfo
- Publication number
- CN101195743A CN101195743A CNA2006101648801A CN200610164880A CN101195743A CN 101195743 A CN101195743 A CN 101195743A CN A2006101648801 A CNA2006101648801 A CN A2006101648801A CN 200610164880 A CN200610164880 A CN 200610164880A CN 101195743 A CN101195743 A CN 101195743A
- Authority
- CN
- China
- Prior art keywords
- quantum dot
- gaas
- mninas
- sample
- magnetooptical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明一种具光磁性质含MnInAs/GaAs量子点样品的结构,包括:一衬底;一缓冲层,该缓冲层沉积在衬底,它可以有效地阻止衬底中的位错可能延伸到外延层中来;一绝缘层,该绝缘层沉积在缓冲层上;一量子点注入层,该量子点注入层沉积在绝缘层30上,它具有良好的发光性质;一表面盖层,该表面盖层沉积在量子点注入层上。
A kind of optical magnetic property of the present invention contains the structure of MnInAs/GaAs quantum dot sample, comprises: a substrate; A buffer layer, this buffer layer is deposited on the substrate, and it can effectively prevent the dislocation in the substrate from possibly extending to In the epitaxial layer; an insulating layer, the insulating layer is deposited on the buffer layer; a quantum dot injection layer, the quantum dot injection layer is deposited on the insulating layer 30, and it has good light-emitting properties; a surface cover layer, the surface A capping layer is deposited on the quantum dot implantation layer.
Description
技术领域 technical field
本发明涉及稀磁半导体量子点制备技术领域,特别是一种具光磁性质含MnInAs/GaAs量子点样品的结构的制备方法。The invention relates to the technical field of preparation of dilute magnetic semiconductor quantum dots, in particular to a method for preparing a structure with photomagnetic properties containing MnInAs/GaAs quantum dot samples.
背景技术 Background technique
稀磁材料是近些年来研究热点,因为它可以用在磁光、信息存储、巨磁阻等方面应用。III-V族半导体是现在制备高速电子器件、激光器等的主要材料,开发III-V稀磁半导体可以将稀磁性能与现在的电子器件的光电性能结合在一起,而对GaAs、InAs、InSb而言,Mn离子与阳离子原子半径相近,并且Mn具有大的固有磁矩,因而被认为是III-V族半导体磁性掺杂离子的首选。但Mn在III-V族半导体中的低溶解度使制备III-Mn-V稀磁半导体很困难,直到1989年,Hono等人用低温外延的办法成功制成了InMnAs,自此GaMnAs等稀磁半导体的结构、磁学、输运方面的研究开展得非常多。一般制备III-Mn-V稀磁半导体的方法主要是低温外延,这种方法制备的GaMnAs、InMnAs晶格周期性较好,Mn含量甚至可以达到10%以上,研究发现Mn在材料中取代阳离子的位置,并形成受主同时电离出空穴,并且这些磁性Mn离子以空穴为媒介形成铁磁有序而使材料获得低温铁磁性,通过适当的低温退火处理,其居里转变温度可达到150K左右。Diluted magnetic materials are research hotspots in recent years, because they can be used in magneto-optical, information storage, giant magnetoresistance and other applications. III-V semiconductors are the main materials for preparing high-speed electronic devices, lasers, etc., and the development of III-V dilute magnetic semiconductors can combine dilute magnetic properties with the optoelectronic properties of current electronic devices, while for GaAs, InAs, and InSb In other words, Mn ions are close to the atomic radius of cations, and Mn has a large intrinsic magnetic moment, so it is considered to be the first choice for magnetic doping ions in III-V semiconductors. However, the low solubility of Mn in III-V semiconductors made it difficult to prepare III-Mn-V dilute magnetic semiconductors. Until 1989, Hono and others successfully made InMnAs by low-temperature epitaxy. Since then, dilute magnetic semiconductors such as GaMnAs A lot of research has been done on the structure, magnetism, and transport of ions. Generally, the method of preparing III-Mn-V dilute magnetic semiconductor is mainly low-temperature epitaxy. GaMnAs and InMnAs prepared by this method have better lattice periodicity, and the Mn content can even reach more than 10%. It is found that Mn can replace cations in the material. positions, and form acceptors and ionize holes at the same time, and these magnetic Mn ions form ferromagnetic order with holes as the medium to make the material obtain low-temperature ferromagnetism. Through appropriate low-temperature annealing treatment, its Curie transition temperature can reach 150K about.
但是由于在低温外延制备过程中,生长条件决定必须在较大的As压和较低的温度下生长,因而材料中存在大量的As施主和缺陷,这使得低温外延生长出来的GaMnAs量子阱或InMnAs量子点都不具备发光性能,从而妨碍了这些材料的进一步的应用。However, in the low-temperature epitaxial preparation process, the growth conditions determine that it must be grown at a higher As pressure and a lower temperature, so there are a large number of As donors and defects in the material, which makes GaMnAs quantum wells or InMnAs grown by low-temperature epitaxy Quantum dots do not have luminescent properties, which hinders the further application of these materials.
离子注入法是一种传统的掺杂方法,这种方法操作简单,离子掺杂的深度可控,在较高能量注入时,离子的分散度也较好,目前在微电子工艺中离子注入方法应用较为普遍。但由于离子注入给基体带来较大的损伤,对于光电材料,如GaAs,注入后的材料发光性能难以保证。Ion implantation method is a traditional doping method. This method is simple to operate, and the depth of ion doping is controllable. When implanted at higher energy, the dispersion of ions is also better. Currently, ion implantation methods in microelectronics technology application is more common. However, due to the large damage to the substrate caused by ion implantation, it is difficult to guarantee the luminescence performance of the implanted material for optoelectronic materials, such as GaAs.
本发明利用到量子点材料较强的发光性能,实现了离子注入加退火后的量子点样品具有发光性能。其原理是由于载流子被量子点捕获后在三维方向上都受到限制,不易逃逸出去,从而减小了载流子(光生载流子或电激发载流子)被缺陷俘获的几率,这样虽然注入过程给材料带来了缺陷,但缺陷对量子点的发光性能影响受到抑制,因而材料仍然具有一定的发光性能。当选用适当的注入剂量和退火工艺时,注Mn量子点材料就同时具有光学和磁学性能。这使得这种材料可能更广泛的应用到磁光、自旋注入、量子存储等领域当中。The invention utilizes the strong luminescence performance of the quantum dot material, and realizes that the quantum dot sample after ion implantation and annealing has luminescence performance. The principle is that after the carriers are captured by the quantum dots, they are restricted in the three-dimensional direction and are not easy to escape, thereby reducing the probability of the carriers (photogenerated carriers or electrically excited carriers) being captured by defects, so that Although the implantation process brings defects to the material, the effect of defects on the luminescence properties of quantum dots is suppressed, so the material still has certain luminescence properties. When the appropriate implant dose and annealing process are selected, the Mn quantum dot material has optical and magnetic properties at the same time. This makes this material more widely used in magneto-optic, spin injection, quantum storage and other fields.
发明内容 Contents of the invention
本发明的目的在于,提供一种具光磁性质含MnInAs/GaAs量子点样品的结构的制备方法,其可应用于磁光、自旋注入、量子存储等技术领域中。The object of the present invention is to provide a method for preparing a structure containing MnInAs/GaAs quantum dot samples with photomagnetic properties, which can be applied in the technical fields of magneto-optic, spin injection, and quantum storage.
本发明一种具光磁性质含MnInAs/GaAs量子点样品的结构,其特征在于,包括:The present invention has a structure with photomagnetic properties containing MnInAs/GaAs quantum dot samples, which is characterized in that it comprises:
一衬底;a substrate;
一缓冲层,该缓冲层沉积在衬底,它可以有效地阻止衬底中的位错可能延伸到外延层中来;A buffer layer deposited on the substrate, which can effectively prevent dislocations in the substrate from extending into the epitaxial layer;
一绝缘层,该绝缘层沉积在缓冲层上;an insulating layer deposited on the buffer layer;
一量子点注入层,该量子点注入层沉积在绝缘层30上,它具有良好的发光性质;A quantum dot injection layer, the quantum dot injection layer is deposited on the
一表面盖层,该表面盖层沉积在量子点注入层上。A surface capping layer is deposited on the quantum dot injection layer.
其中所述的衬底的材料为GaAs。The material of the substrate is GaAs.
其中所述的缓冲层的材料为n+-GaAs,该缓冲层的厚度为500纳米。The material of the buffer layer is n+-GaAs, and the thickness of the buffer layer is 500 nanometers.
其中所述的绝缘层的材料为GaAs,该绝缘层的厚度为50纳米。The material of the insulating layer is GaAs, and the thickness of the insulating layer is 50 nanometers.
其中所述的量子点注入层是为3个周期的量子点注入层,每一周期包括2个分子单层含锰的InAs量子点层和20纳米厚的含锰的GaAs材料。The quantum dot injection layer is a three-period quantum dot injection layer, and each period includes two molecular single-layer manganese-containing InAs quantum dot layers and a 20-nanometer-thick manganese-containing GaAs material.
其中所述的表面盖层的材料为GaAs,厚度为45纳米。The material of the surface cover layer is GaAs with a thickness of 45 nanometers.
本发明一种具光磁性质含MnInAs/GaAs量子点样品的结构的制备方法,其特征在于,包括如下步骤:A method for preparing a structure of a MnInAs/GaAs quantum dot sample with photomagnetic properties according to the present invention is characterized in that it comprises the following steps:
步骤1:在衬底上沉积缓冲层;Step 1: depositing a buffer layer on the substrate;
步骤2:在缓冲层上沉积绝缘层;Step 2: depositing an insulating layer on the buffer layer;
步骤3:在绝缘层上沉积量子点注入层;Step 3: depositing a quantum dot injection layer on the insulating layer;
步骤4:在量子点注入层上沉积表面盖层;Step 4: Depositing a surface cap layer on the quantum dot injection layer;
步骤5:采用离子注入的方法,在量子点注入层中注入Mn离子;Step 5: using ion implantation to implant Mn ions into the quantum dot implantation layer;
步骤6:将注入后的样品快速退火,完成样品结构的制作。Step 6: Rapidly anneal the injected sample to complete the fabrication of the sample structure.
其中所述的衬底的材料为GaAs。The material of the substrate is GaAs.
其中所述的缓冲层的材料为n+-GaAs,该缓冲层的厚度为500纳米。The material of the buffer layer is n+-GaAs, and the thickness of the buffer layer is 500 nanometers.
其中所述的绝缘层的材料为GaAs,该绝缘层的厚度为50纳米。The material of the insulating layer is GaAs, and the thickness of the insulating layer is 50 nanometers.
其中所述的量子点注入层是为3个周期的量子点注入层,每一周期包括2个分子单层含锰的InAs量子点层和20纳米厚的含锰的GaAs材料。The quantum dot injection layer is a three-period quantum dot injection layer, and each period includes two molecular single-layer manganese-containing InAs quantum dot layers and a 20-nanometer-thick manganese-containing GaAs material.
其中所述的表面盖层的材料为GaAs,厚度为45纳米。The material of the surface cover layer is GaAs with a thickness of 45 nanometers.
其中在衬底沉积缓冲层和绝缘层时的温度为580℃。Wherein the temperature when depositing the buffer layer and the insulating layer on the substrate is 580°C.
其中在绝缘层上沉积量子点注入层时的温度降低至500℃。Wherein the temperature when depositing the quantum dot injection layer on the insulating layer is reduced to 500°C.
其中Mn离子注入时的能量为160keV,注入剂量为2×1015cm-2到2×1016cm-2之间。The energy of the Mn ion implantation is 160keV, and the implantation dose is between 2×10 15 cm −2 and 2×10 16 cm −2 .
其中所述的快速退火,其退火温度为750℃-850℃之间,时间为5-30秒,退火的保护气氛为N2。The rapid annealing described therein has an annealing temperature between 750° C. and 850° C., a time of 5-30 seconds, and an annealing protective atmosphere of N 2 .
与背景技术相比较所具有的意义Significance compared with background technology
本发明具有以下意义:The present invention has the following meanings:
本发明首次制备了既具有磁学性能又具有发光性能的量子点材料。而生长方法与国际目前低温生长的GaMnAs等材料相比,具有工艺简单特点,并且可以在一定范围内调节量子点样品的发光波长,更加灵活,适应不同用途的需要。The invention prepares quantum dot materials with both magnetic properties and luminous properties for the first time. Compared with the current international low-temperature growth GaMnAs and other materials, the growth method has the characteristics of simple process, and can adjust the emission wavelength of quantum dot samples within a certain range, which is more flexible and adapts to the needs of different purposes.
附图说明 Description of drawings
为进一步说明本发明的具体技术内容,以下结合实施例及附图详细说明如后,其中:In order to further illustrate the specific technical content of the present invention, below in conjunction with embodiment and accompanying drawing detailed description as follows, wherein:
图1是本发明量子点的材料的结构示意图;Fig. 1 is the structural representation of the material of quantum dot of the present invention;
图2是Mn离子注入后样品的示意图。Fig. 2 is a schematic diagram of the sample after Mn ion implantation.
图3是注入Mn离子的量子点样品850℃快速退火后77K温度下测得的光荧光谱图。Fig. 3 is a photofluorescence spectrum measured at a temperature of 77K after rapid annealing of a quantum dot sample implanted with Mn ions at 850°C.
图4是注入Mn离子的量子点样品在850℃快速退火后5K温度下在量子超导干涉仪上测得的磁滞回线图。Fig. 4 is a hysteresis loop diagram measured on a quantum superconducting interferometer at a temperature of 5K after rapid annealing at 850°C for a quantum dot sample implanted with Mn ions.
具体实施方式 Detailed ways
请参阅图1所示,本发明一种具光磁性质含MnInAs/GaAs量子点样品的结构,包括:Please refer to shown in Fig. 1, a kind of optical magnetic property of the present invention contains the structure of MnInAs/GaAs quantum dot sample, comprises:
一衬底10,该衬底10的材料为GaAs;A
一缓冲层20,该缓冲层20沉积在衬底10,它可以有效地阻止衬底中的位错可能延伸到外延层中来,该缓冲层20的材料为n+-GaAs,该缓冲层的厚度为500纳米;A
一绝缘层30,该绝缘层30沉积在缓冲层20上,该绝缘层30的材料为GaAs,该绝缘层30的厚度为50纳米;An insulating
一量子点注入层40,该量子点注入层40沉积在绝缘层30上,它具有良好的发光性质,该量子点注入层40是为3个周期的量子点注入层,每一周期包括2个分子单层含锰的InAs量子点层和20纳米厚的含锰的GaAs材料;A quantum
一表面盖层50,该表面盖层50沉积在量子点注入层40上,该表面盖层50的材料为GaAs,厚度为45纳米。A
请再参阅图1并结合参阅图2所示,本发明一种具光磁性质含MnInAs/GaAs量子点样品的结构的制备方法,包括如下步骤:Please refer to Fig. 1 again and in conjunction with Fig. 2, a method for preparing the structure of a photomagnetic property containing MnInAs/GaAs quantum dot sample of the present invention comprises the following steps:
步骤1:在衬底10上沉积缓冲层20,该衬底10的材料为GaAs,该缓冲层20的材料为n+-GaAs,该缓冲层的厚度为500纳米;Step 1: Deposit a
步骤2:在缓冲层20上沉积绝缘层30,该绝缘层30的材料为GaAs,该绝缘层30的厚度为50纳米;Step 2: depositing an insulating
其中在该衬底10沉积缓冲层20和绝缘层30时的温度为580℃;Wherein the temperature when depositing the
步骤3:在绝缘层30上沉积量子点注入层40,该量子点注入层40是为3个周期的量子点注入层,每一周期包括2个分子单层含锰的InAs量子点层和20纳米厚的含锰的GaAs材料;Step 3: Depositing a quantum
其中在绝缘层30上沉积量子点注入层40时的温度降低至500℃;Wherein the temperature when depositing the quantum
步骤4:在量子点注入层40上沉积表面盖层50,该表面盖层50的材料为GaAs,厚度为45纳米;Step 4: depositing a
步骤5:采用离子注入的方法,在量子点注入层40中注入Mn离子;其中Mn离子注入时的能量为160keV,注入剂量为2×1015cm-2到2×1015cm-2之间;Step 5: Implanting Mn ions into the quantum
步骤6:将注入后的样品快速退火,其退火温度为750℃-850℃之间,时间为5-30秒,退火的保护气氛为N2,完成样品结构的制作(参阅图2)。Step 6: Rapidly anneal the implanted sample at a temperature of 750° C. to 850° C. for 5 to 30 seconds. The annealing atmosphere is N 2 to complete the fabrication of the sample structure (see FIG. 2 ).
以下结合附图对本发明再作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
图1为本发明用的原生量子点样品结构示意图,即自组织生长的三个周期InAs量子点。Fig. 1 is a schematic diagram of the structure of the original quantum dot sample used in the present invention, that is, three periods of InAs quantum dots grown by self-organization.
所用自组织生长的InAs量子点样品是用分子束外延设备(MBE)沉积在GaAs衬底10上制成的。具体方法是,在580℃温度下首先在衬底10上沉积500纳米的n+-GaAs缓冲层20,由于分子束外延设备的精密特性,缓冲层20具有高度的晶格完整性,位错极低,它可以有效的阻止衬底10中的位错可能延伸到外延层中来,尤其是延伸到量子点注入层中来,影响含Mn量子点的发光性质,因而其生长温度较高,选定为580℃。在缓冲层20上再沉积50纳米GaAs绝缘层30,绝缘层30可以有效的阻止样品注入Mn后缓冲层20中的电子扩散到量子点注入层40去。绝缘层30沉积结束后,将温度降低到500℃,沉积3个周期的InAs量子点注入层40。每层量子点注入层40的结构包括2个分子单层的InAs量子点层和20纳米厚的GaAs盖层(未图示),由于InAs和GaAs具有较大的晶格失配,进行沉积时如果InAs厚度较厚,可以通过岛状结构来降低能量,从而形成InAs量子点。其中InAs量子点层是先沉积2个InAs单层后,停顿三十秒后再生长20nm的GaAs盖层。为了获得更强的发光强度,共沉积了三个周期的量子点层形成量子点注入层40。量子点注入层40沉积完成后,将温度升高到580℃,在3个周期的量子点层上沉积45纳米厚的GaAs盖层50,GaAs盖层50的厚度是结合注入能量计算得到的。Mn离子以160keV的能量垂直注入到样品中时,用计算机模拟软件计算得到,Mn离子将分布在表面80纳米附近,纵向分布宽度为80纳米,因而Mn离子基本分布在三层量子点附近,即量子点注入层40附近。The self-organized growth InAs quantum dot samples used are deposited on
图2是本发明掺杂量子点时,高能Mn离子注入的样品退火后Mn+离子分布示意图,其中点的大小不代表任何意义,只标示Mn离子分布的区域位置。Figure 2 is a schematic diagram of Mn+ ion distribution after annealing of high-energy Mn ion-implanted samples when quantum dots are doped in the present invention, where the size of the dots does not represent any meaning, and only indicates the location of the distribution of Mn ions.
Mn离子注入能量选用160keV,在室温条件下垂直注入到量子点样品中,忽略注入过程中的沟道效应,用计算机模拟软件估算出160keV注入能量下离子注入的深度为80纳米,分布宽度为40纳米,因而可以看到注入的Mn离子基本上分布在3个周期的量子点层附近,即量子点注入层40附近。注入剂量可在2×1015cm-2到2×1016cm-2之间,样品快速退火后将同时具有低温铁磁性和光学性质,发光和磁学性能来源于量子点注入层40。Mn ion implantation energy is selected as 160keV, and it is vertically implanted into the quantum dot sample at room temperature, ignoring the channel effect in the implantation process, and using computer simulation software to estimate the depth of ion implantation under 160keV implantation energy is 80 nm, and the distribution width is 40 nm. Therefore, it can be seen that the implanted Mn ions are basically distributed near the three-period quantum dot layer, that is, near the quantum
图3是本发明制备的一个样品E样品(样品Mn注入剂量为1×1016cm-2)经过850℃温度快速退火5秒后,在77K温度下测得的PL谱(含注入Mn离子以前样品的PL谱)。Fig. 3 is the PL spectrum measured at a temperature of 77K after rapid annealing at a temperature of 850°C for 5 seconds of a sample E prepared by the present invention (sample Mn implantation dose is 1×10 16 cm -2 ) (including before implanting Mn ions PL spectrum of the sample).
由于注入带来大量的非复合中心,要获得注入后样品的发光,对注入Mn离子的样品进行退火处理是必要的。为了避免退火时间长引起MnAs团簇的形成,选用高温快速退火是必要的。退火温度可选750℃到850℃,退火时间为5-30秒。退火时用N2作保护气氛,并可以在样品上盖上干净的GaAs片子,以减少As的挥发破坏样品的性能。光荧光测试实验(PL)设备为付立叶变换红外光谱仪(FTIR),探测器为InGaAs光二极管,激发光源为氩离子激光,波长为514nm,激发能量为I0=100mW,光斑直径尺寸在100um范围内。图3给出注入Mn离子剂量为1×1016cm-2的E样品退火后的PL谱,从图可以看到退火后的E样品的PL发光性能较好,峰位较原生样品蓝移。Since the implantation brings a large number of non-recombination centers, it is necessary to anneal the sample implanted with Mn ions in order to obtain the luminescence of the implanted sample. In order to avoid the formation of MnAs clusters caused by long annealing time, it is necessary to select high temperature rapid annealing. The annealing temperature can be selected from 750° C. to 850° C., and the annealing time is 5-30 seconds. During annealing, N2 is used as a protective atmosphere, and a clean GaAs sheet can be covered on the sample to reduce the volatilization of As and damage the performance of the sample. Photofluorescence test experiment (PL) equipment is Fourier transform infrared spectrometer (FTIR), the detector is InGaAs photodiode, the excitation light source is argon ion laser, the wavelength is 514nm, the excitation energy is I0=100mW, and the spot diameter is in the range of 100um Inside. Figure 3 shows the PL spectrum of E sample after annealing with implanted Mn ion dose of 1×10 16 cm -2 . It can be seen from the figure that the PL luminescence performance of the annealed E sample is better, and the peak position is blue-shifted compared with the original sample.
图4是注入Mn离子(剂量为1E16cm-2)的量子点样品750℃、850℃快速退火后5K温度下在量子超导干涉仪上测得的磁滞回线。Fig. 4 is a hysteresis loop measured on a quantum superconducting interferometer at a temperature of 5K after rapid annealing of quantum dot samples implanted with Mn ions (a dose of 1E16cm -2 ) at 750°C and 850°C.
磁学性能是在量子超导干涉仪(SQUID)上测量的,样品保持清洁,大小为5×5mm2,测量是非接触式的,外加磁场方向平行于膜表面,样品测得的低温磁滞回线都扣除了衬底的抗磁性信号。The magnetic properties are measured on a quantum superconducting interferometer (SQUID), the sample is kept clean, the size is 5×5mm 2 , the measurement is non-contact, the direction of the applied magnetic field is parallel to the film surface, and the low-temperature hysteresis Both lines have subtracted the diamagnetic signal of the substrate.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006101648801A CN101195743A (en) | 2006-12-07 | 2006-12-07 | Structure and preparation method of MnInAs/GaAs quantum dot sample with photomagnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006101648801A CN101195743A (en) | 2006-12-07 | 2006-12-07 | Structure and preparation method of MnInAs/GaAs quantum dot sample with photomagnetic properties |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101195743A true CN101195743A (en) | 2008-06-11 |
Family
ID=39546370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006101648801A Pending CN101195743A (en) | 2006-12-07 | 2006-12-07 | Structure and preparation method of MnInAs/GaAs quantum dot sample with photomagnetic properties |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101195743A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102332681A (en) * | 2011-08-01 | 2012-01-25 | 长春理工大学 | A Low Linewidth F-P Cavity Strained Quantum Well Laser |
CN103700732A (en) * | 2014-01-06 | 2014-04-02 | 千人计划(张家港)集成光电研究院有限公司 | Optical spin injection structure and injection method |
CN108539031A (en) * | 2018-04-12 | 2018-09-14 | 京东方科技集团股份有限公司 | Quantum dot film build method, display panel and preparation method thereof, display device |
-
2006
- 2006-12-07 CN CNA2006101648801A patent/CN101195743A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102332681A (en) * | 2011-08-01 | 2012-01-25 | 长春理工大学 | A Low Linewidth F-P Cavity Strained Quantum Well Laser |
CN102332681B (en) * | 2011-08-01 | 2013-02-06 | 长春理工大学 | A Low Linewidth F-P Cavity Strained Quantum Well Laser |
CN103700732A (en) * | 2014-01-06 | 2014-04-02 | 千人计划(张家港)集成光电研究院有限公司 | Optical spin injection structure and injection method |
CN103700732B (en) * | 2014-01-06 | 2017-04-26 | 千人计划(张家港)集成光电研究院有限公司 | Optical spin injection structure and injection method |
CN108539031A (en) * | 2018-04-12 | 2018-09-14 | 京东方科技集团股份有限公司 | Quantum dot film build method, display panel and preparation method thereof, display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102368519B (en) | A kind of method improving semiconductor diode multiple quantum well light emitting efficiency | |
CN102916096B (en) | Epitaxial structure for improving luminous efficiency and preparation method thereof | |
CN105006426B (en) | The InAs quantum dots of growth on gaas substrates and preparation method thereof | |
Pearton et al. | Magnetic and structural characterization of Mn-implanted, single-crystal ZnGeSiN 2 | |
CN101195743A (en) | Structure and preparation method of MnInAs/GaAs quantum dot sample with photomagnetic properties | |
US20040159832A1 (en) | Spintonic devices and methods of making spintronic devices | |
CN203800069U (en) | Spin optoelectronic device | |
Ludwig et al. | Electrical spin injection in InAs quantum dots at room temperature and adjustment of the emission wavelength for spintronic applications | |
Petroff | Epitaxial growth and electronic structure of self-assembled quantum dots | |
CN102655209B (en) | Magnetic silicon germanium GeSi quantum ring and preparation method thereof | |
Liu et al. | Recent progress in ZnO-based heterojunction ultraviolet light-emitting devices | |
Ji et al. | Proton-implantation-induced photoluminescence enhancement in self-assembled InAs/GaAs quantum dots | |
CN1388537A (en) | Ion implantation process of preparing GaN-based diluted magnetic semiconductor material | |
CN109830582A (en) | LED epitaxial slice and its growing method | |
Atanassova et al. | Effect of active actions on the properties of semiconductor materials and structures | |
CN101471244B (en) | Method for producing dilute magnetic semiconductor film | |
Castagna et al. | Quantum dot materials and devices for light emission in silicon | |
Sortica et al. | Optical and structural properties of InAs nanoclusters in crystalline Si obtained through sequential ion implantation and RTA | |
Jia et al. | The Effect of Nanometer‐Scale V‐Pit Layer on the Carrier Recombination Mechanisms and Efficiency Droop of GaN‐Based Green Light‐Emitting Diodes | |
CN204991654U (en) | InAs quantum dot of growth on gaAs substrate | |
CN1177335C (en) | Method for preparing AlN-based diluted magnetic semiconductor material by ion implantation | |
Sapkota et al. | Growth and characterization of ferromagnetic Ga2O3:(Cr, Mn) | |
CN114142344B (en) | Method and device for improving electrical characteristics of blue and green light semiconductor lasers | |
CN221319865U (en) | Multilayer InGaAs quantum dot layers grown on GaAs(115)A substrate | |
CN109087974B (en) | Preparation method of light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080611 |